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DOUBLE COMMUTANTS OF ISOMETRIES*

T ROLF TURNER
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Abstract. Normal operators N satisfying 2IΛΓ = 5ί^ are characterized in
terms of invariant subspaces. It is shown that non-unitary isometries V
always satisfy 9ίr = Wv> Thus, since a unitary operator is normal, a com-
plete description of isometries satisfying a double commutant theorem is
achieved.

1. Introduction. In the forthcoming all Hubert spaces will be com-
plex, and all operators bounded linear transformations. The symbol B(£ίf)
will denote the algebra of all operators on the Hubert space έ%f ', %A the
weakly closed algebra with identity generated by A e B{3(?), 311 the com-
mutant of A and 21" the double commutant of A. The reader is referred
to [2, p. 1] for the definition of commutant and double commutant.

DEFINITION 1.1. The class (dc) is the class of all operators on Hubert
space satisfying %A = 2t".

This class has been studied previously in [9], [10], and [11]. In this
paper we shall characterize the normal operators in the class (dc) and
show that any non-unitary isometry belongs to (dc).

2. Normal operators.

THEOREM 2.1. Let Ne B(£$f) be a normal operator. Then Ne (dc) if
and only if every subspace of έ%f invariant under N reduces N.

PROOF, (a) Suppose Ne(dc). By the Fuglede-Putnam Theorem [7,
p. 9] N* e $t", so iSΓ* e SĈ  Therefore each subspace invariant under N
is invariant under N*f i.e. reduces N.

(b) Suppose every subspace invariant under N reduces N. This says
LatiSΓS Lat JV*. Since N is normal, by Sarason's theorem [8, p. 511] N
is reflexive. (See [8] for definitions.) Therefore Lat NS Lat AT* => iV* e
$ίN. Thus ytN is a von Neuman algebra, so by the von Neuman Double
Commutant Theorem, 21̂  = %„.
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3. Isometries. It will convenient to make use of the following rather
specialized lemma.

LEMMA 3.1. Let £!f and 3ίΓ be Hilbert spaces, A e B(£gf), B e B(3T),
and let A e (dc). Let £f = {X: Sίf —• JίΓ \ X is an operator and BX = XA}.
Suppose that either

(a) U Range X =

or
(b) \Jxe^ Range X is dense in ^Sf, each element of %A is the limit

of a sequence of polynomials in A, and there exists a constant M such
that ||p(2?)|| ί^M \\p(A)\\ for any polynomial p.

Then Aξ&Be(dc).

PROOF. Let D be in the double commutant of i 0 5 , Then D =
where EeWi = %A and FeW£. For any I G . T , the operator on

defined by the matrix

0 0"

o_
is in the commutant of 4 © β , whence it commutes with D. This says
that FX = XE.

Now suppose that (a) holds and that {pa} is a net of polynomials such
that pa(A) —> E in the weak operator topology. Let k e j % ^ ; then there
i s a n l e j " and hz£ίf such that k = Xh. Therefore pa{B)k = pa{B)Xh =
Xpa(A)h which converges weakly to XEh = FXh = Fk. Thus pa(B) — F
weakly, so pa(A®B)-*E@F= D weakly.

Next suppose that (b) holds and that {pn}n=0 is a sequence of polyno-
mials such that pn(A) —* E weakly. By similar arguments to the above
we can show that pn(B)k-+Fk weakly for k in \Jxe^ Range X, a dense
set. The weak convergence of pn{A) implies that {||^(A)||}~=0 is bounded.
Since \\pn(B)\\ ̂  M-\\pn(A)\\ for all n, we therefore know that {|bXB)||}~=0

is bounded too. Consequently pn{B) —• F weakly.

REMARK 3.2. In what follows we actually only make use of part (b)
of Lemma 3.1.

THEOREM 3.3. Any non-unitary isometry on a Hilbert space is in (dc).

PROOF. Let V be a non-unitary isometry and write V in its Wold
decomposition (see [6, p. 3]) as Z70 W, where U is the pure part and W
is the unitary part of V. Since V is non-unitary the pure part U does
not vanish. We may further decompose W as Wa © W8 where Wa is
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the absolutely continuous part, and Ws is the singular part of W. (See
[4, p. 55].)

Now U is a (possibly infinite) direct sum of copies of Ulf the unilateral
shift of multiplicity 1. Since St^ = St'̂  and each element of St̂ 1 is the
limit of a sequence of polynomials in U1 ([5, prob. 117]) the same holds
for %π. In [3] it is shown on pp. 299-300 that \J Range X is dense

wax=xu

in the domain of Wa. Furthermore, for any polynomial p, \\p(Wa)\\ =
HP(WO)) ^ sup,2|=1 \p(z)\ = ||p(ί7i)|| = ||p(t7) \\, where r denotes spectral
radius. Thus part (b) of Lemma 3.1 applies to show that Ϊ7© Wa is in
(do).

In [12, p. 275] Wermer shows that a unitary operator has a non-
reducing invariant subspace if and only if it contains, as a direct summand,
a copy of the bilateral shift of multiplicity 1. Since W8 is singular, it
can contain no such direct summand, whence all of its invariant subspaces
are reducing. Therefore by Theorem 2.1 W8£(dc).

By the Corollary in [1], %v = %UΘUa φ 2C*v From this it clearly fol-
lows that Ve (dc).
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