DOUBLE COMMUTANTS OF ISOMETRIES*

T. Rolf Turner

(Received April 25, 1972)

Abstract

Normal operators N satisfying $\mathfrak{A}_{N}=\mathfrak{A}_{N}^{\prime \prime}$ are characterized in terms of invariant subspaces. It is shown that non-unitary isometries V always satisfy $\mathfrak{A}_{V}=\mathfrak{A}_{V}^{\prime \prime}$. Thus, since a unitary operator is normal, a complete description of isometries satisfying a double commutant theorem is achieved.

1. Introduction. In the forthcoming all Hilbert spaces will be complex, and all operators bounded linear transformations. The symbol $B(\mathscr{H})$ will denote the algebra of all operators on the Hilbert space $\mathscr{H}, \mathfrak{N}_{A}$ the weakly closed algebra with identity generated by $A \in B(\mathscr{H})$, $\mathfrak{X}_{A}^{\prime}$ the commutant of A and $\mathfrak{U}_{a}^{\prime \prime}$ the double commutant of A. The reader is referred to [$2, \mathrm{p} .1$] for the definition of commutant and double commutant.

Definition 1.1. The class (dc) is the class of all operators on Hilbert space satisfying $\mathfrak{Y}_{A}=\mathfrak{U}_{A}^{\prime \prime}$.

This class has been studied previously in [9], [10], and [11]. In this paper we shall characterize the normal operators in the class ($d c$) and show that any non-unitary isometry belongs to (dc).

2. Normal operators.

Theorem 2.1. Let $N \in B(\mathscr{H})$ be a normal operator. Then $N \in(d c)$ if and only if every subspace of \mathscr{H} invariant under N reduces N.

Proof. (a) Suppose $N \in(d c)$. By the Fuglede-Putnam Theorem [7, p. 9] $N^{*} \in \mathfrak{Z}_{N}^{\prime \prime}$, so $N^{*} \in \mathfrak{A}_{N}$. Therefore each subspace invariant under N is invariant under N^{*}, i.e. reduces N.
(b) Suppose every subspace invariant under N reduces N. This says Lat $N \subseteq$ Lat N^{*}. Since N is normal, by Sarason's theorem [8, p. 511] N is reflexive. (See [8] for definitions.) Therefore Lat $N \cong$ Lat $N^{*} \Rightarrow N^{*} \in$ $\mathfrak{\vartheta}_{N}$. Thus \mathfrak{U}_{N} is a von Neuman algebra, so by the von Neuman Double Commutant Theorem, $\mathfrak{N}_{N}=\mathfrak{Y}_{N}^{\prime \prime}$.

[^0]3. Isometries. It will convenient to make use of the following rather specialized lemma.

Lemma 3.1. Let \mathscr{H} and \mathscr{K} be Hilbert spaces, $A \in B(\mathscr{H}), B \in B(\mathscr{K})$, and let $A \in(d c)$. Let $\mathscr{B}=\{X: \mathscr{H} \rightarrow \mathscr{K} \mid X$ is an operator and $B X=X A\}$. Suppose that either
(a)

$$
\bigcup_{x \in \mathscr{E}} \text { Range } X=\mathscr{K}
$$

or
(b) $\bigcup_{X \in \mathscr{R}}$ Range X is dense in \mathscr{K}, each element of \mathscr{W}_{A} is the limit of a sequence of polynomials in A, and there exists a constant M such that $\|p(B)\| \leqq M \cdot\|p(A)\|$ for any polynomial p.

Then $A \oplus B \in(d c)$.
Proof. Let D be in the double commutant of $A \oplus B$. Then $D=$ $E \oplus F$ where $E \in \mathfrak{Y}_{A}^{\prime \prime}=\mathfrak{N}_{A}$ and $F \in \mathfrak{Y}_{B}^{\prime \prime}$. For any $X \in \mathscr{X}$, the operator on $\mathscr{H} \oplus \mathscr{K}$ defined by the matrix

$$
\left[\begin{array}{ll}
0 & 0 \\
X & 0
\end{array}\right]
$$

is in the commutant of $A \oplus B$, whence it commutes with D. This says that $F X=X E$.

Now suppose that (a) holds and that $\left\{p_{\alpha}\right\}$ is a net of polynomials such that $p_{\alpha}(A) \rightarrow E$ in the weak operator topology. Let $k \in \mathscr{K}$; then there is an $X \in \mathscr{X}$ and $h \in \mathscr{H}$ such that $k=X h$. Therefore $p_{\alpha}(B) k=p_{\alpha}(B) X h=$ $X p_{\alpha}(A) h$ which converges weakly to $X E h=F X h=F k$. Thus $p_{\alpha}(B) \rightarrow F$ weakly, so $p_{\alpha}(A \oplus B) \rightarrow E \oplus F=D$ weakly.

Next suppose that (b) holds and that $\left\{p_{n}\right\}_{n=0}^{\infty}$ is a sequence of polynomials such that $p_{n}(A) \rightarrow E$ weakly. By similar arguments to the above we can show that $p_{n}(B) k \rightarrow F k$ weakly for k in $\bigcup_{x \in \mathscr{Z}}$ Range X, a dense set. The weak convergence of $p_{n}(A)$ implies that $\left\{\left\|p_{n}(A)\right\|\right\}_{n=0}^{\infty}$ is bounded. Since $\left\|p_{n}(B)\right\| \leqq M \cdot\left\|p_{n}(A)\right\|$ for all n, we therefore know that $\left\{\left\|p_{n}(B)\right\|\right\}_{n=0}^{\infty}$ is bounded too. Consequently $p_{n}(B) \rightarrow F$ weakly.

Remark 3.2. In what follows we actually only make use of part (b) of Lemma 3.1.

Theorem 3.3. Any non-unitary isometry on a Hilbert space is in (dc).
Proof. Let V be a non-unitary isometry and write V in its Wold decomposition (see [6, p. 3]) as $U \oplus W$, where U is the pure part and W is the unitary part of V. Since V is non-unitary the pure part U does not vanish. We may further decompose W as $W_{a} \oplus W_{s}$ where W_{a} is
the absolutely continuous part, and W_{s} is the singular part of W. (See [4, p. 55].)

Now U is a (possibly infinite) direct sum of copies of U_{1}, the unilateral shift of multiplicity 1. Since $\mathfrak{N}_{U_{1}}=\mathfrak{X}_{U_{1}}^{\prime \prime}$ and each element of $\mathfrak{N}_{U_{1}}$ is the limit of a sequence of polynomials in U_{1} ([5, prob. 117]) the same holds for \mathfrak{U}_{U}. In [3] it is shown on pp. 299-300 that $\bigcup_{W_{a} X=X U}$ Range X is dense in the domain of W_{a}. Furthermore, for any polynomial $p,\left\|p\left(W_{a}\right)\right\|=$ $r\left(p\left(W_{a}\right)\right) \leqq \sup _{|z|=1}|p(z)|=\left\|p\left(U_{1}\right)\right\|=\|p(U)\|$, where r denotes spectral radius. Thus part (b) of Lemma 3.1 applies to show that $U \oplus W_{a}$ is in (dc).

In [12, p. 275] Wermer shows that a unitary operator has a nonreducing invariant subspace if and only if it contains, as a direct summand, a copy of the bilateral shift of multiplicity 1 . Since W_{s} is singular, it can contain no such direct summand, whence all of its invariant subspaces are reducing. Therefore by Theorem $2.1 W_{s} \in(d c)$.

By the Corollary in [1], $\mathfrak{U}_{V}=\mathfrak{N}_{U \oplus U_{a}} \oplus \mathfrak{U}_{W_{s}}$. From this it clearly follows that $V \in(d c)$.

Bibliography

[1] J. A. Deddens, Every isometry in reflexive, Proc. Amer. Math. Soc. 28 (1971), 509-512.
[2] J. Dixmier, Les Algébres d'Opérateurs dans L'Espace Hilbertien, Gauthier-Villars, Paris, (1969).
[3] R. G. Douglas, On the hyperinvariant subspaces of an isometry, Math. Z. 107 (1968), 297-300.
[4] P. A. Fillmore, Notes on Operator Theory, Van Nostrand, New York (1970).
[5] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton (1967).
[6] B. Sz-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space, North Holland, New York, (1970).
[7] G. R. Putnam, Commutation Properties of Hilbert Space Operators and Related Topics, Springer-Verlag, New York, (1967).
[8] D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1966), 511-517.
[9] T. R. Turner, Double commutants of algebraic operators, to appear, Proc. Amer. Math. Soc.
[10] —— Double Commutants of Singly Generated Operator Algebras, thesis, Univ. of Michigan, 1971.
[11] -, Double commutants of weighted shifts, to appear.
[12] J. Werner, On invariant' subspaces of normal operators, Proc. Amer. Math. Soc. 3 (1952), 270-277.

University of Alberta
Edmonton, Alberta
Canada

[^0]: AMS Subject classification: Primary 47C05, 46L15.

 * This research constitutes part of the author's doctoral dissertation, written at the University of Michigan under the direction of Carl M. Pearcy.

 Key Words and Phrases: Pure isometry, unitary, absolutely continuous, singular, reflexive, double commutant.

