CONVERGENCE IN PERTURBED NONLINEAR SYSTEMS

ATHANASSIOS G. KARTSATOS

(Received February 24, 1972; Revised May 4, 1972)

C. Avramescu studied in [2] the existence and properties of convergent solutions to perturbed linear systems of the form

$$(I) x' = A(t)x + f(t, x),$$

where A(t) is a continuous $n \times n$ matrix and f(t, x) a continuous n-vector-valued function.

Hallam [3] studied the problem of the maintenance of the convergence properties of solutions to the nonlinear equation

$$(II) y' = A(t, y)$$

under the effect of a perturbation term F(t, y). Hallam made extensive use of Alekseev's formula [1], which can be applied only if the function A(t, u) is continuously differentiable with respect to u. The author studied in [6] the asymptotic relationship between the system (II) and the system

(III)
$$x' = A(t, x) + F(t, x)$$

in the case in which A(t, u) is not necessarily differentiable with respect to u. Our purpose here is to study, by means of our considerations in [6], the convergence properties of the system (III) in connection with the unperturbed system (II).

In Section 1 we give some definitions and preliminary facts. In Section 2 we study the convergence properties of systems of the form (III). In Section 3 we give a theorem, which ensures the existence of convergent solutions of the system (III) with F(t, x) = G(t, x)x, where G is a continuous $n \times n$ matrix.

We note here that the present method can be applied equally well in admissibility problems and problems concerning the existence of periodic, or almost periodic solutions.

1. Let C_{t_0} , $t_0 \ge 0$ be the space of all continuous *n*-vector-valued functions on the interval $[t_0, +\infty)$. By $C_{t_0}^b$ we denote the space of all functions in C_{t_0} , which are bounded on $[t_0, +\infty)$, under the norm

$$||f||_{b} = \sup_{t \in [t_{0}, +\infty)} \{||f(t)||\}$$
 ,

where $||\cdot||$ is the Euclidean norm in R^n . $C^l_{t_0}$ will be the space consisting of all functions in C_{t_0} , which have a finite limit as $t \to +\infty$. The space C_{t_0} is a Fréchet space if its topology is that of the uniform convergence on compact subintervals of $[t_0, +\infty)$. The spaces $C^b_{t_0}$, $C^l_{t_0}$ are Banach spaces. For $x \in C^l_{t_0}$, let $l_x = \lim_{t \to \infty} x(t)$. A set $K \subset C^l_{t_0}$ is compact if and only if it is uniformly bounded, equicontinuous and "uniformly convergent" in the following sense: for every $\varepsilon > 0$ there exists $\delta(\varepsilon) > 0$ such that $||x(t) - l_x|| < \varepsilon$, for all $t > \delta(\varepsilon)$ and all $x \in K$. For a proof of this statement the reader is referred to Avramescu [2]. For a matrix $A(t,x) = (a_{ij}(t,x))$ on $[t_0, +\infty) \times R^n$, $i,j=1,2,\cdots,n$, we put $||A(t,x)|| = \max_{i,j} |a_{ij}(t,x)|$. By $S^r_{t_0}$, r>0 we denote the ball $\{f; f \in C^b_{t_0}, ||f||_b \le r\}$. We also make use of Tychonov's fixed point theorem as quoted in Hartman's book [4]:

"Let L be a linear, locally convex, topological, complete Hausdorff space. Let M be a closed, convex subset of L and $T: M \to M$ be a continuous operator such that the closure of TM is compact. Then T has a fixed point in M."

For the system (III) we suppose that A, F are n-vector-valued functions, which are defined and continuous on $R_+ \times R^n$, where $R_+ = [0, +\infty)$. By a solution of a system of the form (III) we mean any function $x \in C'_{t_0}$ (= the space of all continuously differentiable $f \in C_{t_0}$), which satisfies (III) on the interval $[t_0, +\infty)$. The number t_0 will depend on the particular solution under consideration. By $x(t, t_0, x_0)$ we denote a solution of (III), which passes through the point (t_0, x_0) at time t_0 . A solution of the system (II) will always be denoted by $y = y(t, t_0, y_0)$.

The following definitions of convergence are given by Avramescu in [2].

- (i) System (III) is said to be "convergent" if $\lim_{t\to\infty} x(t, t_0, x_0) = l_x(t_0, x_0)$ exists and is finite for each $(t_0, x_0) \in R_+ \times R^n$.
- (ii) System (III) is said to be "equi-convergent" if it is convergent and to each triple $\varepsilon > 0$, $\alpha \ge 0$, $t_0 \ge 0$ there corresponds a function $T(t_0, \alpha, \varepsilon)$ such that

$$||x(t, t_0, x_0) - l_x(t_0, x_0)|| < \varepsilon$$

for every $t > T(t_0, \alpha, \varepsilon) + t_0$, and every x_0 with $||x_0|| \le \alpha$.

- (iii) System (III) is said to be "equi-uniformly convergent" if it is equi-convergent and T does not depend on t_0 .
- (iv) System (III) is said to be "coalescent" if it is convergent and $l_z(0, x_0)$ is a constant.
 - (v) The solutions of (III) are said to be "uniformly bounded" if for

each $\alpha \ge 0$, $t_0 \ge 0$ there exists a function $\beta(\alpha) \ge 0$ such that $||x(t, t_0, x_0)|| \le \beta(\alpha)$ whenever $||x_0|| \le \alpha$ and $t \ge t_0$.

2. Our first result guarantees the existence of convergent solutions $x(t, t_0, x_0)$ of System (III) for any $(t_0, x_0) \in [0, +\infty) \times \mathbb{R}^n$ provided that this is true for the system (II).

THEOREM 1. Assume that $y = y(t, t_0, y_0)$ is a solution of (II) and

$$||A(t, v_1) - A(t, v_2)|| \le q(t, ||v_1 - v_2||)$$

for every $t \ge t_0$ and every $v_1, v_2 \in \mathbb{R}^n$, where $q: [t_0, +\infty) \times [0, +\infty) \rightarrow [0, +\infty)$ is continuous such that

$$\lim_{n o\infty}\inf\left(1/n
ight)\int_{t_0||u||\leq n}^\infty q(t,\,||\,u\,||)dt=0$$
 ;

(ii)
$$\lim_{n\to\infty} (1/n) \int_{t_0||u||\leq n}^{\infty} ||F(t, y+u)||dt = 0.$$

Then there exists a solution $x(t, \tilde{t}_0, x_0)$ of the system (III), for any $(\tilde{t}_0, x_0) \in [t_0, +\infty) \times R^n$.

PROOF. Given $(\tilde{t}_0, x_0) \in [t_0, +\infty) \times R^n$, the conditions (i), (ii) imply the existence of an n_0 such that

$$(1) \quad ||x_0 - y_0|| + \int_{\tilde{t}_0}^{\infty} ||A(t, y + f) - A(t, y)||dt + \int_{\tilde{t}_0}^{\infty} ||F(t, y + f)||dt \leq n_0$$

for any function $f \in S_{\tilde{\iota}_0}^{n_0}$. Now, consider the operator $T: S_{\tilde{\iota}_0}^{n_0} \to S_{\tilde{\iota}_0}^{n_0}$ with

$$egin{align} (2) & v(t) = (Tf)(t) = x_{\scriptscriptstyle 0} - y_{\scriptscriptstyle 0} + \int_{\widehat{\iota}_0}^t [A(s,\,y(s)+f(s)) - A(s,\,y(s))] ds \ & + \int_{\widehat{\iota}_0}^t F(s,\,y(s)+f(s)) ds \; . \end{split}$$

To show that the ball $S_{\widetilde{t_0}}^{n_0}$ is closed w.r.t. the topology of uniform convergence on compact subintervals of $[\widetilde{t}_0, +\infty)$, let $f_n \in S_{\widetilde{t_0}}^{n_0}$ be such that $f_n \to f \in C_{\widetilde{t_0}}^b$ uniformly on every compact subinterval of $[\widetilde{t}_0, +\infty)$. Then, since $\lim_{n\to\infty} ||f_n(t)|| = ||f(t)||$ and $||f_n(t)|| \le n_0$, it follows that $||f(t)||_b \le n_0$, which shows our assertion. Now let $f_n, f \in S_{\widetilde{t_0}}^{n_0}$ be as above. Then from (2) we obtain

$$\begin{array}{ll} (\ 3\) & ||\ Tf_n-\ Tf\,||_b \leqq \int_{\tilde{\iota}_0}^{\infty} ||\ A(s,\ y(s)+f_n(s))-\ A(s,\ y(s)+f(s))\,||\ ds \\ \\ & + \int_{\tilde{\iota}_0}^{\infty} ||\ F(s,\ y(s)+f_n(s))-\ F(s,\ y(s)+f(s))\,||\ ds \ . \end{array}$$

Since the integrands in the right-hand member of (3) are bounded by the integrable functions

$$\sup_{\|u\| \le 2n_0} q(t, \|u\|) \text{ and } \sup_{\|u\| \le n_0} \|F(t, y + u)\|$$

respectively, it follows from Lebesgue's dominated convergence theorem that $\lim_{n\to\infty}||Tf_n-Tf||_b=0$. The rest of the proof of the fact that T has a fixed point in $S_{t_0}^{n_0}$ follows as in Kartsatos [5] and we omit it here. Let (Tv)(t)=v(t), $t\in [\tilde{t}_0,+\infty)$. Then putting x(t)=v(t)+y(t), we obtain $x(\tilde{t}_0)=x_0$ and the theorem is proved.

COROLLARY 1. Assume that System (II) has a solution $y(t, t_0, x_0)$ for every $(t_0, x_0) \in [0, +\infty) \times R^n$ such that $\lim_{t\to\infty} y(t, t_0, x_0) = l_y(t_0, x_0)$ and it is known "a priori" that if $x(t, t_0, x_0)$ is a solution of System (III), then it is unique with respect to the initial condition $x(t_0) = x_0$. Then, provided that the hypotheses of Th. 1 are satisfied for every solution $y(t, t_0, x_0)$ of the above type, System (III) is convergent.

PROOF. It is evident that the solution $x(t, t_0, x_0)$, guaranteed by Th. 1, has a finite limit as $t \to +\infty$, because $\lim_{t\to\infty} v(t, t_0, 0)$ exists and is finite, where $v(t, t_0, 0) \equiv x(t, t_0, x_0) - y(t, t_0, x_0)$.

In what follows in this section, the systems (II), (III) will be supposed to have unique solutions with respect to any initial conditions $(t_0, x_0) \in [0, +\infty) \times \mathbb{R}^n$. The next theorem ensures equi-convergence for System (III).

THEOREM 2. Under the hypotheses of Corollary 1, assume further that the systems (II), (III) are uniformly bounded and that System (II) is equi-convergent. Then System (III) is equi-convergent.

PROOF. Let $h_k(t) = \max_{\|u\| \le k} \|F(t, u)\|$, $t \ge 0$. Since the Systems (II), (III) are uniformly bounded, it follows that for every $\alpha > 0$ there exists a function $\beta_1(\alpha) \ge 0$, $(\beta_2(\alpha) \ge 0)$ such that

Let $x(t, t_0, x_0)$, $y(t, t_0, x_0)$ be two fixed solutions of (III), (II) respectively, which satisfy (4). Then for $\beta(\alpha) = \beta_1(\alpha) + \beta_2(\alpha)$ we have

(5)
$$||x(t, t_0, x_0) - y(t, t_0, x_0)|| \leq \beta(\alpha) \text{ for } t \geq t_0.$$

Now let $q(t, \alpha) = \sup_{\|u\| \le \beta(\alpha)} q(t, \|u\|)$, $t \ge 0$. Then it follows from (i) of Th. 1 that

(6)
$$\int_0^\infty q(t,\alpha)dt < + \infty.$$

Since System (II) is equi-convergent, for every $\varepsilon > 0$, $\alpha \ge 0$, $t_0 \ge 0$, there

exists a function $T_1(t_0, \alpha, \varepsilon)$ such that $||y(t, t_0, x_0) - l_y(t_0, x_0)|| < \varepsilon/3$ for every $t > T_1(t_0, \alpha, \varepsilon) + t_0$ and every x_0 with $||x_0|| \le \alpha$. Let $\varepsilon > 0$ and fix α as above. Since by Corollary 1 System (III) is convergent, $\lim_{t \to \infty} x(t, t_0, x_0) = l_x(t_0, x_0)$ exists and is finite (the limit $l_x(t_0, x_0)$ does not depend on x(t) but we use this notation in order to distinguish from the limit of $y(t, t_0, x_0)$). Moreover, for $t \ge t_0$

$$(7)$$
 $x(t, t_0, x_0) - y(t, t_0, x_0) = \int_{t_0}^t [A(s, x(s)) - A(s, y(s))] ds + \int_{t_0}^t F(s, x(s)) ds$.

Taking the limit as $t \to +\infty$ in both sides of (7), we obtain

$$(8) \quad l_x(t_0, x_0) - l_y(t_0, x_0) = \int_{t_0}^{\infty} [A(s, x(s)) - A(s, y(s))] ds + \int_{t_0}^{\infty} F(s, x(s)) ds$$

which, combined with (6) and (7), yields

$$egin{aligned} ig(\, 9\, ig) & \Big| ||x(t,\, t_{\scriptscriptstyle 0},\, x_{\scriptscriptstyle 0}) - l_{\scriptscriptstyle x}(t,\, t_{\scriptscriptstyle 0},\, x_{\scriptscriptstyle 0}) \,|| - ||\, y(t,\, t_{\scriptscriptstyle 0},\, x_{\scriptscriptstyle 0}) - l_{\scriptscriptstyle y}(t_{\scriptscriptstyle 0},\, x_{\scriptscriptstyle 0}) \,|| \Big| \ & \leq \int_t^\infty ||\, A(s,\, x(s)) - A(s,\, y(s)) \,|| ds + \int_t^\infty ||\, F(s,\, x(s)) \,|| ds \ & \leq \int_t^\infty q(s,\, lpha) ds + \int_t^\infty h_{eta_1(lpha)}(s) ds \;, \end{aligned}$$

where $t \ge t_0$. Let $T(t_0, \alpha, \varepsilon) \ge T_1(t_0, \alpha, \varepsilon)$ be such that

$$\int_{\iota}^{\infty}q(s,\,lpha)ds , $\int_{\iota}^{\infty}h_{eta_{1}(lpha)}(s)ds$$$

for every $t \geq T(t_0, \alpha, \varepsilon) + t_0$. Then, for $t > T(t_0, \alpha, \varepsilon) + t_0$, (9) implies

$$||x(t, t_{\scriptscriptstyle 0}, x_{\scriptscriptstyle 0}) - l_{\scriptscriptstyle x}(t_{\scriptscriptstyle 0}, x_{\scriptscriptstyle 0})|| < ||y(t, t_{\scriptscriptstyle 0}, x_{\scriptscriptstyle 0}) - l_{\scriptscriptstyle y}(t_{\scriptscriptstyle 0}, x_{\scriptscriptstyle 0})|| + 2\varepsilon/3 < \varepsilon ,$$

which proves the equi-convergence of System (III).

COROLLARY 2. Under the hypotheses of Corollary 1, assume further that the systems (II), (III) are uniformly bounded and that the System (II) is equi-uniformly convergent. Then the System (III) is equi-uniformly convergent.

The proof is the same as that of Th. 2. T is now independent of t_0 since so is T_1 .

We show now that the conditions on A in Th. 1 prevent System (II) from being coalescent.

THEOREM 3. If A satisfies (i) of Th. 1, then System (II) cannot be coalescent.

PROOF. Suppose that System (II) coalesces at the point y_{∞} , and consider the integral equation

(11)
$$v(t) = \xi - \int_t^{\infty} [A(s, v(s) + y(s)) - A(s, y(s))] ds,$$

where $y(t, 0, y_0)$ is a fixed solution of (II) and $||\xi|| > 0$. By the method used in Th. 1 (cf. also Kartsatos [6]) it can be shown that (11) has a solution $v = v(t, t_0, v_0)$ defined on $[0, +\infty)$ and such that $\lim_{t\to\infty} v(t) = \xi$. Letting $z(t, 0, z_0) = v(t, 0, v_0) + y(t, 0, y_0)$, we obtain $\lim_{t\to\infty} z(t, 0, z_0) = \xi + y_\infty$, a contradiction to coalescence.

3. In this section we study systems of the form

$$(IV) x' = A(t, x) + G(t, x)x,$$

where the $n \times n$ matrix G is defined and continuous on $[0, +\infty) \times R^n$. We first give a theorem concerning the existence of solutions of (IV) in $C_{t_0}^l$. By $S_{t_0}^{l,r}$ we denote the ball $\{f; f \in C_{t_0}^l \text{ and } ||f||_b \leq r\}$.

Theorem 4. Assume that for each $f \in C_{t_0}^l$, the system

$$(\mathrm{IV}_{\scriptscriptstyle \mathrm{f}}) \qquad \qquad u' = G(t, f)u + A(t, f)$$

has a unique solution $u(t, t_0, u_0) \in C_{t_0}^l$, where u_0 is a fixed vector in \mathbb{R}^n . Moreover, assume that

- (i) $||G(t, f)|| \leq p(t)$ for every $(t, f) \in [t_0, +\infty) \times C_{t_0}^l$, where p is continuous and such that $\int_{t_0}^{\infty} p(t)dt < +\infty$;
 - $\lim_{n o\infty}\inf\left(1/n
 ight)\!\int_{t_{n}||u||\leq n}^{\infty}\!\!\sup\left||A(t,\,u)||dt=0
 ight|$

Then, there exists a solution x(t) of the system (IV) which belongs to the space $C^{l}_{t_0}$.

PROOF. Let T be the operator which assigns to each function $f \in C^l_{t_0}$ the unique solution $u \in C^l_{t_0}(u(t_0) = u_0)$, of the system (IV_t). We first show that there exists a ball $S^{l,n_0}_{t_0}$ such that $T(S^{l,n_0}_{t_0}) \subset S^{l,n_0}_{t_0}$. In fact, assume that this is not true. Then there exists a sequence $\{f_n\}$, $n=1,2,\cdots$ such that $f_n \in S^{l,n}_{t_0}$ and $||Tf_n||_b > n$. Putting $u_n = Tf_n$ we obtain

(12)
$$u_n(t) = u_0 + \int_{t_0}^t G(s, f_n(s)) u_n(s) ds + \int_{t_0}^t A(s, f_n(s)) ds,$$

which implies

$$(13) \qquad ||u_n(t)|| \leq ||u_0|| + \int_{t_0}^t ||G(s, f_n(s))|| ||u_n(s)|| ds + \int_{t_0}^t ||A(s, f_n(s))|| ds.$$

An application of Gronwall's inequality in (13) implies

(14)
$$||u_n(t)|| \leq (||u_0|| + \int_{t_0}^{\infty} ||A(s, f_n(s))|| ds) \exp \left[\int_{t_0}^{\infty} p(t) dt \right],$$

or

$$\frac{||u_n||}{n} \leq \left[\frac{||u_0||}{n} + \frac{1}{n} \int_{t_0||u|| \leq n}^{\infty} ||A(s, u)|| ds\right] \exp\left[\int_{t_0}^{\infty} p(t) dt\right].$$

From inequality (14) we obtain $\liminf_{n\to\infty}||u_n||/n=0$, a contradiction. To show that the set $TB(B=S^{l,n_0}_{t_0})$ is equi-continuous, let t', t'' be two points in $[t_0, +\infty)$ with $t'' \geq t'$. Then we obtain

$$(15) ||u_n(t'') - u_n(t')|| \leq \int_{t'}^{t''} ||G(s, f_n(s))|| ||u_n(s)|| ds + \int_{t'}^{t''} ||A(s, f_n(s))|| ds$$

$$\leq n_0 \int_{t'}^{t''} ||P(t)| dt + \int_{t'}^{t''} \sup_{\|u\| \leq n_0} ||A(s, u)|| ds.$$

The rest follows as in [5] and we omit it here. Now let $\lambda_n = \lim_{t\to\infty} u_n(t)$. Then we have

(16)
$$\lambda_n = u_0 + \int_{t_0}^{\infty} G(t, f_n(t)) u_n(t) dt + \int_{t_0}^{\infty} A(t, f_n(t)) dt ,$$
 and, consequently,

(17)
$$||u_n(t) - \lambda_n|| \leq n_0 \int_t^{\infty} ||G(s, f_n(s))|| ds + \int_t^{\infty} ||A(s, f_n(s))|| ds$$
$$\leq n_0 \int_t^{\infty} P(s) ds + \int_t^{\infty} \sup_{\|u\| \leq n_0} ||A(s, u)|| ds.$$

It follows from (17) that TB is a uniformly convergent family. Since TB is bounded, equicontinuous and uniformly convergent, it is compact in $C_{t_0}^l$. To show that T is continuous, let $\lim_{n\to\infty}||f_n-f||_b=0$, $f_n,f\in B$. Since the set TB is compact, there exists a subsequence $\{u_{k_n}\}$ of $\{u_n=Tf_n\}$ such that $\lim_{n\to\infty}||u_{k_n}-u||_b=0$, where u is an element in TB. Now since the sequence $G(t,f_{k_n}(t))u_{k_n}(t)$, $A(t,f_{k_n}(t))$ converge pointwise to G(t,f)u(t) and A(t,f(t)) respectively, and

(18)
$$||G(t, f_{k_n}(t))u_{k_n}(t) - G(t, f(t))u(t)|| \leq 2n_0 p(t) ,$$

$$||A(t, f_{k_n}(t)) - A(t, f(t))|| \leq 2 \sup_{\|u\| \leq n_0} ||A(t, u)|| ,$$

and application of Lebesgue's dominated convergence theorem shows that Tf = u. Since we could have started with any subsequence of $\{Tf_n\}$ instead of $\{Tf_n\}$ itself, we have actually shown that every subsequence of $\{Tf_n\}$ contains a subsequence converging to Tf. This proves the continuity of the operator T. By Tychonov's theorem, T has a fixed point in $S_{t_0}^{l,n_0}$, and this proves the theorem.

REMARK. Assume that the perturbation F(t, x) in System (III) is continuously differentiable with respect to x. Then this function satisfies

(19)
$$F(t, x) = G^{0}(t, x)x + F^{0}(t, x)$$

where $F_i^0(t, x) = F_i(t, x_1, x_2, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_n)$ and G^0 is a diagonal $n \times n$ matrix, whose diagonal elements are given by

(20)
$$G_{ii}^{\scriptscriptstyle 0}(t,x) = \int_{\scriptscriptstyle 0}^{\scriptscriptstyle 1} \frac{\partial F_i(t,x_1,x_2,\cdots,\tau x_i,\cdots,x_n)}{\partial x_i} d\tau.$$

Thus, Theorem 4 holds for systems of the type (III) with perturbations like (19), under suitable assumptions on the functions $G_{ii}^0(t, x)$, $F_i^0(t, x)$. Th. 1 holds if we interchange the limit conditions on the integrals in (i) and (ii). However, the conditions were imposed only in order to guarantee that for some n_0 , $TS_{i_0}^{n_0} \subset S_{i_0}^{n_0}$. It is evident that they can be avoided if we are only interested in the existence of solutions for all large t, provided of course that the functions q(t, ||u||), F(t, y + v) are eventually uniformly bounded by integrable functions depending only on t and (t, y) respectively.

Analogous remarks can be made for Theorems 4 and 5.

The author wishes to express his thanks to the referee for his helpful suggestions.

REFERENCES

- [1] V. W. ALEKSEEV, An estimate for the perturbations of ordinary differential equations (Russian), Vestnik Moskov. Univ. Ser. I Mat. Meh., 2 (1961), 28-36.
- [2] C. AVRAMESCU, Sur l'existence des solutions convergentes d'équations différentielles non linéaires, Ann. Mat. Pura. Appl., 4 (81) (1969), 147-168.
- [3] T. HALLAM, Convergence of solutions of perturbed nonlinear differential equations, Ann. Mat. Pura. Appl., to appear.
- [4] P. HARTMAN, Ordinary Differential Equations, Wiley, New York 1964.
- [5] A. G. KARTSATOS, Contributions to the research of the oscillation and the asymptotic behaviour of solutions of ordinary differential equations, Doctoral dissertation, Univ. of Athens, Bull. Soc. Math. Grèce, 10 (1969), 1-48.
- [6] ———, On the relationship between a nonlinear system and its nonlinear perturbation
 J. Differential Equations, 11 (1972), 582-591.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF SOUTH FLORIDA TAMPA, FLORIDA 33620