Tôhoku Math. Journ. 24 (1972), 371-381.

GENERATORS OF W*-ALGEBRAS II

HORST BEHNCKE*

(Received Sept. 30, 1970)

In [1] it was shown that generators of properly infinite W^* -algebras can be chosen from rather restricted classes of operators. Here we shall show that generators of properly infinite W^* -algebras abound in another sense. Let \mathfrak{A} be a W^{*}-algebra on the separable Hilbert space H with no summand of type II₁, then the set of generators of \mathfrak{A} is a norm dense set in \mathfrak{A} . Moreover any operator $T \in \mathfrak{A}$ can be written as the sum of two generators of A. These results have been obtained previously for B(H), the algebra of all bounded linear operators on H [5, 7, 8, 9]. These results are also valid for certain W^* -algebras of type II₁, for example the hyperfinite factor of type II_1 . Throughout all Hilbert spaces will be separable and all W^* -algebras are assumed to act on separable Hilbert spaces. For a W^{*}-algebra \mathfrak{A} we denote the algebra of all k by k matrices with entries from \mathfrak{A} by $M_k(\mathfrak{A}) = \mathfrak{A} \otimes M_k$. In this notation M_{∞} stands for the algebra of all bounded linear operators on a separable infinite dimensional Hilbert space. For $A_1, A_2, \ldots \in B(H)$, the W*-algebra generated by A_1, A_2, \ldots will be denoted by $\Re(A_1, A_2, \ldots)$. For $T \in B(H)$, T =A + iB will always stand for the decomposition of T into its real and imaginary part. The spectrum of an operator T will be denoted by Sp T. For a W^{*}-algebra \mathfrak{A} let $\mathfrak{A}_h(\mathfrak{A}_+)$ be the set of hermitean (positive) elements of A.

LEMMA 1. a) Let $A_1, A_2 \in B(H)$ with $Sp A_1 \cap Sp A_2 = \emptyset$ then $CA_1 = A_2C$ implies C = 0.

b) Let $A_1, A_2 \in B(H)_h$ and $C \in B(H)$ positive and invertible, then $CA_1 = A_2C$ implies $A_1 = A_2$.

PROOF. a) This is an easy consequence of a result of Rosenblum [10].

b) $CA_1 = A_2C$ implies $A_1C = CA_2$ and $C^2A_1 = CA_2C = A_1C^2$. Since C is positive A_1 commutes also with C. Thus $A_1C = CA_1 = A_2C$ and $A_1 = A_2$, because C is invertible.

LEMMA 2. Let \mathfrak{A} be an abelian W^* -algebra, then the set of hermitean * Supported partially by a Ford Foundation grant to Tulane Univ. generators of \mathfrak{A} is dense in \mathfrak{A}_h .

PROOF. Let $A \in \mathfrak{A}_h$ and $\varepsilon > 0$, then there exist an invertible operator $A' \in \mathfrak{A}_h$ with a finite spectrum and $|A - A'| < \varepsilon$. Let $A' = \sum_{i=1}^n \lambda_i e_i$ be the spectral decomposition of A' and let η be the smallest distance between the points in the set $\{0, \lambda_1, \dots, \lambda_n\}$. Each abelian W^* -algebra $\mathfrak{A}_i, 1 \leq i \leq n$, has a hermitean generator a_i with $|a_i| < \min(\varepsilon, \eta/2)$. Then $A'' = \sum_{i=1}^n e_i(\lambda_i + a_i)$ is a hermitean generator of \mathfrak{A} and $|A - A''| < \varepsilon$.

LEMMA 3. Let the W*-algebra \mathfrak{A} be the (countable) direct sum of W*-algebras $\mathfrak{A}_i, \mathfrak{A} = \Sigma \bigoplus \mathfrak{A}_i$, and let $T = \Sigma \bigoplus T_i \in \mathfrak{A}$. Assume for each *i* and for some $\varepsilon > 0$ there exists a generator T'_i of \mathfrak{A}_i , with $|T_i - T'_i| < \varepsilon$; then there exists a generator T'' of \mathfrak{A} with $|T - T''| < \varepsilon$.

PROOF. Let $T' = \sum \bigoplus T'_i$ and let T' = A' + iB' be the decomposition of T' into its real and imaginary part. B' lies in some maximal abelian subalgebra \mathfrak{B} of \mathfrak{A} , and by Lemma 2 there exists a generator $B'' \in \mathfrak{B}_h$ of \mathfrak{B} with $|B' - B''| < \varepsilon$. Then T'' = A' + iB'' is the desired operator. $|T - T''| < 2\varepsilon$ is obvious. Let be the central projection onto \mathfrak{A}_i , $\mathfrak{A}_i =$ \mathfrak{A}_i . Then $z_i \in \mathfrak{B}$ and any $D = D^* \in \mathfrak{R}(T'')'$ commutes with all z_i . Hence $D = \sum \bigoplus D_i$ and $D_i \in \mathfrak{R}(T''z_i)' = \mathfrak{R}(T'_i)' = \mathfrak{A}'_i$. This shows $D \in \mathfrak{A}'$ or $\mathfrak{R}(T'') = \mathfrak{A}$.

COROLLARY. Let $\mathfrak{A} = \Sigma \bigoplus \mathfrak{A}_i$ be such that each \mathfrak{A}_i has a dense set of generators. Then \mathfrak{A} has a dense set of generators.

Thus the W^* -algebra \mathfrak{A} has a dense set of generators, if its parts of type I_n , type II and type III each have this property. Apart from this rather obvious application the lemma will also be used in the following way. Let \mathfrak{A} be a W^* -algebra, $T \in \mathfrak{A}$ and $\varepsilon > 0$ arbitrary. Then determine a countable central decomposition of \mathfrak{A} , $\mathfrak{A} = \sum \bigoplus \mathfrak{A}_i$ and $T = \sum \bigoplus T_i$, which may depend on T, such that for each i the operator T_i can be approximated within ε by a generator T'_i of \mathfrak{A}_i . Then the lemma shows the existence of a generator T''_i of \mathfrak{A} with $|T - T''| < 2\varepsilon$.

PROPOSITION 1. A finite W^* -algebra \mathfrak{A} of type I on a separable Hilbert space has a norm dense set of generators.

PROOF. By Lemma 3 and the remarks following it we may assume \mathfrak{A} to be homogeneous of type I_n , with $n < \infty$. Then we can write $\mathfrak{A} = \mathfrak{Z} \otimes M_n$, where \mathfrak{Z} is the center of \mathfrak{A} . Let $\varepsilon > 0$ and let $T = A + iB \in \mathfrak{A}$. By [3, Cor. 3.3] we may assume A to be diagonal, $A = \operatorname{diag}(a_1, \ldots, a_n)$ with $a_1, \ldots, a_n \in \mathfrak{Z}$. Let \mathfrak{B} be the algebra of all diagonal operators $C = \operatorname{diag}(c_1, \ldots, c_n)$, with $c_1, \ldots, c_n \in \mathfrak{Z}$. \mathfrak{B} is a maximal abelian subalgebra of \mathfrak{A} , and by Lemma 2 there exists a hermitean generator A' of \mathfrak{B} with

 $|A - A'| < \varepsilon/2$. Let $B = (b_{i,j})_{i,j=1}^n$, then we can find invertible operators $b'_{i,j} = b'_{j,i} \in \mathfrak{Z}$ with $|b_{i,j} - b'_{i,j}| < 1/2 \cdot \varepsilon \cdot n^{-2}$, with $1 \leq i, j \leq n$. Set now $B' = (b'_{i,j})_{i,j=1}^n$ and T' = A' + iB'. Then $|T - T'| < \varepsilon$. To show $\mathfrak{R}(T') = \mathfrak{A}$ let $D = D^* \in \mathfrak{R}(T')'$. Since in particular $D \in \mathfrak{B}'$, D is diagonal, $D = \operatorname{diag}(d_1, \ldots, d_n)$ with $d_i \in \mathfrak{Z}$. Then DB' = B'D gives $d_1b'_{i,i} = b'_{i,i}d_i = d_ib'_{i,i}$ or $d_1 = d_i$ for $1 \leq i \leq n$, because the $b'_{1,i}$ are invertible. $D \in \mathfrak{A}'$ is now obvious. Hence $\mathfrak{R}(T')' = \mathfrak{A}'$ or $\mathfrak{R}(T') = \mathfrak{A}$.

We state now a number of results on operators in W^* -algebras, which will be needed later. Most of these results are based on the polar decomposition of operators [2].

Let \mathfrak{A} be a W^* -algebra and $T \in \mathfrak{A}$. We say T has finite rank if there exists a finite projection $P \in \mathfrak{A}$ with TP = T. In a purely infinite W^* -algebra only the 0 operator is of finite rank. Clearly $T \in \mathfrak{A}$ has finite rank if and only if T^* has finite rank. Let $\{Q_i\}_{i=1}^n$ with $n = 1, 2, \ldots, \infty$, be a family of equivalent orthogonal projections in \mathfrak{A} with $\sum Q_i = 1$. The $\{Q_i\}_{i=1}^n$ induce a tensor decomposition of \mathfrak{A} [2, ch. I § 2], $\mathfrak{A} = \mathfrak{B} \otimes M_n$. In this notation $T \in \mathfrak{A}$ has the matrix form $T = (t_{i,j})_{i,j=1}^n$ with $t_{i,j} = V_i^* TV_j$ where $V_i V_i^* = Q_i$ and $V_i^* V_i = Q_1$. Let P be a finite projection in \mathfrak{A} , then PV_j has finite rank. Thus if $T \in \mathfrak{A}$ has finite rank the $t_{i,j}$ have finite rank too. The converse holds if n is finite.

In any W^* -algebra \mathfrak{A} a partial isometry is a restriction of an isometry or a coisometry. Using this and the polar decomposition of operators in \mathfrak{A} , it is easy to see that any $T \in \mathfrak{A}$ can be approximated in the norm by an operator S such that SS^* or S^*S are invertible. This result is optimal as the example of a nonunitary isometry shows. However since partial isometries of finite rank are restrictions of unitary operators, operators of finite rank can be approximated by invertible operators. Let \mathfrak{A} be a W^* -algebra and P a projection in \mathfrak{A} . Then there exists a unique central projection Z in \mathfrak{A} such that ZP is finite and such that (1-Z)P is properly infinite.

Let $A \in \mathfrak{A}$ be a selfadjoint invertible operator with a finite spectrum and let $A = \sum_{i=1}^{n} \lambda_i P_i$ be the spectral resolution of A. Let Z_i with $1 \leq i \leq n$, be the unique central projection such that $(1 - Z_i)P_i$ is properly infinite. The projections Z_i generate a finite dimensional algebra \mathfrak{Z}_0 of central operators. Let Z be a minimal nonzero projection in \mathfrak{Z}_0 . Then the spectral projections of the operator $AZ = \sum_{i=1}^{n} \lambda_i P_i Z \in \mathfrak{A}Z$ are either finite or properly infinite.

LEMMA 4. Let \mathfrak{A} be a properly infinite W*-algebra on a separable

H. BEHNCKE

Hilbert space and let $A \in \mathfrak{A}_h$. Then for any $\varepsilon > 0$ there exists a generator T of \mathfrak{A} with $|T - A| < \varepsilon$.

PROOF. a) Since the invertible hermitean operators with finite spectrum are dense in \mathfrak{A}_k , we may assume without loss of generality that A is invertible and has a finite spectrum. Then by our remarks above \mathfrak{A} has a finite decomposition by central projections Z_i of \mathfrak{A} such that the spectral projections of AZ_i in $\mathfrak{A}Z_i$ are either finite or properly infinite. Because of our remarks following Lemma 3 we may thus assume that the spectral projections of A are either finite or infinite. Let $A = \sum_{i=1}^{n} \lambda_i P_i$ be the spectral resolution of A such that the projections P_1, \ldots, P_k are properly infinite and such that P_{k+1}, \ldots, P_n are finite. Since \mathfrak{A} is properly infinite and $1 = \sum_{i=1}^{n} P_i$ we get $k \ge 1$. If k = 1 we decompose P_1 into two equivalent orthogonal projections P'_1 and P''_1 and replace A by the operator $A' = P'_1\lambda_1 + P''_1\lambda'_1 + \sum_{i=2}^{n}\lambda_i P_i$ with $\lambda'_1 \neq \lambda_i, \lambda'_1 \in \mathbf{R}$ and $|\lambda'_1 - \lambda_1| < \varepsilon/2$. For the operator A' we have $k \ge 2$.

b) Now let $Q_1 = P_1, \ldots, Q_{k-1} = P_{k-1}$ and $Q_k = P_k + \ldots + P_n$. Then the projections Q_1, \ldots, Q_k are properly infinite, orthogonal, equivalent and satisfy $\sum_{i=1}^k Q_i = 1$. Thus they induce a tensor decomposition of $\mathfrak{A}, \mathfrak{A} \cong$ $\mathfrak{B} \otimes M_k$. In this decomposition A is diagonal, $A = \operatorname{diag}(\lambda_1, \ldots, \lambda_{k-1}, a) =$ $\operatorname{diag}(a_1, \ldots, a_k)$. By construction the operator $a - \lambda_k$ has finite rank in \mathfrak{B} . This will be of importance later. Furthermore we should point out that $\operatorname{Sp} a_i \cap \operatorname{Sp} a_j = \emptyset$ for $i \neq j$.

c) The algebra \mathfrak{B} is generated by two positive invertible operators b and c, which we may choose such that $|b|, |c| \leq \varepsilon/2$. Then set

$$B = \begin{bmatrix} b & d & \cdots & d \\ d & c & & \\ \vdots & 0 & \ddots & \\ d & & \ddots & 0 \end{bmatrix}$$

with $d = \varepsilon/4k \cdot 1$ and let T = A + iB.

d) Clearly $|A - T| < \varepsilon$. To show $\Re(T) = \mathfrak{A}$ let $C = C^* \in \Re(T)'$. C can also be considered as a matrix, $C = (c_{i,j})_{i,j=1}^k$. Since $\operatorname{Sp} a_i \cap \operatorname{Sp} a_j = \emptyset$ for $i \neq j$ CA = AC implies by Lemma 1 (a) that C is diagonal, $C = \operatorname{diag}(c_1, \ldots, c_k)$. Then CB = BC gives $c_1d = c_id$ for $1 \leq i \leq k$, or $c_1 = \ldots = c_k$. CB = BC gives further $c_1b = bc_1$ and $c_1c = cc_1$ or $c_1 \in \mathfrak{B}'$. Thus $\Re(T)' = \mathfrak{B}' \otimes 1$ or $\Re(T) = \mathfrak{A}$.

LEMMA 5. Let \mathfrak{A} be a properly infinite W*-algebra on a separable

Hilbert space and let $T = A + iB \in \mathfrak{A}$, with B of finite rank. Then for any $\varepsilon > 0$ there exists a generator T' of \mathfrak{A} with $|T - T'| < 2\varepsilon$.

PROOF. a) Using the same arguments as in the proof of Lemma 4 (a) and (b), we may assume that \mathfrak{A} has the form $\mathfrak{A} = \mathfrak{B} \otimes M_k$ and that A is diagonal, $A = \operatorname{diag}(\lambda_1, \ldots, \lambda_{k-1}, a) = \operatorname{diag}(a_1, \ldots, a_k)$ with $\operatorname{Sp} a_i \cap \operatorname{Sp} a_j = \emptyset$ for $i \neq j$. B has the form $B = (b_{i,j})_{i,j=1}^k$ and each $b_{i,j}$ for $1 \leq i, j \leq k$, has finite rank in \mathfrak{B} . Let η be the smallest distance between the points in the set $\{0\} \cup \operatorname{Sp} A$. By Lemma 4 there exists a positive operator $b \in \mathfrak{B}$ and a selfadjoint operator $b'_{1,1} \in \mathfrak{B}$ with $|b'_{1,1} - b_{1,1}| < \varepsilon/2$, $\mathfrak{R}(b'_{1,1}, b) = \mathfrak{B}$ and $|b| < \min(\eta/2, \varepsilon)$. Similarly there exist invertible operators $b'_{1,i} = b'_{i,i} \in \mathfrak{B}$ with $2 \leq i \leq k$ such that $|b_{1,i} - b'_{1,i}| < \varepsilon/4k$. Now set $b'_{i,j} = b_{i,j}$ for the remaining indices and define $B' = (b'_{i,j})_{i,j=1}^k$. The operator A' is defined by $A' = \operatorname{diag}(\lambda_1 + b, \lambda_2, \ldots, \lambda_{k-1}, a)$. Then the operator T' = A' + iB'satisfies $|T - T'| < 2\varepsilon$.

b) Let $C = C^* \in \mathfrak{R}(T')'$. CA' = A'C shows as before with the aid of Lemma 1 that C is diagonal, $C = \text{diag } (c_1, c_2, \ldots, c_k)$. CA' = A'C and CB' = B'C give further $c_1b = bc_1$ and $c_1b'_{1,1} = b'_{1,1}c_1$. Thus $c_1 \in \mathfrak{B}'$. Then CB' = B'C shows $b'_{1,i}c_1 = c_1b'_{1,i} = b'_{1,i}c_i$ or $c_1 = c_i$ for $1 \leq i \leq k$, because the $b'_{1,i}$ are invertible. Hence $\mathfrak{R}(T')' = \mathfrak{B}' \otimes 1$ or $\mathfrak{R}(T) = \mathfrak{A}$.

With this lemma we can now prove the general result.

PROPOSITION 2. The set of generators in a properly infinite W^* -algebra \mathfrak{A} on a separable Hilbert space is norm dense.

PROOF. a) Let $\varepsilon > 0$ and let $T = A + iB \in \mathfrak{A}$. We shall find a generator T' of \mathfrak{A} with $|T - T'| < 2\varepsilon$. Arguing as in the Lemmas 4 and 5 there is no loss of generality if we assume $\mathfrak{A} = \mathfrak{B} \otimes M_k$, with $k \geq 2$, and $A = \text{diag}(\lambda_1, \ldots, \lambda_{k-1}, a)$. We may further assume $\lambda_i \neq \lambda_j$ for $i \neq j$ and $\lambda_i \notin \operatorname{Sp} a$ for $1 \leq i, j \leq k-1$. By construction we know further that there exists a constant λ_k such that $\lambda_k - a$ has finite rank. B has the form $B = (b_{i,j})_{i,j=1}^k$. Let again η be the smallest distance between the points in $\{0\} \cup \text{Sp } A$. By Lemma 4 we can find positive operators b_i for $1 \leq i \leq k-1$ and selfadjoint operators $b'_{i,i}$ such that $|b_{i,i} - b'_{i,i}| < \varepsilon/2$, $|b_i| \leq \min(\varepsilon, \eta/2)$ and $\Re(b'_{i,i}, b_i) = \mathfrak{B}$. Since a has essentially finite rank we can find by Lemma 5 selfadjoint operators a', $b'_{k,k} \in \mathfrak{B}$ with |a - a'| < $\min(\varepsilon, \eta/2), |b'_{k,k} - b_{k,k}| < \varepsilon/2 \text{ and } \Re(a', b'_{k,k}) = \mathfrak{B}.$ In addition we choose operators $b_{i,1}^{\prime *} = b_{1,i}^{\prime}$ such that $|b_{i,1} - b_{i,1}^{\prime}| < \varepsilon/4k$ and such that $b_{1,i}^{\prime}b_{1,i}^{\prime *}$ or $b'_{i,i}b_{i,i}$ is invertible. Set now $b'_{i,j} = b_{i,j}$ for the remaining indices and define $B' = (b'_{i,j})$. With $A' = \operatorname{diag}(\lambda_1 + b_1, \cdots, \lambda_{k-1} + b_{k-1}, a')$ and T' =A' + iB' we have obviously $|T - T'| < 2\varepsilon$.

b) Let $C = C^* \in \Re(T')'$. C has the matrix form $C = (c_{i,j})_{i,j=1}^k$. As

H. BEHNCKE

before CA = AC shows that C is diagonal, $C = \text{diag}(c_1, \ldots, c_k)$. Then $c_i \in \mathfrak{B}'$, for $1 \leq i \leq k$, follows as above from CA = AC and CB = BC. Using the off-diagonal terms of CB = BC we get

$$b_{1,i}'c_1=c_1b_{1,i}'=b_{1,i}'c_i=c_ib_{1,i}'$$
 ,

for $1 \leq i \leq k$. If $b'_{1,i}b'_{1,i}$ is invertible multiply this equation from the left by $b'_{1,i}$. One gets $b'_{1,i}b'_{1,i}c_1 = b'_{1,i}b'_{1,i}c_i$ or $c_1 = c_i$. Otherwise multiply by $b'_{1,i}$ from the right. Again $c_1b'_{1,i}b'_{1,i} = c_ib'_{1,i}b'_{1,i}$ shows $c_1 = c_i$. Thus we have $c_1 = c_i$ for $1 \leq i \leq k$, because $b^*_{1,i}b_{1,i}$ or $b_{1,i}b^*_{1,i}$ are invertible. The remainder is now obvious.

Summing up we have:

THEOREM 1. Any W*-algebra \mathfrak{A} on a separable Hilbert space with no direct summand of type II_1 has a norm dense set of generators.

PROOF. Apply Lemma 3 to Propositions 1 and 2.

Next we want to extend Theorem 1 to W^* -algebras of type II₁. Since it is not yet known whether factors of type II₁ are singly generated, we introduce a class \mathscr{N} of W^* -algebras of type II₁ on a separable Hilbert space with:

- i) $\mathfrak{A} \in \mathscr{A}$ then \mathfrak{A} is singly generated
- ii) $\mathfrak{A} \in \mathscr{A}$ then there exists a $\mathfrak{B} \in \mathscr{A}$ with $\mathfrak{A} = \mathfrak{B} \otimes M_2$.

If every factor of type II_1 on a separable Hilbert space is singly generated, also every W^* -algebra of type II_1 on a separable Hilbert space is singly generated, because the direct integral of singly generated W^* -algebras is again singly generated (P. Willing, private communication). In that case \mathscr{M} may be chosen to be the class of all W^* -algebras of type II_1 on a separable Hilbert space. In any case we may always assume that \mathscr{M} contains the hyperfinite factor.

LEMMA 6. Let $\mathfrak{A} \in \mathscr{A}$ and let $A \in \mathfrak{A}_h$. Then for any $\varepsilon > 0$ there exists a generator T of \mathfrak{A} with $|T - A| < \varepsilon$.

PROOF. a) Without loss of generality we may assume that A is invertible and has a finite spectrum. Let $A = \sum_{i=1}^{n} \lambda_i P_i$ be the spectral decomposition of A. Let \natural be the natural center valued map [2]. Since $1 = \sum_{i=1}^{n} P_i = \sum_{i=1}^{n} P_i^{\natural}$ there exist finitely many orthogonal central projections Z_1, \dots, Z_m with $\sum Z_i = 1$ such that for each Z_j there exists a P_i with $P_i^{\natural} Z_j \geq 2^{-n} Z_j$. Using again the remarks following Lemma 3, we may assume without loss of generality $P_1^{\natural} \geq 2^{-n}$. Then by [4, Theorem 1] we can find a family $\{Q_i\}_{i=1}^{2m}$ of orthogonal equivalent projections with $\sum_{i=1}^{2n} Q_i = 1$, $Q_i A = AQ_i$ and $Q_1 \leq P_1$. The $\{Q_i\}_{i=1}^{2m}$ induce a tensor decom-

position of \mathfrak{A} , $\mathfrak{A} = \mathfrak{B} \otimes M_{\mathfrak{a}^n}$. Then A has the form

 $A = \operatorname{diag}(\lambda_1, a_2, \ldots, a_{2^n}).$

Now we replace each a_i with $2 \leq i \leq 2^n$ by a selfadjoint operator a'_i with the same spectral projections as a_i , such that $|a_i - a'_i| < \varepsilon/2$ and such that $\operatorname{Sp} a'_i \cap \operatorname{Sp} a'_j = \emptyset$ for $i \neq j$, $1 \leq i, j \leq 2^n$, $\lambda_1 = a_1$. Then the operator $A' = \operatorname{diag}(\lambda_1, a'_2, \ldots, a'_2)$ satisfies $|A - A'| < \varepsilon/2$.

b) \mathfrak{B} is generated by the positive invertible operators b, c with $|b|, |c| \leq \varepsilon/4$, because $\mathfrak{B} \in \mathscr{A}$. Then let B be given by the matrix

$$B = \begin{bmatrix} b & d & & \\ d & c & d & \\ & d & 0 & d \\ 0 & \ddots & \ddots & d \\ & & d & 0 \end{bmatrix}$$

with $d = \varepsilon/8 \cdot 1$.

c) The operator T = A' + iB satisfies clearly $|A - T| < \varepsilon$. Let $C = C^* \in \Re(T)'$. Then CA' = A'C shows as above by Lemma 1 that C is diagonal, $C = \text{diag}(c_1, \ldots, c_{2^n})$. From this and CB = BC one obtains by the same methods as before $c_1 = c_2 = \ldots = c_{2^n} \in \mathfrak{B}'$. Thus $\Re(T) = \mathfrak{A}$.

THEOREM 2. Let $\mathfrak{A} \in \mathscr{A}$, then the set of generators of \mathfrak{A} is dense in \mathfrak{A} .

PROOF. a) Let $\varepsilon > 0$ and $T = A + iB \in \mathfrak{A}$. Arguing as in the proof of Lemma 6 we may assume $\mathfrak{A} = \mathfrak{B} \otimes M_{2^n}$ and

$$A = A^* = \operatorname{diag}(\lambda_1, a_2, \cdots, a_{2^n})$$
.

We may further assume that spectrum of A is finite and that

$$\operatorname{Sp} a_i \cap \operatorname{Sp} a_j = \emptyset$$

for $i \neq j$, $1 \leq i, j \leq 2^n$ and $\lambda_1 = a_1$. Let η be the smallest distance between the points in Sp A and let $B = (b_{i,j})_{i,j=1}^{2^n}$. By Lemma 6 there exists a positive operator $b \in \mathfrak{B}$ and a selfadjoint operator $b'_{1,1}$ with $|b| \leq \min(\eta/2, \varepsilon)$, $|b_{1,1} - b'_{1,1}| < \varepsilon$ and $\Re(b, b'_{1,1}) = \mathfrak{B}$. We can further find invertible operators $b'_{1,i} = b'_{i,1}$ for $1 < i \leq 2^n$ with $|b_{1,i} - b'_{1,i}| < \varepsilon \cdot 2^{-n}$. For the remaining indices set $b_{i,j} = b'_{i,j}$. Then let $B' = (b'_{i,j})_{i,j=1}^{2^n}$ and $A' = \operatorname{diag}(\lambda_1 + b, a_2, \ldots, a_2^n)$.

b) Clearly T' = A' + iB' satisfies $|T - T'| < 4\varepsilon$. Let $C = C^* \in \Re(T')'$, then CA' = A'C implies again by Lemma 1 $C = \text{diag}(c_1, \ldots, c_{2^n})$. T'C = CT' gives further $c_1b = bc_1$ and $c_1b'_{1,1} = b'_{1,1}c_1$ or $c_1 \in \mathfrak{B}'$. Then $b'_{1,i}c_i =$

 $c_1b'_{1,i} = b'_{1,i}c_1$ for $1 \leq i \leq 2^n$, or $c_1 = c_i$, because $b'_{1,i}$ is invertible. Again $C = \text{diag}(c_1, \ldots, c_i)$ shows $\Re(T') = \mathfrak{A}$.

We want to show now that in most W^* -algebras on a separable Hilbert space each operator can be written as the sum of two generators. This is known for B(H) [5, 8]. We begin with a general lemma, which in some sense is an analogue of Lemma 3.

LEMMA 7. Let the W*-algebra \mathfrak{A} be a finite direct sum of W*algebras $\mathfrak{A}_i, \mathfrak{A} = \sum_{i=1}^n \bigoplus \mathfrak{A}_i$. Assume in each \mathfrak{A}_i every operator is the sum of two generators of \mathfrak{A}_i , then every $T \in \mathfrak{A}$ can likewise be written as the sum of two generators of \mathfrak{A} .

PROOF. Let $T = \sum \bigoplus T_i \in \mathfrak{A}$ and let $T_i = U_i + V_i$, where U_i and V_i are generators of \mathfrak{A}_i . We write

$$T = \sum \bigoplus (U_i + K_i) + \sum + (V_i - K_i) = U + V$$
,

where the K_i are scalars. Since n is finite we can choose the K_i such that $\operatorname{Sp}(U_i + K_i) \cap \operatorname{Sp}(U_j + K_j) = \emptyset$ and $\operatorname{Sp}(V_i - K_i) \cap \operatorname{Sp}(V_j - K_j) = \emptyset$ for $i \neq j$. Let $C = C^* \in \mathfrak{R}(U)'$, then we can write $C = (c_{i,j})_{i,j=1}^n$, and we obtain $c_{i,j}(U_j + K_j) = (U_i + K_i)c_{i,j}$. For $i \neq j$ Lemma 1 (a) shows $c_{i,j} = 0$. Hence $C = \sum \bigoplus c_i$ and $c_i(U_i + K_i) = (U_i + K_i)c_i$ or $c_i \in \mathfrak{R}(U_i)' = \mathfrak{A}'_i$. Thus $\mathfrak{R}(U)' = \sum \bigoplus \mathfrak{A}'_i$ and $\mathfrak{R}(U) = \mathfrak{A}$.

PROPOSITION 3. Let \mathfrak{A} be a properly infinite W^* -algebra on a separable Hilbert space. Then any element in \mathfrak{A} can be written as the sum of two generators of \mathfrak{A} .

PROOF. a) Let $T = A + iB \in \mathfrak{A}$. Then there exist four equivalent orthogonal projections $F_i \in \mathfrak{A}$, with $1 \leq i \leq 4$, such that $F_iA = AF_i$ and $\sum F_i = 1$ [4, th. 3]. The $\{F_i\}_{i=1}^4$ induce a tensor decomposition of \mathfrak{A} , $\mathfrak{A} = \mathfrak{B} \otimes M_4$ and $A = \operatorname{diag}(a_1, a_2, a_3, a_4)$. Let $K = 3 \mid T \mid$ and let $A' = \operatorname{diag}(0, K, 2K, 3K)$. Since \mathfrak{A} is properly infinite, it is generated by the positive invertible operators c and d with $c, d \geq K \cdot 1$. B is represented by the matrix $B = (b_{i,j})_{i,j=1}^4$, then let B' be given by the matrix

$$B' = egin{bmatrix} c - b_{1,1} & d - b_{1,2} & 0 & 0 \ d - b_{1,2}^* & c & d & 0 \ 0 & d & 0 & K \ 0 & 0 & K & 0 \end{bmatrix}$$

Now write $T = T_1 + T_2 = [(A + A') + i(B + B')] - [A' + iB'].$

b) Let $C = C^* \in \Re(T_1)'$, then C(A + A') = (A + A')C and Lemma 1 (a) imply that C is diagonal, $C = \text{diag}(c_1, c_2, c_3, c_4)$. Then

$$C(B'+B) = (B'+B)C$$

gives $c_1c = cc_1$ and $c_1d = dc_2$. By Lemma 1 (b) this shows $c_1 = c_2 \in \mathfrak{B}'$, because $\mathfrak{R}(c, d) = \mathfrak{B}$. $CT_1 = T_1C$ gives further $(d + b_{2,3})c_3 = c_2(d + b_{2,3}) = (d + b_{2,3})c_2$ or $c_2 = c_3$, because $d + b_{2,3}$ is invertible. The relation

$$(K + b_{3,4})c_4 = c_3(K + b_{3,4}) = (K + b_{3,4})c_3$$

finally gives $c_3 = c_4$ by the same argument. Thus $C = c_1 \otimes 1$ with $c_1 \in \mathfrak{B}'$ or $\mathfrak{R}(T_1) = \mathfrak{A}$.

c) $\Re(T_2) = \mathfrak{A}$ is shown as in (b).

To show this result also for finite W^* -algebras of type I, we need some preparations.

LEMMA 8. Let \mathfrak{A} be an abelian W^* -algebra then any $T \in \mathfrak{A}$ is the sum of two generators of \mathfrak{A} .

PROOF. Let T = A + iB and let C be a selfadjoint generator of \mathfrak{A} . Then T = [C + i(B - C)] + [(A - C) + iC] is the desired decomposition.

Now let \mathfrak{A} be a W^* -algebra of type I_n , then \mathfrak{A} can be represented as $\mathfrak{A} = \mathfrak{Z} \otimes M_n$, where \mathfrak{Z} is the center of \mathfrak{A} . Let $T \in \mathfrak{A}$, then we may assume that T has upper triangular form [3], $T = (t_{i,j})_{i,j=1}^n$ and $t_{i,j} = 0$ for j < i. The diagonal part of such a T we denote by diag T, diag $T = \text{diag}(t_{1,1}, \ldots, t_{n,n})$. Let \mathfrak{B} be the maximal abelian subalgebra of \mathfrak{A} , which consists of all diagonal operators. Of course \mathfrak{B} depends on the given matrix representation of \mathfrak{A} . In the next lemma we exhibit a large class of generators of \mathfrak{A} .

LEMMA 9. Let $\mathfrak{A}, \mathfrak{B}$ and T as above, then $\mathfrak{R}(T) = \mathfrak{A}$ if

i) $\Re(\operatorname{diag} T) = \mathfrak{B}$

ii) $t_{i,i+1}$ is invertible for all $1 \leq i \leq n-1$.

PROOF. We may represent \mathfrak{A} on a suitable Hilbert space H such that \mathfrak{B} is a maximal abelian subalgebra of B(H). Let $C = C^* \in \mathfrak{R}(T)'$ and $C = (c_{i,j})_{i,j=1}^n$. Computing the (n, 1) matrix element of CT = TC one finds $c_{n,1}t_{1,1} = t_{n,n}c_{n,1}$. Let C' be the operator, which one obtains from C by setting all matrix elements except the one in the (n, 1) position equal to zero. Then C' diag T = diag TC' and by the Fuglede theorem [6] $C' \in \mathfrak{R}(\text{diag } T)' = \mathfrak{B}' = \mathfrak{B}$. Hence $C' = c_{n,1} = c_{1,n} = 0$. With the same method applied to $(CT)_{n,i} = (TC)_{n,i}$ one shows by induction $c_{n,i} = c_{i,n} = 0$ for all i < n and $c_{n,n} \in \mathfrak{Z}$. Further induction finally yields $C = c \otimes 1 \in \mathfrak{A}'$. Thus $\mathfrak{R}(T)' = \mathfrak{A}'$ or $\mathfrak{R}(T) = \mathfrak{A}$.

Lemma 9 can be extended to finite W^* -algebras of type I. To do this let $\mathfrak{A} = \sum \bigoplus \mathfrak{A}_n$, with $\mathfrak{A}_n = \mathfrak{Z}_n \otimes M_n$, be a finite W^* -algebra of type

H. BEHNCKE

I. Let $T = \sum \bigoplus T_n \in \mathfrak{A}$. Then we may assume that each $T_n = (t_{i,j}^{(n)})$ is upper triangular [3]. With respect to this representation let again \mathfrak{B}_n denote the diagonal part of \mathfrak{A}_n and let $\mathfrak{B} = \sum \bigoplus \mathfrak{B}_n$.

LEMMA 10. Let $\mathfrak{A}, \mathfrak{B}$ and T as above, then $\mathfrak{R}(T) = \mathfrak{A}$ if

- i) $\Re (\Sigma \bigoplus diag T_n) = \mathfrak{B}$ and
- ii) $t_{i,i+1}^{(n)}$ is invertible for all $1 \leq i < n-1$ and for all n.

PROOF. Again we may find a representation of \mathfrak{A} on a suitable Hilbert space H such that \mathfrak{B} is a maximal abelian subalgebra of B(H). Let $C = C^* = (C_{l,k}) \in \mathfrak{R}(T)'$. Then $T_k C_{k,l} = C_{k,1} T_l$ and because of Lemma 9 it suffices to show that this implies $C_{k,l} = 0$ for $k \neq l$. To do this write T_k , T_l and $C_{k,l}$ as matrices and use the same methods as in Lemma 9.

THEOREM 3. Let \mathfrak{A} be a W*-algebra on a separable Hilbert space with no summand of type II_1 then any $T \in \mathfrak{A}$ can be written as the sum of two generators of \mathfrak{A} .

PROOF. a) Let $\mathfrak{A} = \sum \bigoplus \mathfrak{A}_n$ be a finite W^* -algebra of type I and let $T = \sum \bigoplus T_n \in \mathfrak{A}$. Write each T_n in upper triangular from [3] and determine the corresponding \mathfrak{B}_n and \mathfrak{B} . Now it is easy to see that T can be written as the sum of two operators in \mathfrak{A} , each of which satisfies the conditions (i) and (ii) of Lemma 10.

b) Now the theorem follows from Lemma 7, Proposition 3 and (a). Theorem 3 holds also for certain W^* -algebras of type II₁.

THEOREM 4. Let \mathfrak{A} be a W^* -algebra of type II_1 and let $\mathfrak{A} \in \mathscr{A}$, then any $T \in \mathfrak{A}$ can be written as the sum of two generators of \mathfrak{A} .

PROOF. The proof of Proposition 3 will also show this result.

References

- [1] H. BEHNCKE, Generators of W*-algebras, Tôhoku Math. Journ., 22 (1971) 541-546.
- [2] J. DIXMIER, Les algebres d'opérateurs dans l'espace Hilbertien, Gauthier-Villars, Paris 1969.
- [3] D. DECKARD AND C. PEARCY, On Matrices over the Ring of Continuous Complex Valued Functions on a Stonian Space, Proc. AMS 14 (1963) 322-328.
- [4] P. FILLMORE, On Products of Symmetries, Can. J. of Math. 18 (1966) 897-900.
- [5] P. FILLMORE AND D. TOPPING, Sums of Irreducible Operators, Proc. AMS 20 (1969) p. 131-133.
- [6] B. FUGLEDE, A Commutativity Theorem for Normal Operators, Proc. Nat. Acad. Sci. 36 (1950) 35-40.
- [7] P. R. HALMOS, Irreducible Operators, Mich. Math. J. 15 (1968) 215-223.
- [8] H. RADJAVI, Every Operator is the Sum of Two Irreducible Ones, Proc. AMS 21 (1969) 251-252.

- [9] H. RADJAVI AND P. ROSENTHAL, The Set of Irreducible Operators in Dense, Proc. AMS 21 (1969) 256.
- [10] M. ROSENBLUM, On the Operator Equation BX XA = Q, Duke Math. J. 23 (1956) 263-269.

Institut Für Angewandte Mathematik Universität Heidelberg Heidelberg, Deutschland.