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1. Introduction. The original motivation for this work was the fol-
lowing idea. Suppose one could prove that if T:Sn —> Sn is a PL involution
without fixed points, then there exists a PL sphere Sn~1c:Sn such that
rpgn-ι _ gn-i# rĵ jg w o u i ( j constitute the induction step in a proof that
each fixed point free PL involution on Sn is conjugate, in the group of
homeomorphisms of Sn, to the antipodal map, SI. In the smooth case,
one might try to argue in a similar way, but with due regard for the
groups θn, [8].

This idea does not work. There are obstructions to finding a PL
sphere Sn~' in Sn such that TS*"1 = S*"1 when n is odd. When n = Ak - 1,
there is a symmetric bilinear form whose index is determined by the pair
(Sw, T) and which is the obstruction in this dimension. When n — 4fc + 1,
the bilinear form is skew-symmetric with an associated quadratic form
ψ0 (over Z2). The obstruction in this case is the Arf invariant of ψ0.
Similar obstructions are encountered in trying to answer the following
question: Suppose SQ"1 and Sΐ"1 are two spheres in (Sn, T) such that
TSΓ1 = SΓ\ i = 0,1. Then are the involutions (SJΓ\ ΪΊSJ1"1) and (SΓ\
TISΓ1) equivalent? Here we call two involutions (Sl9 7\) and (S2, T2) PL
or smoothly equivalent if there is an equivariant homeomorphism, PL or
smooth, of (Si, Γi) onto (S2, T2). This paper supplies the proofs of the
theorems announced in [5]. Since the work described here was com-
pleted, (in 1965) much progress has been made in classifying fixed point
free involutions, smooth or PL, on homotopy spheres. It does not seem
appropriate to list here all of these works, especially since the thesis [9]
of Santiago Lopez de Medrano contains a complete bibliography of this
subject. Let it suffice to say that many of the obvious questions raised
here have now been answered. See, in particular [9] and [21]. We shall
work in the smooth category, but all of the results hold in the PL category.

2. Characteristic submanifolds. Let T: W —* W be a smooth, fixed
point free involution of the smooth manifold W. Denote the orbit space

* During the course of this research, both authors were partially supported by N.S.F.
grants.
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(quotient space) by WIT. Then π: W-+ W/T is a principal Z2-bundle, and
is classified by a map g: W/T—>PN (real protective iV-space) for Nlarge,
[16] Choose a smooth map h: W/T-+PN homotopic to g and transverse
regular [19] on PN~\ Then h lifts to an equivariant map h: (W, T)-+
{SN, 2t) which is transverse regular on SN~ι c SN. Let E and F be the
upper and lower hemispheres of SN. Then if A = h~ιE and B = Ar\F,
we have TA = B and Af]B = M = Ar̂ S*""1) is a Γ-invariant submanifold
of TF of codimension one.

DEFINITION. If M is a smooth submanifold of codimension one in W
such that W = AU B where A Π B = Λf and ΓA = £, then Λf is a cftαr-
acteristic submanifold of (TF, Γ).

REMARK. It is easily seen that an equivariant map of M into S^"1

may be extended to a map of (A, M) into (E, S^"1) with A — M mapping
into E — SN~\ and then to an equivariant map of W into SN which is
transverse regular on SN~\ Hence all characteristic submanifolds arise
by the above construction, starting with the classifying map.

Let us specialize now to the case W = Σn, a smooth homotopy sphere
of dimension n. The following lemma is the first step in making a char-
acteristic submanifold MaΣn as highly connected as possible.

LEMMA 2.1. If T: Σn —+ Σn is a smooth, fixed point free involution
and n > 1, then Σn contains a connected characteristic submanifold.

PROOF. Let M be a [characteristic submanifold. Then M/T carries
the unique non-zero element of Hn-ι(Σn/T; Z2), dual to the 1-dimensional
cohomology class f*x, where x generates Hι(PN) and f: Σ/T-+PN is the
classifying map. Hence a (unique, by the ring structure of H*(Σ/T; Z2))
component of M/T carries this element, which implies that the double
covering, Λf0, of this component in Σ is connected. It is clear that the
involution interchanges the two components of Σ — Mo, so that Mo is a
characteristic submanifold.

LEMMA 2.2. // n>3, then there exists a 1-connected characteristic
manifold M? c Σn+1.

PROOF. Let M be a connected characteristic manifold. Let glf , gk,
Tgu , Tgk be a (possibly redundant) set of representatives of generators
for TΓiίΛf), consisting of disjoint, simple closed, smooth curves. The proof
of lemma 3.1 of [4] may now be applied to this situation, with a little
care taken to see that the modified manifold remains Γ-invariant. This
care amounts to choosing, for each disc d* with boundary ddi = giy the
disc Tdi as the disc whose boundary is Tg{. We may suppose dt and Td{
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are disjoint since n + 1 ̂  5.
Lemmas 2.1 and 2.2 are the first two steps in the process of trans-

forming Λf, by equivariant handle exchanges into an [(n — l)/2]-connected
characteristic manifold. The induction step is the following.

LEMMA 2.3. Let n^5. If Σn+1 = Ak^ U Bk_u where TAk_x = Bk^,
and Ak_t Π Bk^ = Mk^ is a smooth, (k — l)-connected n-submanifold, then,
for k^[(n- l)/2], Σn+1 = Ak U Bk, where TAk = Bk, and AkΓiBk = Mξ is
a smooth, k-connected, n-submanifoid of Σn+1.

PROOF. We shall indicate the proof only for the case n odd and
k = (n — l)/2, since this case contains all of the ideas for the other cases.
Let Ak^l9 Bk_u Λffc-1 be as above. Then from the Mayer-Vietoris sequence,

> Hk+1(Σ«+1) -> Hk{Mk^) - Hh(A^ θ Hk{Bk^) -> Hk(Σ^)

is exact, and hence, since n + 1 > k + 1, and k > 0,

0 -> Hk(Mk^) -+ Hk{Ak^) 0 Hk{Bk^) - 0

is exact. Let a: Mk^ -• Ak_x and β: Λffc-1 —• Bk^ be the inclusions. Then

Hk{Mk_ύ = ker (α* φ ker /S*, and T* ker α* = ker /3* .

Further, /3*: ker α* —> Hk(Bk^) and #*: ker /3* —> Hk{Ak^ are isomorphisms.
Let a; be a non-zero element of kerα:*. By the Hurewicz isomorphism
theorem and results of Whitney (see for example [11], lemmas 6.11 and
6.12) x is represented by an imbedded sphere iSk c AΓt_i. Since 2k < n,
a general position argument allows us to assume iSk Π TiSk = 0 , or one
may argue as follows: the imbedding of Sk into Mk_ίf followed by the
projection π: Λf*_i—>Mk̂ /T (the quotient space) may be approximated by
a homotopic map g:Sk->Mk__1/T which imbeds Sk in MkJT, [11]. Then
π~ι{gSk) = iSk U TiSfc is a disjoint union of spheres, where iSk represents
x, by the covering homotopy theorem.

Since α ekerα:*, iSk bounds a singular disc iDk+1czAk_l, which we
may suppose is smooth and meets Mk^ orthogonally, only at points of
iSk. By an argument due to Milnor [12], we may suppose that Dk+1 is
actually imbedded in Ak^. Supposing that Mk^ is totally geodesic [13]
in a neighborhood of Sk, we may imbed Dk+1 x Dn~k in Ak_ί9 using the
exponential map from a suitable neighborhood of the zero cross-section of
the normal bundle of Dk+1 in Ak^ so that, if i denotes this imbedding,

1) i(Dk+1 x Dn~k) n Mk^ = Sk x Dn~k,
2) Bk_! U i(Dk+1 x D%~k) is a smooth manifold with boundary except

for a corner along i(Sk x dDn~k).
We may further suppose, since iSk Π 2 W = 0 , that i(D*+1 x Dn~k) n
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Ti(Dk+ι x Dn~k) = 0 . Let i(D fc+1 x Dn~k) = N, and let N be the interior
of N relative to Ak_,. Now let Aί_i = A - i U TN - N, BLi = 5fc_1 U AT -
2W. Now smooth the corners equivariantly on Ak^ and 2?,Li to get Ak^
and Bί^.

The above constructions may be carried out for k ^ [(n — l)/2]. We
now shall assume n is odd and k = (n — l)/2, and show that the above
process for obtaining Ak^ and B"-γ from Ak_γ and Bk^, called equivariant
handle exchange, can be repeated until the resulting characteristic sub-
manifold, Mk, is ^-connected. The argument is simpler for k < (n — l)/2.
Before completing the proof of lemma 2.3, we need an additional lemma.

LEMMA 2.4. If Hk{Mk_^ = Fr 0 £, wftere F r is /ree abelian of rank
r and % is a finite group, then Mk_ί can be replaced by Mf

k_γ by equivariant
(k + l)-handle exchange, so that Hk{M'k_ύ = Fr__2 0 %.

PROOF. Let x, as above, be a basis element for an infinite cyclic direct
summand of ker a* <z.Hk{Mk_ΐ). Then since the sequence

is exact, and a* is an epimorphism, there exists a unique y e Hk+1(Ak_ί9 Mk_^
with dy = x, and y generates an infinite cyclic summand in Hk+1(Ak^u Mk^).
Then by Poincare duality, there exists ueHk+1(Ak^ such that y u = 1.
Hence S'k = dDn~k is homologically trivial in A — N. The appropriate
Mayer-Vietoris sequences give the exact sequences:

0 > Hk(Sk) > Hk(Bk^) > Hk{B^ UN) , 0

and

> Hk(S'k) — Hk(A -N) > Hk(A) > 0 .

Hence Hk(Bk^) ~ Hk(Bk^ U N) 0 Zand Hk{Ak^) s E έ ( A w - N), where
Z is generated by β*x. Notice that dT*y — T*x, where T+x9 represented
by TSk, generates an infinite cyclic summand of Hk(Ak^ — N), and
T*y T*u = ± 1 . Hence TS'k is homologically trivial in Bk^ - TN, hence
also in Bk^ UN— TN. Again, from the appropriate Mayer-Vietoris se-
quences, we have exact sequences

0 > Hk(TSk) > H^A^ -N) > Hk(Ak^ -NϋTN) . 0
and

> Hk(TS'k) — Hk(Bk^ UN- TN) > Hk(Bk^ U N) > 0 .

Hence Hk(Ak^) s Hk(Ak^ - N) ~ Hk(Ak^ - N\J TN) 0 Z, where Z is



FIXED POINT FREE INVOLUTIONS ON HOMOTOPY SPHERES 73

generated by a*T*x, and

ff*(ίw U N - TN) 0 Z s iίfc(5fc_1 U iSO θ ^ = fl*(B*-i)

This completes the proof of Lemma 2.4.
By a finite number of applications of Lemma 2.4, we may reduce

Hk(Mk^) to a torsion group.

REMARK. Notice that the process used in Lemma 2.4 does not change
%, a fact which will be of importance later.

In order to kill the torsion elements in Hk{Mk_^, we need to use
linking numbers. Let L(x, y) e Q/Z be defined as in [15], page 524. (See
also [8].) Since for x e ker α* or ker β* c Hk(M), L(x, x) = 0, the applica-
tion here is somewhat different from that in [8]. There are two cases
to consider.

(a) If L(x, T*x) = 0, where α ekerα:* ciHk(Mk^1)9 which we now may
suppose is finite, then with Sk, S'fc, N and N as before, we see that TSk

represents an element in Hk(Ak^ — N) whose order equals the order of
/3*#eiϊfc(J3fc_i), represented by Sk. Now

Hk(Ak^ - N;Q) = i P ( Λ - i - N;Q) = Hk+2(Ak^ - N, 3(Afc_x - N); Q)

= Hk+2(Σ, Bk^ ΌN Q)^ Hk+1(Bk^ U N; Q) .

Since Hk^{Bk^\ Q) = 0, (by Poincare duality, if Hk(Mk^) is finite, then
since Mk^ is (k — l)-connected, Hk+ι(Mk^ = 0) we see that ίiΓ

fc+1(J5fc_1 U
N; Q) = Q. Hence H^A^ — N) is the direct sum of a finite group and
an infinite cyclic group. From the Mayer-Vietoris sequence of (Ak_l9 Ak^ —
N, N) we have the exact sequence

- Hk(S'k) - S ^ M -N)-+ Hk{Ak^) - 0 .

Since Hk(Ak^ is a finite group, and Hk{Ak^ — N) has an infinite cyclic
summand, we see that the sequence becomes

0 — Z-^ZΛ- G'->G->0,

where G' and G are finite groups. It is now easy to verify that G' has
no more elements than does G. Hence the torsion subgroup of H^A^—N)
is no larger than that of Hk(Ak^). The Mayer-Vietoris sequence for
(Afc_! — N U TN, Ak_! — N, TN) now gives us the exact sequence

-* Hk(TSk) — Hk(Ah^ -N)-+ Hk(Ak_x - Nl)TN)-+0,

where the generator of Hk(TSk) maps to an element of finite order in
Hk(Ak^ - N). Therefore, the torsion subgroup of fft(Aw - N{J TN) is
smaller than that of Hk{Ak^ — N), and thus smaller than that of Hk(Ak_^.
The same is obviously true of Hk(Bk^[jN- TN) and Hk(Bk^). Now,
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by an equivariant handle exchange, we may kill the free parts of
Hk{Bk^ \JN— TN) and Hk(Ak^ - N U TN) without changing the torsion
parts, by Lemma 2.4. (See Remark following Lemma 2.4.) Thus in case
there exists seeker a* such that L(x, T*x) = 0, the number of elements
in Hk{Ak_ύ and Hk{Bk_^) may be reduced by equivariant (k + 1)-handle
exchange.

(b) Now suppose L(x, Tx) Φ 0, where x, Sk, S'k, N, and N have the
same meaning as above. Let I be the order of x in Hk{Mk^ Suppose
L(x, Tx) = I'll, where 0 < V < I. Since 3: iΓH 1(Aw, Mk^) — Hk(Mk^) is
an isomorphism of Hk+ι(Ak_u ikffc_1) onto ker a* there exists a unique y,
of order I, in Hk+1(Ak^lf MA._1) such that 3# = x.

Let LM(= L, above) denote the pairing, by linking from ker a* x
ker β* c Hk{Mk_ύ x Hk{Mk^ to Q/Z, and let LA denote the pairing, by
linking, from Hk+1(Ak_lf Mk^) x Hk(Ak^ to Q/Z. These functions are
related as follows: LΛ(u, a*v) = LM(du, v). In particular, if Dk+ί is a disc
in Ak-t with boundary Sk, and brackets { } denote homology class, then
LM(x, Tx) = Z'/i implies that LΛ({Dk+1}, {TSk}) = V/l.

Hence we see that VS'k is homologous to lTSk in A/b_1 — N, and that
ίίfc(Afc_1 — JV) has one infinite cyclic summand. From the Mayer-Vietoris
sequences, we may extract the exact sequences

0 -> Hk(S'k) - Hk{Ak^ -N)-+ Hk(Ak^) -* 0
and

0 — Hk(TSk) -+ H.iA^ - N) -+ Hk{Ak_, - N{jTN)-+0 .

Let ε' denote the image of the generator of Hk(S'k) in Hk{Ak^ — N), and
let ε denote the image of the generator of Hk(TSk) in Hk(Ak^ — N). Then
the relation l'S'k — lTSk in Ak^ — N implies that i'ε' = lε. It is now an
easy exercise with indices of subgroups to show that Hk{Ak^ — JV" U TN)
has fewer elements than does Hk{Ak^* Hence we see that by equivariant
handle exchange, we may reduce the size of Hk{Ak_^, whether or not
L(x, Tx) = 0. By iterating these processes, we may finally obtain a k-
connected characteristic submanifold Mk = Ak Π Bk, where Ak U Bk = Σ2k+1,
and TAk = Bk. This proves Lemma 2.3. Lemmas 2.1-2.4 imply

THEOREM 2.5. If n ^5 is odd, then (Σn+ί, T) desuspends to (Sn, T/Sn)
for some T-invarίant Sn c Σn+\

3. The signature of (Σ4k+S, T). In order to define this invariant and
not merely its absolute value, we must make some choices. First, fix an
orientation for Σ4k+3 and an orientation for each standard sphere

S°dS1c: ••• c S ^ c S ^ c . . . ,
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on which the antipodal map, St, acts. This will now determine an orienta-
tion for any characteristic manifold J l ί c l as follows. Let / : (Σ, T) —>
(S4k+B, SI) be a smooth, equivariant map, transverse regular on S4k+2, such
that /~1(S4A;+2) = M. Furthermore, require / to be orientation preserving.
Then there is a unique orientation of τ(M), the tangent bundle of M,
such that a) τ(M) © v{M) = τ(Σ) \ M, where τ(Σ) is the oriented tangent
bundle of Σ, and b) τ(S4k+2) @f*v{M) ~ τ(S4k+3)\S4k+2, where τ(S4k+z) is
the oriented tangent bundle of S4k+3, and v{M) is the normal bundle of
M, oriented so that b) holds. Intersection numbers are now defined as
follows. If xeH2k+1(M), let xeH2k+1(M) denote the Poincare dual of x
(that is, x Π μ — x, where μ is the generator of Hik+2(M) determined by
the orientation of τ(M)). Then if xf y e H2k+1(M), the intersection number,
x"y, of x and y is defined by x y = <β U y, μ} where < , > denotes Kronecker
product. In terms of this bilinear form, a related bilinear form, B, is
defined which determines the signature σ(Σ4k+3, T).

DEFINITION. If x, y e H2k+ι(M), let B{x, y) = x T*y.

LEMMA 3.1. B is a symmetric, unimodular bilinear form on the
quotient of ker a* modulo its torsion subgroup.

PROOF. The intersection form, x y, annihilates torsion elements, and
by Poincare duality, has determinant ± 1 on H2k+1(M)/X(H2k+1(M)), (X(G)
denotes the torsion subgroup of G). If x, y e ker a*, then x and ^belong
to the image i*H2k+1(A). Let x = ί*uf y = i*v. Then

x. y = (i*u U i*v, μ) = (u U v, i*μ) = (u (J v, 0> = 0 .

Similarly x y — 0 if x, yekerβ*.
Hence the form x y, when restricted to kerα:^ x ker/S^ (modulo

torsion) has determinant ± 1. Since T* kerα^ = ker β+, B has determinant
± 1 when restricted to ker a* modulo its torsion subgroup. B is sym-
metric since

B(x, y) = (xϋ T*y, μ) = - (T*y U x, μ) = - <T*(y U T*x), μ}

= - <» U T*x, T*μ} = (yϋ T*x, μ} = B(y, x) .

Note that Ύ%μ — —μ since T preserves orientation in Σ4k+3

y and hence
reverses orientation in M, since T interchanges the components of Σ — M.

DEFINITION. The signature, σ(Σ4k+ti, Γ), of the fixed point free, smooth
involution T on the smooth homotopy sphere Σ4k+3 is the index of the
symmetric bilinear form B defined on ker a* (modulo torsion) c H2k+1(M)/
%(H2k+1(M)), where M is some characteristic submanifold of (Σ4k+\ T).

Clearly, for this definition to have any meaning, we must prove
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σ(Σ4k+3, T) is independent of the choice of characteristic submanifold, M.

LEMMA. 3.2. Let Mo and Mt be two characteristic submanifolds in
(Σ4k+\ T). Let Mo and M1 determine σo(Σ4M, T) and a^4k+\ T), respec-
tively. Then σ0 = σt.

PROOF. MO and M1 determine equivariant, smooth maps /<,, ft: (Σ4k+3, T)—•
(SN, SC) with N large, transverse regular on S^"1, and with / Γ 1 ^ " 1 ) = Mi9

i = 0 ,1. Since /O/Tand fJT classify the same Z2-bundle, they are homo-
topic, by a map F: (Σ4k+* x I)/T x 1-+PN. We may suppose that F is
smooth, and transverse regular on PN~\ F then is covered by an equi-
variant homotopy F: (Σ4k+d x /, T x 1) -> (SN, 31) such that F-\SN~ι) is a
characteristic submanifold W of (Σ4k+* x /, T x 1) with dW = M, - Λf0.
(We identify Mi with Mt x i c I7 x /.) We now have I x / = C7 U F,
with t/Π F = W,dU= AoU WUAlfdV = B0\J W\JB19Σ x 0 = AoUBo,
Σ x 1 = A, U J5i, Ao Π Bo = ikf0, Λ Π B, = Mλ.

Consider the commutative diagram

0 > H2k+ί(M0) J^lM, H2k+ί(A0) Θ H2k+1(B0) > 0

l m o * I u

0 > H2k+ι(W) -^i^U H2k+ι(U) 0 .

0 , HtM(Md - ^ Ά H2k+1{A.) Θ ^ ( ΰ i ) > 0

where the maps are all induced by inclusions and the rows are taken
from Mayer-Vietoris exact sequences. Let j:dW—*W be the inclusion
(so j = nioφm^y and let x, yekerj*. Then x, y (Poincare duals) belong
to j*H2k+1(W), so

B{x, y) = (x U T*y, μ) = <j*(x' U Γ*»f), i"> = <»' U Γ*»f, i*i«> = 0 ,

where xr, yf e H2k+1(W) are chosen so that j*x' = x, j*y' = y. Hence ker^^
is contained in its annihilator with respect to B. R. Thorn, [20], has
shown that the rank of ker j* is half the rank of H2k+1(dW). What remains
for us to prove is that ker i* Π (ker tf0* ® ker a^) has half the rank of
kerα 0* 0 k e r α l s ( s , since this will show that the subspace

ker j \ Π (ker a^ φ ker α1 #)

is its own annihilator will respect to B, which implies that B has zero
index on kerα 0* φ k e r α 1 H ί , or that σ0 = σx.

Since rank (ker;/*) = rank (ker a0* φkerα l 5 ( ί ) = (1/2) rank (Hik+ί(dW)), it
is enough to show that
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keri* = keri* n (kerα0* + ker a^) 0 ker j \ Π (ker/30*

since T* interchanges these two summands, and hence they have the same
rank. But this follows from the commutativity of the above diagram.
This proves the lemma.

THEOREM 3.3. Ifk>0, (Σ4k+\ T) can be desuspended to (Sik+2, T\Sik+2)
for some T-invariant S4k+2 c Σik+Z if and only if σ(Σik+\ T) = 0.

PROOF. If (Σ4k+\ T) contains a T-invariant Sik+2, then since Sik+2 must
be a characteristic submanifold, we must have σ(Σik+*, T) — 0. Now sup-
pose σ(Σ4k+*9 T) — 0. By lemma 2.3, there is a 2&-connected characteristic
manifold, M4fc+2 By the Hurewicz isomorphism theorem, and by a theorem
of Whitney, (see [12]), we may represent a basis for kerα* in H2k+1(M)
by disjoint, imbedded spheres Su , Sm. Furthermore, we may suppose
that each intersection St Π TSi is transverse. We now see that B takes
on only even values along the diagonal, as follows. If p is a point of
Si Π TSi9 then so is Tp. Since the intersection points occur in pairs, and
each pair contributes either zero or ± 2 to the intersection number, it
follows that B(x, x) is even for each x in ker a*. (Actually, for the char-
acteristic manifold of dimension 4fc + 2, each pair of intersection points
oί S Π TS contributes ± 2, while for dimension 4&, each pair contributes
0 to the intersection number x Tx. This is easy to prove using frames
of vectors tangent to £ and TS, where S is an imbedded sphere repre-
senting the homology class x.)

REMARK. It is a fact, which we do not use here, that B{x, x) is even
whether or not the characteristic manifold M4k+2 is 2 fc-connected. The
proof of this seems to need the same cohomology operation used later to
define the Arf invariant. From lemma 4.5, we have

B2(x, x) = ψQ(x + x) + ψo(x) + ψo(x) = 0 mod 2 .

Before completing the proof of theorem 3.3, we need two lemmas.

LEMMA 3.4. // σ(Σik+\ T) = 0, then there is a basis for H2k+1(M),
where M is a 2k-connected characteristic submanifold,

eker/3* ,

such that B(Xi, x5) = B(yi9 yά) = 0, B(xif yά) = 8iS.

PROOF. Since the bilinear form B on ker a* has index zero and deter-
minant ± 1, and B(x, x) is even for every x e ker a* this is Lemma 9
of Milnor, [12].

LEMMA 3.5. // Sk is a sphere smoothly imbedded in M2k, a (k — 1)-
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connected characteristic submanifold in Σ2k+1, if Sk represents an element
of kera*, and if k > 2, then given a neighborhood N of Sk in M2k, there
exists a disc D2k+1 in A such that B U D is a smooth submanifold with
boundary in Σ, and D Π M is a tubular neighborhood of Sk contained in N.

PROOF. Since xekera*, it follows from the Hurewicz theorem that
Sk is the boundary of a singular disc in A. Using the collaring of dA,
we may suppose there are no singularities near the boundary. Then we
may apply Irwin's embedding theorem [7] to get a PL embedding
/ : Dk+1 —• A (in a PL structure on A compatible with its smooth structure).
If Df is a regular neighborhood of Dk+1 in A9 then B U D' may be smoothed
[6] to yield B U D.

NOTE. D may not be a tubular neighborhood of a smooth (k + l)-cell
in A whose boundary is Sk. In particular, when k = 3, S3 may be knotted
in 3D7, and not bound any non-singular smooth disc in D.

Now to continue with the proof of Theorem 3.3. Let Sl9 •••, Sn re-
present xί9 , xn. Then since B(xl9 asi) = 0, we may use Whitney's method
[22] to remove intersections between Sx and TS^ If St and ΓSi intersect
at points pl9 •• , p 8 , Tpl9 •••, Tp8, then since the intersection number at
Pi is the same as that at Tp19 there must be another point, say p29 such
that the intersections at pt and p2 have opposite signs. Choosing the arcs
and two-cells of Whitney's method equivariantly, we then simultaneously
remove the intersections at pl9 p2 and Tpl9 Tp29 without introducing any
new intersections with representatives of other basis elements. We may
therefore suppose that representing the basis xl9 , xn9 yl9 *"9yn for kerα:*,
we have disjoint spheres Su •• ,Sn,S[, « ,Sή such that StΠ TSj = 0 ,
Si Π TS'j = 0 , and S{ ΓΊ TSl consists of a single point where the intersec-
tion is transverse. The basis for T* ker a* = ker /3* now has these same
properties. Now apply lemma 3.5 to the sphere Si to obtain a disc ΰ c i .
We may suppose D Π M is disjoint from representatives of all other basis
elements of H2k+1(M). Then the appropriate Mayer-Vietoris sequence
becomes

0 > Z — H2k+1(B) > H2k+1(B ΌD) > 0

where h(ΐ) = xl9 Hence H2k+ι{B U D) is free with basis x29 , xn, yu , yn.
By Alexander duality, H2k+ι(A — D) is free with basis Txu , Txn,
Ty29 , Tyn. Now apply the above argument with B replaced by A — D9

and with D replaced by TD, to obtain B U D - TD = B\ Au TD - D = A'9
where Bf = TA\ A! Π B' — Mr is a 2&-connected characteristic submanifold
with rankίί2 k + 1(M') < raήkH2k+1(M). We may clearly continue this process
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until rank H2k+ι(Mιi)) = 0.

REMARK. Even when σ(ΣAk+*, T) Φ 0, the above process may be used
to reduce rank H2k+1(M) to a minimum value determined by the signature.

4. A cohomology operation. Let if be a simplicial complex with
T:K—>K a simplicial, fixed point free involution. Then K/T, (the orbit
space), is a simplicial complex and we may partially order the vertices
so that the vertices of each simplex are linearly ordered. This ordering
may then be lifted to an ordering of the vertices of K by defining v < v'
if and only if πv < πv', where π: K —> K/T is the projection. Clearly then,
v < v' if and only if Tv < 2V. With such an ordering we will have
Tip UiT) = Tσ Ui Tτ, where U* is Streenrod's cup-sub-i product, [17].

Let x e Zk(K; Z2). Then there exists an element vk e Ck(K; Z2) such that

k) x U* T*x = (1 + T*)vk .

To see this, observe that (1 + T*){x 11* 2%) = x Ufc T*x + T%x \Jkx = 0 since
for Λ-dimensional simplexes a and τ, σ \jk τ = τ \]k σ. (σ \Jk τ = σ if σ = τ,
and σ Uk T = 0 otherwise.)

Hence a cochain vk exists satisfying k). Now suppose cochains vk

9

vk+1, . . . , ^ f c + ί are defined, with vk satisfying k), vk+j satisfying

k + j) x Όk-j T*x + δvk+ά~ι = (1 + T*)vk+j for all

j , 1 ^ j ^ i and some i, 1 ^ ί ^ &. Then if i < fc, let vfc+ί+1 be a cochain
satisfying

k + i+1) xk-i^Px + δvk+i = (1 + T#

Such a cochain, ^ + ί + 1 , exists if and only if (1 + T*)(x U*-i-i ϊ7*^ + δvk+i) = 0.
To see that this is true, recall Steenrod's coboundary formula. From [17],
with Z2 coefficients, we have

S(u Ui v) — u Ui-i v + v U<-i w + §w Ui v + u Ui δv .

Hence

(1 + T*)(x U*

- a? U*-*-i

= δ(x U*-i Γ'a? + (1 + T*)vk+i)

= S(x U*-* T*« + δv*-1"'-1 + (1 + Γ#)ι;fc+ί)

- 0 .

Therefore, a cochain vk+i+1 exists satisfying (& + j) with i = i + 1, and
therefore by induction, cochains vh+j exist satisfying (k + j) for all j , 0 ^
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3 ^k.

LEMMA 4.1. vζ is uniquely determined modulo

dσ-ι(K; Z2) + (1 + TWάK; Z2) ,

for all i, k 5g i ^ 2k.

PROOF. Suppose vk and vk are two solutions of (k). Then

(1 + T*)(vk + vk) = 0 , so vk + vk e (1 + T*)Ck(K; Z2) .

Now suppose v*, v*+1, , vι and vk, vk+1, , vi are two sets of solutions
to (Λ), (k + 1), , (i), and that ^ + v' e dC^K; Z2) + (1 + T*)CJ'(iΓ; ^ 2 ) ,
for j < i. Then from (i), we have

a? U2fc_i Γ#α; + δ ^ " 1 = (1 + T*)Ψ

and

a? Un-i ϊ7*^ + δv*'1 = (1 + W .

Hence (1 + T*)(v* + ^ ) = δίv*"1 + i;*""1). By the induction hypothesis,

Therefore

so that

v*'+ v* e δσ-ι(K; Z2) + (1 +

We will now assume that K has a triangulation fine enough so that
for each simplex σeK,Stσ and St Tσ have no common faces. Since
T:K—*K is fixed point free, this can be accomplished by subdividing K
if necessary.

LEMMA 4.2. Modulo δC2k~ι + (1 + T*)C2fc, 'y2* depends only on the co-
homology class of x.

PROOF. Suppose vk, , v2k satisfy equations (k), (k + 1), , (2k), while
vk, , v2fc satisfy these equations with x replaced by x + δσ and vJ replaced
by vj, where by abuse of notation, σ denotes the elementary cochain
which is one on the simplex σ and zero elsewhere. One choice of v3' is
to let v3 = v3 + (T*x \J2k-j δσ) for k <^j <ί 2k. This is shown by induction,
supposing v3'-1 = v3~ι + (T*x {J2k-j+iδσ), and applying Steenrod's coboundary
formula again. Then by Lemma 4.1, v2k = v2k + (T*x (J <5tf) modulo dC2*"1 +
(1 + Γ*)C2*, for any choice of v2k. Now since δ(Γ*α? U σ) = T*α? U δσ, i72fc = ^2fc

modulo δC2*-1 + (1 + T*)C2*.
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Let H*(K; Z2) denote the equivariant cohomology ring of (K, T),
Hζ(K; Z2) the invariant homology group.

LEMMA 4.3. (1 + T*)V2k is a cocycle, and the cohomology class of
(1 + T*)v2k in Hτk(K; Z2) is uniquely determined by the cohomology class
of x in Hk(K; Z2).

PROOF. Since (1 + T*)v*k = x[jT*x + δv2k~\ it is clear that 8(1 + T*)v2k =
0. Uniqueness follows immediately from the previous two lemmas.

DEFINITION. Let ψ: Hk(K; Z2) -+ H}h (K; Z2) be defined by ψ({x}) =
{(1 + T*)v2k}, where x is a fe-cocycle and v2k is determined by x as above.

LEMMA 4.4. Let f: (K, T) —> (K\ T') be an equivariant simplicial
map. Then f*ψ = ψf*.

PROOF. We may partially order the vertices of K and K' so that
T and T' preserve these orderings, and so that / is order preserving.
This is done by ordering the vertices of K'jT' first, then ordering the
vertices of K/T so that f/T:K/T-+K'/T is order-preserving, (see [17],
page 294) and then lifting the ordering to K and K'. Then Theorem 3.1
of [17] applies, so that equations (&), (k + 1), , (2k) (of the beginning
of this section) for xf e Z*(K'; Z2) are transformed by /* into equations
(jfc), , (2k) for / V e Zk(K; Z2), with vk+j chosen as f*v'k+j for 0 ^ j ^ k.
Hence ψf*{x] = {(1 + T*)fv'2k) = {f(l + T*)v'2k) = f*ψ{x'}.

Given x e H£(K; Z2) and y e Hζ(K\ Z2). Define (x, y}τ as follows: choose
an equivariant cocycle u representing x and invariant cycle v representing
y. Then v = (1 + T$)w for some p-chain w. Now let (x, y)τ = u(w). It
is an elementary exercise to show that this is a well defined non-singular
pairing of Hf(K; Z2) and Hl(K; Z2) to Z2.

DEFINITION: If M2n is a 2^-dimensional, connected, smooth or P.L.
manifold with a fixed point free, smooth or PL involution T, then let
^o Hn(M; Z2) —* Z2 be defined by ψ0(x) = (ψ(x), [M]}τ, where x is the
Poincare dual of x e Hn(M; Z2) and [M] denotes the generator of H2n(M; Z2).

REMARK. We have not shown that ψ: H£(M; Z2) —• H%k(M; Z2) is inde-
pendent of the ordering and the triangulation chosen for M. This follows
from the fact that ψ may be defined as above, using the coboundary
formula, in singular cohomology. We understand that I. Berstein has
a definition for the operation ψ, not using cup-sub-i products, analogous
to the definition of Sq* found in [18].

LEMMA 4.5. Let Mbea 2k-dimensional manifold, with x,ye Hk(M; Z2).

Let B2(x, y) = x T*y. Then ψo(x + y) = ψQ(x) + ψo(y) + B2(x, y).
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PROOF. Let s and t be cocycles representing Poincare duals of x and
y respectively. As in equations (fc), •••, (2k), let vk+j(s) satisfy

a U*-* Γ*s + δvk+s~ι(8) = (1 + T> f c + '(s)

and let vk+j(t) satisfy ί u H Γ*ί + δvk+ό-\t) = (1 + Γ*)t;*+>(ί). We may
choose i;fc+i(s + t) satisfying

(s + ί) u w T*(s + ί) + ί^+^ίβ.H- ί) = (1 + T> f c + ' '(s + ί)

so that

vk+i(s + ί ) '= v*+'(β) + v*+'(ί) + 8 U w T*t .

It then follows from the coboundary formula that vk+3'+1(s + t) = vk+j+1(s) +
vk+j+1(t) + t U*-y-i τ*s will satisfy the equation (s + t) U*-/-i Γ*(s + ί) +
«v*+y(β + t) = (1 + Γ*)v&+ί'+1(s + ί). Hence v2fc(s + ί) = v2k(s) + v2k(t) + either
t U T*s or s U Γ*ί depending on the parity of k. But at the cohomology
level, in either case, we will have

ψ(u + v) = ψ(u) + ψ(v) + (1 + T*)(u U T*v) ,

where u and v denote the cohomology classes of s and t, respectively.
Then from the definition of ψ09 we have

Ψo(x + V) = <ψ(u + v), [M]}τ

) + f(v) + (1 + T*)(u U T*v), [M]}τ

), [M\)τ + (f(v), [M])τ + <(1 + T*)(u U T*v), [M\)τ

= ψo(x) + ψ*(y) + <u U Γ*v, [ikf]>

= ψo(x) + f o(2/) + 52(α?, y) .

LEMMA 4.6. // Sk is a smooth sphere in the smooth manifold M2k

so that Sk and TSk have only transverse intersections, and if xe H2k(M; Z2)
is the homology class represented by Sk, then ψo{%) is the number of pairs
of points (p, Tp) in Sk ΓΊ TSk reduced modulo 2.

PROOF. Let the intersection points be (pl9 TpJ, ••, (pn, Tpn). Choose
disjoint neighborhoods Uif TUi containing pif Tpi respectively, 1 ^ i ^ n.
We may then choose the cochains vk,vk+1, •• ,v2k as inequations (k), •••,
(2k) so that vk+j = ΣΓ=i vk+j where vk+j is carried by Ut. Then if u is a
cocycle dual to x, u U T*u will be of the form Σ* (v)i + w<) where wt and w\
each represent the generator of H2k(M2k; Z2), w{ is carried by Ui9 and w\
is carried by TU^ Then u U TH + δv2k~ι differs from u U Γ% only in
that Wi is replaced by wζ + δvf"1, so that T*(w* + δvf*"1) = wj. Hence
u U T% + δv2^1 = (1 + Γ*) JΓ w5 Therefore ψ({u}) = (1 + T*)2T {wj}, and
+.(») = <(1 + T) Σϊ M , [Jf ]>Γ = α r {̂ Γ}, [Jf ]> = n (mod 2).
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5. The Arf invariant of (Σ4k+\ T). Let M4k be a characteristic sub-
manifold in Σ4k+\ with Σ4k+ι - A u T i , M4k = dA = An TA. Let a: M-+A
be the inclusion map, and kerα* the kernel of a*: H2k(M; Z2) —> H2k(A; Z2).
The bilinear form B2: ker i* x ker i* —• Z2 is symmetric, and unimodular
since kerα* is its own annihilator with respect to the usual intersection
form: H2k(M; Z2) x H2k(M; Z2) —• Z2. Since we have seen that B2(x, x) = 0
for all sc 6 ker α*, it follows as in [12] that B2 admits a symplectic basis, say
»i, , «*, Vu , 2/*> as basis for ker i* such that JBaί̂ , a?,-) = B2{yiJ yό) =
0, B2(xi9 Vj) = δi3'. Then the Arf invariant c(Σ, T) is defined by

c(Σ, T) = Σ?=i ψo(Xi)ψo(Vi)

As with the signature, we must show that c(Σ4k+1, T) does not depend
on the choice of characteristic submanifold. That c(Σ4k+1, T) does not
depend on the choice of symplectic basis is shown in [2]. Provisionally,
let e(Σ9 T, M) be the Arf invariant determined by the characteristic sub-
manifold MdΣ. Exactly as in the signature case, (lemma 3.2), we have
the involution Γ x l o n ί x J , with Σ x I = U{jV,Uf)V= W = dU =
dV, TU = V, and d W = MQ U M19 where Mt is a characteristic submanifold
of (Σ x i, T x 11Σ x ΐ), i = 0,1. We must show that c(Σ, T, Mo) = c(Σ, T, Mλ).
(Here we identify MiCzΣ with Mt c Σ x i.)

LEMMA 5.1. c(^, Γ, Mo) - c(-Γ, T, Jlίi).

PROOF. Let M = itί0 U ilίi, and let A = a?7n (2* x 3/). Then we have
the following diagram:

0 > H2k(M) Ά H2k(A) 0 H2k(TA) > 0

0 > fli,( W) M 2ftt( to Θ #„( V) • 0 .

The rows are taken from Mayer-Vietoris sequences, and all maps are
induced by inclusions.

What we wish to prove is clearly equivalent to c(Σ x 37, T x 1, M) = O
As in lemma 3.2, we have kerj = kerjf Π k e r α φ k e r j Π ker/3, and the
rank of ker j Π ker a = half the rank of ker a. Since α? 3/ = 0 for all
α?, ί/ekeri, and T*(kerj) = kerj, we have B2(x, y) = 0 for all a?, τ/eker
i Π ker a. Hence we may pick a symplectic basis xu , xn, yly , yn

(with respect to B2) for kerα with xu •••, a? Λ ekeri Π kerα. Let α eker
i Π k e r α , and let a? denote the Poincare dual of x. Then x = j*w for
some w e H2k( W; Z2). Then

ψo(x) - <t(50, [ikf]>Γ - <γ(j*w), [M]}τ = <j*f(w), [M])τ -
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But since [M] is the boundary of the T-invariant element [W], we have
j\[M] = 0 as an element of H4

T

k(W; Z2), and so (f{w), i*[M]>Γ = fo(x) = 0.
Now since ψo(Xi) = 0 for 1 rg i <^ n, we have

c(Σ x dl, T x 1, M) = Σ foixMVi) = 0 .
ί=i

THEOREM 5.2. Ifn = 0 (mod 4) αwd n > 4t, then (Γ, 2T%+1) cαw δe
desuspended to (T\Sn, Sn) if and only if c(T, Σn+1) = 0.

PROOF. Clearly, if (T, Σn+1) can be desuspended to (T\Sn, Sn) then
c(T, 27%+1) = 0, since in this case, Sn is a characteristic submanifold. Con-
versely, if c(T, Σn+1) = 0, then choosing first a (2& — l)-connected charac-
teristic submanifold M4k c Σ4k+1, where n = 4k, we may then find, as in
Kervaire-Milnor [8] a symplectic basis xu , xr, y^ , yr for ker a*, where
Y0(Xi) = 0 for 1 ^ i ^ r, and the α̂  are respresented by disjoint imbedded
spheres, Sf. Since ψo(Xi) = 0 upon making the intersections of S|* with
TSlk all transverse, [11], we will have an even number of pairs of inter-
section points (pl9 Tpi), , (p2t, Tp2t). These may all be eliminated by the
method of Whitney [22]. Since the intersection numbers at Pi and Tp{

differ in sign, then at either p1 and p2 or pγ and Tp2 they differ in sign.
With no loss of generality, suppose these numbers differ at pλ and p2.
Then Whitney's method gives an isotopy of Sf whose end result is a
sphere Sf whose intersection with TS\k consists of Tpl9 Tp2y and the pairs
fej, Tps), (p2ί, Tp2t) Then apply this isotopy composed with T to TSf
to get a sphere TSf such that Sf Π TSf consists of transverse intersec-
tions at (p3, Tp9)f •••, {p2U Tp2t). One needs to take care that the arcs
and 2-disc of Whitney's process do not intersect their T-images, but since
n > 4, this presents no problem.

We now may represent the element xu , xr by imbedded spheres
Sl9 ' , Sr such that TSi Π St = 0 . Just as in the signature case, we may
now perform equivariant handle exchange between A and TA9 using the
"core spheres" Sl9 ,Sr and TSl9 ,TSr, thus killing H2k(M). This
proves the theorem.

6. Uniqueness of the desuspension. Suppose (So

n

9 T\SQ

n) and (Sr, T\S?)
are two desuspensions of {Σn+\ T). Then are (So\ T\So

n) and (S , T\S?)
equivalent? That is does there exist an equivariant diffeomorphism of S<Γ
onto SiΛ? In trying to answer this question, we again encounter the
familiar obstructions in half of the cases, and obtain an affirmative answer
in the other half.

Suppose we are given (Σn+\ T) and desuspensions (S<f, T\So

n) and
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DEFINITION. (Sj1, T\So

n) and (S?, T\S?) are equivariantly concordant
in (Σn+ι x I, T x 1) if for some fixed point free involution τ on Sn x /,
the inclusions ^ x O c Σn+1 x ^ S f x l c Σn+1 x I extend to an equivariant
imbedding of (Sn x /, τ) into (Σn+1 x /, T x 1). (We are identifying S«* x i
with Sn x i, i = 0, 1.)

THEOREM 6.1. If n^ 4 is even, and (Σn+\ T) desuspends to (So

n, T\S?)
and to (S», T |Sί) , ίΛen (So , 2ΊS0*) αraZ (S , T |Sί) are equivariantly con-
cordant in (Σn+1 x I, T x 1).

PROOF. AS in the proof of lemma 3.2, there exists a characteristic
submanifold W of (Σn+1 x ί , Γ x l ) such that 9T7 = So* x 0 U Si x 1.
Since W has odd dimension >̂ 5, and since dW has homology only in
dimensions 0 and n9 the proof of theorem 2.5 shows that by equivariant
handle exchange we may replace W by an [(n + l)/2]-connected manifold
W c Σ x I with 3 TΓ' = 9 TΓ. Hence IF' is an equivariant Λ-cobordism
between (So", T|So

π) and (SΓ, Γ|SΓ). Since Wh(Z2) = 0, [14], TF' is equiva-
riantly diίfeomorphic to (So

n x /, (Γ|SO

W) x 1) [10], [3J. This proves the
theorem.

REMARK. Note that (So , T|S0

%) and (SΓ, Γ |Sί) are equivariantly dif-
feomorphic if they are equivariantly concordant, and n ^ 5.

Now suppose w is odd. Then (Σn+\ T) always desuspends, for n ^ 5.
Let (So

%, Γ|SO

W) and (S?, T\S?) be two desuspensions, which we identify
with S* c Σn+1 x i , for i = 0, 1. As above, there is a characteristic sub-
manifold Wa (Σn+1 x /, T x 1) with 3TΓ = So* U S^. The obstructions to
obtaining an equivariant concordance in (Σn+1 x /, T x 1) between (S«Γ, ΓISo")
and (S?, Γ|SΓ) will be the obstructions to killing the middle dimensional
homology of W by equivariant handle exchange. (We may suppose, with
no loss of generality, that W is (n — l)/2-connected.)

CASE 1. n = 4k — 1. Then T preserves orientation in So\ and hence
(T x 1)| W preserves orientation in W. Since W is 4fc-dimensional, the
bilinear form B(x, y) = x T*y defined on H2k(W), modulo its torsion sub-
group, will be symmetric. (B(x, y) = <x U T*y, [W]} = (T*y U x, [W]} =
{y U T*x, T*[WY> = <yϋ T*x, [WY> = B(y, x), where x,ye H2k{W), and
x, y are Poincare duals of x and y.) Let Σn+ι x l = i7 U V wi th ?7 Π F =

W, TU = F . Let u: W-> U, v: W->V he the inclusions. We have, from

t h e Mayer-Vietoris sequence the exact sequence

0 — H2k(W) -^Σi-^U H2k{U) 0 H2k{V) > 0 .

DEFINITION. Let σ(Σn+\ T, Sj1, S?) be the signature of the bilinear
form B restricted to the kernel of u*.
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NOTE. If WQ and Wι are two different characteristic submanifolds
in Σn+1 x I, with dW0 = dW, = So

n U S?, then as in the proof of lemma
3.2, we may use a characteristic manifold I c (Σn+1 x J x ί , T x l x l )
with dX = Wo U W, U So

n x 0 x I U S? x 1 x I to show that TF0 and WΊ
determine the same signature, so that σ(Σn+\ T, So

n, S") is well defined.

CASE 2. n = 4k + 1. Then Γ preserves orientation in S0

Λ, and hence
(T x 1) I ΫF preserves orientation in W. But now W is (4& + 2)-dimensional,
so the form B is skew-symmetric. We are in the Arf invariant case.
We choose a symplectic basis xu •••,&», yl9 " ,yn for the kernel of u*9

and define c(Σn+\ Γ, SQ

n, S ) - ΣLifo(^)fo(^) .
Again, as in case 1, this invariant is independent of the choice of

W, and the proof of this parallels Lemma 5.1 so closely that we do not
give it.

Given (Σ2n, Γ), with n > 2, by Theorem 2.5, we can always desuspend.
Suppose then that we have two desuspensions, S^"1, and Si*""1.

THEOREM 6.2. Ifk>l, Sf'1 and Si*"1 are concordant in {Σik x /, Tx 1)
i/ and only if σ(Σ4k, T, Slk~\ Sf"1) = 0. In particular, if σ = 0, £&ew
(SS*-\ ΓlSί*-1) α^d (S}*-1, T\S[k-1) are equivariantly diffeomorphic.

PROOF. In (Σik x /, T x 1) we find a characteristic submanifold W
whose boundary is — Sik~ι x 0 + S}*"1 x 1. The proof of Theorem 3.3 now
applies to show that by equivariant handle exchange Σ4k x I we may
change W into an equivariant Λ-cobordism between SJ*"1 and S{k~K Since
Wh(Z2) = 0, [14], this yields a diffeomorphism between Sf^/T and S}*"1/!7,
by the s-cobordism theorem, [10].

THEOREM 6.3. 1/ fc Ξ> 1, SJfe+1 αud Sίfc+1 are equivariantly concordant
in (Σik+2 x I,TxT) if and only if c(Σ4k+2, T, S4

0

k+\ S[k+ι) = 0.

PROOF. The proof is the same as that of Theorem 6.2, except the
reference to Theorem 3.3 is replaced by Theorem 5.2.
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