DOUBLE COMMUTANTS OF ISOMETRIES*

T. ROLF TURNER

(Received April 25, 1972)

Abstract. Normal operators N satisfying $\mathfrak{A}_N = \mathfrak{A}_N''$ are characterized in terms of invariant subspaces. It is shown that non-unitary isometries V always satisfy $\mathfrak{A}_V = \mathfrak{A}_V''$. Thus, since a unitary operator is normal, a complete description of isometries satisfying a double commutant theorem is achieved.

1. Introduction. In the forthcoming all Hilbert spaces will be complex, and all operators bounded linear transformations. The symbol $B(\mathcal{H})$ will denote the algebra of all operators on the Hilbert space $\mathcal{H}, \mathfrak{A}_A$ the weakly closed algebra with identity generated by $A \in B(\mathcal{H}), \mathfrak{A}'_A$ the commutant of A and \mathfrak{A}''_A the double commutant of A. The reader is referred to [2, p. 1] for the definition of commutant and double commutant.

DEFINITION 1.1. The class (dc) is the class of all operators on Hilbert space satisfying $\mathfrak{A}_{A} = \mathfrak{A}_{A}^{\prime\prime}$.

This class has been studied previously in [9], [10], and [11]. In this paper we shall characterize the normal operators in the class (dc) and show that any non-unitary isometry belongs to (dc).

2. Normal operators.

THEOREM 2.1. Let $N \in B(\mathcal{H})$ be a normal operator. Then $N \in (dc)$ if and only if every subspace of \mathcal{H} invariant under N reduces N.

PROOF. (a) Suppose $N \in (dc)$. By the Fuglede-Putnam Theorem [7, p. 9] $N^* \in \mathfrak{A}_N'$, so $N^* \in \mathfrak{A}_N$. Therefore each subspace invariant under N is invariant under N^* , i.e. reduces N.

(b) Suppose every subspace invariant under N reduces N. This says Lat $N \subseteq$ Lat N^{*}. Since N is normal, by Sarason's theorem [8, p. 511] N is reflexive. (See [8] for definitions.) Therefore Lat $N \subseteq$ Lat $N^* \Rightarrow N^* \in$ \mathfrak{A}_N . Thus \mathfrak{A}_N is a von Neuman algebra, so by the von Neuman Double Commutant Theorem, $\mathfrak{A}_N = \mathfrak{A}_N^{"}$.

AMS Subject classification: Primary 47C05, 46L15.

^{*} This research constitutes part of the author's doctoral dissertation, written at the University of Michigan under the direction of Carl M. Pearcy.

Key Words and Phrases: Pure isometry, unitary, absolutely continuous, singular, reflexive, double commutant.

T. ROLF TURNER

3. Isometries. It will convenient to make use of the following rather specialized lemma.

LEMMA 3.1. Let \mathscr{H} and \mathscr{K} be Hilbert spaces, $A \in B(\mathscr{H})$, $B \in B(\mathscr{K})$, and let $A \in (dc)$. Let $\mathscr{H} = \{X: \mathscr{H} \to \mathscr{K} \mid X \text{ is an operator and } BX = XA\}$. Suppose that either

(a)
$$\bigcup_{X \in \mathscr{X}} \text{Range } X = \mathscr{K}$$

or

(b) $\bigcup_{X \in \mathscr{X}}$ Range X is dense in \mathscr{K} , each element of \mathfrak{A}_A is the limit of a sequence of polynomials in A, and there exists a constant M such that $||p(B)|| \leq M \cdot ||p(A)||$ for any polynomial p.

Then $A \bigoplus B \in (dc)$.

PROOF. Let D be in the double commutant of $A \oplus B$. Then $D = E \oplus F$ where $E \in \mathfrak{A}_{A}^{"} = \mathfrak{A}_{A}$ and $F \in \mathfrak{A}_{B}^{"}$. For any $X \in \mathscr{X}$, the operator on $\mathscr{H} \oplus \mathscr{K}$ defined by the matrix

is in the commutant of $A \oplus B$, whence it commutes with D. This says that FX = XE.

Now suppose that (a) holds and that $\{p_{\alpha}\}$ is a net of polynomials such that $p_{\alpha}(A) \to E$ in the weak operator topology. Let $k \in \mathscr{K}$; then there is an $X \in \mathscr{X}$ and $h \in \mathscr{H}$ such that k = Xh. Therefore $p_{\alpha}(B)k = p_{\alpha}(B)Xh = Xp_{\alpha}(A)h$ which converges weakly to XEh = FXh = Fk. Thus $p_{\alpha}(B) \to F$ weakly, so $p_{\alpha}(A \oplus B) \to E \oplus F = D$ weakly.

Next suppose that (b) holds and that $\{p_n\}_{n=0}^{\infty}$ is a sequence of polynomials such that $p_n(A) \to E$ weakly. By similar arguments to the above we can show that $p_n(B)k \to Fk$ weakly for k in $\bigcup_{x \in \mathscr{X}}$ Range X, a dense set. The weak convergence of $p_n(A)$ implies that $\{||p_n(A)||\}_{n=0}^{\infty}$ is bounded. Since $||p_n(B)|| \leq M \cdot ||p_n(A)||$ for all n, we therefore know that $\{||p_n(B)||\}_{n=0}^{\infty}$ is bounded too. Consequently $p_n(B) \to F$ weakly.

REMARK 3.2. In what follows we actually only make use of part (b) of Lemma 3.1.

THEOREM 3.3. Any non-unitary isometry on a Hilbert space is in (dc).

PROOF. Let V be a non-unitary isometry and write V in its Wold decomposition (see [6, p. 3]) as $U \bigoplus W$, where U is the pure part and W is the unitary part of V. Since V is non-unitary the pure part U does not vanish. We may further decompose W as $W_a \bigoplus W_s$ where W_a is

548

the absolutely continuous part, and W_s is the singular part of W. (See [4, p. 55].)

Now U is a (possibly infinite) direct sum of copies of U_1 , the unilateral shift of multiplicity 1. Since $\mathfrak{A}_{U_1} = \mathfrak{A}_{U_1}^{"}$ and each element of \mathfrak{A}_{U_1} is the limit of a sequence of polynomials in U_1 ([5, prob. 117]) the same holds for \mathfrak{A}_{U} . In [3] it is shown on pp. 299-300 that $\bigcup_{W_a X = XU}$ Range X is dense in the domain of W_a . Furthermore, for any polynomial $p, ||p(W_a)|| = r(p(W_a)) \leq \sup_{|x|=1} |p(x)| = ||p(U_1)|| = ||p(U)||$, where r denotes spectral radius. Thus part (b) of Lemma 3.1 applies to show that $U \oplus W_a$ is in (dc).

In [12, p. 275] Wermer shows that a unitary operator has a nonreducing invariant subspace if and only if it contains, as a direct summand, a copy of the bilateral shift of multiplicity 1. Since W_s is singular, it can contain no such direct summand, whence all of its invariant subspaces are reducing. Therefore by Theorem 2.1 $W_s \in (dc)$.

By the Corollary in [1], $\mathfrak{A}_{v} = \mathfrak{A}_{v \oplus v_{a}} \bigoplus \mathfrak{A}_{w_{s}}$. From this it clearly follows that $V \in (dc)$.

BIBLIOGRAPHY

- [1] J. A. DEDDENS, Every isometry in reflexive, Proc. Amer. Math. Soc. 28 (1971), 509-512.
- [2] J. DIXMIER, Les Algébres d'Opérateurs dans L'Espace Hilbertien, Gauthier-Villars, Paris, (1969).
- [3] R. G. DOUGLAS, On the hyperinvariant subspaces of an isometry, Math. Z. 107 (1968), 297-300.
- [4] P. A. FILLMORE, Notes on Operator Theory, Van Nostrand, New York (1970).
- [5] P. R. HALMOS, A Hilbert Space Problem Book, Van Nostrand, Princeton (1967).
- [6] B. SZ-NAGY AND C. FOIAS, Harmonic Analysis of Operators on Hilbert Space, North Holland, New York, (1970).
- [7] G. R. PUTNAM, Commutation Properties of Hilbert Space Operators and Related Topics, Springer-Verlag, New York, (1967).
- [8] D. SARASON, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1966), 511-517.
- [9] T. R. TURNER, Double commutants of algebraic operators, to appear, Proc. Amer. Math. Soc.
- [10] ——, Double Commutants of Singly Generated Operator Algebras, thesis, Univ. of Michigan, 1971.
- [11] _____, Double commutants of weighted shifts, to appear.
- [12] J. WERNER, On invariant subspaces of normal operators, Proc. Amer. Math. Soc. 3 (1952), 270-277.

UNIVERSITY OF ALBERTA Edmonton, Alberta Canada 549