GENERATORS OF W^{*}-ALGEBRAS II

Horst Behncke*

(Received Sept. 30, 1970)

In [1] it was shown that generators of properly infinite W^{*}-algebras can be chosen from rather restricted classes of operators. Here we shall show that generators of properly infinite W^{*}-algebras abound in another sense. Let \mathfrak{H} be a W^{*}-algebra on the separable Hilbert space H with no summand of type I_{1}, then the set of generators of \mathfrak{N} is a norm dense set in \mathfrak{A}. Moreover any operator $T \in \mathfrak{Z}$ can be written as the sum of two generators of \mathfrak{N}. These results have been obtained previously for $B(H)$, the algebra of all bounded linear operators on $H[5,7,8,9]$. These results are also valid for certain W^{*}-algebras of type I_{1}, for example the hyperfinite factor of type II_{1}. Throughout all Hilbert spaces will be separable and all W^{*}-algebras are assumed to act on separable Hilbert spaces. For a W^{*}-algebra \mathfrak{N} we denote the algebra of all k by k matrices with entries from \mathfrak{N} by $M_{k}(\mathfrak{V})=\mathfrak{U} \otimes M_{k}$. In this notation M_{∞} stands for the algebra of all bounded linear operators on a separable infinite dimensional Hilbert space. For $A_{1}, A_{2}, \ldots \in B(H)$, the W^{*}-algebra generated by A_{1}, A_{2}, \ldots will be denoted by $\Re\left(A_{1}, A_{2}, \ldots\right)$. For $T \in B(H), T=$ $A+i B$ will always stand for the decomposition of T into its real and imaginary part. The spectrum of an operator T will be denoted by SpT. For a W^{*}-algebra \mathfrak{A} let $\mathfrak{U}_{h}\left(\mathfrak{V}_{+}\right)$be the set of hermitean (positive) elements of \mathfrak{N}.

Lemma 1. a) Let $A_{1}, A_{2} \in B(H)$ with $S p A_{1} \cap S p A_{2}=\varnothing \quad$ then $C A_{1}=A_{2} C$ implies $C=0$.
b) Let $A_{1}, A_{2} \in B(H)_{h}$ and $C \in B(H)$ positive and invertible, then $C A_{1}=A_{2} C$ implies $A_{1}=A_{2}$.

Proof. a) This is an easy consequence of a result of Rosenblum [10].
b) $C A_{1}=A_{2} C$ implies $A_{1} C=C A_{2}$ and $C^{2} A_{1}=C A_{2} C=A_{1} C^{2}$. Since C is positive A_{1} commutes also with C. Thus $A_{1} C=C A_{1}=A_{2} C$ and $A_{1}=A_{2}$, because C is invertible.

Lemma 2. Let \mathfrak{N} be an abelian W^{*}-algebra, then the set of hermitean

[^0]generators of \mathfrak{N} is dense in \mathfrak{A}_{h}.
Proof. Let $A \in \mathfrak{A}_{k}$ and $\varepsilon>0$, then there exist an invertible operator $A^{\prime} \in \mathfrak{A}_{h}$ with a finite spectrum and $\left|A-A^{\prime}\right|<\varepsilon$. Let $A^{\prime}=\sum_{i=1}^{n} \lambda_{i} e_{i}$ be the spectral decomposition of A^{\prime} and let η be the smallest distance between the points in the set $\left\{0, \lambda_{1}, \cdots, \lambda_{n}\right\}$. Each abelian W^{*}-algebra $\mathfrak{H} e_{i}, 1 \leqq i \leqq n$, has a hermitean generator a_{i} with $\left|a_{i}\right|<\min (\varepsilon, \eta / 2)$. Then $A^{\prime \prime}=\sum_{i=1}^{n} e_{i}\left(\lambda_{i}+a_{i}\right)$ is a hermitean generator of $\mathfrak{\lambda}$ and $\left|A-A^{\prime \prime}\right|<2 \varepsilon$.

Lemma 3. Let the W^{*}-algebra \mathfrak{N} be the (countable) direct sum of W^{*}-algebras $\mathfrak{U}_{i}, \mathfrak{N}=\sum \bigoplus \mathfrak{N}_{i}$, and let $T=\sum \oplus T_{i} \in \mathfrak{\Re}$. Assume for each i and for some $\varepsilon>0$ there exists a generator T_{i}^{\prime} of \mathfrak{N}_{i}, with $\left|T_{i}-T_{i}^{\prime}\right|<\varepsilon$; then there exists a generator $T^{\prime \prime}$ of \mathfrak{N} with $\left|T-T^{\prime \prime}\right|<2 \varepsilon$.

Proof. Let $T^{\prime}=\sum \oplus T_{i}^{\prime}$ and let $T^{\prime}=A^{\prime}+i B^{\prime}$ be the decomposition of T^{\prime} into its real and imaginary part. B^{\prime} lies in some maximal abelian subalgebra \mathfrak{B} of \mathfrak{A}, and by Lemma 2 there exists a generator $B^{\prime \prime} \in \mathfrak{B}_{h}$ of \mathfrak{B} with $\left|B^{\prime}-B^{\prime \prime}\right|<\varepsilon$. Then $T^{\prime \prime}=A^{\prime}+i B^{\prime \prime}$ is the desired operator. $\left|T-T^{\prime \prime}\right|<2 \varepsilon$ is obvious. Let be the central projection onto $\mathfrak{N}_{i}, \mathfrak{A}_{i}=$ $\mathfrak{H} z_{i}$. Then $z_{i} \in \mathfrak{B}$ and any $D=D^{*} \in \mathfrak{R}\left(T^{\prime \prime}\right)^{\prime}$ commutes with all z_{i}. Hence $D=\sum \oplus D_{i}$ and $D_{i} \in \mathfrak{R}\left(T^{\prime \prime} z_{i}\right)^{\prime}=\mathfrak{R}\left(T_{i}^{\prime}\right)^{\prime}=\mathfrak{彐}_{i}^{\prime}$. This shows $D \in \mathfrak{X}^{\prime}$ or $\mathfrak{R}\left(T^{\prime \prime}\right)=\mathfrak{2}$.

Corollary. Let $\mathfrak{A}=\sum \oplus \mathfrak{A}_{i}$ be such that each \mathfrak{A}_{i} has a dense set of generators. Then \mathfrak{M} has a dense set of generators.

Thus the W^{*}-algebra \mathfrak{N} has a dense set of generators, if its parts of type I_{n}, type II and type III each have this property. Apart from this rather obvious application the lemma will also be used in the following way. Let $\mathfrak{\Re}$ be a W^{*}-algebra, $T \in \mathfrak{A}$ and $\varepsilon>0$ arbitrary. Then determine a countable central decomposition of $\mathfrak{A}, \mathfrak{Y}=\sum \bigoplus \mathfrak{H}_{i}$ and $T=$ $\Sigma \oplus T_{i}$, which may depend on T, such that for each i the operator T_{i} can be approximated within ε by a generator T_{i}^{\prime} of \mathfrak{H}_{i}. Then the lemma shows the existence of a generator $T^{\prime \prime}$ of \mathfrak{A} with $\left|T-T^{\prime \prime}\right|<2 \varepsilon$.

Proposition 1. A finite W^{*}-algebra $\mathfrak{2}$ of type I on a separable Hilbert space has a norm dense set of generators.

Proof. By Lemma 3 and the remarks following it we may assume \mathfrak{N} to be homogeneous of type I_{n}, with $n<\infty$. Then we can write $\mathfrak{A}=$ $\mathcal{3} \otimes M_{n}$, where 3 is the center of \mathfrak{N}. Let $\varepsilon>0$ and let $T=A+i B \in \mathfrak{A}$. By [3, Cor. 3.3] we may assume A to be diagonal, $A=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ with $a_{1}, \ldots, a_{n} \in 3$. Let \mathfrak{B} be the algebra of all diagonal operators $C=$ $\operatorname{diag}\left(c_{1}, \ldots, c_{n}\right)$, with $c_{1}, \ldots, c_{n} \in \mathcal{B} . \mathfrak{B}$ is a maximal abelian subalgebra of \mathfrak{N}, and by Lemma 2 there exists a hermitean generator A^{\prime} of \mathfrak{B} with
$\left|A-A^{\prime}\right|<\varepsilon / 2$. Let $B=\left(b_{i, j}\right)_{i, j=1}^{n}$, then we can find invertible operators $b_{i, j}^{\prime}=b_{j, i}^{\prime *} \in 3$ with $\left|b_{i, j}-b_{i, j}^{\prime}\right|<1 / 2 \cdot \varepsilon \cdot n^{-2}$, with $1 \leqq i, j \leqq n$. Set now $B^{\prime}=\left(b_{i, j}^{\prime}\right)_{i, j=1}^{n}$ and $T^{\prime}=A^{\prime}+i B^{\prime}$. Then $\left|T-T^{\prime}\right|<\varepsilon$. To show $\mathfrak{R}\left(T^{\prime}\right)=$ \mathfrak{N} let $D=D^{*} \in \mathfrak{R}\left(T^{\prime}\right)^{\prime}$. Since in particular $D \in \mathfrak{B}^{\prime}, D$ is diagonal, $D=$ $\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ with $d_{i} \in 3$. Then $D B^{\prime}=B^{\prime} D$ gives $d_{1} b_{1, i}^{\prime}=b_{1, i}^{\prime} d_{i}=d_{i} b_{1, i}^{\prime}$ or $d_{1}=d_{i}$ for $1 \leqq i \leqq n$, because the $b_{1, i}^{\prime}$ are invertible. $D \in \mathcal{Y}^{\prime}$ is now obvious. Hence $\mathfrak{R}\left(T^{\prime}\right)^{\prime}=\mathfrak{~ ^ { \prime }}$ or $\mathfrak{R}\left(T^{\prime}\right)=\mathfrak{A}$.

We state now a number of results on operators in W^{*}-algebras, which will be needed later. Most of these results are based on the polar decomposition of operators [2].

Let \mathfrak{N} be a W^{*}-algebra and $T \in \mathfrak{\mathcal { M }}$. We say T has finite rank if there exists a finite projection $P \in \mathfrak{Z}$ with $T P=T$. In a purely infinite W^{*}-algebra only the 0 operator is of finite rank. Clearly $T \in \mathfrak{N}$ has finite rank if and only if T^{*} has finite rank. Let $\left\{Q_{i}\right\}_{i=1}^{n}$ with $n=1,2, \ldots, \infty$, be a family of equivalent orthogonal projections in \mathfrak{N} with $\sum Q_{i}=1$. The $\left\{Q_{i}\right\}_{i=1}^{n}$ induce a tensor decomposition of $\mathfrak{A}[2, \mathrm{ch} . \mathrm{I} \S 2], \mathfrak{Z}=\mathfrak{B} \otimes M_{n}$. In this notation $T \in \mathfrak{A}$ has the matrix form $T=\left(t_{i, j}\right)_{i, j=1}^{n}$ with $t_{i, j}=V_{i}^{*} T V_{j}$ where $V_{i} V_{i}^{*}=Q_{i}$ and $V_{i}^{*} V_{i}=Q_{1}$. Let P be a finite projection in \mathfrak{A}, then $P V_{j}$ has finite rank. Thus if $T \in \mathfrak{A}$ has finite rank the $t_{i, j}$ have finite rank too. The converse holds if n is finite.

In any W^{*}-algebra \mathfrak{A} a partial isometry is a restriction of an isometry or a coisometry. Using this and the polar decomposition of operators in \mathfrak{A}, it is easy to see that any $T \in \mathfrak{Y}$ can be approximated in the norm by an operator S such that $S S^{*}$ or $S^{*} S$ are invertible. This result is optimal as the example of a nonunitary isometry shows. However since partial isometries of finite rank are restrictions of unitary operators, operators of finite rank can be approximated by invertible operators. Let \mathfrak{N} be a W^{*}-algebra and P a projection in \mathfrak{N}. Then there exists a unique central projection Z in \mathfrak{Z} such that $Z P$ is finite and such that $(1-Z) P$ is properly infinite.

Let $A \in \mathfrak{A l}$ be a selfadjoint invertible operator with a finite spectrum and let $A=\sum_{i=1}^{n} \lambda_{i} P_{i}$ be the spectral resolution of A. Let Z_{i} with $1 \leqq i \leqq n$, be the unique central projection such that $\left(1-Z_{i}\right) P_{i}$ is properly infinite. The projections Z_{i} generate a finite dimensional algebra 3_{0} of central operators. Let Z be a minimal nonzero projection in \mathcal{Z}_{0}. Then the spectral projections of the operator $A Z=\sum_{i=1}^{n} \lambda_{i} P_{i} Z \in \mathfrak{Z} Z$ are either finite or properly infinite.

Lemma 4. Let $\mathfrak{2}$ be a properly infinite W^{*}-algebra on a separable

Hilbert space and let $A \in \mathfrak{A}_{k}$. Then for any $\varepsilon>0$ there exists a generator T of \mathfrak{M} with $|T-A|<\varepsilon$.

Proof. a) Since the invertible hermitean operators with finite spectrum are dense in \mathfrak{H}_{h}, we may assume without loss of generality that A is invertible and has a finite spectrum. Then by our remarks above \mathfrak{N} has a finite decomposition by central projections Z_{i} of \mathfrak{A} such that the spectral projections of $A Z_{i}$ in $\mathfrak{A} Z_{i}$ are either finite or properly infinite. Because of our remarks following Lemma 3 we may thus assume that the spectral projections of A are either finite or infinite. Let $A=$ $\sum_{i=1}^{n} \lambda_{i} P_{i}$ be the spectral resolution of A such that the projections P_{1}, \ldots, P_{k} are properly infinite and such that P_{k+1}, \ldots, P_{n} are finite. Since \mathfrak{A} is properly infinite and $1=\sum_{i=1}^{n} P_{i}$ we get $k \geqq 1$. If $k=1$ we decompose P_{1} into two equivalent orthogonal projections P_{1}^{\prime} and $P_{1}^{\prime \prime}$ and replace A by the operator $A^{\prime}=P_{1}^{\prime} \lambda_{1}+P_{1}^{\prime \prime} \lambda_{1}^{\prime}+\sum_{i=2}^{n} \lambda_{i} P_{i}$ with $\lambda_{1}^{\prime} \neq \lambda_{i}, \lambda_{1}^{\prime} \in \boldsymbol{R}$ and $\left|\lambda_{1}^{\prime}-\lambda_{1}\right|<\varepsilon / 2$. For the operator A^{\prime} we have $k \geqq 2$. Thus we may assume without loss of generality $k \geqq 2$.
b) Now let $Q_{1}=P_{1}, \ldots, Q_{k-1}=P_{k-1}$ and $Q_{k}=P_{k}+\ldots+P_{n}$. Then the projections Q_{1}, \ldots, Q_{k} are properly infinite, orthogonal, equivalent and satisfy $\sum_{i=1}^{k} Q_{i}=1$. Thus they induce a tensor decomposition of $\mathfrak{N}, \mathfrak{Y} \cong$ $\mathfrak{B} \otimes M_{k}$. In this decomposition A is diagonal, $A=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k-1}, a\right)=$ $\operatorname{diag}\left(a_{1}, \ldots, a_{k}\right)$. By construction the operator $a-\lambda_{k}$ has finite rank in \mathfrak{B}. This will be of importance later. Furthermore we should point out that $\operatorname{Sp} a_{i} \cap \operatorname{Sp} a_{j}=\varnothing$ for $i \neq j$.
c) The algebra \mathfrak{B} is generated by two positive invertible operators b and c, which we may choose such that $|b|,|c| \leqq \varepsilon / 2$. Then set

$$
B=\left[\begin{array}{cccc}
b & d & \cdots & d \\
d & c & & \\
\vdots & 0 & & \\
\vdots & & \ddots & 0
\end{array}\right]
$$

with $d=\varepsilon / 4 k \cdot 1$ and let $T=A+i B$.
d) Clearly $|A-T|<\varepsilon$. To show $\mathfrak{R}(T)=\mathfrak{\Re}$ let $C=C^{*} \in \Re(T)^{\prime}$. C can also be considered as a matrix, $C=\left(c_{i, j}\right)_{i, j=1}^{k}$. Since $\operatorname{Sp} a_{i} \cap \operatorname{Sp} a_{j}=\varnothing$ for $i \neq j C A=A C$ implies by Lemma 1 (a) that C is diagonal, $C=\operatorname{diag}$ $\left(c_{1}, \ldots, c_{k}\right)$. Then $C B=B C$ gives $c_{1} d=c_{i} d$ for $1 \leqq i \leqq k$, or $c_{1}=\ldots=c_{k}$. $C B=B C$ gives further $c_{1} b=b c_{1}$ and $c_{1} c=c c_{1}$ or $c_{1} \in \mathfrak{B}^{\prime}$. Thus $\mathfrak{R}(T)^{\prime}=$ $\mathfrak{B}^{\prime} \otimes 1$ or $\mathfrak{R}(T)=\mathfrak{N}$.

Lemma 5. Let $\mathfrak{\Re}$ be a properly infinite W^{*}-algebra on a separable

Hilbert space and let $T=A+i B \in \mathfrak{Y}$, with B of finite rank. Then for any $\varepsilon>0$ there exists a generator T^{\prime} of \mathfrak{N} with $\left|T-T^{\prime}\right|<2 \varepsilon$.

Proof. a) Using the same arguments as in the proof of Lemma 4
 diagonal, $A=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k-1}, a\right)=\operatorname{diag}\left(a_{1}, \ldots, a_{k}\right)$ with $\operatorname{Sp} a_{i} \cap \operatorname{Sp} a_{j}=\varnothing$ for $i \neq j$. $\quad B$ has the form $B=\left(b_{i, j}\right)_{i, j=1}^{k}$ and each $b_{i, j}$ for $1 \leqq i, j \leqq k$, has finite rank in \mathfrak{B}. Let η be the smallest distance between the points in the set $\{0\} \cup \operatorname{Sp} A$. By Lemma 4 there exists a positive operator $b \in \mathfrak{B}$ and a selfadjoint operator $b_{1,1}^{\prime} \in \mathfrak{B}$ with $\left|b_{1,1}^{\prime}-b_{1,1}\right|<\varepsilon / 2, \mathfrak{R}\left(b_{1,1}^{\prime}, b\right)=\mathfrak{B}$ and $|b|<\min (\eta / 2, \varepsilon)$. Similarly there exist invertible operators $b_{1, i}^{\prime}=b_{i, 1}^{\prime *} \in \mathfrak{B}$ with $2 \leqq i \leqq k$ such that $\left|b_{1, i}-b_{1, i}^{\prime}\right|<\varepsilon / 4 k$. Now set $b_{i, j}^{\prime}=b_{i, j}$ for the remaining indices and define $B^{\prime}=\left(b_{i, j}^{\prime}\right)_{i, j=1}^{k}$. The operator A^{\prime} is defined by $A^{\prime}=\operatorname{diag}\left(\lambda_{1}+b, \lambda_{2}, \ldots, \lambda_{k-1}, a\right)$. Then the operator $T^{\prime}=A^{\prime}+i B^{\prime}$ satisfies $\left|T-T^{\prime}\right|<2 \varepsilon$.
b) Let $C=C^{*} \in \mathfrak{R}\left(T^{\prime}\right)^{\prime} . \quad C A^{\prime}=A^{\prime} C$ shows as before with the aid of Lemma 1 that C is diagonal, $C=\operatorname{diag}\left(c_{1}, c_{2}, \ldots, c_{k}\right) . \quad C A^{\prime}=A^{\prime} C$ and $C B^{\prime}=B^{\prime} C$ give further $c_{1} b=b c_{1}$ and $c_{1} b_{1,1}^{\prime}=b_{1,1}^{\prime} c_{1}$. Thus $c_{1} \in \mathfrak{B}^{\prime}$. Then $C B^{\prime}=B^{\prime} C$ shows $b_{1, i}^{\prime} c_{1}=c_{1} b_{1, i}^{\prime}=b_{1, i}^{\prime} c_{i}$ or $c_{1}=c_{i}$ for $1 \leqq i \leqq k$, because the $b_{1, i}^{\prime}$ are invertible. Hence $\mathfrak{R}\left(T^{\prime}\right)^{\prime}=\mathfrak{B}^{\prime} \otimes 1$ or $\mathfrak{R}(T)=\mathfrak{N}$.

With this lemma we can now prove the general result.
Proposition 2. The set of generators in a properly infinite W^{*} algebra \mathfrak{A} on a separable Hilbert space is norm dense.

Proof. a) Let $\varepsilon>0$ and let $T=A+i B \in \mathfrak{Y}$. We shall find a generator T^{\prime} of \mathfrak{l} with $\left|T-T^{\prime}\right|<2 \varepsilon$. Arguing as in the Lemmas 4 and 5 there is no loss of generality if we assume $\mathfrak{Z}=\mathfrak{B} \otimes M_{k}$, with $k \geqq 2$, and $A=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k-1}, a\right)$. We may further assume $\lambda_{i} \neq \lambda_{j}$ for $i \neq j$ and $\lambda_{i} \notin \operatorname{Sp} a$ for $1 \leqq i, j \leqq k-1$. By construction we know further that there exists a constant λ_{k} such that $\lambda_{k}-a$ has finite rank. B has the form $B=\left(b_{i, j}\right)_{i, j=1}^{k}$. Let again η be the smallest distance between the points in $\{0\} \cup \operatorname{Sp} A$. By Lemma 4 we can find positive operators b_{i} for $1 \leqq i \leqq k-1$ and selfadjoint operators $b_{i, i}^{\prime}$ such that $\left|b_{i, i}-b_{i, i}^{\prime}\right|<\varepsilon / 2$, $\left|b_{i}\right| \leqq \min (\varepsilon, \eta / 2)$ and $\mathfrak{R}\left(b_{i, i}^{\prime}, b_{i}\right)=\mathfrak{B}$. Since a has essentially finite rank we can find by Lemma 5 selfadjoint operators $a^{\prime}, b_{k, k}^{\prime} \in \mathfrak{B}$ with $\left|a-a^{\prime}\right|<$ $\min (\varepsilon, \eta / 2),\left|b_{k, k}^{\prime}-b_{k, k}\right|<\varepsilon / 2$ and $\Re\left(a^{\prime}, b_{k, k}^{\prime}\right)=\mathfrak{B}$. In addition we choose operators $b_{i, 1}^{* *}=b_{1, i}^{\prime}$ such that $\left|b_{i, 1}-b_{i, 1}^{\prime}\right|<\varepsilon / 4 k$ and such that $b_{1, i}^{\prime} b_{1, i}^{* *}$ or $b_{1, i}^{\prime *} b_{1, i}$ is invertible. Set now $b_{i, j}^{\prime}=b_{i, j}$ for the remaining indices and define $B^{\prime}=\left(b_{i, j}^{\prime}\right)$. With $A^{\prime}=\operatorname{diag}\left(\lambda_{1}+b_{1}, \cdots, \lambda_{k-1}+b_{k-1}, a^{\prime}\right)$ and $T^{\prime}=$ $A^{\prime}+i B^{\prime}$ we have obviously $\left|T-T^{\prime}\right|<2 \varepsilon$.
b) Let $C=C^{*} \in \mathfrak{R}\left(T^{\prime}\right)^{\prime} . \quad C$ has the matrix form $C=\left(c_{i, j}\right)_{i, j=1}^{k}$. As
before $C A=A C$ shows that C is diagonal, $C=\operatorname{diag}\left(c_{1}, \ldots, c_{k}\right)$. Then $c_{i} \in \mathfrak{B}^{\prime}$, for $1 \leqq i \leqq k$, follows as above from $C A=A C$ and $C B=B C$. Using the off-diagonal terms of $C B=B C$ we get

$$
b_{1, i}^{\prime} c_{1}=c_{1} b_{1, i}^{\prime}=b_{1, i}^{\prime} c_{i}=c_{i} b_{1, i}^{\prime},
$$

for $1 \leqq i \leqq k$. If $b_{1, i}^{\prime *} b_{1, i}^{\prime}$ is invertible multiply this equation from the left by $b_{1, i}^{\prime *}$. One gets $b_{1, i}^{\prime *} b_{1, i}^{\prime} c_{1}=b_{1, i}^{\prime *} b_{1, i}^{\prime} c_{i}$ or $c_{1}=c_{i}$. Otherwise multiply by $b_{1, i}^{*}$ from the right. Again $c_{1} b_{1, i}^{\prime} b_{1, i}^{\prime *}=c_{i} b_{1, i}^{\prime} b_{1, i}^{*}$ shows $c_{1}=c_{i}$. Thus we have $c_{1}=c_{i}$ for $1 \leqq i \leqq k$, because $b_{1, i}^{*} b_{1, i}$ or $b_{1, i} b_{1, i}^{*}$ are invertible. The remainder is now obvious.

Summing up we have:
Theorem 1. Any W^{*}-algebra \mathfrak{A} on a separable Hilbert space with no direct summand of type $I I_{1}$ has a norm dense set of generators.

Proof. Apply Lemma 3 to Propositions 1 and 2.
Next we want to extend Theorem 1 to W^{*}-algebras of type II_{1}. Since it is not yet known whether factors of type II_{1} are singly generated, we introduce a class \mathscr{A} of W^{*}-algebras of type II_{1} on a separable Hilbert space with:
i) $\mathfrak{A} \in \mathscr{A}$ then \mathfrak{Z} is singly generated
ii) $\mathfrak{A} \in \mathscr{A}$ then there exists a $\mathfrak{B} \in \mathscr{A}$ with $\mathfrak{A}=\mathfrak{B} \otimes M_{2}$.

If every factor of type II_{1} on a separable Hilbert space is singly generated, also every W^{*}-algebra of type II_{1} on a separable Hilbert space is singly generated, because the direct integral of singly generated W^{*}-algebras is again singly generated (P . Willing, private communication). In that case \mathscr{A} may be chosen to be the class of all W^{*}-algebras of type II_{1} on a separable Hilbert space. In any case we may always assume that \mathscr{A} contains the hyperfinite factor.

Lemma 6. Let $\mathfrak{A l} \in \mathscr{A}$ and let $A \in \mathfrak{A}_{k}$. Then for any $\varepsilon>0$ there exists a generator T of $\mathfrak{\Re}$ with $|T-A|<\varepsilon$.

Proof. a) Without loss of generality we may assume that A is invertible and has a finite spectrum. Let $A=\sum_{i=1}^{n} \lambda_{i} P_{i}$ be the spectral decomposition of A. Let \forall be the natural center valued map [2]. Since $1=\sum_{i=1}^{n} P_{i}=\sum_{i=1}^{n} P_{i}^{\text {a }}$ there exist finitely many orthogonal central projections Z_{1}, \cdots, Z_{m} with $\sum Z_{i}=1$ such that for each Z_{j} there exists a P_{i} with $P_{i}^{\natural} Z_{j} \geqq 2^{-n} Z_{j}$. Using again the remarks following Lemma 3, we may assume without loss of generality $P_{1}^{\natural} \geqq 2^{-n}$. Then by [4, Theorem 1] we can find a family $\left\{Q_{i}\right\}_{i=1}^{2^{n}}$ of orthogonal equivalent projections with $\sum_{i=1}^{2^{n}} Q_{i}=1, Q_{i} A=A Q_{i}$ and $Q_{1} \leqq P_{1}$. The $\left\{Q_{i}\right\}_{i=1}^{2^{n}}$ induce a tensor decom-
position of $\mathfrak{A}, \mathfrak{Y}=\mathfrak{B} \otimes M_{2}{ }^{n}$. Then A has the form

$$
A=\operatorname{diag}\left(\lambda_{1}, a_{2}, \ldots, a_{2}{ }^{n}\right)
$$

Now we replace each a_{i} with $2 \leqq i \leqq 2^{n}$ by a selfadjoint operator a_{i}^{\prime} with the same spectral projections as a_{i}, such that $\left|a_{i}-a_{i}^{\prime}\right|<\varepsilon / 2$ and such that $\operatorname{Sp} a_{i}^{\prime} \cap \operatorname{Sp} a_{j}^{\prime}=\varnothing$ for $i \neq j, 1 \leqq i, j \leqq 2^{n}, \lambda_{1}=a_{1}$. Then the operator $A^{\prime}=\operatorname{diag}\left(\lambda_{1}, a_{2}^{\prime}, \ldots, a_{2}^{\prime}{ }^{\prime}\right)$ satisfies $\left|A-A^{\prime}\right|<\varepsilon / 2$.
b) \mathfrak{B} is generated by the positive invertible operators b, c with $|b|,|c| \leqq \varepsilon / 4$, because $\mathfrak{B} \in \mathscr{A}$. Then let B be given by the matrix

$$
B=\left[\begin{array}{ccccc}
b & d & & & 0 \\
d & c & d & & \\
& d & 0 & d & \\
& 0 & \ddots & \ddots & d \\
& & & d & 0
\end{array}\right]
$$

with $d=\varepsilon / 8 \cdot 1$.
c) The operator $T=A^{\prime}+i B$ satisfies clearly $|A-T|<\varepsilon$. Let $C=C^{*} \in \Re(T)^{\prime}$. Then $C A^{\prime}=A^{\prime} C$ shows as above by Lemma 1 that C is diagonal, $C=\operatorname{diag}\left(c_{1}, \ldots, c_{2}{ }^{n}\right)$. From this and $C B=B C$ one obtains by the same methods as before $c_{1}=c_{2}=\ldots=c_{2}{ }^{n} \in \mathfrak{B}^{\prime}$. Thus $\mathfrak{R}(T)=\mathfrak{2}$.

Theorem 2. Let $\mathfrak{A} \in \mathscr{A}$, then the set of generators of \mathfrak{A} is dense in 2.

Proof. a) Let $\varepsilon>0$ and $T=A+i B \in \mathfrak{彐}$. Arguing as in the proof of Lemma 6 we may assume $\mathfrak{Y}=\mathfrak{B} \otimes M_{2}{ }^{n}$ and

$$
A=A^{*}=\operatorname{diag}\left(\lambda_{1}, a_{2}, \cdots, a_{2}{ }^{n}\right)
$$

We may further assume that spectrum of A is finite and that

$$
\operatorname{Sp} a_{i} \cap \operatorname{Sp} a_{j}=\varnothing
$$

for $i \neq j, 1 \leqq i, j \leqq 2^{n}$ and $\lambda_{1}=a_{1}$. Let η be the smallest distance between the points in $\operatorname{Sp} A$ and let $B=\left(b_{i, j}\right)_{i, j=1}^{2 n}$. By Lemma 6 there exists a positive operator $b \in \mathfrak{B}$ and a selfadjoint operator $b_{1,1}^{\prime}$ with $|b| \leqq$ $\min (\eta / 2, \varepsilon), \quad\left|b_{1,1}-b_{1,1}^{\prime}\right|<\varepsilon$ and $\Re\left(b, b_{1,1}^{\prime}\right)=\mathfrak{B}$. We can further find invertible operators $b_{1, i}^{\prime}=b_{i, 1}^{\prime *}$ for $1<i \leqq 2^{n}$ with $\left|b_{1, i}-b_{1, i}^{\prime}\right|<\varepsilon \cdot 2^{-n}$. For the remaining indices set $b_{i, j}=b_{i, j}^{\prime}$. Then let $B^{\prime}=\left(b_{i, j}^{\prime}\right)_{i, j=1}^{2^{n}}$ and $A^{\prime}=\operatorname{diag}\left(\lambda_{1}+b, a_{2}, \ldots, a_{2}{ }^{n}\right)$.
b) Clearly $T^{\prime}=A^{\prime}+i B^{\prime}$ satisfies $\left|T-T^{\prime \prime}\right|<4 \varepsilon$. Let $C=C^{*} \in \Re\left(T^{\prime}\right)^{\prime}$, then $C A^{\prime}=A^{\prime} C$ implies again by Lemma $1 C=\operatorname{diag}\left(c_{1}, \ldots, c_{2}{ }^{n}\right) . \quad T^{\prime} C=$ $C T^{\prime}$ gives further $c_{1} b=b c_{1}$ and $c_{1} b_{1,1}^{\prime}=b_{1,1}^{\prime} c_{1}$ or $c_{1} \in \mathfrak{B}^{\prime}$. Then $b_{1, i}^{\prime} c_{i}=$
$c_{1} b_{1, i}^{\prime}=b_{1,2}^{\prime} c_{1}$ for $1 \leqq i \leqq 2^{n}$, or $c_{1}=c_{i}$, because $b_{1, i}^{\prime}$ is invertible. Again $C=\operatorname{diag}\left(c_{1}, \ldots, c_{1}\right)$ shows $\mathfrak{R}\left(T^{\prime}\right)=\mathfrak{N}$.

We want to show now that in most W^{*}-algebras on a separable Hilbert space each operator can be written as the sum of two generators. This is known for $B(H)[5,8]$. We begin with a general lemma, which in some sense is an analogue of Lemma 3.

Lemma 7. Let the W^{*}-algebra \mathfrak{A} be a finite direct sum of W^{*} algebras $\mathfrak{A}_{i}, \mathfrak{N}=\sum_{i=1}^{n} \oplus \mathfrak{H}_{i}$. Assume in each \mathfrak{N}_{i} every operator is the sum of two generators of \mathfrak{H}_{i}, then every $T \in \mathfrak{彐}$ can likewise be written as the sum of two generators of \mathfrak{M}.

Proof. Let $T=\sum \oplus T_{i} \in \mathfrak{A}$ and let $T_{i}=U_{i}+V_{i}$, where U_{i} and V_{i} are generators of \mathfrak{H}_{i}. We write

$$
T=\sum \oplus\left(U_{i}+K_{i}\right)+\sum+\left(V_{i}-K_{i}\right)=U+V
$$

where the K_{i} are scalars. Since n is finite we can choose the K_{i} such that $\operatorname{Sp}\left(U_{i}+K_{i}\right) \cap \operatorname{Sp}\left(U_{j}+K_{j}\right)=\varnothing$ and $\operatorname{Sp}\left(V_{i}-K_{i}\right) \cap \operatorname{Sp}\left(V_{j}-K_{j}\right)=\varnothing$ for $i \neq j$. Let $C=C^{*} \in \mathfrak{R}(U)^{\prime}$, then we can write $C=\left(c_{i, j}\right)_{i, j=1}^{n}$, and we obtain $c_{i, j}\left(U_{j}+K_{j}\right)=\left(U_{i}+K_{i}\right) c_{i, j}$. For $i \neq j$ Lemma 1 (a) shows $c_{i, j}=0$. Hence $C=\sum \bigoplus c_{i}$ and $c_{i}\left(U_{i}+K_{i}\right)=\left(U_{i}+K_{i}\right) c_{i}$ or $c_{i} \in \Re\left(U_{i}\right)^{\prime}=\mathfrak{\mathcal { H } _ { i } ^ { \prime } \text { . Thus }}$ $\mathfrak{R}(U)^{\prime}=\sum \oplus \mathfrak{\Re}_{i}^{\prime}$ and $\mathfrak{R}(U)=\mathfrak{\Re}$. Similarly one shows $\mathfrak{R}(V)=\mathfrak{\Re}$.

Proposition 3. Let \mathfrak{A} be a properly infinite W^{*}-algebra on a separable Hilbert space. Then any element in $\mathfrak{A l}$ can be written as the sum of two generators of $\mathfrak{\Re}$.

Proof. a) Let $T=A+i B \in \mathfrak{\Re}$. Then there exist four equivalent orthogonal projections $F_{i} \in \mathfrak{N}$, with $1 \leqq i \leqq 4$, such that $F_{i} A=A F_{i}$ and $\sum F_{i}=1$ [4, th. 3]. The $\left\{F_{i}\right\}_{i=1}^{4}$ induce a tensor decomposition of $\mathfrak{A}, \mathfrak{N}=$ $\mathfrak{B} \otimes M_{4}$ and $A=\operatorname{diag}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$. Let $K=3|T|$ and let $A^{\prime}=\operatorname{diag}(0$, $K, 2 K, 3 K)$. Since $\mathfrak{\imath}$ is properly infinite, it is generated by the positive invertible operators c and d with $c, d \geqq K \cdot 1 . \quad B$ is represented by the matrix $B=\left(b_{i, j}\right)_{i, j=1}^{4}$, then let B^{\prime} be given by the matrix

$$
B^{\prime}=\left[\begin{array}{cccc}
c-b_{1,1} & d-b_{1,2} & 0 & 0 \\
d-b_{1,2}^{*} & c & d & 0 \\
0 & d & 0 & K \\
0 & 0 & K & 0
\end{array}\right]
$$

Now write $T=T_{1}+T_{2}=\left[\left(A+A^{\prime}\right)+i\left(B+B^{\prime}\right)\right]-\left[A^{\prime}+i B^{\prime}\right]$.
b) Let $C=C^{*} \in \Re\left(T_{1}\right)^{\prime}$, then $C\left(A+A^{\prime}\right)=\left(A+A^{\prime}\right) C$ and Lemma 1 (a) imply that C is diagonal, $C=\operatorname{diag}\left(c_{1}, c_{2}, c_{3}, c_{4}\right)$. Then

$$
C\left(B^{\prime}+B\right)=\left(B^{\prime}+B\right) C
$$

gives $c_{1} c=c c_{1}$ and $c_{1} d=d c_{2}$. By Lemma 1 (b) this shows $c_{1}=c_{2} \in \mathfrak{B}^{\prime}$, because $\mathfrak{R}(c, d)=\mathfrak{B}$. $C T_{1}=T_{1} C$ gives further $\left(d+b_{2,3}\right) c_{3}=c_{2}\left(d+b_{2,3}\right)=$ $\left(d+b_{2,3}\right) c_{2}$ or $c_{2}=c_{3}$, because $d+b_{2,3}$ is invertible. The relation

$$
\left(K+b_{3,4}\right) c_{4}=c_{3}\left(K+b_{3,4}\right)=\left(K+b_{3,4}\right) c_{3}
$$

finally gives $c_{3}=c_{4}$ by the same argument. Thus $C=c_{1} \otimes 1$ with $c_{1} \in \mathfrak{B}^{\prime}$ or $\mathfrak{R}\left(T_{1}\right)=\mathfrak{N}$.
c) $\Re\left(T_{2}\right)=\mathfrak{Z}$ is shown as in (b).

To show this result also for finite W^{*}-algebras of type I, we need some preparations.

Lemma 8. Let $\mathfrak{\Re}$ be an abelian W^{*}-algebra then any $T \in \mathfrak{A}$ is the sum of two generators of $\mathfrak{\Re}$.

Proof. Let $T=A+i B$ and let C be a selfadjoint generator of \mathfrak{N}. Then $T=[C+i(B-C)]+[(A-C)+i C]$ is the desired decomposition.

Now let \mathfrak{A} be a W^{*}-algebra of type I_{n}, then \mathfrak{A} can be represented as $\mathfrak{A}=3 \otimes M_{n}$, where 3 is the center of \mathfrak{N}. Let $T \in \mathfrak{N}$, then we may assume that T has upper triangular form [3], $T=\left(t_{i, j}\right)_{2, j=1}^{n}$ and $t_{i, j}=0$ for $j<i$. The diagonal part of such a T we denote by $\operatorname{diag} T$, $\operatorname{diag} T=$ $\operatorname{diag}\left(t_{1,1}, \ldots, t_{n, n}\right)$. Let \mathfrak{B} be the maximal abelian subalgebra of \mathfrak{N}, which consists of all diagonal operators. Of course \mathfrak{B} depends on the given matrix representation of \mathfrak{Q}. In the next lemma we exhibit a large class of generators of \mathfrak{Y}.

Lemma 9. Let $\mathfrak{A}, \mathfrak{B}$ and T as above, then $\mathfrak{R}(T)=\mathfrak{\Re} \quad$ if
i) $\mathfrak{R}(\operatorname{diag} T)=\mathfrak{B}$
ii) $t_{i, i+1}$ is invertible for all $1 \leqq i \leqq n-1$.

Proof. We may represent \mathfrak{V} on a suitable Hilbert space H such that \mathfrak{B} is a maximal abelian subalgebra of $B(H)$. Let $C=C^{*} \in \mathfrak{R}(T)^{\prime}$ and $C=\left(c_{i, j}\right)_{i, j=1}^{n}$. Computing the ($n, 1$) matrix element of $C T=T C$ one finds $c_{n, 1} t_{1,1}=t_{n, n} c_{n, 1}$. Let C^{\prime} be the operator, which one obtains from C by setting all matrix elements except the one in the $(n, 1)$ position equal to zero. Then $C^{\prime} \operatorname{diag} T=\operatorname{diag} T C^{\prime}$ and by the Fuglede theorem [6] $C^{\prime} \in \mathfrak{R}(\operatorname{diag} T)^{\prime}=\mathfrak{B}^{\prime}=\mathfrak{B}$. Hence $C^{\prime}=c_{n, 1}=c_{1, n}=0$. With the same method applied to $(C T)_{n, i}=(T C)_{n, i}$ one shows by induction $c_{n, i}=c_{i, n}=0$ for all $i<n$ and $c_{n, n} \in 3$. Further induction finally yields $C=c \otimes 1 \in \mathfrak{Z}^{\prime}$. Thus $\mathfrak{R}(T)^{\prime}=\mathfrak{Y}^{\prime}$ or $\mathfrak{R}(T)=\mathfrak{Y}$.

Lemma 9 can be extended to finite W^{*}-algebras of type I. To do this let $\mathfrak{M}=\sum \oplus \mathfrak{A}_{n}$, with $\mathfrak{N}_{n}=\mathcal{B}_{n} \otimes M_{n}$, be a finite W^{*}-algebra of type
I. Let $T=\sum \oplus T_{n} \in \mathfrak{2}$. Then we may assume that each $T_{n}=\left(t_{i, j}^{(n)}\right)$ is upper triangular [3]. With respect to this representation let again \mathfrak{B}_{n} denote the diagonal part of \mathfrak{A}_{n} and let $\mathfrak{B}=\sum \bigoplus \mathfrak{B}_{n}$.

Lemma 10. Let $\mathfrak{A}, \mathfrak{B}$ and T as above, then $\mathfrak{R}(T)=\mathfrak{M} \quad$ if
i) $\mathfrak{R}\left(\sum \oplus \operatorname{diag} T_{n}\right)=\mathfrak{B} \quad$ and
ii) $t_{i, i+1}^{(n)}$ is invertible for all $1 \leqq i<n-1$ and for all n.

Proof. Again we may find a representation of \mathfrak{A} on a suitable Hilbert space H such that \mathfrak{B} is a maximal abelian subalgebra of $B(H)$. Let $C=C^{*}=\left(C_{l, k}\right) \in \mathfrak{R}(T)^{\prime}$. Then $T_{k} C_{k, l}=C_{k, 1} T_{l}$ and because of Lemma 9 it suffices to show that this implies $C_{k, l}=0$ for $k \neq l$. To do this write T_{k}, T_{l} and $C_{k, l}$ as matrices and use the same methods as in Lemma 9.

Theorem 3. Let \mathfrak{A} be a W^{*}-algebra on a separable Hilbert space with no summand of type $I I_{1}$ then any $T \in \mathfrak{\mathfrak { l }}$ can be written as the sum of two generators of $\mathfrak{2}$.

Proof. a) Let $\mathfrak{M}=\sum \oplus \mathfrak{A}_{n}$ be a finite W^{*}-algebra of type I and let $T=\sum \oplus T_{n} \in \mathfrak{N}$. Write each T_{n} in upper triangular from [3] and determine the corresponding \mathfrak{B}_{n} and \mathfrak{B}. Now it is easy to see that T can be written as the sum of two operators in \mathfrak{A}, each of which satisfies the conditions (i) and (ii) of Lemma 10.
b) Now the theorem follows from Lemma 7, Proposition 3 and (a).

Theorem 3 holds also for certain W^{*}-algebras of type II_{1}.
Theorem 4. Let \mathfrak{A} be a W^{*}-algebra of type $I I_{1}$ and let $\mathfrak{A} \in \mathscr{A}$, then any $T \in \mathfrak{彐}$ can be written as the sum of two generators of \mathfrak{A}.

Proof. The proof of Proposition 3 will also show this result.

References

[1] H. Behncke, Generators of W^{*}-algebras, Tôhoku Math. Journ., 22 (1971) 541-546.
[2] J. Dixmier, Les algebres d'opérateurs dans l'espace Hilbertien, Gauthier-Villars, Paris 1969.
[3] D. Deckard and C. Pearcy, On Matrices over the Ring of Continuous Complex Valued Functions on a Stonian Space, Proc. AMS 14 (1963) 322-328.
[4] P. Fillmore, On Products of Symmetries, Can. J. of Math. 18 (1966) 897-900.
[5] P. Fillmore and D. Topping, Sums of Irreducible Operators, Proc. AMS 20 (1969) p. 131-133.
[6] B. Fuglede, A Commutativity Theorem for Normal Operators, Proc. Nat. Acad. Sci. 36 (1950) 35-40.
[7] P. R. Halmos, Irreducible Operators, Mich. Math. J. 15 (1968) 215-223.
[8] H. Radjavi, Every Operator is the Sum of Two Irreducible Ones, Proc. AMS 21 (1969) 251-252.

GENERATORS OF W^{*}-ALGEBRAS II 381

[9] H. Radjavi and P. Rosenthal, The Set of Irreducible Operators in Dense, Proc. AMS 21 (1969) 256.
[10] M. Rosenblum, On the Operator Equation $B X-X A=Q$, Duke Math. J. 23 (1956) 263269.

Institut Für Angewandte Mathematik
Universität Heidelberg
Heidelberg, Deutschland.

[^0]: * Supported partially by a Ford Foundation grant to Tulane Univ.

