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GENERATORS OF W*-ALGEBRAS II

HoRrST BEHNCKE*

(Received Sept. 30, 1970)

In [1] it was shown that generators of properly infinite W *-algebras
can be chosen from rather restricted classes of operators. Here we shall
show that generators of properly infinite W *-algebras abound in another
sense. Let 2 be a W*-algebra on the separable Hilbert space H with no
summand of type II, then the set of generators of 2 is a norm dense
set in A. Moreover any operator T e can be written as the sum of
two generators of 2. These results have been obtained previously for
B(H), the algebra of all bounded linear operators on H [5, 7, 8, 9]. These
results are also valid for certain W *-algebras of type II,, for example the
hyperfinite factor of type II,, Throughout all Hilbert spaces will be
separable and all W*-algebras are assumed to act on separable Hilbert
spaces. For a W*-algebra 2% we denote the algebra of all & by k& matrices
with entries from 2 by M,®) = A K M,. In this notation M, stands for
the algebra of all bounded linear operators on a separable infinite dimen-
sional Hilbert space. For A, A4,, ... B(H), the W*-algebra generated
by A, 4,, ... will be denoted by R (A4, 4, ...). For TeB(H), T =
A + tB will always stand for the decomposition of T into its real and
imaginary part. The spectrum of an operator T will be denoted by
Sp T. For a W*-algebra 2 let 2, (2,) be the set of hermitean (positive)
elements of 2.

LEmMMA 1. a) Let A, A,eB(H) with SpA N SpA, =@ then
CA, = A,C implies C = 0.

b) Let A, A;e B(H), and Ce B(H) positive and invertible, then
CA, = A.C tmplies A, = A,.

Proor. a) This is an easy consequence of a result of Rosenblum
[10].

b) CA, = A,C implies 4,C = CA; and C?4, = CA,C = A,C% Since C
is positive A, commutes also with C. Thus A,C =CA4, = A,C and A, = A,,
because C is invertible.

LEMMA 2. Let U be an abelian W*-algebra, then the set of hermitean
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generators of W s dense in U,.

ProoF. Let A€, and ¢ > 0, then there exist an invertible operator
A'e?, with a finite spectrum and |A — A’ | <e. Let A" = 32, \me; be
the spectral decomposition of A’ and let » be the smallest distance
between the points in the set {0, A, -+, \,}. Each abelian W*-algebra
Ye;, 1 =© < n, has a hermitean generator a; with |a;| < min(e, 7/2). Then
A" =30 e;(\; + a;) is a hermitean generator of ¥ and |4 — A" | < 2.

LEMMA 3. Let the W*-algebra U be the (countable) direct sum of
W*-algebras U, A = > PBW;, and let T = S, P T;cN. Assume for each
1 and for some € > 0 there exists a gemerator T| of N, with |T; — T!| < &;
then there exists a generator T” of W with |T — T" | < 2e.

ProoF. Let 7' = >, @ T/ and let T'= A’ + +B’ be the decomposition
of T’ into its real and imaginary part. B’ lies in some maximal abelian
subalgebra B of 2, and by Lemma 2 there exists a generator B” ¢ B, of
B with |B’'— B”|<e. Then T" = A’ + ¢B"” is the desired operator.
|T — T"| < 2¢ is obvious. Let be the central projection onto 2;, U =
Az;. Then 2;€B and any D = D* e R(T"”)’ commutes with all z;,. Hence
D=3@®D; and D;eR(T"z) = R(T!)’ = A.. This shows De' or
R(T") = A.

COROLLARY. Let =D be such that each N; has a dense set
of generators. Then U has a dense set of generators.

Thus the W*-algebra % has a dense set of generators, if its parts of
type I,, type II and type III each have this property. Apart from this
rather obvious application the lemma will also be used in the following
way. Let % be a W*algebra, TeW and ¢ >0 arbitrary. Then
determine a countable central decomposition of A, A =S PN, and T =
S, @ T:, which may depend on T, such that for each ¢ the operator T;
can be approximated within ¢ by a generator T/ of ?,. Then the lemma
shows the existence of a generator T of N with |T — T" | < 2e.

PropoSITION 1. A finite W*-algebra U of type I on a separable
Hilbert space has a norm dense set of gemerators.

PrROOF. By Lemma 3 and the remarks following it we may assume
9 to be homogeneous of type I,, with # < . Then we can write 2 =
8® M,, where 3 is the center of A. Let ¢ >0 and let T = A+ iBe?.
By [8, Cor. 3.3] we may assume A to be diagonal, A = diag (a,, ..., @)
with a,, ..., a,€8. Let B be the algebra of all diagonal operators C =
diag(e, .., ¢,), with ¢, ...,¢,€8. B is a maximal abelian subalgebra
of U, and by Lemma 2 there exists a hermitean generator A’ of B with
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|A— A"| <e/2. Let B= (b;;)};-, then we can find invertible operators
b, =b%e8 with |b;,; — b,;| <1/2.e:n7% with 1<%, j=<n. Set now
B’ = (bi ;)= and T' = A" + ¢B’. Then |T — T'|< e. To show R(T'") =
A let D= D*eR(T'). Since in particular De®’, D is diagonal, D =
diag (dy, ..., d,) with d,e 8. Then DB’ = B'D gives d.;b]; = b .d; = d;b];
or d,=d; for 1 <14 =n, because the b;; are invertible. DecU is now
obvious. Hence R(T')’ = A’ or R(T’) = .

We state now a number of results on operators in W *-algebras,
which will be needed later. Most of these results are based on the polar
decomposition of operators [2].

Let A be a WH*-algebra and TeA. We say T has finite rank if
there exists a finite projection Pe A with TP = T. In a purely infinite
W *-algebra only the 0 operator is of finite rank. Clearly T € has finite
rank if and only if T* has finite rank. Let {Q;}i-, with n = 1,2, ..., =,
be a family of equivalent orthogonal projections in 2 with >, Q; = 1. The
{Q;}i~, induce a tensor decomposition of 2[2,ch.I §2], A=BR M,. In
this notation T e has the matrix form T = (¢;,;)%;=, with ¢,; = V*TV;
where V,V*=Q;, and V*V,=Q,. Let P be a finite projection in %,
then PV; has finite rank. Thus if 7€ has finite rank the ¢;; have
finite rank too. The converse holds if #» is finite.

In any W*-algebra 2 a partial isometry is a restriction of an isometry
or a coisometry. Using this and the polar decomposition of operators in
9, it is easy to see that any T'e can be approximated in the norm by
an operator S such that SS* or S*S are invertible. This result is
optimal as the example of a nonunitary isometry shows. However since
partial isometries of finite rank are restrictions of unitary operators,
operators of finite rank can be approximated by invertible operators.
Let 2 be a W*-algebra and P a projection in . Then there exists a
unique central projection Z in 2 such that ZP is finite and such that
(1 — Z)P is properly infinite.

Let Ae be a selfadjoint invertible operator with a finite spectrum
and let A = 3", \;P; be the spectral resolution of A. Let Z; with
1 <4 < m, be the unique central projection such that (1 — Z;)P; is pro-
perly infinite. The projections Z; generate a finite dimensional algebra
8, of central operators. Let Z be a minimal nonzero projection in 3,.
Then the spectral projections of the operator AZ = > 7, \;P; Ze€UZ are
either finite or properly infinite.

LEMMA 4. Let N be a properly infinite W*-algebra on a separable
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Hilbert space and let AcN,. Then for any € > 0 there exists a generator
Tof Nwith |T— A|<e.

Proor. a) Since the invertible hermitean operators with finite spec-
trum are dense in 2,, we may assume without loss of generality that A
is invertible and has a finite spectrum. Then by our remarks above
has a finite decomposition by central projections Z; of 2 such that the
spectral projections of AZ;, in 2AZ; are either finite or properly infinite.
Because of our remarks following Lemma 3 we may thus assume that
the spectral projections of A are either finite or infinite. Let A =

7, M;P; be the spectral resolution of A such that the projections P, ..., P,
are properly infinite and such that P,,, ..., P, are finite. Since % is
properly infinite and 1 = 32, P, we get k= 1. If k=1 we decompose
P, into two equivalent orthogonal projections P/ and P/’ and replace A
by the operator A’ = P/\, + P\, + 3, P, with A =\, M e R and
| M — M\ | < €/2. For the operator A’ we have k = 2. Thus we may as-
sume without loss of generality k& = 2.

b) Now let Q. =P, ..., Q.= P,_,and Q, = P, + ... + P,. Then
the projections @, ..., Q, are properly infinite, orthogonal, equivalent and
satisfy 3%, Q; = 1. Thus they induce a tensor decomposition of 2, A =
B R M,. In this decomposition A4 is diagonal, A = diag(n,, «.., My, @) =
diag(a,, ..., a;). By construction the operator a — A\, has finite rank in
B. This will be of importance later. Furthermore we should point out
that Spa; N Spa; = @ for 7 =+ J.

¢) The algebra B is generated by two positive invertible operators
b and ¢, which we may choose such that |b],|c| < ¢/2. Then set

b d -+ d
d ¢ —l

B=1: . J
d 0

with d = ¢/4k -1 and let T = A + iB.

d) Clearly |A— T|<e. To show R(T)=2U let C=C*eR(T).
C can also be considered as a matrix, C = (c; ;)5 ;-.. Since Spa;NSpa; =@
for 1 =5 CA = AC implies by Lemma 1 (a) that C is diagonal, C = diag
(¢y+eey¢;). Then CB = BC gives ¢d = ¢, d for 1<i=<k, orec,=... =¢
CB = BC gives further ¢,b = be, and c¢c = ce, or ¢,e®B’. Thus R(T) =
B'®1or RT) = A.

LEMMA 5. Let U be a properly infinite W*-algebra on a separable
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Hilbert space and let T = A + iBe, with B of finite rank. Then for
any € > 0 there exists a generator T' of N with | T — T'| < 2.

Proor. a) Using the same arguments as in the proof of Lemma 4
(a) and (b), we may assume that 2 has the form % = BE M, and that A is
diagonal, A = diag(n, ..., \,_, @) = diag(a,, ..., a,) with Spa;NSpa; = ©
for 1+ j. B has the form B = (b;,;)f;-, and each b;; for 1 <4, j <k, has
finite rank in B. Let 7 be the smallest distance between the points in
the set {0} USpA. By Lemma 4 there exists a positive operator be®B
and a selfadjoint operator b;,eB with |b], — b,,| < ¢/2, R, b) =B and
|b| < min (9/2, ¢). Similarly there exist invertible operators b} ; = b;% B
with 2 <4 <k such that |b,; — b/ ;| < ¢/4k. Now set b;; = b, ; for the
remaining indices and define B’ = (b;;)f;-,- The operator A’ is defined
by A’ =diag (A, + b, \yy <+, N4y, @). Then the operator T' = A’ + +B’
satisfies | T — T | < 2e.

b) Let C=C*eR(T'). CA' = A'C shows as before with the aid of
Lemma 1 that C is diagonal, C = diag (¢, ¢, «..,¢). CA = A'C and
CB' = B'C give further ¢,b = be, and ¢;b;,, = b;,c,. Thus ¢,e€®¥’. Then
CB’ = B’C shows b, ,c, = ¢,b,; = bl ;c; or ¢, = ¢; for 1 <1 <k, because the
b ; are invertible. Hence R(T') =B Q1 or R(T) = A.

With this lemma we can now prove the general result.

PROPOSITION 2. The set of generators inm a properly infinite W *-
algebra A on a separable Hilbert space s norm dense.

ProOF. a) Let ¢ >0 and let T= A4 + iBeA. We shall find a
generator T’ of A with | T — T'| < 2. Arguing as in the Lemmas 4
and 5 there is no loss of generality if we assume U =B R M,, with
k=2, and A = diag (A, «.., Nj_y, @). We may further assume \; == \; for
1% j and \;¢€8pa for 1 <4,5 <k — 1. By construction we know further
that there exists a constant A\, such that A\, — a has finite rank. B has
the form B = (b;,;)f,-,. Let again 7 be the smallest distance between the
points in {0} U Sp A. By Lemma 4 we can find positive operators b; for
1<i=<k-—1 and selfadjoint operators b;; such that |b;,; — b;;| < ¢/2,
| b;| < min (¢, 7/2) and R(b;; b;) = B. Since o has essentially finite rank
we can find by Lemma 5 selfadjoint operators a’, b}, €8 with |a — o' | <
min(e, 9/2), | b — bix| < €/2 and R(a/, b,,,) = B. In addition we choose
operators bi% = b;; such that |b;, — bi,| < ¢/4k and such that b];b% or
bi%b,; is invertible. Set now b;; = b;; for the remaining indices and
define B’ = (b;;). With A’ =diag (A, + by, +++, Moy + by, @) and T =
A’ + iB’ we have obviously | T — T'| < 2e.

b) Let C = C*eR(T'Y. C has the matrix form C = (c;;)f,-.. As
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before CA = AC shows that C is diagonal, C = diag (¢, ..., ¢;). Then
c;e®, for 1 <1<k, follows as above from CA = AC and CB = BC.
Using the off-diagonal terms of CB = BC we get

’ ’
b:,icx = clbi,i = b1,ici = cib1,i ’

for 1 <¢ < k. If b%b;; is invertible multiply this equation from the left
by b%. One gets b%b].c, = bl*%b;c; or ¢, = ¢;. Otherwise multiply by &%
from the right. Again ¢b]:0% = ¢;b;:b% shows ¢, = ¢;. Thus we have
¢, = ¢; for 1 <1 < k, because b}:b, ; or b, ;b}; are invertible. The remainder
is now obvious.

Summing up we have:

THEOREM 1. Any W*-algebra U on a separable Hilbert space with
no direct summand of type II, has a norm dense set of genmerators.

ProOF. Apply Lemma 3 to Propositions 1 and 2.

Next we want to extend Theorem 1 to W*-algebras of type II,. Since
it is not yet known whether factors of type II, are singly generated, we
introduce a class .o of W*-algebras of type II, on a separable Hilbert
space with:

i) We .o~ then N is singly generated

ii) e .o~ then there exists a Be .o with A =B Q M.

If every factor of type II, on a separable Hilbert space is singly generated,
also every W *-algebra of type II, on a separable Hilbert space is singly
generated, because the direct integral of singly generated W *-algebras
is again singly generated (P. Willing, private communication). In that
case .7 may be chosen to be the class of all W *-algebras of type II, on
a separable Hilbert space. In any case we may always assume that .o~
contains the hyperfinite factor.

LEMMA 6. Let e .7 and let AeU,. Then for any € >0 there
exists a generator T of R with | T — A | < e.

Proor. a) Without loss of generality we may assume that A is
invertible and has a finite spectrum. Let A = 3.7, \;P; be the spectral
decomposition of A. Let & be the natural center valued map [2]. Since
1=3>7r,P =2 PP there exist finitely many orthogonal central pro-
jections Z,, «--, Z, with 3> Z; = 1 such that for each Z; there exists a P;
with PAZ; = 2™"Z;. Using again the remarks following Lemma 3, we
may assume without loss of generality P* = 2", Then by [4, Theorem 1]
we can find a family {Q;}iZ, of orthogonal equivalent projections with

" Q=1 QA= AQ; and @ < P.. The {@}, induce a tensor decom-
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position of A, A =B M,». Then A has the form
A =diag (A, ay, .., a7 .

Now we replace each a; with 2 <7 < 2" by a selfadjoint operator a; with
the same spectral projections as a;, such that |a; — a!| < /2 and such
that Spa;NSpa; =@ for 1+ 4,1=<14,5 < 2"\ =a,. Then the operator
A’ = diag (A, a3, ..., a;*) satisfies |4 — 4’| < ¢/2.

b) B is generated by the positive invertible operators b, ¢ with
[bl, |[¢]| < e/4, because Be .. Then let B be given by the matrix

b d

dcd
B = d 0 d

0 dJ
d o
with d = ¢/8 - 1.

¢) The operator T = A’ + iB satisfies clearly |A — T| <e. Let
C=C*cR(T). Then CA’ = A'C shows as above by Lemma 1 that C
is diagonal, C = diag (e, ..., ¢*). From this and CB = BC one obtains
by the same methods as before ¢, = ¢, = ... = ¢»e®B’. Thus R(T) = A.

0

THEOREM 2. Let € .7 then the set of generators of U is demse in
A.

PrRooF. a) Let ¢ >0and T= A + i1Be . Arguing as in the proof
of Lemma 6 we may assume A = B R M,» and

A = A* = diag ('\'u a/z, t azn) M
We may further assume that spectrum of A is finite and that
Spa; N Spa; =@

for i#Jj, 1 <4,5<2" and \, = a,. Let 7 be the smallest distance be-
tween the points in Sp A and let B = (b;,,)¥";,-,. By Lemma 6 there exists
a positive operator be®B and a selfadjoint operator b, with |[b| <
min /2, €), |b,, —b,|<e and R(b,b;,) =B. We can further find
invertible operators b]; = b;% for 1<i<2" with [b,;,— b ;| <e-2™
For the remaining indices set b;; = b; ;. Then let B’ = (b ;%¥,-, and
A’ = diag (A, + b, @y, .« .., ay7).

b) Clearly T' = A’ +iB’ satisfies |T— T"| < 4e. Let C = C*e R(T"),
then CA’ = A’C implies again by Lemma 1 C = diag (¢, ..., ¢"). T'C =
CT’ gives further c¢b = be, and c¢b), = b/ ,c, or ¢,e®B’. Then bj.c; =
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eb ;=0 for 1<i=<2" or ¢, =c; because b;; is invertible. Again
C = diag (e, ..., ¢) shows R(T’) = A

We want to show now that in most W *-algebras on a separable
Hilbert space each operator can be written as the sum of two generators.
This is known for B(H) [5,8]. We begin with a general lemma, which
in some sense is an analogue of Lemma 3.

LEMMA 7. Let the W*-algebra U be a finite direct sum of W*-
algebras W, A = S0, P UA;,.  Assume in each N; every operator is the sum
of two generators of W;, then every TeN can likewise be written as the
sum of two generators of U.

PrROOF. Let T=> @ T;cU and let T; = U; + V;, where U; and V;
are generators of A,. We write

T=>XDbWU+K)+ X+ V:—K)=U+7V,

where the K; are scalars. Since 7 is finite we can choose the K; such
that Sp (U;+ K;) NSp(U;+ K;) = @ and Sp(V;—K,))NSp(V;—K;) = @
for 1 #j. Let C = C*eR(U), then we can write C = (¢; ;)7 ;-, and we
obtain ¢; ;(U; + K;) = (U; + K;)¢c; ;. For i+ j Lemma 1 (a) shows ¢;; = 0.
Hence C = >, @ ¢; and ¢,(U; + K;) = (U; + K;)e; or ¢c;e R(U;)’ = .. Thus
RU)Y =35, PU. and R(U) = A. Similarly one shows R(V) = 2.

PROPOSITION 3. Let U be a properly infinite W*-algebra on a sepa-
rable Hilbert space. Then any element in A can be written as the sum
of two generators of 2.

Proor. a) Let T'= A + iBe . Then there exist four equivalent
orthogonal projections F;e, with 1 <7 < 4, such that F;A = AF; and
SVF; =1 [4,th. 3]. The {F;}{_, induce a tensor decomposition of A, A =
B R M, and A = diag (a,, a,, a5, a,). Let K =3|T| and let A’ = diag (0,
K, 2K, 3K). Since 2 is properly infinite, it is generated by the positive
invertible operators ¢ and d with ¢,d = K-1. B is represented by the
matrix B = (b;,;)} -1, then let B’ be given by the matrix

Cc — bl,l d - bl,g 0 O

B |40 ¢ d 0
0 d 0 K
0 0 K 0

Now write T=T,+ T, = [(A + 4') + «(B + B")] — [A’ + iB'].
b) Let C = C*e R(T)), then C(A + A’) = (A + A")C and Lemma 1 (a)
imply that C is diagonal, C = diag (¢, ¢, ¢;, ¢,). Then
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C(B"+ B) =(B"+ B)C

gives c¢,c = cc, and ¢d = d¢,, By Lemma 1 (b) this shows ¢, = ¢, e,
because R(e,d) =B. CT, = T.C gives further (d + b,5)c; = c(d + b,5) =
(d + b,3)c, or ¢, = ¢;, because d + b,; is invertible. The relation

(K + bs,)c, = c(K + by,) = (K + bs,.)Cs

finally gives ¢, = ¢, by the same argument. Thus C = ¢, ® 1 with ¢,e®’
or R(T) = A.

c) R(T,) = N is shown as in (b).

To show this result also for finite W *-algebras of type I, we need
some preparations.

LEMMA 8. Let U be an abelian W *-algebra them any TeU is the
sum of two generators of .

Proor. Let T = A + 2B and let C be a selfadjoint generator of 2.
Then T = [C + #B — C)] + [(A — C) + iC] is the desired decomposition.

Now let % be a W *-algebra of type I,, then 2 can be represented as
A = 83X M,, where 8 is the center of A. Let T'e?, then we may as-
sume that 7T has upper triangular form [3], T = (¢ ;) -, and t;; = 0 for
4 < 1. The diagonal part of such a T we denote by diag T, diag T =
diag(t,, -, tnn). Let B be the maximal abelian subalgebra of 2, which
consists of all diagonal operators. Of course B depends on the given
matrix representation of A. In the next lemma we exhibit a large class
of generators of 2.

LEMMA 9. Let 9, B and T as above, then R(T) = A iof
i) R(diagT) =B
il) ¢4, 18 invertible for all 1 <7< n — 1.

PrROOF. We may represent 20 on a suitable Hilbert space H such
that B is a maximal abelian subalgebra of B(H). Let C = C*eR(T)
and C = (¢; ;)7 ;.- Computing the (n, 1) matrix element of CT = TC one
finds ¢, .t = t,,.Cne Let C’ be the operator, which one obtains from C
by setting all matrix elements except the one in the (n, 1) position equal
to zero. Then C’ diag T = diag TC’ and by the Fuglede theorem [6]
C'eR(diag T) =¥ =B. Hence C'=¢,, =¢,, =0. With the same
method applied to (CT),,; = (TC),,; one shows by induction ¢, ; =¢;, = 0
for all + < n and ¢, ,€ 8. Further induction finally yields C = ¢ ® 1 .
Thus R(T) = A’ or R(T) = N

Lemma 9 can be extended to finite W*-algebras of type I. To do
this let A = > PA,, with A, = 3, ® M,, be a finite W*-algebra of type
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I. Let T=3 P T,€A. Then we may assume that each T, = (¢{)) is
upper triangular [3]. With respect to this representation let again B,
denote the diagonal part of U, and let B =3, P B,.

LEMMA 10. Let U, B and T as above, then R(T) =N iof
i) RO, PdiagT,) =B and
ii) &, is invertible for all L < i< n — 1 and for all n.

ProoF. Again we may find a representation of 9 on a suitable
Hilbert space H such that B is a maximal abelian subalgebra of B(H).
Let C = C* = (C,,,) e R(T)’. Then T\C,,, = C,.T, and because of Lemma 9
it suffices to show that this implies C,, = 0 for k% [l. To do this write
T,, T, and C,,, as matrices and use the same methods as in Lemma 9.

THEOREM 3. Let U be a W*-algebra on a separable Hilbert space
with no summand of type II, then any TeN can be written as the sum
of two generators of 2.

PrROOF. a) Let A =3, P, be a finite W*-algebra of type I and
let T=3 &P T,cA. Write each T, in upper triangular from [3] and
determine the corresponding B, and B. Now it is easy to see that T can
be written as the sum of two operators in 2!, each of which satisfies the
conditions (i) and (ii) of Lemma 10.

b) Now the theorem follows from Lemma 7, Proposition 3 and (a).

Theorem 3 holds also for certain W *-algebras of type II.

THEOREM 4. Let N be a W*-algebra of type II, and let Ve ., then
any Te? can be written as the sum of two generators of 2.

ProoF. The proof of Proposition 3 will also show this result.
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