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This paper is a sequel to the preceding one with the same title pub-
lished in this Journal (Note I, Vol 24, pp. 127). The contents of the
first note are assumed to be known. References are in alphabetical order
in each paper; they as well as the sections are numbered consecutively
throughout this series.

5. The concept of saturation. In this paper the program of embed-
ding results on particular classical orthogonal series in the general frame-
work of orthogonal projections in an arbitrary Banach space is continued
by studying saturation problems. As in Note I this is achieved by a
discussion of certain multiplier conditions.

The concept of saturation, first introduced by Favard for summation
methods of trigonometric series in a lecture in 1947 (cf. [28]), may be
formulated as follows (see e.g. [5;,p. 434]):

Let X, [X], and {T(ρ)} be defined as in Sec. 1 (|| || without any in-
dex denoting X-norm) The strong appoximation process {T(p)}p>oa [X]
is said to possess the saturation property if there exists a positive func-
tion <P(p), p> 0, tending monotonely to zero as p—> °° such that every
/ e X for which

\\T(P)f-f\\ = o(

is an invariant element of {T{p)}, i.e., T(p)f = f for all p > 0, and if
the set

F[X; T(p)] = {feX; \\ T(p)f-f\\ = O(φ(p)) , p-*-}

contains at least one noninvariant element. In this event, the approxi-
mation process {T(p)} is said to have optimal approximation order O(φ(p))

1} This author was supported by a DFG fellowship.
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or to be saturated in X with order 0(<p{p)),.a.nd F[X: T(p)] is called
its Favard or saturation class.

Today there exists a vast literature concerned with saturation for
various types of approximation processes. To mention general approaches
in regard to solution, there exists an integral transform method in diverse
Lebesgue spaces as well as the semi-group method on arbitrary Banach
spaces in its extended form (for detailed bibliographical comments one
may consult [5], [22], [26]).

In this note we are interested in studying saturation within the
frame of Note I. This was again originally envisaged by Favard [29] to
whom Theorem 6.1 is essentially due. However, the main results of this
paper were mostly inspired by the important work of Sunouchi [20, 31].
In connection with various methods of summation of trigonometric series,
it was Sunouchi who stressed the importance of uniform multiplier con-
ditions, in particular using 6v2-spaces. Here we follow up these lines
and treat summation processes of Fourier expansions in arbitrary Banach
spaces with (C, j)-decompositions, using δ^-spaces.

For this purpose, the basic conditions (6.1) and (6.4), the standard
ones in the concrete case of the trigonometric system, are formulated in
Sec. 6: they guarantee the saturation property and allow characterizations
of Favard classes in terms of relative completions as well as of conditions
which reduce to classical representation theorems in case of the trigo-
nometric system. In Sec. 7 multiplier classes are considered under the
assumption that the (C, j) — means (7.1) are uniformly bounded (cf.(7.2)).
These results generalize those of Sec. 3 (case j = 0,1). Finally, the
general theory presented will allow one to derive in Sec. 8 saturation
theorems for summation processes of various kinds of orthogonal expansions
such as those into spherical harmonics, ultraspherical polynomials and
Hermite functions.

6. A saturation theorem. As in Note I we tacitly suppose that
{PJA6pC [X] is a total sequence of mutually orthogonal (continuous) pro-
jections on X. However, in this note we additionally assume that the
linear span of (J~=o Pu{X) is dense in X, i.e. {Pk} is supposed to be fun-
damental.

For an approximation process {T(p)} we set

T= {keP; τk{p) = 1 for all p > 0} ,

and always assume that T' Φ P. Then the following condition ensures
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that {T(p)} will have the saturation property:

(6.1) Given a (uniformly bounded) strong approximation process {T(p)}
of multiplier operators with associated multiplier sequences {τ(p)}f

let there exist a sequence ψe s with ψk Φ 0 whenever k ί T and a
positive function φ(p) on (0, oo) tending monotonely to zero as p—*°o
such that

(p)-l] = ψk (keP).

Condition (6.1) is a standard one in the study of saturation for summation
processes of trigonometric series (cf. [5; p. 435]). In fact, it was already
introduced by Favard [29] in connection with fundamental, total biortho-
gonal systems (cf. Remark in Sec. 2) in arbitrary Banach spaces. As a
consequence, the following result is substantially contained in [29].

THEOREM 6.1. Let feX and {T(ρ)} satisfy (6.1).
a) // there exists g e X such that

\im\\φ-i{p)[T(p)f - f] - g\\ = 0 ,
p-+co

the Fourier expansion of g is given by g ~ ΣΓ=o ψkPkf
b) || T(p)f -f\\ = o (φ(p)) implies fe \JmeT Pm(X) and T(p)f = f for

all p > 0, thus f is an invariant element.
c) There exists some noninvariant hsX with \\ T(p)h~h\\ = O(φ{p))

PROOF, a) Since Pk e [X] and

Pk{ψ~\p)[T{p)f - f]) - φ~\p)[τk{p) ~ 1]PJ,

one has for each ke P

II irkPkf - Pkg || - lim || φ~\p)[τk{p) - 1]PJ - Pkg \\

< lim || Pk | | m || φ-WlΆp)/ - f] - g || = 0 ,
p

which proves the assertion.
b) Choosing g = 0 in part a) one has ψkPkf = 0 for all keP. In

case k £ T it follows that Pkf = 0, whereas for k e T the normalization
τk(p) - 1 for all p > 0 gives PkT(p)f = PJ. Thus PkT{p)f = PJ for all
keP, and since {Pk} is total the assertion follows.

c) Since for any hePk(X)

\\T(p)h-h\\ = | r ^ ) - l | | | λ | | ,

h Φ 0 is noninvariant if k£T, and the assertion follows by (6.1).

Condition (6.1) and Theorem 6.1 suggest the introduction, for any
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ψ e s, of the following subspaces of X:

(6.2) X* = {fe X; there exists f+eX such that

fkPJ = PJ+ for all keP} .

Obviously, if B* is the operator with domain I ^ c l and range in X
defined by B+f = / * , fe X*, then B* is a closed linear operator for each
ψes, Pk(X) c X* for each k e P so that JB^ is densely defined, and X*
is a normalizedυ subspace under | / | * = | | / * | | Moreover, (6.1) implies
the Voronovskaja-type relation

(6.3) s-lim φ~\p) [T(p)f - f] - B+f (fe Pk(X), k e P)

on each subset Pk{X).

Having established the saturation property for {T(ρ)} in case (6.1)
holds, the next problem is to derive equivalent characterizations of the
Favard class F[X; T(ρ)]. To this end, the following condition is posed; it
in fact strengthens (6.1) and admits an extension of (6.3) to the whole
space X*:

(6.4) Let {T{ρ)} satisfy (6.1) with ψ e s, φ(p), and let there exist a (uniform)
multiplier family {η{p)} c M(X; {Pk}) associated with (the strong ap-
proximation process) {E(ρ)} such that the representation

<P~\p) 1**{P) ~ 1] = tkVkip)

holds for every keP, p > 0.

Condition (6.4) is again standard, at least in connection with trigo-
nometric series (compare [5; Sec. 12.6] for detailed comments). Obviously
by (6.4)

(6.5) φ-\p)[T(p)f-f] = B+E{p)f (feX,p>0)

for all feX, implying E(ρ){X)aX* for each p > 0. Since furthermore
for any ψes and multiplier operator T, in fact, since

B*Tf = TB*f for all fe X* ,

one may continue formula (6.5) with B*E{ρ)f= E(ρ)B+f in case f
so that (6.3) holds for all fe X^. However, Voronovskaja-type relations
with a densely defined closed linear operator B are one of the main points

1} A linear manifold YczX is called a normalized subspace of X if there is a semi-norm
I \γ on Y such that Y is a Banach space under II llr — II II + I Ir Two semi-norms
I |i, I I2 on Y are said to be equivalent: H 1 Ή Ί 2 , if there exist constants ci, a > 0 such
that c i l/ l i < | / | 2 < c 2 | / | i for every / € Y.
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of the saturation theorem of Berens [22; p. 28] which characterizes Favard
classes in terms of relative completions. Thereby the completion of a
normalized subspace Y of X relative to X, denoted by Ϋx, is the set of
those elements / e l for which there is a sequence {fn} c Y and a con-
stant C > 0 such that \fn \γ < C for all n and l i m ^ | |/Λ - / | | = O With
any feΫx one may associate the semi-norm

r ; ( A ) c 7 , lim | |Λ

Recalling that T(ρ)(X+) c X* and E(ρ)(X) c X+, all the assumptions of
the above mentioned theorem in the form [22, Bemerkung 3.4] (cf. [5;
p. 502]) are satisfied, so that one has

THEOREM 6.2. If {T(p)} satisfies (6.4), the following semi-norms are
equivalent^ on (X*)~x:

\f\f~~SUV\\φ-\p)[T(p)f-f]\\.
p>o

If X is reflexive, \f\ψ is a further equivalent semi-norm.
Thus, fe {X*yx if and only if \\ T(ρ)f-f\\ = O(φ(p)), whereas fe X*

if and only if s-lim^oo (P~1(p)[T(p)f — f] exists.

Let us conclude with the following additional characterization of the
Favard class.

THEOREM 6.3. Let ψes and {G(ρ)} be a (uniformly bounded) strong
approximation process of multiplier operators such that G(p)(X) c
for each p > 0. The following semi-norms are equivalent on

\f\+~~svp\\B+G{p)f\\>
>0

PROOF. First assume that | / | ^ ~ < °o. Then, by definition, there
exists a sequence { / J c P such that \fn\ψ < C uniformly for all n and
lim^oo || Λ ~f\\ = 0. Since B*G(p) e [X] by the closed graph theorem,
and since B*, G(p) commute for each p > 0, one has

\\B+G(p)f\\ = lim\\B+G(p)f%\\
n-*oo

= lim || G(p)B*fn || < sup || G{p) | | ι x l sup \f, \Ψ .

However, the left-hand side is independent of the particular choice
of the sequence {/„}, whereas the right-hand side is independent of p.
Therefore

P>0

λ) We use the notation \f\(XΨ)~x= ί/l<^~.
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proving one direction of the assertion. The converse one is easily seen
by examining the particular sequence {G(n)f} c X^.

REMARK. If G(p) is not a multiplier operator and B is not generated
by some ψes via (6.2), then Theorem 6.3 remains valid provided G(p)
and B commute.

COROLLARY 6.4. // {T(p)} satisfies (6.4), then the following semi-
norms are equivalent on

sup II φ~\p) [T(p)f - f] || ~ sup II B+E(p)f\\ .
P>0 p>0

Let us mention that \\B+G(ρ)f\\ = 0(1) immediately meets standard re-
presentation theorems in case of the trigonometric system (cf. [5; p. 233]).
For characterizations of the present type in case of semi-groups of oper-
ators one may consult [22; p. 43], [26; p. I l l ] (see also [30a]).

7. Some multiplier classes. For a wide range of applications, how-
ever, one needs sufficient conditions upon multiplier classes in connection
with additional structures of the space X and the system {Pk}. Here we
weaken conditions (3.2) and (3.6), i.e., || Snf\\< B \\f\\ and || σnf\\ < C | | / | | ,
respectively, to the uniform boundedness of the (C, i)-means.

To this end, let the (C, /3)-means be defined for β > 0 by

(7.1) (C, β)nf = {Γ ± J
ko \ n

thus (C, β)n coincides for β = 0 with the w-th partial sum operator Sn

and for β = 1 with the n-th Cesaro mean operator σn (of order 1). For
some fixed jeP assume that (C,j)n is uniformly bounded, i.e.,

(7.2) II (C,i)JΊI<C; 11/11 (feX)>

the constant Cy(>l) being independent of neP and feX. Analogous
to Sec. 3 the following classes are introduced (Λj+1ak = A(Δ5ak))

(7.3) δt>y+i= j α e i - ; | | α | L J + 1 = Σ I . \\Ji+ιak\ + \im\am\<<

Obviously, bv, = bv and bv2 = bqc(cΐ. (3.3), (3.7)).

REMARK, a e l°° and the convergence of the series in (7.3) imply the
existence of the limit lim™^ am = a^. Furthermore, it is known that
bvj+1 c bVj in the sense of continuous embedding (see e.g. relation (2.2)
and Lemma 2, (2) and (3) in [7]).

THEOREM 7.1. Let {Pk}a[X] be a total sequence of mutually orthogo-
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nal projections satisfying (7.2). Then every a e bvj+1 is a multiplier and

(7.4) II« HIT

PROOF. For each fe X set

| α | J + 1 .

fa = Σ [

Then f exists in X since by (7.2) and (7.3)

ll/αll < C, | |/1| Σ
Λ0

ocf.

Ί+ί

Thus it remains to show that fa ~ Σ <*Λ/ Observing that

(0 , k < n

• • • ( l - - r ^ ^ r ) P . / , k>n

(

[v ITT
one obtains

= (£
3

* +
fc +

) . . . ( i _ - . )
1/ V fc + j /

and one has to check that the latter sum is equal to an — a<».
(cf. [7])

However

and thus, after shifting,

00 ITΪI + 7*\

ίΎ — fY — V 1 Aj+ί/Ύ
m=0 \ J )

AJ

REMARK. Let us mention that bvj+1czM is characteristic for the
fundamental, total sequence {Pk} c [X] of orthogonal projections to be a
(C, ̂ -decomposition for X; compare the literature cited in Note I in con-
nection with the particular cases j = 0,1.

Let {Pk} satisfy (7.2) for some j e P and consider the sequences an e s,
neP, with ak = Sfc% (Kronecker's symbol). Then one has
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+ 1

for 0 < v < min (n, j + 1) ,

= 0 otherwise. Hence there are at most (j + 2) nonzero terms, bounded

" + iy2l) u n t f ° r m ly f° r ^ Therefore by Theorem 7.1

(7.5) H« | I , < C , U ( .

with some constant Dj independent of n. However, an e M is the multi-
plier corresponding to Pn, and since | |P»| |[χ]= || #*!!*> one has the fol-
lowing estimate concerning the growth of ||P»||[χ] for w—>oo:

(7.6) 11 P I lex] < Din3' (neP) ,

in case the system {Pk} satisfies (7.2). Therefore

COROLLARY 7.2. Let ψes and {G(p)} be a (uniformly bounded) strong
approximation process of multiplier operators with corresponding multi-
plier sequences {y(p)}. If {Pk} satisfies (7.2) for some j e P and

oo

(7.7) Σ k' I fk^k(p) I < °°

for each (fixed) p > 0, then G(p)(X) c X* for each ρ>0. The following
semi-norms are equivalent on

(7.8) 1/1*~ ~ sup Σ ψkΎk(p)Pkf\\ .
f>>0 \lk=o II

Indeed, the convergence of the series (7.7) ensures by (7.6) that for
anyfeX

B*G{p)f = Σ ψkΊk{p)Pkf (fe X:p>0),
fc=0

which completes the proof by Theorem 6.3.

As in Note I it will be very important concerning applications to
have convenient sufficient criteria for α e s to belong to bvj+ι, particularly
to establish uniform bounds for multiplier families such as those involved
in (6.4). For this purpose, we introduce the class BV3+1 [0, oo) consisting
of all bounded continuous functions / for which /, ,/ ( i~1 ) are locally ab-
solutely continuous on (0, oo) and fU) is locally of bounded variation on

x3' \dfU)(x) I < oo. Then (for the particular cases j =
0

0,1 compare Lemmas 3.3, 3.5 (p = 1)).

!) Here [β] denotes the largest integer <β.
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LEMMA 7.3. Let aes be such that there exists a function ae BVj+1

with ak = a(k). Then α e bvj+ι and

k=Q \ J
Σ ( . ) I Δ^ah I < D Γ xj I da«\x) | ,
kQ \ J I JO

the constant D > 0 being uniformly bounded in j (and independent of a).

P R O O F . O b v i o u s l y o n e h a s f o r a l l k e P

S k + l f*l + l Cxi+1

dxΛ dx2-.-\ daU)(xj+1) .

Since xs+ι > k and (k + J) < (3/2) x}+1 for j e P, fc = 2, 3, , one has

(7.11) ±(k+.
0 0 Ik + J \ fl fl f Jfe + l + aJi + + x,-

k=2 \ J J J° -° Jk+Xί+'-' + xj

To estimate | J i + Iαo| and (j + 1) | J i + 1 α 1 | , one may show by induction and
by interchange of integration as in the proof of Lemma 3.5 that for fixed
u > 0, jeP

\\ dxΛ dx •• I
I Jw J%ι JXj

± A . (1 + it)-' Γ xj+11 da(ί) (xj+ι) \ .
=1 & ! J«+l

Setting % = 0 + and « = 1 one obtains

(7.12) Σ ( ) 1 * I π
fc=o \ 3 j j ! Jo

+ (1 + (j + 1)2-0 Σ ^ Γ

so that the assertion (7.9) follows by (7.11), (7.12). (Probably the exact
constant D in (7.9) is 1/j I)

Now let us turn to families {τ(p)}as. Here we suppose that there
is a corresponding family of functions {tp} c BVj+1 with τk(p) = ^(fe).
Then, by Lemma 7.3, for {τ(ρ)} to belong to bvj+ι uniformly it is sufficient
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ficJ" I cZί̂ '̂ a?) I are uniformly bounded for p > 0. Let
0

us state this condition in the case that {τ(p)} is a family of Fejer's
type (cf. Sec. 3).

COROLLARY 7.4. Let {τ(p)}p>0as be a family of sequences for which
there exists a function t(x) e BVj+1 [0, °o) such that τk(p) = t(k/p) for all
keP, p > 0, and let {Pk} c [X] be a total orthogonal sequence of projec-
tions satisfying (7.2). Then {τ(p)} is a family of uniformly bounded
multipliers.

Let us consider some examples of multiplier families {τ(p)} generating
(uniformly bounded) strong approximation processes on an arbitrary Banach
space X. In any case we assume the system {Pk} to satisfy (7.2) for
some j e P.

First we pick up the Abel-Cartwright means (4.2). With wκ(x) =
exp(—xκ), K > 0, x > 0 one easily checks

wιj+1) (x) = Σ CmtKxmκ~i-ιe-*κ ,

and therefore wκ e BVj+1 for each j e P. Thus, by Corollary 7.4, {wκ(k/(n +1))}
is a uniformly bounded multiplier family. Furthermore,

lim wκ(k/(n + 1)) = 1 ,

and hence one has convergence on the linear span of \Jΐ=0Pk(X). Since
the latter is assumed to be dense in X, the Banach-Steinhaus theorem
yields that {Wκ(n)} is a strong approximation process on X in case
{Pk} c [X] is a fundamental, total, orthogonal system satisfying (7.2).

By straightforward computation one may show that the multiplier
family corresponding to the typical means (4.1) do not belong to bvj+1,
j > 2, uniformly in n> so that these means cannot be treated in the above
way.

However, their generalization, namely the Riesz means

(7.13) R*,β(n)f = Σ rKtβ(k/(n + 1))PJ ,
kQ
k=0

ί(i - x*y, o < x < l
r''β ~ (o , χ > i ,

defines a strong summation method for K > 0, /S > j , the reasoning being
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the same as for the Abel-Cartwright means.

Next we consider a modification of the Abel-Cartwright means of
order K = 2 which will reduce (cf. Sec. 8.4) to the classical Gauss-
Weierstrass integral in case of an expansion into spherical harmonics,
namely

(7.14) W2tζ{n)f = Σ e-*^+«/( + 1 ) 2 P A / (ζ > 0) ,
λ0Σ
λ;=0

equality being justified by (7.6). Observe that the convergence factors
in (7.14) may be written as exp (—Jc2/{n + I)2) exp ( — ζk/(n + I)2). Since
each of these factors generates a uniformly bounded multiplier family,
this holds also for their product, thus {W2)ζ(n)} forms a strong approxi-
mation process.

Finally let us examine the (C, /3)-means (7.1). By straightforward
computation one has {A£_fc/A£}£=0 e bvj+1 uniformly in n for β > j; since
lim^«, Aβ

n_JAβ

n = 1, {(C, β)n} is a summation method for β ^ j.

As a first application of the above results let us give a modest sim-
plification of Theorem 6.2 which, in particular, implies the standard
saturation theorems in the trigonometric series case.

THEOREM 7.5. Let {Pk} c [X] be a total, fundamental, mutually
orthogonal system of projections satisfying (7.2) for some j e P.

a) If {T(ρ)} satisfies (6.1) and

II Ψ~\P) [Άp)f - / ] | | - 0(1) (p -co) ,

then for some β ^ j

(7.15) | | Σ ( I - ^

b) //, furthermore, {T(p)} satisfies (6.4), then the converse is also

true.

PROOF, a) By (6.1) we obtain for β > j (cf. (7.13))

Ψ\P)

< sup || Ruβ(n) Hex] sup || 9'-1(/o)) [ Ϊ W - /]
n |Q>o

b) This follows by Theorem 6.2 and (7.8).
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8. Applications.

8.1. Abel-Cartwright, Riesz, and (C, /3)-means. Let X be a Banach
space and {Pk} be a sequence of projections as specified in Sec. 2 and 6
satisfying (7.2) for some jeP. First let us determine the saturation
behaviour of the Abel-Cartwright means (4.2) and examine condition (6.4).
Choosing φ(n) = (n + l)~~κ, ψk = — kκ, it is clear that

limηk(ri) = 1, ηk{n) = e(k/(n + 1)), e(x) = -x~κ [exp(-af) - 1] .
Π-KX3

Thus, by the Banach-Steinhaus theorem and Corollary 7.4, it suffices to
verify e(x) e BV3+1. By induction one has

) = DK)d+ί [χ-*-j-ι(e-*κ - 1) + χ-^e~χK\

and thus eeBVj+1[0, oo) for any jeP. Now Theorems 6.1-6.3, 7.5 yield

THEOREM 8.1. Le£ X be a Banach space, {Pk}ΐ=0 c [X] be a funda-
mental, total sequence of mutually orthogonal projections satisfying (7.2)
for some j e P. Then, for each K > 0, £Λe Abel-Cartwright means (4.2)
λcwe £Λe following properties'.

a) || TΓ.(Λ)/ - / 1 | - o(n-) (n —oo)

implies fe PQ(X) and Wκ{n)f = f for all neP.
b) With ψ = { — kκ}^0 the following semi-norms are equivalent on

ϋ)

iii) /or β > j .

Hence, in particular, feF[X; Wκ(ri)] if and only if for β

= 0(1)

Obviously, one may replace the discrete parameter (n + 1) by the con-
tinuous p. Moreover, by setting t = p~ιlκ, the resulting family of oper-
ators forms a (C0)-semi-group in t for each fixed K > 0, so that Theorem
8.1 may also be derived from a theory concerning general semi-groups
for which one may consult [22], [26].

Analogously one may proceed for the Riesz means. The correspond-



SUMMATION PROCESSES OF FOURIER EXPANSIONS 563

ing quotient of (6.4) is again of Fejer's type with (ψk = — βk\φ{n) =
(n + 1)~*) the associated function

,\ [βx-* [(1 - xκY - 1] , 0
e(x) = \

By induction one may again deduce e{j+ί)(x) = O(x~κ~3'~ι) for x > 1 and

e(i+1)(α0 - Z) C f M + ι {or*-'-1 [(1 - a*)' - 1] + βx~'-\l - xκY~1}

+ Σ Dκ,β>mxmκ-j-\l - xκY~m-1

m = l

for 0 < x < 1. This formula only holds for β > i . However, for β = j
an analogous one is valid. Furthermore, if j = β then eU)(x) has a finite
jump at x = 1. In any event, eel?Vy+1 [0, oo), and {)?(?&)} is a uniformly
bounded multiplier family by Corollary 7.4.

THEOREM 8.2. Under the hypotheses of Theorem 8.1 the Riesz means
(7.13) have the following properties for K > 0, β ^ j :

a) 11 R.,β(n)f - /11 = o ( ^ ) (n

implies fePQ(X) and RKjβ(n)f = / /or αW ne P.

b)

is α further equivalent semi-norm on (XΫ)~X with ψ as in Theorem 8.1.

Recalling the results of Sec. 2-4 one may suppose that it would be easier
to prove the equivalence of the two processes {ΫF̂ w)} and {RKfβ(ri)}, for
in this case one would only have to determine the Favard class of one
of these processes. Indeed, this will be possible (and would be more
elegant from a theoretical point of view), but though elementary and
straightforward, checking condition (2.8) will probably be very tedious
for general jeP since the structure of the multipliers involved in (2.8)
is more complicated than that of the multipliers in (6.4). The same
remark also holds for the next two examples.

The modified Abel-Cartwright means of order 2 may be treated in
the same way as above by verifying (6.4) (using Lemma 7.3 for each n
separately since the quotient is not of Fejer's type). Hence

THEOREM 8.3. Let ζ > 0. Under the hypotheses of Theorem 8.1 the
following assertions are valid:

a) ||T
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implies feP0(X) and W2,ζ(n)f = / for all neP.

b) sup | |n 2 [W 2 ,s(n)/-/] | | , sup Σ n+V

β > j , are equivalent semi-norms on {X*)~x, where ψ = {—k(k + ζ)}Γ=0

c) The Favard classes of {W2,ζ(n)} and {W2(n)} coincide for each ζ > 0.

Obviously, in view of the preceding arguments it only remains to
prove c). Now, a, or1 e s defined by

(0 , k = 0 - i f 0 , k = 0
ak ~ \k(k + Q\k\ keN ' *" \k2/k(k + Q , keN,

respectively, both belong to bvj+1 for each ζ > 0 and j e P, so that c)
follows.

Finally let us consider the (C, /3)-means, β > j .

THEOREM 8.4. Under the hypotheses of Theorem 8.1 one has for

β ^ j :

a) II (C, β)J -f\\ = o(n~ι) (n —oo)

implies feP0(X) and (C, β)J = / for all neP.

b) The following assertions are equivalent (7 > j):

i) \\n[(C,β)nf-f]\\ =

ϋ) = 0(1)
n +

Indeed, since (cf. [27; p. 388], [23; p. 248])

lim n[ALk/Aί - 1] - - βk (keP),
n—*oo

condition (6.1) is satisfied so that a) is given by Theorem 6.1 and b),
i) => ii), by Theorem 7.5a). In order to prove b), ii) => i), one may verify
the uniform multiplier condition (6.4), but this would be quite hideous.
To avoid this, one may proceed via some functional equations just as in
[23; p. 248] (up to notation), so that the proof may be omitted.

Let us mention that in the particular instance β = j = yeN Theorem
8.4 coincides with results of Favard [29] (in a Banach space with a bior-
thogonal system).

8.2 Trigonometric system. Let X2π = Lξπt 1 ^ p < 00, or C2π be as
in Sec. 4.2 (however, note that p = 00 is excluded) and {Pk} be given by
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(4.3). Then, by the choice of X2π> this sequence of projections is also
fundamental, and their (C, l)w-means are uniformly bounded in n by
Fejer's theorem. In this particular case, Theorem 7.5 a) is due to
Harsiladse [30] and Sunouchi-Watari [32] who then continued with the
fact that by standard representation theorems (cf. [5; p. 234]) condition

(8.1) sup Σ (l - J ^ r ) X(k)fA(k)e <oo (1 < p < oo)

n +

is equivalent to the existence of a function g such that for
i ) p = 1: g is of bounded variation with χ(k)fA(k) = [dg\A(k), keZ

([dg]A(k) are the Fourier-Stieltjes coefficients of g),
ii) 1 < p < oo: g belongs to Lv

2z with χ(k)fA(k) = 0Λ(&), ί e Z .

However, note that (8.1) only corresponds to (7.15) for even χ, i.e.

keZ.

Since all hypotheses on X2π and {Pk} of Sec. 7 are satisfied, one may
formulate Theorems 8.1-8.4 for this particular choice of the Banach space
X and the system {Pk}. As a representative example we have

COROLLARY 8.5. Let X2π and {Pk} be given as above. Then one has
for κ>0, β>l

a) II Rκ,β(n)f - f || = o(n~κ) (n — oo)

implies that f is a constant.

if and only if

Σ ( l - -L^V) I fc |*/Λ(Λ)e'* - 0(1) (n -"*>) .

8.3. Ultraspherical polynomials. Let us recall the definition (4.6) of
the ultraspherical polynomials Ck(x) of order 0 < λ < oo with the corre-
sponding system (4.7) of projections Pk as defined on Xλ>p, 1 < p < oo
(cf. (4.8)). Using the result of Askey-Hirschman [2] that ||(C, β)nf\\P <
Ĉ  || / ||p for (2λ + l)/(λ + 1 + β)< p < (2λ + l)/(λ - β), if 0 < β < λ,
and for all 1 < p < oo if /3 > λ, all hypotheses of Sec. 7 are satisfied.
Thus Theorems 8.1-8.4 may be reformulated for this particular case
where one has to pay attention to the relation between λ, β, and p.

For λ = 1/2 the ultraspherical polynomials coincide with the Legendre
polynomials, thus the corresponding Abel-Cartwright means of order 1 with
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the solution of Dirichlet's problem for a sphere in the axially symmetrical
case. Theorem 8.1 then contains results as given in [24].

8.4. Surface spherical harmonics. Let RN be the jV-dimensional
Euclidean space with elements v = (vl9 •••, vN), inner product

N

V'V* = Σ vkvk and | v |2 = v υ .

Let SN be the surface of the unit sphere in RN with elements y, z,
content ΩN = 2πNI2/Γ(N/2) and surface element ds. Now X denotes one of
the spaces LP(SN), 1 < p < <χ>, or C(SN) with the usual norms

I f(y) \> ds(y)YlP(l < p
)

I f ( ) \ ( y ( ) || || = max
SN ) yeSN

respectively. If Yh{v) is a homogeneous polynomial of degree k in N
dimensions which satisfies

A Yk(v) = 0 , J = Σ (S/dvk)
2 (v e R») ,

Λ = l

then the restriction of F* to S^, denoted by Yk9 too, is called a spherical
harmonic of order k. Now it is known that every spherical harmonic of
degree k and dimension N satisfies

ΔYk{y) = - k(k + N - 2) Γ,(?/) , J/(v) = 11; \2Λf(v/\ v |);

for each & there exist

linearly independent surface spherical harmonics of degree k; the set

{Yί(y); l<r<H(k,N),keP]

is fundamental and may be assumed to be orthonormal in X. Then with
each fe'X one may associate its Fourier series expansion (2.1) into spherical
harmonics (Laplace series) with the system {Pk} of projections defined by
(cf. (4.6), 2X = N- 2).

PJ(V) = l ί Ύ ( f(z) Yί(z)ds(z)) Yζ(y)
r=l V J ^ /

\ajfCi(y z)f(z)d8(z) = Yk(f; y) .

{Pk} satisfies all assumptions required in Sec. 6-7, in particular (7.2) for
j > (N — 2)/2 (for these properties compare [23] and the literature cited
there). Note that dim Pk(X) = H(k, N), i.e., the dimension of Pk(X)
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increases with k (the dimension was 1 in all the other examples treated
by us apart from the trigonometric system where dim Pk{X) = 2 for
k > 0; cf. (4.3)).

Now Theorems 8.1-8.4 may be stated. The result on the Abel-
Cartwright means then reproduces that of [23; p. 246, p. 253], whereas
our result on the Riesz means is not contained in [23]; the result on the
(C, /3)-means is (naturally) identical with [23; p. 248], whereas that on
{W2,ζ(ri)} may be found in [23; p. 229]. Observe that not the Abel-
Cartwright means of order 2 but their modification

W2,N-2(t)f(y) = ΩN1 I wt(y-z)f(z)ds(z)

with

^(cos θ) = Σ exp (-k(k + N- 2)t) k + N ~ 2 Cξ~* (cos θ)

is called the singular integral of Gauss-Weierstrass on X; it solves the
heat equation (d/dt)U{y, t) = ΔU{y, t) on the sphere with initial value
lim^0+ U(y, t) = f{y) for t > 0, y eSN, and / e l

Obviously, one can generalize the present means by choosing the
coefficients {exp(— [k(k + N — 2)]κl2t)}, K > 0, but the computations neces-
sary for an application of our theory seem to be quite hideous, not to
mention the verification of (2.8) by Lemma 7.3 if one wants to compare
it with the Abel-Cartwright means.

8.5. Hermite series. Choose X = Lp(—cof oo), 1 < p < oo, with

and consider the Hermite polynomials defined by (cf. [8; p. 193])

Hk(x) - (- l)kex\d/dx)ke-χ2 (keP) .

Setting

φk(x) = (2kkl VΈyil2e-χ2lΉk(x) ,

{φk} is an orthonormal family of functions on (— oo, oo). Thus the pro-
jections

= [\~_J(u)φk(u)du]φk(x)

are mutually orthogonal. As in the Laguerre series case, the partial
sums (C, 0)n are bounded (cf. [3]) provided 4/3 < p < 4; moreover, the
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(C, l)-means are bounded provided 1 < p < oo (cf. [15a]). Thus, for ex-
ample,

COROLLARY 8.6. Let feLp(-oof oo), l < p < oo, {pk} as above, and

Wκ{n) be given by (4.2).

a) \\W.(n)f-f\\ = o{n-) (n-+oo)

implies f(x) = Ae~χ2/2 for some constant A.

b) || Wκ(n)f - / 1 | = O(n~k) (n —oo)

if and only if (β = 1)

Σ *'(l - —
*=o V n

T T W l l •= 0(1) (n
+ 1/ II

For /c = 1 this result is contained in [25], where also the extension of
a) to p — 1 is given and the last condition in b) is characterized for
1 < p < oo.

Let us finally emphasize that the essential hypothesis for the applica-
tion of the general theory of Sec. 6-7 is the boundedness of the (C, /3)-
means for some β > 0. In this case one can treat a number of summation
processes in a unified way where other methods may fail. However, for
large β the calculations, though elementary and straightforward, may
become wearisome.
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