
Tόhoku Math. Journ.
25(1973), 1-22.

LOCAL PROPERTY OF THE SINGULAR SETS OF
SOME KLEINIAN GROUPS

TOHRU AKAZA**

(Received April 1, 1972)

Introduction. In the recent paper [3], I proved the existence of
Kleinian groups with fundamental domains bounded by four circles whose
singular sets have positive 1-dimensional measure. Now in the natural
way the following problem arises; to what extent does the Hausdorff
dimension of the singular sets of Kleinian groups climb up, when the
number N of the boundary circles increases? It is conjectured and seems
still open that the 2-dimensional measure of the singular sets E of general
finitely generated Kleinian groups is always zero (see [1]).

The purpose of this paper is to investigate the properties of comput-
ing functions introduced in No. 3 of §1 in detail and the local property
of the singular set of the Kleinian group by using these properties.

We shall state preliminaries and notations about Kleinian groups in
§1. We shall prove the main theorem giving the relation between the
computing function and the Hausdorff measure of the singular set of
Kleinian group in §2. At last in §3 we shall seek for the relation between
the computing function and the Hausdorff dimension of the singular set
and further give an application to the convergence problem of Poincare
theta-series by using the main theorem.

§1. Preliminaries and Notations.

1. Let us denote by B the domain bounded by N mutually disjoint
circles Hu HI{1 ^ i ^ p) and K5{1 <^j<^q) and form the properly discon-
tinuous group of linear transformations with the fundamental domain B,
where N = 2p + q.

Let Si be a hyperbolic or loxodromic generator which transforms the
outside of Ht onto the inside of H-. Then {Sf}JU generates a Schottky
group whose fundamental domain is bounded by {Hif H }ξ=1. Let {S*}J=i
be the elliptic transformations with period 2 corresponding to {Ks})^.
Then {S*}i=i generates a properly discontinuous group whose fundamental
domain is the outside of the boundary circles {Kj}q

j=ι.

*> This work was supported in part by a research contract AF49 (638)-1591 (1967-68).



2 T. AKAZA

By combining two groups, a new group G, which is generated by
{SJ?=i and {S*}?=i, is obtained and is a kind of Kleinian groups. We often
use the notation ψ to denote the set of {SJJU, their inverses and {S*}J=i.
It is easily seen that the fundamental domain of G coincides with B.
We denote the singular set of G by E.

Defining the product ST in G by ST(z) = S(T(z)), we can write any
element of G in the form

where the indices v{(i — 0, , k) are non-negative integers and SiH) denotes
the product of vζ generators of the Schottky group or their inverses and
S*. denotes any element of {S*}?=i We call the sum

k

m = ^Vi + k
ΐ=0

the grade of S and for simplicity we use the notation S{m) to clarify the
grade m of S.

The image Sim)(B) of the fundamental domain B by S{m)( e G) with
grade ra(^ 1) is bounded by N circles

SUHJ, S{m)(Hl), and S(m)(iQ (ί = 1, , P5i = 1, , β)

and for simplicity we call the outer boundary circles C of Sim)(B) SL circle
of grade m. The number of circles of grade m is obviously equal to
N(N- I)— 1 .

Consider two arbitrary transformations T and S of G. We assume
that S Φ T~\ where Γ"1 denotes the inverse of T. Denote by Is, Iτ-i
and Isτ the isometric circles of S, 27"1 and ST, respectively. Let Rs, Rτ

and Rsτ be radii of 7̂ , Iτ and 75Γ, respectively. As to these values, the
relation

α i\ r> Rs * RT

holds. The isometric circle of a transformation with grade m is called
the isometric circle of grade m.

2. Denoting by r and r, (i = 1, •••, N — 1) the radius of the outer
boundary circle C and the radii of N — 1 inner boundary circles C*
(ΐ = 1, •••, AT— 1) of the image S(B)(SeG), we have the following two
propositions ([2])

PROPOSITION 1. There exist positive constants Ko (< 1) and k0 depend-
ing only on B such that
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(1.2) koT^r^Kor (i = 1, , N - 1) .

PROPOSITION 2. There exist positive constants k(G, μ) and K(G, μ)
depending on G and μ such that

(1.3) k(G, μ)(R8Y £ r^ £ K(G, μ)(Rsy ,

where μ is any positive number.

Denote by FnQ the family of all closed discs bounded by circles of
grade n ( ^ n0). It is easily seen that FnQ is a covering of the singular
set of our Kleinian group G and by Proposition 1 we see that the diameter
of any disc of Fno is less than a given <?(> 0) for a sufficiently large
integer n0.

For such a covering FnQ we have the following important proposition

([2]).

PROPOSITION 3. Let F^0 be a covering of E constructed by discs in
FnQ whose radii are not greater than d/(2k0) and let rc be the radius of a
disc C in F^Q

k°, where k0 is a positive constant in Proposition 1. Then
it holds

(1.4) Lη(E) = lim inf Σ (2rcy
δ 0 8 l k 5jk

where S>?~ is an absolute constant and Mη(E) denotes the ^-dimensional
measure of E.

3. Let T be any fixed element of g/. Denote by Hτ and Hτ-ι the
boundary circles of B which are equivalent by T, that is, Hτ = T(HT-\)
and further by Dτ the closed disc bounded by Hτ. If Hτ is one of
Kj (l^j^q), then Hτ-i = Hτ.

Let S{n) = TnTn_, ••• T.T^Tie^) be any element of G with grade n
and be the following form:

(1.5) S(.,(s) - JM±± , ad-bc=l.
cz + a

If we take the derivative of S{n)(z), we obtain easily

wiiere S^ denotes the inverse (S{n))
 1 = Tf1 ••• T~ι of S ( n ).

Forming the sum of (N — l)n terms with respect to all S{n) such that
T, Φ T~ι and Γ4 ^ T^l (1 ^ i ^ ^ - 1), we have the following function

ϋs Y =
>)- z\J
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The domain of definition of this function is Dτ. We denote it by χίμ;T)(z).

Since z moves on Dτ and Tι Φ T~\ the (N - l)n denominators of (1.7)

do not vanish, and hence χn

μ'tT)(z) is uniformly continuous in Dτ. Let S(m)

be an element of the form S{m) = TS ( W _D. Using the relations (1.1) and

(1.7), we obtain easily
ύ(n) \ _ V 1 ( *>(%)*(m) \

where S{n)S{m) = S{n+m).

We call χlίt;T)(z) the ^-dimensional computing function of order n on
T and there exist N computing functions χ{

n

μ;T)(z) corresponding to the
choice of T from ^/.

If we differentiate Sin)(z) = TnTn_, ••• T,(z) with respect to z, we get

(1.9) ,
dz

dS{n)(z) TTΓ dTt(zt) zeDτi = l

where ^ = ^. Hence χTτ){z) is also written in the following form

x\r τ)(z) = Σ ( π
Sin) \i = LS(n) \ί=

and this representation coincides with the function

0<"<4

which was already introduced in ([3]).

By using χn

μ''τ)(z) we have the following proposition.

PROPOSITION 4 ([3]). Let G be a Kleinίan group as in No. 1. //
there exist some positive integer n0 and a constant σ such that

(1.10) X%T)(z) >σ>l,

on the subset E Π Dτ for any Te%/, then Mμj2{E) is positive.

4. Now let us seek for the relations between two computing functions
on the different elements of ^/ and between two computing functions
on the same T with different orders.

PROPOSITION 5. It holds the following relation between two computing
functions on the different elements of ^/\

(1.11) K(μ) Σ lίμ'Tι){S{l){z)) > χ$Γ(z) > k(l, μ) Σ XitiTι)(S{l)(z)) ,
S(l) SU)

where K{μ) is a constant depending only on μ, but k{l, μ) is a constant
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depending on I and μ and tends to zero for I —> oo. Further it holds the
following relation between two computing functions on the same T with
different orders:

where K{{n, μ) (i = 0, 1) denote the constants depending only on n and μ.

PROOF. Fix an element Γ G ^ and take a transformation S(Λ+I, =
S(W,S(I, = Tn+ιTn+ι_,... ΓI+1Γ, . T2T, with grade n + Z such that Tλ Φ T~\
where T and Tό e ^/ (1 tij ^ ^ + Z) If w e differentiate the transforma-
tion S(w+I)(3) = S{n)Sω(z) (zeDτ) with respect to ^, we have

(1.13)

Hence we get from (1.6)

α 14) ( ga<»+» Y =

Forming the sum of (N — l)n+ι terms with respect to all S{n+ι) of grade
n + Z in G such that TL ^ T~\ we obtain from the definition of the com-
puting function the following relation

(1.15) χ£P(3) - Σ{χy;Γ|)(g(»(g))(,q / ^ iTI '

where the domains of definition of χlί+Γ(z) and χiΓ^^^) are the closed discs
Dτ and DTι bounded by Hτ and HTι, respectively.

Since S^(oo) = Tr 1 ••• Γf^oo) and 2 are contained in Ότ-ι and Dτ,
respectively and T Φ TΓ\ each denominator of the right hand side in
(1.15) does not vanish and is greater than some positive constant from
the assumption about B. Noting that RS{1) tends to zero for I —> 00, we
have the above inequality (1.11).

Since S(ή}(oo) and Sm(z) are contained mDτ-^ and DTι in (1.14), respec-
tively, the factor IS^K0 0) ~ Su)(z)\ is greater than some positive constant
from Tx Φ Tr+i Noting the definition of the computing function, we can
easily get from (1.14) the above inequality.

5. Now let us give an important property of the computing function.

THEOREM 1. (i) Suppose that the sequence of computing functions
{χίμ>τ)(z)} (n = 1, 2, - •) on some Te^/ is bounded at some point z0 e Ef] Dτ.
Then {%{n'T)(z)} (n = 1, 2, •••) is uniformly bounded and equi-continuous
on Dτ.
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(ii) Suppose that the sequence of computing functions {χίμ;τ)(z)}
(n = 1, 2, •) on some Te^s diverges for n—* oo at some point zQ e EΠ Dτ.
Put η{

n

μ'τ){z) = l/χl[t;τ)(z). Then {ηTτ){z)} (n = 1, 2, •) is uniformly bounded
and equi-continuous on Dτ.

PROOF, (i) From the definition of the computing function we have
for any ze Dτ the following estimation:

(1.16) |χ. (z) χ. W | g ^ Bβ. (z) χ . W | g ^ B β t a ) .

Let us consider the behavior of the function \S^)(°°) — z\μ (0 < μ < 4)
in Dτ. Since S^U0 0) = ̂ Γ1 ••• ̂ rΓH00) a n d ̂  a r e contained in Dτ-± and
Z)Γ, respectively, and Tφ Tr\ there is a positive constant |O depending
only on B such that

(1.17) \Sύ(°°)-z\>>p.

Denoting the rectangular coordinates S~n)(°o), z and zQ by (αn, 6%), (a?, #)
and (a?0, τ/0)> respectively, we can represent this function in the following
form:

(1.18) \Sά(oo) - z\μ = {(x - anγ + (y - bn)Y2 , 0 < μ < 4 .

The partial derivatives of \S~n)(oo) — z\μ with respect to x and y are
J"|S(ήK°°) - ^l^"2^ - α») and /^ISr.U00) ~ ^l^" 2^ - h), respectively and
both functions are continuous on Dτ from the assumption on B. Using
the mean value theorem to |Srn)(oo) — z\μ, we obtain easily

(1.19) IISS(oo) - z\μ - |Sr.)(~) ~ *o\μ\ ̂  3T\z - zo\ ,

where 3ίΓ is a constant depending only on B. Thus we have from (1.16),
(1.17) and (1.19)

(1.20) \tΓτ){z) - χ^τ)(z0)I ^ ^ ^ " ^ χ r ^ o ) .

Denote by d the maximum among the values of the diameters of N
boundary circles {Hi9 Hi}p

i=1 U {Kj}g

j=1. Then we have from (1.20)

(1.21) tΓT){z) ^ Kχ^(zQ) ,

where K = {3ίΓ d\p) + 1 is a constant depending only on 5 . Since (1.20)
is symmetric with respect to any pair of points z and z0 contained in
Dτ, we have

(1.22) ±rXTT){z«) ̂  tΓτ\z) £ Kχ^(z0) ,
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which shows that {χ{

n

μ'τ)(z)} (n = 1, 2, •••) is uniformly bounded on ΰ Γ

under the assumption of boundedness of {χ(

n

μ'τ)(z0)} (n — 1, 2, •••)•
Take any two points z and z' in Ότ. Since χTτ)(z) < M on Z)Γ from

the fact proved above, we have from (1.20)

(1.23) Iχ? Γ>0O - χ?^(z) \ < ^ *M \ z' - z \ .

Thus {χ{n]T)(z)} (n — 1,2, •••) is equi-continuous on Dτ.

(ii) Since l i n w tΓτ){zQ) = co, {η^τ){zQ)} (n = 1, 2, . . . ) is bounded at
ô We have the following estimation:

(1.24) \v?™(z) - vi?iT)(*d\

-z\"-

In the same manner and notations as in (i), we get the following
estimation:

(1.25) WΓτ)(z) - ηTτ){z0) I ^ ^ ! * ~ ^ol η^τ){z0) .

Denoting by d the maximum among the values of the diameters of N
boundary circles {Hi9 iϊ/}fU (J {iζ, }?=i as in (i), we have also from (1.25)

(1.26) - j ^ M ) ( * o ) ^ Vίμ;τ)(*) ^ KVlμ''τ)(*o) ,

where K = (J%Γ d/p) + 1 is the same constant as in (1.21). Hence we can
show that {η{£'tT){z)} (n = 1,2, •••) is uniformly bounded on Dτ under the
assumption at z0. The proof of the equi-continuity of {ηlΓ τ)(z)} (n — 1, 2, •)
is also the same manner as in (i). q.e.d.

§2. Local property of the computing function.

6. By using the condition (1.10) (for μ = 2) of Proposition 4, the
existence of a Kleinian group with the fundamental domain bounded by
four circles, whose singular set has positive 1-dimensional measure, was
shown in [3J. On the other hand, it is well known that the 2-dimensional
measure of the singular sets of the Kleinian groups defined in No. 1 is
always zero. Therefore it seems an important and interesting problem
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to decide the upper bound of the value of the dimension for which the
singular set of our Kleinian group has positive measure, though our
Kleinian group is somewhat special as a Kleinian group. For this purpose
we must investigate profoundly the complicated property of the singular
set, in particular, the local property of it. We shall find that the com-
puting function gives the efficient tool to investigate the property of the
singular set of our Kleinian group.

7. Now let us give the main theorem under the preliminaries of the
computing function in §1.

THEOREM 2. The following three propositions are equivalent to each
other: (1) The sequence {Xn'τ*](z)} (n = l,2, •••) on some fixed T*(e^)
diverges (or converges to zero) at some singular point z0 e E ΓΊ Dτ*, that is,

(2.1) limχΓ'^Zo) = <*> (or 0) for some zQeEn Dτ* .

(2) It holds

(2.2) lim %TT){z) = oo (or 0)

for any T( e ^/) uniformly on Dτ.
(3) MμJ2(E) = oo (or 0).

As the proof of this theorem is complicated, we shall divide it into
six lemmas. At first we shall prove that (1) is equivalent to (2). Since
(1) is valid under (2), it is sufficient to show only that (1) implies (2).

Now we shall give the following lemma.

LEMMA 1. Suppose that the proposition (1) of Theorem 2 holds. Then
it holds

limχ{

n

μτ)(z) = oo (or 0)

for any T( e %s) uniformly on Ότ.

PROOF, (i) The case of the limit 0.
Take any point z e Dτ*. Then we have from (1.22)

(2.3) -^χr r+)(zo) ^ xir^iz) ^ W' r * } (*o).

We can determine for any ε the order no(T*) depending on ε, T* and z0

such that
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for any n (^ n0). We obtain from (2.3)

(2.4) χ^τ*] < ε , for any zeDτ*.

Now from (1.11) of Proposition 5 we have for zo( e E Π Dτ*) and its
image T(zo)(e E Π Dτ, Te^/) the following inequality

(2.5) t:iP{z«) > k(X,

Since limn_κβχίίlϊ2I*)(«o) = 0 from the assumption, it holds for T(z0)

(2.6) l i m χ ί T W o ) ) = 0 .
ίt-»oo

Hence from the above method there exists the order nQ(T) depending on
ε, T and T(z0) such that it holds for any n (;> no(T)) and for any zeDτ

tΓτ\z) < e .
If we denote maxΓ e^ no(T) by ?ι*, we see easily that it holds for any T
and any n (^ w*)

(2.7) tΓτ\z) < ε

on Z)r. Thus it holds

(2.8) limχr r )(2) = 0

for any T( e ̂ /) uniformly on Dτ.
(ii) The case of the limit °o.
Take any point zeDτ*. Then we have from (1.26)

(2.9) JLvw>(Zo) £ η^\z) ^ Kηΐ'^iZo) .

Let no(T*) be the order depending on e, T* and z0 such that it holds

Vn'^fo) < ε l κ f o r a n y n (^ Wo). Then we obtain from (2.9)

(2.10) Vn'^iz) < ε for any z e Dτ* .

From (1.11) of Proposition 5 we have for any z'( e E Π -DΓ) and its image
T*(z')(e£ rn £>Γ*) the inequality

(2.11) ^ Γ ( z ' ) <

Since l im.^^ ' 2 1 *^! 1 *^)) = 0 from (2.10), it holds

(2.12) Mm^ΓOO = 0 .

Hence from the method in (i) there exists the order no(T) depending on
ε, T and zr such that it holds for any n (^ no(T)) and any zeDτ
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η{Γτ){z) < ε .

If we denote maxΓ e^ no(T) by n*, we see easily that it holds for any
T and any n (^ n*)

(2.13) η^τ)(z) < ε

on Dτ. Thus it holds

(2.14)

for any T{ e ^/) uniformly on Dτ. q.e.d.

Thus we could prove that, in Theorem 2, (1) is equivalent to (2)

8. Suppose that the sequence {χ{Γτ*]{z)} (n = 1, 2, •••) diverges to in-
finity (or converges to zero) at some point zoeE f) Dτ* for a fixed Γ*( e ̂ /).
Then any subsequence {y}£:τ*\z)\ (i = l, 2, •••) diverges to infinity (or
converges to zero) at z0. Conversely, we shall prove the following result.

L E M M A 2 . Suppose that for some subsequence {χ\?{τ*]{z)} (i = 1, 2, •••)

of {trT*\z)} (n = 1, 2, •••) with respect to some T*(e%s)

(2.15) limχΐ'^izo) = oo (or 0) αί some zQeEf)Dτ* .
i-*oo %

Then it holds

(2.16) limχίΓ ̂ Oso) = ~ (or 0) .

PROOF, (i) At first we shall prove the case for oo. If we replace
the sequence {χlf'^iz)} (n = 1,2, •••) with the subsequence {χίζϊΓ*}(«)}
(i = 1, 2, •) in Proposition (1) of Theorem 2, we obtain from Proposition
(2) of it that it holds

(2.17) l i m χ ^ ( z ) = oo
n-*oo

uniformly on Dτ for any T{e^/). Then for any large number M there
exists some positive integer n0 depending only on M such that it holds
for any zeDτ

(2.18) tζτ\z)>M.

Consider the computing function Xqΐf^iz) at z0, where q is a positive
integer. Then for any small ε' (> 0) there exists some positive number
δr(ε') depending only on ε' such that

ZίϊΓfo) > lTnf\z) - ε' , for any z e Dδ,(z0) n Dτ*

where Dδ,(z0) denotes a disc of radius <5' with center zo Hence if we take
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a sufficiently large integer Z, then there exists an Sω e G such that Sa)(oo)
is contained in Dδ,(z0) and such that

\Δ.±.Ό) XqnQ \Zθ) -> XqnQ {^(DX00)) — ^ *

Here we have from (1.8)

^ Σ (Rs{qnQ)s{ι))
μ

(2.20) Xq

μnΓ(S^(°°)) = l9nθ)

 ( R y

We can modify the right hand side of (2.20) as in the following:

(̂ •^1) 7p \£ 11
K-^StjJ i=i

where S((0))»0) is the identity. Since

(3 ^ 1) ,

we have from (2.18)

(2.22) X%Ti)(S(U-1)nQ)Sm(™)) >M, (j ^ 1) ,

where S{{j_1)nQ)Sa) - Γ ^ ^ ^ M ) and Γ . e ^ . Applying (2.22) to (2.21),
we obtain from (2.20)

(2.23) Xqΐ'^Φwi00)) > Mq

and we get from (2.19)

(2.24) XqnP(Zo) > Mq - s' .

Since M can be taken sufficiently large, χq

μnp{z<) tends to oo for g—•oo.

Thus we find that under the assumption (2.15) there exists a subsequence

iXΐnpiz)} (q = 1, 2, •••) such that it holds

Let χίμrτ*\z) be any term of {χlf'^iz)} (n = 1, 2, •••)• Then we have
from (1.12)

(2.25) JEi(Λo, ^)χ^* J fe) > χ ί ί ^ ( ^ > ϋΓ0K, ^ Z ^ f } f e ) ,

where nf = ^n0 + w* (n* < ^ 0 ) . Therefore we obtain

(ii) Next we shall treat the case for zero.
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If we replace the sequence {χ{Γτ*\z)} (n = 1,2, •) with the subsequence
{Ziί̂ Os)} (ί = 1,2, •••) in Proposition (1) of Theorem 2, we obtain from
Proposition (2) of it that there exists for any small number ε (< 1) some
positive integer n0 depending only on ε such that it holds

(2.26) χ%"(χ) < ε ,

for any T(e^) and any zeDτ. In the analogous way as in (i), we can
easily prove from (2.21) that for {χ{Γτ*] {z)} (n = 1, 2, . •) it holds

r^Zo) - 0 . q.e.d.

9. Now let us prove that (2) is equivalent to (3) in Theorem 2. Since
the proof is complicated, we divide it into four lemmas.

Suppose that limn_Mβχίίlϊϊf)(») = °° for any T(e^) uniformly on Dτ.
Then for any large number M there exists some positive integer n0 such
that it holds

(2.27) X 0̂

;Γ)(z) > M

for any T( e ^/) and any z e Dτ.
From (1.8) it holds

ίθ OQ\ v ^ ' ^ Q ίr^sW -

\A £θ) χnQ yO{ιQ)\oo)) .

Since

^ S(n0)

we get

where Σ,?-1

} denotes the sum of the radii of isometric circles 7 -̂̂  5-i }

when S~n

ι

Q) runs over all the transformations with grade n0 whose left
elements are not equal to the inverse of the right element of S^.

This was the sufficient condition for the (μ/2)-dimensional measure of
E to be positive and was given in [3]. Thus we have the following lemma.

LEMMA 3 ([3]). Suppose that limw_>ββχί/lίΓ)(2) = °o for any T(e^)
uniformly on Dτ. Then it holds Mμj2{E) > 0.

10. On the other hand we can easily prove the following lemma.

LEMMA 4. Suppose that lim^oo χTτ){z) = 0 for any T(e ^/) uniformly
on Dτ. Then it holds Mμ,2{E) = 0.
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PROOF. We can find, from the assumption, some positive integer nQ

depending only on any given small ε such that it holds

(2.30) χ\r*>(z) < ε

for any T( e &) and any z e Dτ. Consider the image of the infinity
S(i)(°°) (S(i, = TSa_ι}) by S{l)(z). Then we have from (2.30) the following
inequality:

(z.όij χnQ (buΛ00)) - Σi \—D 1 = 2J \—-π——J < s
( ϊ )

Denote by rs(*> (i = 1, •••, N(N — I)'"1) the radii of circles Cs\}\ of
grade I greater than n0. Then from (1.3) of Proposition 2, we get the
following inequality

(2.32) ^ Σ (rsij))^2 ^ iΓ(G, μ) ^ Σ (Λs|j))'f .

Putting ϊ = p Wo + <Zo (1 = ô < n0), where p is a positive integer and
arranging (N — l)n° circles N — 1 by N — 1 with respect to all inner
boundary circles contained in all circles of grade n0, we obtain from (2.31)

N(N—I)*""1 iV(Λτ—1)90"~ 1
/Ό QQ\ ^ ^ / D / \\ W ^ fc \P X~* / H> / •> \ #
lώtϋϋl ^ j ylt^V) \ \ ^ / x i liίc(ί) I

I"
Since the right hand side of (2.33) tends to 0 for p —• oo, we obtain from
(2.32)

lim Σ (^ί*;)"'* = 0 .

Thus we can conclude that Mμl2(E) — 0 under the assumption of Lemma.
q.e.d.

11. Now let us prove the following lemma.

LEMMA 5. The following two propositions are equivalent to each
other: (i) The subsequence {χΐ^(z)} (i = 1, 2, •) of {tΓτ*\z)} (n = 1, 2, . .)
on some fixed T*(e%s) converges to a {φ 0) at some zQeEf] Dτ*. (ii)

(2.34) 0 < Mμj2(E) < oo .

PROOF. We have already showed in Lemma 1 that the propositions
(1) and (2) in Theorem 2 are equivalent to each other. From this result
and Lemma 2 we can easily see that the above proposition (i) is equivalent
to
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(2.35) 0 < γ}μ'τ)(z) ^ X{μ'τ)(z) < - ,

for any T( e %/) and any z e Dτ, where

tμ'τ){z) = lim tΓτ){z) and χl/tiT)(z) = lϊm χ\Tτ)(z) .

Hence it is sufficient to show that (2.34) is equivalent to (2.35). We divide
the proof into two parts (A) and (B).

12. (A). At first we shall prove that χ{μ'τ){z) < oo implies Mμβ(E) < oo
and that 0 < MμJ2(E) implies χ{μ''τ)(z) > 0. Suppose that χ{μ''τ)(z) < oo
establishes for any T( e ^/). Then from Theorem 1 {tΓτ){z)} (n = 1, 2, •)
is uniformly bounded. Hence maxΓ e^ (su^zeDτχ

{μ'tT)(z)) = M is a finite
number, that is,

(2.36) χTτ){z) ^ M

for any n, T(e^) and z(eDτ).

Take any large integer l0 and consider all closed discs

£ , ω 0 1,

bounded by all circles of grade Zo

Take any closed disc Ds 7 bounded by CStl x among the above discs

for such a fixed Zo Denote by r5( ) (i = 1, , (N — 1)*~'°) the radii of the

inner boundary circles Csι*) of grade I (> l0) contained in CSn . Then from
(I) (IQ)

(1.3) of Proposition 2, we get the inequality
( N l ) h ( N l ) 0

(2.37) g (r5(j))^2^iΓ(G,^) g (Λβ({>)/ ,

where SJIJ = S(Io)jSί{Lio). We can modify the sum of the right hand side
of (2.37) in the following:

(2.38) Σ (Rs$
μ = Σ ( lp l0) αo) x (Rs7ιi)

μ

where Ŝ Jj = TS^^. Hence we have from (2.36), (2.37) and (2.38)

(N-l)l~l0

(2.39) g (rs;|.)"'2 ^ ϋΓ(G, Λ X ^ J , ) " ^

Since Ds(γ'(ί — 1, , (N — iy~la) is a covering of £Tl DSίl,, we obtain from
(2.39)

(2.40) Mμn(E Π JDS(,β)) < + oo .

The above inequality (2.39) holds for any closed disc bounded by the
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circle of grade l0 and hence we can conclude that MμJ2(E) < oo under the
assumption (2.35). We see easily from (2.37) and (2.38)

(2.41) Mμl2(E Π DSUo) rg K(Gy

If we suppose t h a t MμJ2(E) > 0, there is a t least one closed disc DS(l)

among all closed disc Dsu) (j — 1, •••, N(N — I) 2 0" 1) such t h a t

MμI2(Ef]DS[lo))>O.

Hence we have from Theorem 1 and (2.41) that MμJ2(E) > 0 implies that
χ{μiT)(z) > 0 for any Γ ( e ^ ) and any zeDτ.

13. (B). Next we shall prove that MμJ2(E) < oo implies χ{μ''τ)(z) <oo
for any T(e^) and any zeDτ and that χ{μ'τ)(z) > 0 implies MμJ2(E) > 0.

Assume that this proposition is not true. From Lemmas 1 and 2 it
is easy to see that the sequence {χ{

n

μ;T)(z)} (n = 1, 2, •) diverges for any
T( e Ŝ ) uniformly on Dτ. Hence there exists some positive integer l0

depending on any positive number M such that it holds for any T

(2.42) χ\μ^(z) > M

on Dτ.

Consider all closed discs DsU^ (j = 1, •••, N(N — l)ll~ι) bounded by

CgU^ with grade k(> l0). Take any closed disc DS{1, bounded by CS(l)

from these discs. Let F^k° be a covering of E defined in Proposition 3

of §1 and constructed by a finite number of closed discs DS(m )9 , Ds ,

which are bounded by circles

(2-43) C S ) , . . . , C l t o < ) ,

respectively, where C 5 ( w } (1 ̂  j ^ Q) is a circle of grade mά. Here we

assume that δ is a small number such that m5 is sufficiently large and

satisfies the condition

(2.44) πij - l ι > l 0 .

Let us denote by

(2.45) C , ( V , . . . , C ί | i a ) , ( Λ < Q )

the circles among (2.43) contained in C5(Zl) as the inner boundary circles.

Denote min^y^^ {n3) by ^*. We amend the circles (2.45) in the fol-

lowing: (i) if % — n* is an integral multiple of Zo, we leave the circle

CS{nt), and (ii) if % - n* = lo p + q (0 <q <l0), where p is a positive

integer, we replace the circle C8{nm) with the (N — ϊ)l(>-q circles
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of grade nά, contained in CS{n), where n] — n* — lo(p + 1). After such

amendment we get a new subcovering of EnDS{h), whose elements are all

discs bounded by the circles of grade w* + l0 p. Denote such circles by

(2.46) Cs^Cs^- , ^ , (R^U).

Then we get from (1.2) of Proposition 1 the following inequality:

(2.47) Σ {rS{mr2 > Σ (rS{n m))«* ̂  K(lQ) ± ( r ^ , , ) " 1 ,

where rSt ,,rS( , and rS( ,, denote the radii of the circles (2.43), (2.45)

and (2.46), respectively, and K(l0) is the constant depending only on l0 and

B. By using (1.3) of Proposition 2, we obtain

(2.48) g (rS{n?)
μl2 ^ K(G, μ) g (RS{%./

In the set of circles (2.46) there exist a finite number of systems Wn*k

(Jc = 1, . . . , n), each of which consists of (N — l)ι° boundary circles with
the following properties: (i) (N — ΐ)ι° circles of each Wn*k have the same
grade number n*, while the grades of circles of different systems are not
necessarily equal, (ii) (N — l)h circles of each system Wn*k are the totality
of inner boundary circles which are contained in a circle of grade n* — l0-

These (N — l)ι° circles in each Wn*k are arranged N — 1 by N — 1 and
are replaced by circles of grade nt — 1 and after that, we repeat also such
procedure and so on. After l0 times of such procedure, we reach to the
circle of grade nt — l0, that is, the outer boundary circle of S{n*k_ιo) (B).
If M> 1 is supposed in (2.42), it holds for each system

Here Σ 5 , 7 . denotes the sum of the radii of isometric circles IS( *-J)Sπ)>

when S(lo) runs over all the transformations with grade l0 whose left
elements are not equal to the inverse of the right element of S(w*_;o).
After replacing (N — l)ι° circles of each system Wn* by an outer boundary
circle of S(n*k-ιQ) (B), we have also a new covering of EP\DS{lϋ consisting of
closed discs which are denoted by

Repeating the above procedure to these circles and continuing (p — 1)
times, we obtain the following inequality

(2.49) Σ (Rs(n.,r ^ Σ (BBι.,})", S«... = SaA»>-h> >

where the summation in the right hand side is taken over all transforma-
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tions in G with grade n* such that the images S(n*)(B) are contained in

Since

Σ (RS{ll)8{n*-h))
μ = Σ (R8^ι)Sΰi)μ,

we have

(2.50) Σ (22.™)'= Σ [ ( ^ _ i l ) ^ ) ) " / ( % ; , ) " ] x (%;,)"•

We see easily from (1.8) that the term in the bracket of the right hand
side of (2.50) is equal to χίf.ϋiΊOSΰM00)) f o r S«ί> = TSUl-». Then we obtain
from (2.42) and (2.44)

Hence we have from (2.50)

(2.51) Σ (Rsin.)
μ > (Ss^y x M.

Since (2,51) holds for any closed disc DS{h), we obtain from (1.4), (2.47),
(2.48), (2.49) and (2.51) the following inequality:

(2.52) J5r(^2 ) ' *Mμn{E Π Dτ)

^ K(lo)K(G, μ)( Σ (RsΊ\)μ/(RϊΎ) X (-Bί"1)" x Λί
\S(j \ ^1 /

Here we have already assumed that M is any positive number and lx is
any fixed positive integer greater that l0. If we take a sufficiently large
number lx for such a fixed lQ, we see easily that (2.52) leads to the con-
tradiction under MμJ2(E) < oo. Thus we could prove that it holds χίμ'τ)(z) < oo
for any T( e ^/) and any zeDτ under the assumption MμJ2(E) < oo.

Let us prove that Mμl2(E) > 0 holds under the assumption that
χ(μ''τ)(z) > 0 for any T(e^) and any zeDτ.

We obtain easily from (2.47), (2.48) and (2.50)

(2.53) g (rS{njr
12 ^ K(lo)K(G,

If δ tends to 0 in F^ίk°, the radii of the inner boundary circles of (2.45)
contained in C5(ίi, tend also to 0 and hence from (2.48) and (2.49) the
grade number n* tends to oo. Therefore we have from (1.4) and (2.53)

(2.54) (J^yμlMμJ2(EΠ DS{h)) ^ K(lo)K(G,
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If MμJ2(E) = 0 is assumed, it is easily concluded that χlμiT)(S-[i[)(oo)) = 0.
Hence from Lemmas 1 and 2 it holds for any T( e ^/)

uniformly on Dτ.
Thus we obtain from the contrapositive proposition that χ^μ'τ)(z) > 0

implies that Mμ]2(E) > 0. q.e.d.

14. Now let us prove that (2) is equivalent to (3) in Theorem 2.

LEMMA 6. // Mμl2(E) = 0, then it holds that l i m ^ χ ^ ^ z ) = 0 for
any T( e &) uniformly on Dτ.

PROOF. From Lemmas 1 and 2, it is sufficient to show that χiμ]T)(zo) = 0
for some T and for some zoeDτ. If 0 < χ{μ''τ)(z0) for some T(e^) and
some point zoeDτ, we have from Lemma 5 that 0 < Mμl2(E)y which is
also a contradiction. q.e.d.

Now we can give the proof of Theorem 2. We can conclude from
Lemmas 4 and 6 that Mμj2(E) = 0 is equivalent to the proposition that it
holds l i m ^ χ(

n

μ'τ)(z) = 0 uniformly on Dτ for any Γ ( e ^ ) . Therefore we
get also from Lemmas 1, 2 and 5 the following result: Mμl2(E) = co is
equivalent to the proposition that it holds lim^co χ{

n

μ*τ)(z) = <x> uniformly
on Dτ for any Γ ( e ^ ) . Thus Theorem 2 was completely proved, q.e.d.

Arranging the above result, we have from Theorem 2 and Lemma 2
the following Theorem.

THEOREM 3. In Proposition (1) of Theorem 2 the assumption for
{Xln'tT)(z)} (w = 1,2, •••) can be replaced with that for the subsequence
te'Γ'(z)} (i = l,2, ).

§3. Hausdorff dimension of the singular set of a Eleinian group.

15. Let us investigate the relation between the computing function
and Hausdorff dimension of the singular set of a Kleinian group. Given
a compact set F in the 2-plane, the Hausdorff dimension of F is the unique
non-negative number d(F) satisfying

Md(F) = 0, if d > d(F)

and

Md(F) = + oo, if 0^d<d(F),

where Md(F) denotes the d-dimensional Hausdorff measure of F.
The following is well-known ([4]).
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PROPOSITION 6. Let F be any point set in the z-plane and suppose
that a > 0. If Ma(F) < + oo and a < β, then Mβ(F) = 0.

16. Looking at the above definition of the Hausdorff dimension of a
point set and considering Theorem 2 and Proposition 6, we may define
the Hausdorff dimension of the singular set E of a Kleinian group G in
the following way.

DEFINITION. Let T be any generator or its inverse of the Kleinian
group G, that is, let Γ e f . Then the Hausdorff dimension d(E) of the
singular set E of G is defined as

^-: limχ^Os) = °o, for some T and for some zeDΛ

= inf \¥-: limχίΓ n(3) = 0, for some T and for some zeDτ\
2

We shall prove the following theorem.

THEOREM 4. Let d{E) = μo/2 δβ the Hausdorff dimension of E. Then
MμQι2(E) is positive and finite.

RROOF. If MμQι2(E) = 0 is assumed, then for any sufficiently small ε
there exists some positive integer n0 such that

(3.1) t:f\z) < ε

for any Te^ and any zeDτ from Theorem 2. Since X«ζ:r)(z) is a con-
tinuous function of μ for a fixed nQ and any 2, we can take a positive
number d depending only on ε such that

(3.2) tnμrδ;τ)(z) < 2ε .

Then we have also from the method of Lemma 4 that MiμQ__δ)ι2(E) = 0. This
contradicts the assumption that μo/2 is the Hausdorff dimension.

Next if MμQι2(E) = oo is assumed, we get also a contradiction in the
similar manner. Thus we can see that MμQ/2(E) is finite. q.e.d.

From Theorems 2, 3 and the above theorem we have the following
corollary.

COROLLARY. Let d(E) = μo/2 be the Hausdorff dimension of E. Then
χ(μo'τ)(z) and χ{μύ'τ)(z) for any T(e &) are both positive and finite on Dτ.

It is natural that the following problem arises in the case of the
finite limit of the sequence of computing functions. Let μQ/2 be the
Hausdorff dimension of E. Does χ(//°;Γ)(z) equal χ(MϊΓ)(z) for any Γ ( e ^ ) ?
If it is true, is the function χ(/ί°;Γ)(z) = χ{μ°m(z) = £™T)(z) identically equal
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to some constant in DTΊ If it is also true, what is the constant? It is
conjectured that this constant will be equal to 1.

17. EXAMPLE. We gave an example of Kleinian groups with funda-
mental domains bounded by four circles whose singular sets have positive
1-dimensional measure ([3]). Using the result of Theorem 2, we shall find
the more precise property about the singular set of a Kleinian group.

Consider the three circles Hό (j = 1, 2, 3) with centers a5 = 2eί(4i~1)7r/6

0* = 1, 2, 3; i2 = —1) and equal radii V 3 — ε, respectively. We let these
three circles Hά (j = 1,2, 3) correspond to the elliptic transformations
Tj (j = 1, 2, 3) with period 2. Then we obtain a Fuchsian group Gι of
the second kind with fixed circle \z\ = 1 -{- εl9 where εx is determined de-
pending only on ε. The singular set of G: is on the circle \z\ = 1 + eί

and is nowhere dense. Next we describe a circle H4 with center at the
origin and the radius 2 — ̂ 3 and let it correspond to the elliptic trans-
formation Ti with period 2.

Combining the Fuchsian group Gt with G2 generated by T4 only, we
obtain a Kleinian group G, that is, a combination group Gx G2, whose
fundamental domain B is connected and bounded by four circles H3

(j = 1, 2, 3, 4).
For convenience of the calculation, we consider the limit case ε = 0.

Then B is no more connected and the fixed circle of Gι is \z\ = 1.
Denote by Dό (j = l, 2, 3, 4) the closed discs bounded by H3 (j = l, 2, 3, 4)

and by U the closed unit disc. Then the singular set E of G lies in the
inside of Upi {\JUiDj}.

By the symmetricity of the figure, it is sufficient to calculate the
values of the computing functions χ{n'Tl)(z) and χi2;7V(£) of order n in UΓ\Dι

and D4, respectively.
In the case of order n = 1, 2, 3, 4, we can not obtain the inequality

Xn:Tl)(z) > 1. But in the case of order n = 5, we get the result which
satisfies the condition of Proposition 4 in the following (see [3] with
respect to the calculation):

χΓύ(z) > 1.002004 , χΓ^iz) > 2.218873 .

By using the method in the proof of Lemma 2, we can find that the
1-dimensional measure M^E) of the singular set E of this group G is
infinite.

18. Application of Theorem 2. Here we shall give the application
of Theorem 2. Let H(z) be a rational function none of whose poles is
contained in the singular set E of the Kleinian group G defined in §1.

Consider the series
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Θμ{z) = Σ H(Zi)(csz + dj)-" ,

where μ is a positive integer and the summation is taken over all elements
Zj = (asz + bjjKcjZ + dj) of G, in particular, z0 means the identity trans-
formation. This is a so-called (—^-dimensional Poincare theta-series.

We put Pμ(z) = ΣJU \CjZ + dj\~μ, where μ is a positive number. We
call Pμ(z) the (—^-dimensional P-series. We have the following theorem
(see [2] as to the proof).

THEOREM 5 ([2]). Let μ be a positive number. The following three
propositions are equivalent to each other: (i) The (—μ)-dimensional P-
series Pμ(z) converges uniformly in any compact domain not containing
the suitable neighborhoods of the poles of Pμ(z). (ii) The series ΣΓ=ilciΓ/l

converges, (iii) The series Σϊ=i ϊ»} converges, where V£] is the sum of
terms {r[m~1))μμ obtained for radii r(m~υ of all circles of grade m — 1.

In particular, if μ is a positive integer, the following proposition is also
equivalent to each of the above propositions: The (—μ)-dimensional Poincare
theta-series Θμ(z) coverges absolutely and uniformly in any compact domain
not containing the suitable neighborhoods of the poles of Θμ{z).

It is evident that, if lim^^ ϊίί° — 0, then the singular set of G is of
(μ/2)-dimensional measure zero. Hence, from the above theorem, we get
the following result.

COROLLARY. // any one of the conditions (i), (ii) and (iii) in Theorem
5 is valid, then Mμj2(E) = 0.

19. The converse of the above corollary. Now let us suppose that
Mμ/2(E) = 0. Then from Theorem 2, for any sufficiently small ε there
exists some positive integer n0 such that it holds

(3.3) χ%"(z) < ε

for any T{ e f ) and any z e E Π Dτ. If we determine the grade number
l0 depending only on the above ε in the same way as the proof of Lemma
5, it holds

(3.4) Z^;Γ)(S(m)(oo)) < ε

for all images Sim)(oo) of the infinity which are contained in N(N — l)m~ι

closed discs bounded by circles of grade m (^ l0). Hence from (1.8) and
(3.4) we have for any transformation S(m) with grade m (^ lQ)

s(nQ) °
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Denote by Lίί° the sum of terms (RS{m))
μ obtained for radii RS(m, of

all isometric circles of grade m, that is,

L ( μ) ^ ~ i / TΓ) . . . \ μ

m — / j ĵfVg'*' )
i = l ^m'

Then the sumΣΓ=i \cj\~μ is written in the following way:
oo oo oo N(N—1)W—1

Σ IΛ I—μ χ"« T (/<) X"1 V 1 ίJ? rό\ \fJt

\cj\ — ΣΛ L'm — 2J 2LJ l-^s[*y

Therefore in order to show the convergence of the series ΣΓ=ilc/l~/l>
it is enough to show the convergence of the series

where l0 is the grade number determined by the above ε. Then we get
from (3.5)

Thus we could prove the convergence of the series ΣΓ=ikiΓ/c under the
assumption Mμl2{E) — 0.

Thus we obtain from the above corollary the following theorem.

THEOREM 6. Let μ be a positive number. Three propositions in
Theorem 5 and Mμj2(E) — 0 are equivalent to each other.
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