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C. Avramescu studied in [2] the existence and properties of convergent
solutions to perturbed linear systems of the form

(I) = Al + f(¢, ),

where A(?) is a continuous n X n matrix and f(¢, #) a continuous nm-vector-

valued function.
Hallam [3] studied the problem of the maintenance of the convergence

properties of solutions to the nonlinear equation
(1I) y = A, y)

under the effect of a perturbation term F'(t, y). Hallam made extensive
use of Alekseev’s formula [1], which can be applied only if the function
A(t, u) is continuously differentiable with respect to 4. The author studied
in [6] the asymptotic relationship between the system (II) and the system

11D o = A, x) + F(t, x)

in the case in which A(, #) is not necessarily differentiable with respect
to u. Our purpose here is to study, by means of our considerations in
[6], the convergence properties of the system (III) in connection with the
unperturbed system (II).

In Section 1 we give some definitions and preliminary facts. In Sec-
tion 2 we study the convergence properties of systems of the form (III).
In Section 3 we give a theorem, which ensures the existence of convergent
solutions of the system (III) with F(¢, x) = G(t, x)#, where G is a continuous
n X n matrix.

We note here that the present method can be applied equally well in
admissibility problems and problems concerning the existence of periodic,
or almost periodic solutions.

1. Let C,,t, = 0 be the space of all continuous n-vector-valued fune-
tions on the interval [t,, 4 ). By C} we denote the space of all func-
tions in C,, which are bounded on [t,, + o), under the norm
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where ||« || is the Euclidean norm in R". C; will be the space consisting
of all functions in C,, which have a finite limit as ¢ — + oo. The space
C,, is a Fréchet space if its topology is that of the uniform convergence
on compact subintervals of [t,, + ). The spaces C}, C} are Banach spaces.
For zeCi, let I, = lim,.. x(t). A set KcC} is compact if and only if it
is uniformly bounded, equicontinuous and “uniformly convergent” in the
following sense: for every ¢ > 0 there exists d(¢) > 0 such that [|z() — I.|| <
g, for all ¢t > d(c) and all x€ K. For a proof of this statement the reader
is referred to Avramescu [2]. For a matrix A(¢, ®) = (a;;(t, x)) on [t,, + =) X
R i,5=1,2,--+,m, we put ||A({, @)| = max;;|a;(, @)|. By Si,r>0
we denote the ball {f; feC}, || fll, < 7}. We also make use of Tychonov’s
fixed point theorem as quoted in Hartman’s book [4]:

“Let L be a linear, locally convex, topological, complete Hausdorff
space. Let M be a closed, convex subset of L and T: M — M be a con-
tinuous operator such that the closure of TM is compact. Then T has
a fixed point in M.” v

For the system (III) we suppose that A, F' are nm-vector-valued func-
tions, which are defined and continuous on R, X R", where R, = [0, + o).
By a solution of a system of the form (III) we mean any function &< C;,
(= the space of all continuously differentiable f e C,), which satisfies (III)
on the interval [t,, + o). The number ¢, will depend on the particular
solution under consideration. By x(t, ¢, ©,) we denote a solution of (III),
which passes through the point (¢, x,) at time ¢,. A solution of the system
(II) will always be denoted by y = y(t, t,, ¥,)-

The following definitions of convergence are given by Avramescu in
[2].

(i) System (III) is said to be “convergent” if lim,_, 2(t, &, %,) = . (,, @)
exists and is finite for each (¢, x,) € R, x R".

(ii) System (III) is said to be “equi-convergent” if it is convergent
and to each triple ¢ > 0, @ = 0, £, = 0 there corresponds a function T'(t,, «, €)
such that

”x(t: to: wo) - lz(to, xo)” <eé

for every ¢ > T(t, a, €) + t,, and every z, with ||2,]| < a.

(iii) System (III) is said to be “equi-uniformly convergent” if it is
equi-convergent and T does not depend on ¢,

(iv) System (III) is said to be “coalescent” if it is convergent and
1.(0, z,) is a constant.

(v) The solutions of (III) are said to be “uniformly bounded” if for
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each a = 0, t, = 0 there exists a function g(a) = 0 such that ||«(t, t,, 2.) || <
B(a) whenever ||z,|| < a and ¢ = ¢,.

2. Our first result guarantees the existence of convergent solutions
x(t, t,, @,) of System (III) for any (%, @) € [0, + <) X R" provided that this
is true for the system (II).

THEOREM 1. Assume that y = y(t, &, ¥,) ts a solution of (II) and
(1) ”A(t, 'Ul) - A(t’ vz)” :_—<_ Q(t: “'vl - vz”)
for every t=t, and every v, v,€ R*, where q:[t,, + ) X [0, + ) —
[0, + o) is continuous such that
lim inf (1/n) S” sup g(t, || uldt = 0 ;
n—voo toliullsn
(ii) lim (1/n) Sjlf}llgp IF(, 5 + w)|[dt = 0.
Then there exists a solution x(t, t, x,) of the system (III), for any
(2‘0’ xo) € [tm + oo) X Rn.
ProoF. Given (%, @,) € [t, + =) X R", the conditions (i), (ii) imply the
existence of an m, such that
(1) Mz = wll + (1A v+ 5 = At wlae + [IFE y + £)lide =,
0 to
for any function feS;. Now, consider the operator T:Si’— SZ’ with

(2) o) = (THO = — v + S;[A(S, Y(s) + S (9)) — Als, y(s))lds

+ [ Fe, v + Fo)ds

To show that the ball S’ is closed w.r.t. the topology of uniform
convergence on compact subintervals of [, + ), let f,eS% be such
that f,—fe C;"o uniformly on every compact subinterval of [Z,, + o).
Then, since lim,..|/f.@®) || = [|f(¢)|| and ||f.(t) ]| < n, it follows that
/@) I, = ne, which shows our assertion. Now let f,, feS:° be as above.
Then from (2) we obtain

(3)  ITF = TIf s = | 114G, 4(s) + £,(8) ~ Als, 9(e) + ) lds

+ [2I1FG, 06 + £2(9) = Fls, o) + s ds

Since the integrands in the right-hand member of (3) are bounded by the
integrable functions
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sup q(t, |[|u]]) and”S”up || F(t, y + w)l|
[ gno

[luils2ng

respectively, it follows from Lebesgue’s dominated convergence theorem
that lim,_.. || Tf, — Tf|l; = 0. The rest of the proof of the fact that T
has a fixed point in S;’;“ follows as in Kartsatos [5] and we omit it here.
Let (Tw)(t) = v(t), te[f, + ). Then putting x(t) = v(t) + y(t), we obtain
#(t,) = x, and the theorem is proved.

COROLLARY 1. Assume that System (II) has a solution y(t,t, x,) for
every (t,, ©,) € [0, + o) X R™ such that lim,_., y(t, t, 2,) = (L, x,) and it is
known “a priord’ that if x(t, i, x,) ts a solution of System (III), then it
18 unique with respect to the inmitial condition x(t,) = x,. Then, provided
that the hypotheses of Th. 1 are satisfied for every solution y(t,t, x,) of
the above type, System (III) is convergent.

Proor. It is evident that the solution z(¢, ¢, x,), guaranteed by Th.
1, has a finite limit as ¢— + oo, because lim,, v(¢, ¢, 0) exists and is
finite, where v(t, t,, 0) = x(¢, &, @) — (¢, &y, o).

In what follows in this section, the systems (II), (III) will be supposed
to have unique solutions with respect to any initial conditions (¢, x,) €
[0, + ) X R". The next theorem ensures equi-convergence for System
III).

THEOREM 2. Under the hypotheses of Corollary 1, assume further
that the systems (II), A1) are uniformly bounded and that System (II) s
equi-convergent. Then System (III) is equi-convergent.

ProOF. Let h,(t) = max,, < ||F(¢, w)||, ¢t = 0. Since the Systems (II),
(III) are uniformly bounded, it follows that for every a > 0 there exists
a function B, (@) = 0, (B,(@) = 0) such that

(4) l%(t, to, %) || < Bu(a) for [|z|| < and t =4,
(ly@, t, ¥ || = Bu@) for [|y,|| = and t = 1,) .

Let (¢, t,, %), y(t, t,, ,) be two fixed solutions of (III), (II) respectively,
which satisfy (4). Then for B(a) = B.(a) + B.(x) we have

(5) [ @(t, t,, @) — Y(t, &, %) || = Bla) for t = ¢, .

Now let ¢(f, @) = SUpussw q(t, ||%]]), t = 0. Then it follows from (i)
of Th. 1 that

(6) S:q(t, Q)dt < + oo .

Since System (II) is equi-convergent, for every ¢ >0, @« = 0, t, = 0, there
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exists a function 7T'(¢, a, €) such that ||y(t, t,, x,) — 1,(t, %) || < &/3 for every
t > T(t, a, ) + t, and every x, with ||z,[| S a. Let ¢ >0 and fix « as
above. Since by Corollary 1 System (III) is convergent, lim,_. «(¢, ¢, x,) =
l.(t,, x,) exists and is finite (the limit I,(¢,, ;) does not depend on w(f) but
we use this notation in order to distinguish from the limit of y(¢, ¢,, &,))-
Moreover, for ¢t = t,

(7) Bt t, 5 — Wt t, ) = || [4(s, 2(6)) — AGs, y(s)]ds
+ [L s, a(e)ds
Taking the limit as ¢t — + o in both sides of (7), we obtain
(8) Lulty @) = bt m) = | [A(s, 2(s) — Als, y(s)lds + " Fls, afs))ds
which, combined with (6) and (7), yields

(9) |||x(t, toy T) — L(E, o, Zo) || — [Y(E, Lo, @) — Ly(oy %) Hl
= 1146, #(9) — AGs, ¥ [ds + |11 F(s, o) l1ds

= a6, @ds + | hiwds ,
t t
where ¢ = t,. Let T(t, a,¢) = T\(t, «, €) be such that
|[ats, ds < /3, [ ham(eds < of3

for every t = T(t, @, €) + t,. Then, for ¢t > T(t, a, €) + t,, (9) implies
(10) [[@(t, to, @) — Lu(to, o) [| < ||¥(2, toy Xo) — Ly(to, @) || + 263 < €,
which proves the equi-convergence of System (III).

COROLLARY 2. Under the hypotheses of Corollary 1, assume further
that the systems (II), (III) are uniformly bounded and that the System (II)
18 equi-uniformly convergent. Then the System (III) is equi-uniformly
convergent.

The proof is the same as that of Th. 2. T is now independent of ¢,
since so is T..

We show now that the conditions on 4 in Th. 1 prevent System (II)
from being coalescent.

THEOREM 3. If A satisfies (i) of Th. 1, then System (II) canmot be
coalescent.
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PRrROOF. Suppose that System (II) coalesces at the point y., and con-
sider the integral equation

(1) ot) = ¢ — | [AG, o) + ¥(s) — Als, ¥)Ids

where y(t, 0, y,) is a fixed solution of (II) and [[£|| > 0. By the method
used in Th. 1 (cf. also Kartsatos [6]) it can be shown that (11) has a
solution v = (¢, t,, v,) defined on [0, + «) and such that lim,.. v(t) = &.
Letting 2(t, 0, z,) = v(t, 0, v,) + ¥(¢t, 0, ¥,), we obtain lim,_., 2(¢, 0, 2,) = & + Y.,
a contradiction to coalescence.

3. In this section we study systems of the form
Iv) ¥ = A, x) + G, v)x ,

where the n X n matrix G is defined and continuous on [0, + «) x R"
We first give a theorem concerning the existence of solutions of (IV) in
t» By St we denote the ball {f; feC} and || f]|, = r}.

THEOREM 4. Assume that for each f e Ci, the system
Ivy) uw = G@, flw + A(t, f)

has a unique solution wu(t, t, u,) € Ci, where u, is a fived vector in R".
Moreover, assume that

(1) GG, NIl = o) for every (¢, ) €lt,, + o) X Ci, where p is con-
tinuous and such that Swp(t)dt < + oo
to

o

i) lim inf (l/n)S sup || A(, w)||dt = 0

tollullsn

Then, there exists a solution x(t) of the system (IV) which belongs to
the space Ci.

ProoF. Let T be the operator which assigns to each function f € C}
the unique solution u e C}(u(t,) = u,), of the system (IV,). We first show
that there exists a ball S;;™ such that T(Si™)c Si™. In fact, assume
that this is not true. Then there exists a sequence {f,},n=1,2, ---
such that f,eS;" and || Tf.|, > n. Putting u, = Tf, we obtain

(12 w(®) = o + || Glo, Fu@)ual)ds + || Als, £,(0)ds

which implies

18) (@ S Nl + [ 11Glo, £u(6) 1) [ds + | 11 4Gs, £u(5) s -
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An application of Gronwall’s inequality in (13) implies
1 1wl S (il + | 146, 76) Ids) exp | |“prat]
0 0

or

[all < [ toll 4 1" sup || A¢s, ) lds |exp | "pit)ie |

From inequality (14) we obtain lim inf, . ||%,||//n = 0, a contradiction. To
show that the set T'B(B = S;;™) is equi-continuous, let ¢’,t” be two points
in [t, + o) with ¢" = ¢’. Then we obtain

15) N @) — w®) | = | 166, 7o) lllua(e) Ids + | 1146, £.(5) 1ds

< nOS::'P(t)dt + S sup || A(s, u) ||ds -

t’ liullsng

The rest follows as in [5] and we omit it here. Now let \, = lim,_, u,(¢).
Then we have

(16) M=+ TG L)ua0at + | A, fut)dt
and, consequently, '
AN l® = Ml S w16l @) ids + | T11AG, £.60) s

< nOS“P(s)ds + S” sup || A(s, u)||ds .
t t |luljsng

It follows from (17) that TB is a uniformly convergent family. Since
TB is bounded, equicontinuous and uniformly convergent, it is compact
in Ci. To show that T is continuous, let lim,_. ||f. — fll, = 0, f., f€ B.
Since the set T'B is compact, there exists a subsequence {u, } of {u, = Tf,}
such that lim,_.. ||u;, — u||, = 0, where u is an element in TB. Now since
the sequence G(t, f3,(t)u,, (), A(t, fi,(f)) converge pointwise to G(t, f)u(t)
and A(t, f(t)) respectively, and

(18) |G, fr,@ur, () — G, f(O)u®) || = 2n,p(t) ,
14, £u,0) — A, SE)1 < 2 sup | A, 0]

and application of Lebesgue’s dominated convergence theorem shows that
Tf = u. Since we could have started with any subsequence of {Tf.,}
instead of {Tf,} itself, we have actually shown that every subsequence of
{Tf,} contains a subsequence converging to 7f. This proves the continuity
of the operator T. By Tychonov’s theorem, T has a fixed point in Si™,
and this proves the theorem.
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REMARK. Assume that the perturbation F'(¢, ) in System (III) is
continuously differentiable with respect to . Then this function satisfies
(19) F(t, x) = G¢, v)x + F°t, ©)

where F(t,x) = F;(t, x,, @5, +++, ;_1, 0, %;4,, +++, ®,) and G° is a diagonal
n X nm matrix, whose diagonal elements are given by

(20) Gu(t, @) = | 2l B By 2, Ty 20y g,
0 0x;

Thus, Theorem 4 holds for systems of the type (III) with perturbations
like (19), under suitable assumptions on the functions G(¢, ), F?(t, x). Th.
1 holds if we interchange the limit conditions on the integrals in (i) and
(i). However, the conditions were imposed only in order to guarantee
that for some n,, TS{-?CS};". It is evident that they can be avoided if we
are only interested in the existence of solutions for all large ¢, provided
of course that the functions q(t, [|«||), F(¢, ¥ + v) are eventually uniformly
bounded by integrable functions depending only on ¢ and (¢, ) respectively.

Analogous remarks can be made for Theorems 4 and 5.
The author wishes to express his thanks to the referee for his helpful
suggestions.
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