ON MAXIMAL FAMILIES OF COMPACT COMPLEX SUBMANIFOLDS OF COMPLEX FIBER SPACES

Dedicated to Professor Shigeo Sasaki on his 60th birthday

Makoto Namba

(Received December 15, 1972)

Introduction. The notion of maximal families of compact complex submanifolds of complex manifolds was introduced by Kodaira [3]. In [4], we have proved the existence of maximal families. In this paper, we generalize the notion of maximal families and prove the following theorem. (For the definitions of terminologies, see §1.)

Theorem. Let (X, π, S) be a family of complex manifolds. Let o be a point of S and let V be a compact complex submanifolds of $\pi^{-1}(o)$. Then there exists a maximal family (Y, μ, T, f) of compact complex submanifolds of (X, π, S) with a point $t_{o} \in T$ such that $f\left(t_{o}\right)=o$ and $\mu^{-1}\left(t_{o}\right)=V$.

The method of the proof is similar to that of [4].
As an application, we give a proof of Kodaira's theorem (Theorem 1 , [2]) on the stability of compact complex submanifolds of complex manifolds.

1. Definitions. By an analytic space, we mean a reduced, Hausdorff, complex analytic space. By a complex fiber space, we mean a triple (X, π, S) of analytic spaces X and S, and a surjective holomorphic map $\pi: X \rightarrow S$.

Definition 1.1. A complex fiber space (X, π, S) is called a family of complex manifolds if and only if there are an open covering $\left\{X_{\alpha}\right\}$ of X, open sets Ω_{α} of C^{n}, open sets S_{α} of S and holomorphic isomorphisms

$$
\eta_{\alpha}: X_{\alpha} \rightarrow \Omega_{\alpha} \times S_{\alpha}
$$

such that the diagram

is commutative for each $\alpha . \quad S$ is called the parameter space of the family
(X, π, S). If π is a proper map, we say that (X, π, S) is a family of compact complex manifolds.

Let (X, π, S) be a family of complex manifolds. Let T be an analytic space and let $f: T \rightarrow S$ be a holomorphic map. We put

$$
f^{*} X=\{(x, t) \in X \times T \mid \pi(x)=f(t)\}
$$

Let $\mu: f^{*} X \rightarrow T$ be the restriction of the projection map $X \times T \rightarrow T$. Then it is easy to see that $\left(f^{*} X, \mu, T\right)$ is a family of complex manifolds. This family is called the induced family of (X, π, S) over f.

Definition 1.2. Let (X, π, S) be a family of complex manifolds. A quadruplet (Y, μ, T, f) is called a family of compact complex submanifolds of fibers of the family (X, π, S) if and only if

1) f is a holomorphic map of T into S,
2) Y is a subvariety of $f^{*} X$,
3) μ is the restriction of the map

$$
\mu: f^{*} X \rightarrow T
$$

where $\left(f^{*} X, \mu, T\right)$ is the induced family of (X, π, S) over f, and
4) ($Y, \mu, T)$ is a family of compact complex manifolds.
T is called the parameter space of the family (Y, μ, T, f).
Remark. Each fiber $\mu^{-1}(t), t \in T$, of (Y, μ, T, f) is of the form $V \times$ t where V is a compact complex submanifold of $\pi^{-1}(f(t))$. We identify $V \times t$ with V.

Definition 1.3. A family (Y, μ, T, f) of compact complex submanifolds of fibers of a family (X, π, S) is said to be maximal at a point $t \in$ T if and only if, for any family (Z, λ, R, g) of compact complex submanifolds of fibers of (X, π, S) with a point $r \in R$ such that $f(t)=g(r)$ and $\mu^{-1}(t)=\lambda^{-1}(r)$, there are an open neighborhood U of r in R and a holomorphic map

$$
h: U \rightarrow T
$$

such that

1) $h(r)=t$,
2) $f h=g$, and
3) $\lambda^{-1}(q)=\mu^{-1}(h(q))$ for all $q \in U$.

A maximal family is a family which is maximal at every point of its parameter space.
2. Local expressions of families. Let (X, π, S) be a family of complex manifolds. Let o be a point of S. Let V be a compact complex submanifold of $\pi^{-1}(o)$. Since the problem is local, we may replace S by
a small neighborhood of o. Thus we may cover V by a finite number of open sets $\left\{X_{i}\right\}_{i \in I}$ of X having the following property: for each $i \in I$, there is a holomorphic isomorphism

$$
\eta_{i}: X_{i} \rightarrow W_{i} \times S
$$

such that the diagram

is commutative, where W_{i} is an open set of \boldsymbol{C}^{n}. We may assume that there is in W_{i} a coordinate system

$$
\left(w_{i}, z_{i}\right)=\left(w_{i}^{1}, \cdots, w_{i}^{r}, z_{i}^{1}, \cdots, z_{i}^{d}\right), \quad r+d=n,
$$

such that

$$
\eta_{i}\left(V \cap X_{i}\right)=\left\{\left(w_{i}, z_{i}, o\right) \in W_{i} \times o \mid w_{i}=0\right\}
$$

We put

$$
U_{i}=\left\{z_{i} \in \boldsymbol{C}^{d} \mid\left(0, z_{i}\right) \in W_{i}\right\} .
$$

Then $\left(U_{i}, \eta_{i}\right)$ is a local chart of V. We sometimes identify U_{i} with $V \cap$ X_{i}. We may assume that

$$
W_{i}=D_{i} \times U_{i}
$$

where D_{i} is a polydise in C^{r} with the center 0 .
Now, let (Y, μ, T, f) be a family of compact complex submanifolds of fibers of (X, π, S). We write V_{t} instead of $\mu^{-1}(t)$. We assume that there is a point t_{0} such that $f\left(t_{0}\right)=0$ and $V_{t_{o}}=V$. We may replace T by a sufficiently small neighborhood of t_{0}. We may assume that there is an ambient space Γ of T. Then, by the implicit function theorem, we can show the following proposition. Since the proof is straightforward, we omit it.

Proposition 2.1. For each $i \in I$, there is a holomorphic map ϕ_{i} of $U_{i} \times \Gamma$ into D_{i} such that, for each fixed $t \in T$,

$$
\eta_{i}\left(V_{t} \cap X_{i}\right)=\left\{\left(w_{i}, z_{i}, f(t)\right) \in W_{i} \times S \mid w_{i}=\phi_{i}\left(z_{i}, t\right)\right\}
$$

3. Some lemmas. Let (X, π, S) be a family of complex minifolds. Let o be a point of S. Let V be a compact complex submanifold of $\pi^{-1}(o)$. We cover V by a finite number of open subsets $\left\{\tilde{X}_{i}\right\}_{i \in I}$ of X such that, for each $i \in I$, there is a holomorphic isomorphism

$$
\eta_{i}: \widetilde{X}_{i} \rightarrow \tilde{W}_{i} \times \widetilde{S}
$$

such that the diagram

is commutative, where \widetilde{S} is an open neighborhood of o in S and \widetilde{W}_{i} is an open set of C^{n}. We may assume that there is an ambient space $\tilde{\Omega}$ of \widetilde{S}. We may assume that $\widetilde{\Omega}$ is a polydisc in C^{l} with the center $o=0$. Let

$$
(s)=\left(s^{1}, \cdots, s^{l}\right)
$$

be the standard coordinate system in \boldsymbol{C}^{l}.
Now, as in $\S 2$, we may assume that there is in \widetilde{W}_{i} a coordinate system

$$
\left(w_{i}, z_{i}\right)=\left(w_{i}^{1}, \cdots, w_{i}^{r}, z_{i}^{1}, \cdots, z_{i}^{d}\right), \quad r+d=n
$$

such that

$$
\eta_{i}\left(V \cap \widetilde{X}_{i}\right)=\left\{\left(w_{i}, z_{i}, o\right) \in \widetilde{W}_{i} \times o \mid w_{i}=0\right\}
$$

We put

$$
\widetilde{U}_{i}=\left\{z_{i} \in \boldsymbol{C}^{d} \mid\left(0, z_{i}\right) \in \widetilde{W}_{i}\right\}
$$

Then $\left(\widetilde{U}_{i}, \eta_{i}\right)$ is a local chart of V. We sometimes identify \tilde{U}_{i} with $V \cap$ \tilde{X}_{i}. We may assume that

$$
\widetilde{W}_{i}=\widetilde{D}_{i} \times \widetilde{U}_{i}
$$

where \widetilde{D}_{i} is a polydisc in C^{r} with the center 0 .
For each $i \in I$, let U_{i} be an open set of V such that

1) \bar{U}_{i} is compact and is contained in \widetilde{U}_{i},
2) $U_{i} U_{i}=V$.

We may assume that \widetilde{U}_{i} and U_{i} are connected and Stein for all $i \in I$. For each $i \in I$, let D_{i} be a polydisc in C^{r} with the center 0 such that \bar{D}_{i} contained in \widetilde{D}_{i}. Let Ω be a polydisc in C^{\imath} with the center $o=0$ such the $\bar{\Omega}$ is contained in $\widetilde{\Omega}$. We put

$$
\begin{aligned}
W_{i} & =D_{i} \times U_{i}, \\
S^{\prime} & =\widetilde{S} \cap \Omega, \\
X_{i} & =\eta_{i}^{-1}\left(W_{i} \times S^{\prime}\right) .
\end{aligned}
$$

We write S instead of S^{\prime} to simplify the notation. It is clear that

$$
U_{i}=V \cap X_{i}
$$

Now, we consider the map

$$
\eta_{i k}=\eta_{i} \eta_{k}^{-1}: \eta_{k}\left(\tilde{X}_{i} \cap \tilde{X}_{k}\right) \rightarrow \eta_{i}\left(\tilde{X}_{i} \cap \tilde{X}_{k}\right)
$$

We want to extend the map $\eta_{i k}$ to an ambient space of $\eta_{k}\left(X_{i} \cap X_{k}\right)$. This is done as follows.

Let P be point of $\bar{U}_{i} \cap \bar{U}_{k}$. Then it is clear that there is an open neighborhood $W_{P} \times S_{P}$ of $\eta_{k}(P)$ in $\eta_{k}\left(\widetilde{X}_{i} \cap \widetilde{X}_{k}\right)$ such that

1) $S_{P}=\Omega_{P} \cap S$ where Ω_{P} is a polydisc in C^{l} contained in Ω with the center $o=0$, and
2) $W_{P}=D_{P} \times U_{P}$ where D_{P} is a polydisc in C^{r} with the center 0 contained in D_{k} and U_{P} is an open neighborhood of P in V contained in $\widetilde{U}_{i} \cap \widetilde{U}_{k}$.
We cover $\eta_{k}\left(\bar{U}_{i} \cap \bar{U}_{k}\right)$ by open sets $\left\{W_{P} \times S_{P}\right\}_{P}$ in $\eta_{k}\left(\widetilde{X}_{i} \cap \widetilde{X}_{k}\right)$ satisfying the above conditions 1) and 2). We choose a finite subcovering $\left\{W_{\lambda} \times S_{\lambda}\right\}_{\lambda=1, \ldots, q}$ of $\left\{W_{P} \times S_{P}\right\}$, where $S_{\lambda}=\Omega_{\lambda} \cap S$ and $W_{\lambda}=D_{\lambda} \times U_{\lambda}$. Then $\left\{U_{\lambda}\right\}_{\lambda=1, \ldots, q}$ covers $\eta_{k}\left(\bar{U}_{i} \cap \bar{U}_{k}\right)$. The following lemma will be proved in $\S 7$.

Lemma 3.1. There is a Stein open set U in \widetilde{U}_{k} such that

$$
\bar{U}_{i} \cap \bar{U}_{k} \subset U \subset \bigcup_{\lambda} U_{\lambda}
$$

Let Ω_{0} be a polydisc in C^{l} with the center $o=0$ contained in $\bigcap_{\lambda} \Omega_{\lambda}$. We put $S_{0}=\Omega_{0} \cap S$. Let D_{o} be a polydisc in C^{r} with the center 0 contained in $\bigcap_{\lambda} D_{2}$. We put $W_{o}=D_{o} \times U$. Then W_{0} is Stein. It is clear that

$$
\eta_{k}\left(\bar{U}_{i} \cap \bar{U}_{k}\right) \subset W_{o} \times o \subset \widetilde{W}_{k} \times o .
$$

It is also clear that

$$
W_{\circ} \times S_{o} \subset \eta_{k}\left(\widetilde{X}_{i} \cap \tilde{X}_{k}\right)
$$

The following lemma will be proved in $\S 7$.
Lemma 3.2. Taking Ω_{0} and D_{o} sufficiently small, we have

$$
\eta_{k}\left(X_{i} \cap X_{k}\right) \cap\left(D_{o} \times U_{k} \times S_{o}\right) \subset W_{o} \times S_{o}
$$

We take Ω_{o} and D_{o} sufficiently small so that Lemma 3.2 is satisfied. Since $W_{o} \times S_{o} \subset \eta_{k}\left(\tilde{X}_{i} \cap \tilde{X}_{k}\right)$, the map $\eta_{i k}=\eta_{i} \eta_{k}^{-1}$ is defined on $W_{o} \times S_{0}$. Since $W_{0} \times S_{o}$ is a closed subvariety of the Stein manifold $W_{0} \times \Omega_{0}$,

$$
\eta_{i k}: W_{o} \times S_{o} \rightarrow \tilde{W}_{i} \times S_{o}
$$

is extended to a holomorphic map

$$
\eta_{i k}: W_{0} \times \Omega_{0} \rightarrow \tilde{W}_{i} \times \Omega_{0}
$$

The extended map $\eta_{i k}$ is written as follows:

$$
\eta_{i k}\left(w_{k}, z_{k}, s\right)=\left(f_{i k}\left(w_{k}, z_{k}, s\right), g_{i k}\left(w_{k}, z_{k}, s\right), s\right),
$$

where

$$
f_{i k}: W_{o} \times \Omega_{o} \rightarrow \widetilde{D}_{i}
$$

and

$$
g_{i k}: W_{o} \times \Omega_{o} \rightarrow \widetilde{U}_{i}
$$

are holomorphic maps.
Henceforth, we assume that, for each $i \in I$,

$$
\begin{aligned}
U_{i} & =\left\{z_{i} \in \widetilde{U}_{i}| | z_{i} \mid<1\right\} \\
D_{i} & =\left\{w_{i} \in \widetilde{D}_{i}| | w_{i} \mid<1\right\} \\
W_{i} & =\left\{\left(w_{i}, z_{i}\right) \in \widetilde{W}_{i}| | w_{i}\left|<1,\left|z_{i}\right|<1\right\}\right.
\end{aligned}
$$

and

$$
\Omega=\{s \in \widetilde{\Omega}| | s \mid<1\},
$$

where $\left|z_{i}\right|=\max _{\alpha}\left|z_{i}^{\alpha}\right|, z_{i}=\left(z_{i}^{1}, \cdots, z_{i}^{d}\right)$, and so on. We may assume that there is a positive number $\varepsilon_{0}, 0<\varepsilon_{0}<1$, such that

$$
\Omega_{o}=\left\{s \in \Omega| | s \mid<\varepsilon_{o}\right\}
$$

and

$$
D_{o}=\left\{w_{k} \in D_{k}| | w_{k} \mid<\varepsilon_{o}\right\} .
$$

Let $e, 0<e<1$, be a small positive number such that the open sets $U_{i}^{e}, i \in I$, of V defined by

$$
U_{i}^{e}=\left\{z_{i} \in U_{i}| | z_{i} \mid<1-e\right\}
$$

again cover V. We put

$$
\begin{aligned}
W_{i}^{e} & =\left\{\left(w_{i}, z_{i}\right) \in W_{i}| | w_{i}\left|<1,\left|z_{i}\right|<1-e\right\}\right. \\
& =D_{i} \times U_{i}^{e}
\end{aligned}
$$

and

$$
X_{i}^{e}=\eta_{i}^{-1}\left(W_{i}^{e} \times S\right)
$$

For a positive number ε with $0<\varepsilon<\varepsilon_{0}$, we put

$$
\begin{aligned}
& \Omega_{\varepsilon}=\{s \in \Omega \| s \mid<\varepsilon\}, \\
& S_{\varepsilon}=S \cap \Omega_{\varepsilon}
\end{aligned}
$$

and

$$
D_{\varepsilon}=\left\{w_{k} \in D_{k}| | w_{k} \mid<\varepsilon\right\} .
$$

The following Lemmas $3.3,3.4$ and 3.5 will be proved in $\S 7$.

Lemma 3.3. There is a small positive number ε with $0<\varepsilon<\varepsilon_{o}$ such that if $w_{k} \in D_{\varepsilon}$ and $s \in \Omega_{\varepsilon}$, then, for all $z_{k} \in U_{i}^{e} \cap U_{k}, g_{i k}\left(w_{k}, z_{k}, s\right)$ is defined and is a point of U_{i}.

Lemma 3.4. Given any $\delta, 0<\delta \leqq 1$, there is a small positive number ε with $0<\varepsilon<\varepsilon_{0}$ such that if $w_{k} \in D_{\varepsilon}$ and $s \in \Omega_{\varepsilon}$, then, for all $z_{k} \in U_{i}^{e} \cap U_{k}$, $f_{i k}\left(w_{k}, z_{k}, s\right)$ is defined and

$$
\left|f_{i k}\left(w_{k}, z_{k}, s\right)\right|<\delta .
$$

Lemma 3.5. There is a small positive number ε with $0<\varepsilon<\varepsilon_{o}$ such that if $w_{k} \in D_{\varepsilon}$ and $s \in S_{\varepsilon}$, then

$$
\eta_{k}^{-1}\left(w_{k}, z_{k}, s\right) \in X_{i} \cap X_{k} \quad \text { for all } \quad z_{k} \in U_{i}^{e} \cap U_{k} .
$$

Let $e^{\prime}, 0<e<e^{\prime}<1$, be a small positive number such that the open sets $U_{i}^{e^{\prime}}, i \in I$, of V defined by

$$
U_{i}^{e^{\prime}}=\left\{z_{i} \in U_{i}| | z_{i} \mid<1-e^{\prime}\right\}
$$

again cover V. We put

$$
\begin{aligned}
W_{i}^{e^{\prime}} & =\left\{\left(w_{i}, z_{i}\right) \in W_{i}| | w_{i}\left|<1,\left|z_{i}\right|<1-e^{\prime}\right\}\right. \\
& =D_{i} \times U_{i}^{e^{\prime}}
\end{aligned}
$$

and

$$
X_{i}^{e^{\prime}}=\eta_{i}^{-1}\left(W_{i}^{e^{\prime}} \times S\right)
$$

The following lemma will be proved in $\S 7$.
Lemma 3.6. There is a small positive number ε with $0<\varepsilon<\varepsilon_{0}$ such that if $w_{k} \in D_{\epsilon}, s \in S_{\varepsilon}$ and $\eta_{k}^{-1}\left(w_{k}, z_{k}, s\right) \in X_{i}^{e^{\prime}} \cap X_{k}$, then

$$
z_{k} \in U_{i}^{e} \cap U_{k}
$$

The set U in Lemma 3.1 depends on the indices i and k. On the other hand, we may assume that ε_{0} is independent of indices, for the set of indices is a finite set. Thus Ω_{o}, S_{o} and D_{o} are independent of indices. We write

$$
U=U_{(i k)}
$$

and

$$
W_{o}=W_{o(i k)}
$$

Then $\eta_{j k}^{-1}\left(W_{o(i j)} \times \Omega_{o}\right)$ is an open set of $W_{o(j k)} \times \Omega_{o}$ and contains $\bar{U}_{i} \cap \bar{U}_{j} \cap \bar{U}_{k}$. The following lemma will be proved in $\S 7$.

Lemma 3.7. There is a small positive number ε with $0<\varepsilon<\varepsilon_{o}$ such that if $w_{k} \in D_{\varepsilon}$ and $s \in \Omega_{\varepsilon}$, then

1) $\left(w_{k}, z_{k}, s\right) \in \eta_{j k}^{-1}\left(W_{o(i j)} \times \Omega_{o}\right)$ for all $z_{k} \in U_{i} \cap U_{j} \cap U_{k}$,
2) $g_{i k}\left(w_{k}, z_{k}, s\right) \in U_{i}^{e / 2} \cap U_{j}^{e / 2}$ for all $z_{k} \in U_{i}^{e} \cap U_{j}^{e} \cap U_{k}$ where $U_{i}^{e / 2}=$ $\left\{z_{i} \in U_{i}| | z_{i} \mid<1-e / 2\right\}$ and $U_{j}^{e / 2}=\left\{z_{j} \in U_{j}| | z_{j} \mid<1-e / 2\right\}$.
4. Banach spaces $\boldsymbol{C}^{p}(| |)$. We use the same notations as in §3. Henceforth we assume that $\widetilde{S} \subset \widetilde{\Omega}$ is a neat imbedding of \widetilde{S} at o, [1]. Thus l is equal to the dimension of the Zariski tangent space $T_{o} S$ at o. We assume that \widetilde{S} is defined in $\widetilde{\Omega}$ as the common zeros of holomorphic functions

$$
e_{1}(s), \cdots, e_{m}(s)
$$

It is easy to see that

$$
\begin{equation*}
e_{\alpha}(o)=0, \quad \alpha=1, \cdots, m \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\left(\partial e_{\alpha} / \partial s^{\beta}\right)(o)=0, \quad \alpha=1, \cdots, m, \beta=1, \cdots, l \tag{2}
\end{equation*}
$$

In §3, we extended the map

$$
\eta_{i k}=\eta_{i} \eta_{k}^{-1}: W_{o} \times S_{o} \rightarrow \widetilde{W}_{i} \times S_{o}
$$

to the map

$$
\eta_{i k}: W_{o} \times \Omega_{o} \rightarrow \widetilde{W}_{i} \times \Omega_{o}
$$

We wrote the extended map $\eta_{i k}$ as follows:

$$
\eta_{i k}\left(w_{k}, z_{k}, s\right)=\left(f_{i k}\left(w_{k}, z_{k}, s\right), g_{i k}\left(w_{k}, z_{k}, s\right), s\right)
$$

Lemma 4.1. Let z_{k} be a point of $U_{i} \cap U_{k}$. Then the matrices

$$
\left(\partial f_{i k} / \partial w_{k}\right)_{\left(0, z_{k}, o\right)} \quad \text { and } \quad\left(\partial f_{i k} / \partial s\right)_{\left(0, z_{k}, o\right)}
$$

are independent how to extend the map $\eta_{i k}$.
Proof. The first assertion is ovbious. We prove the second assertion. In a neighborhood of $\left(0, z_{k}, o\right)$ in $W_{o} \times \Omega_{o}$, another extension of $\eta_{i k}$ is written as

$$
\begin{aligned}
& w_{i}=f_{i k}^{\prime}\left(w_{k}, z_{k}, s\right)=f_{i k}\left(w_{k}, z_{k}, s\right)+\sum_{\alpha=1}^{m} a_{i k}^{\alpha}\left(w_{k}, z_{k}, s\right) e_{\alpha}(s), \\
& z_{i}=g_{i k}^{\prime}\left(w_{k}, z_{k}, s\right)=g_{i k}\left(w_{k}, z_{k}, s\right)+\sum_{\alpha=1}^{m} b_{i k}^{\alpha}\left(w_{k}, z_{k}, s\right) e_{\alpha}(s),
\end{aligned}
$$

where $a_{i k}^{\alpha}$ and $b_{i k}^{\alpha}$ are vector valued holomorphic functions in the neighborhood. Hence

$$
\begin{aligned}
\left(\partial f_{i k}^{\prime} / \partial s\right)_{\left(0, z_{k}, o\right)}= & \left(\partial f_{i k} / \partial s\right)_{\left(0, z_{k}, o\right)}+\sum_{\alpha=1}^{m}\left(\partial a_{i k}^{\alpha} / \partial s\right)_{\left(0, z_{k}, o\right)} e_{\alpha}(o) \\
& +\sum_{\alpha=1}^{m} a_{i k}^{\alpha}\left(0, z_{k}, o\right)\left(\partial e_{\alpha} / \partial s\right)_{o} \\
= & \left(\partial f_{i k} / \partial s\right)_{\left(0, z_{k}, o\right)}
\end{aligned}
$$

by 1) and 2) above.

q.e.d.

Lemma 4.2. Let z_{k} be a point of $U_{i} \cap U_{j} \cap U_{k}$. Then

$$
\left(\partial f_{i k} / \partial s\right)_{\left(0, z_{k}, 0\right)}=\left(\partial f_{i j} / \partial w_{j}\right)_{\left(0, z_{j}, 0\right)}\left(\partial f_{j k} / \partial s\right)_{\left(0, z_{k}, 0\right)}+\left(\partial f_{i j} / \partial s\right)_{\left(0, z_{j}, 0\right)},
$$

where $z_{j}=g_{j k}\left(0, z_{k}, o\right)$.
Proof. Let z_{k} be a point of $U_{i} \cap U_{j} \cap U_{k}$. Then there are a neighborhood Y of $\left(0, z_{k}, o\right)$ in $W_{o(j k)} \times \Omega_{0}$ and vector valued holomorphic functions

$$
d^{\alpha}\left(w_{k}, z_{k}, s\right), \quad \alpha=1, \cdots, m
$$

on Y such that $\eta_{i j} \circ \eta_{j k}$ is defined on Y and

$$
\begin{equation*}
f_{i k}\left(w_{k}, z_{k}, s\right)=f_{i j}\left(f_{j_{k}}\left(w_{k}, z_{k}, s\right), g_{j_{k}}\left(w_{k}, z_{k}, s\right), s\right)+\sum_{\alpha=1}^{m} d^{\alpha}\left(w_{k}, z_{k}, s\right) e_{\alpha}(s) \tag{3}
\end{equation*}
$$

Hence, noting that $f_{i j}\left(0, z_{j}, o\right)=0$, we have

$$
\begin{aligned}
\left(\partial f_{j k} / \partial s\right)_{\left(0, z_{k}, 0\right)}= & \left(\partial f_{i j} / \partial w_{j}\right)_{\left(0, z_{j}, o\right)}\left(\partial f_{j k} / \partial s\right)_{\left(0, z_{k}, o\right)}+\left(\partial f_{i j} / \partial s\right)_{\left(0, z_{j}, 0\right)} \\
& +\sum_{\alpha=1}^{m}\left(\partial d^{\alpha} / \partial s\right)_{\left(0, z_{k}, \circ\right)} e_{\alpha}(o)+\sum_{\alpha=1}^{m} d^{\alpha}\left(0, z_{k}, o\right)\left(\partial e_{\alpha} / \partial s\right)_{(0)}
\end{aligned}
$$

The third and the fourth terms vanish by (1) and (2) above. q.e.d.

Differentiating (3) above with respect to w_{k}, we get
LEMMA 4.3. Let z_{k} be a point of $U_{i} \cap U_{j} \cap U_{k}$. Then

$$
\left(\partial f_{i k} / \partial w_{k}\right)_{\left(0, z_{k}, 0\right)}=\left(\partial f_{i j} / \partial w_{j}\right)_{\left(0, z_{j}, 0\right)}\left(\partial f_{j k} / \partial w_{k}\right)_{\left(0, z_{k}, o\right)},
$$

where $z_{j}=g_{j_{k}}\left(0, z_{k}, o\right)$.
We define a matrix valued holomorphic function $F_{i k}\left(z_{k}\right)$ on $U_{i} \cap U_{k}$ by

$$
F_{i k}\left(z_{k}\right)=\left(\partial f_{i k} / \partial w_{k}\right)_{\left(0, z_{k}, 0\right)} .
$$

Then, by Lemma 4.3, we have

$$
F_{i k}\left(z_{k}\right)=F_{i j}\left(z_{j}\right) F_{j k}\left(z_{k}\right),
$$

where $z_{k} \in U_{i} \cap U_{j} \cap U_{k}$ and $z_{j}=g_{j k}\left(0, z_{k}, o\right)$. The holomorphic vector bundle F on V defined by the transition matrices $\left\{F_{i k}\right\}$ is called the normal bundle of V in $\pi^{-1}(o)$.

We define a matrix valued holomorphic function $N_{i k}\left(z_{k}\right)$ on $U_{i} \cap U_{k}$ by

$$
N_{i k}\left(z_{k}\right)=\left(\begin{array}{cc}
F_{i k}\left(z_{k}\right) & \left(\partial f_{i k} / \partial s\right)_{\left(0, z_{k}, o\right)} \\
0 & 1
\end{array}\right)
$$

where 1 is the $(l \times l)$-identity matrix. Then by Lemmas 4.2 and 4.3 , we have

$$
N_{i k}\left(z_{k}\right)=N_{i j}\left(z_{j}\right) N_{j_{k}}\left(z_{k}\right),
$$

where $z_{k} \in U_{i} \cap U_{j} \cap U_{k}$ and $z_{j}=g_{j k}\left(0, z_{k}, o\right)$.
Definition 4.1. By the normal bundle of V in X, we mean the holomorphic vector bundle N on V defined by the transition matrices $\left\{N_{i k}\right\}$.

From the definitions of F and N, we have
Lemma 4.4. There is the following exact sequence:

$$
0 \rightarrow F \rightarrow N \rightarrow V \times T_{0} S \rightarrow 0
$$

where $V \times T_{o} S$ is the trivial bundle on V with the fiber $T_{o} S$.
We do not use the bundle N in the sequel.
Now, we refer some results in §2 of [4]. We define additive groups $C^{p}, p=0,1,2, \cdots$, as follows.

An element $\xi=\left\{\xi_{i_{0} \ldots i_{p}}\right\} \in C^{p}$ is a function which associates to each $(p+1)$-ple (i_{0}, \cdots, i_{p}) of indices of I a holomorphic section $\xi_{i_{0} \ldots i_{p}}$ of the normal bundle F on $U_{i_{0}}^{e} \cap \cdots \cap U_{i_{p-1}}^{e} \cap U_{i_{p}}$. In particular, an element $\xi=\left\{\xi_{i}\right\} \in C^{0}$ is a function which associates to each index $i \in I$ a holomorphic section ξ_{i} of F on U_{i}.

We define the coboundary map

$$
\delta: C^{p} \rightarrow C^{p+1}
$$

by

$$
(\delta \xi)_{i_{0} \ldots i_{p+1}}(z)=\sum_{\nu}(-1)^{\nu} \xi_{i_{0} \ldots i_{\nu-1} i_{\nu+1} \ldots i_{p+1}}(z) \quad \text { for } z \in U_{i_{0}}^{e} \cap \cdots \cap U_{i_{p}}^{e} \cap U_{i_{p+1}}
$$

Then it is easy to see that

$$
\delta^{2}=0
$$

We introduce a norm $\left|\mid\right.$ in C^{p}. For each $\xi=\left\{\xi_{i_{0} \ldots i_{p}}\right\} \in C^{p}$, we define $|\xi|$ by

$$
\begin{aligned}
&|\xi|=\sup \left\{\left|\xi_{i_{0} \ldots i_{p}}^{k}(z)\right|: \lambda=1, \cdots, r\right. \\
&\left.z \in U_{i_{0}}^{e} \cap \cdots \cup U_{i_{p-1}}^{e} \cap U_{i_{p}},\left(i_{0}, \cdots, i_{p}\right) \in I^{p+1}\right\},
\end{aligned}
$$

where $\xi_{i_{0} \ldots i_{p}}^{2}$ is the representation of the component $\xi_{i_{0} \ldots i_{p}}$ of ξ with respect to the coordinate $\left(w_{i_{0}}, z_{i_{0}}\right)$. In particular, we define $|\xi|$ for $\xi \in C^{0}$ by

$$
|\xi|=\sup \left\{\left|\xi_{i}^{\lambda}\right|: \lambda=1, \cdots, r, i \in I, z \in U_{i}\right\}
$$

where ξ_{i}^{2} is the representation of ξ_{i} with respect to the coordinate (w_{i}, z_{i}). Note that we denoted | $\left.\right|_{e}$ in [4] instead of ||.

We put

$$
C^{p}(| |)=\left\{\xi \in C^{p}| | \xi \mid<+\infty\right\} .
$$

It is easy to see that $C^{p}(| |)$ is a Banach space and the coboundary map δ maps $C^{p}(| |)$ continuously into $C^{p+1}(| |)$.

We put, for $p=0,1,2, \cdots$,

$$
\begin{aligned}
& Z^{p}(\mid)=\left\{\xi \in C^{p}(| || | \delta \xi=0\},\right. \\
& B^{p}(| |)=\delta C^{p-1} \cap C^{p}(| |)
\end{aligned}
$$

and

$$
H^{p}(| |)=Z^{p}(| |) / B^{p}(| |) .
$$

It is clear that $H^{\circ}(| |)$ is canonically isomorphic to the 0 -th cohomology group $H^{\circ}(V, F)$ of F.

By Lemmas 2.3 of [4] and 2.4 of [4], there are continuous linear maps

$$
E: B^{2}(| |) \rightarrow C^{1}(| |)
$$

and

$$
E_{0}: B^{1}(| |) \rightarrow C^{0}(\mid)
$$

such that

$$
\begin{aligned}
& \delta E=\text { the identity map on } B^{2}(| |), \\
& \delta E_{0}=\text { the identity map on } B^{1}(| |) .
\end{aligned}
$$

We put

$$
\Lambda=1-E \delta .
$$

Then 4 is a projection map of $C^{1}(| |)$ onto $Z^{1}(| |)$.
By Lemma 2.5 of $[4], B^{1}(| |)=\delta C^{0}(| |)$ and is closed in $Z^{1}(| |)$. Again, by Lemma 2.5 of [4], $H^{1}(| |)$ is canonically isomorphic to $H^{1}(V, F)$, the first cohomology group of F. Thus there is a subspace $H^{1}(| |)^{*}$ of $Z^{1}(| |)$ isomorphic to $H^{1}(V, F)$ such that $Z^{1}(| |)$ splits into the direct sum of $B^{1}(| |)$ and $H^{1}(\mid)$:

$$
Z^{1}(| |)=B^{1}(| |) \oplus H^{1}(| |) .
$$

Let

$$
B: Z^{1}(| |) \rightarrow B^{1}(| |)
$$

and

$$
H: Z^{1}(| |) \rightarrow H^{1}(| |)
$$

be the projection maps corresponding to the splitting.
By Lemma 4.2, $\left\{\left(\partial f_{i k} / \partial s\right)_{\left(0, r_{k}, 0\right)}\right\}$ is an element of $Z^{1}(| |)$. Thus we have

[^0]a continuous linear map
$$
\sigma: T_{o} S \rightarrow Z^{1}(\mid)
$$
defined by
$$
\sigma(a)_{i k}\left(z_{i}\right)=\sum_{\alpha=1}^{l} a^{\alpha}\left(\partial f_{i k} / \partial s^{\alpha}\right)_{\left(0, z_{k}, 0\right)}
$$
for $z_{i} \in U_{i}^{e} \cap U_{k}$, where
$$
a=\sum_{\alpha=1}^{l} a^{\alpha}\left(\partial / \partial s^{\alpha}\right)_{\rho}
$$
and
$$
z_{k}=g_{k i}\left(0, z_{i}, o\right)
$$
5. Proof of the theorem. We use the same notations as in $\S 3$ and §4. We consider the product
$$
C^{0}(\mid) \times T_{o} S
$$
of the Banach space $C^{\circ}(| |)$ introduced in $\S 4$ and the Zariski tangent space $T_{0} S$. We introduce a norm || in $C^{0}(| |) \times T_{o} S$ as follows:
$$
|(\phi, s)|=\max \{|\phi|,|s|\} \quad \text { for } \quad(\phi, s) \in C^{0}(| |) \times T_{o} S,
$$
where
$$
|s|=\max _{\alpha}\left|a_{\alpha}\right| \quad \text { if } s=\sum_{\alpha=1}^{l} a^{\alpha}\left(\frac{\partial}{\partial s^{\alpha}}\right)_{0} .
$$

Then $C^{0}(| |) \times T_{o} S$ is a Banach space.
We identify $\widetilde{\Omega}$ with an open set of $T_{o} S$ by

$$
\left(a^{1}, \cdots, a^{l}\right) \in \widetilde{\Omega} \rightarrow \sum_{\alpha=1}^{l} a^{\alpha}\left(\frac{\partial}{\partial s^{\alpha}}\right)_{0} \in T_{o} S
$$

Let V^{\prime} be a complex submanifold of $\pi^{-1}(s), s \in S$, such that

1) $V^{\prime} \subset \cup X_{i}$ and
2) for each $i \in I$, there is a holomorphic map ϕ_{i} on U_{i} into D_{i} such that

$$
\eta_{i}\left(X_{i} \cap V^{\prime}\right)=\left\{\left(w_{i}, z_{i}, s\right) \in W_{i} \times s \mid w_{i}=\phi_{i}\left(z_{i}\right)\right\}
$$

For such V^{\prime}, we associate an element

$$
(\phi, s) \in C^{0}(| |) \times T_{0} S,
$$

where $\phi=\left\{\phi_{i}\right\} \in C^{0}(| |)$ and $s \in S \subset \Omega \subset T_{o} S$.
The proof of the following lemma will be given in §7.
Lemma 5.1. There is a small positive number $\varepsilon, 0<\varepsilon<1$, such that
if V^{\prime} corresponds to

$$
(\phi, s) \in C^{\circ}(| |) \times T_{o} S
$$

with $|(\phi, s)|<\varepsilon$, then

$$
V^{\prime} \subset \bigcup_{i} X_{i}^{e} .
$$

Using Lemma 5.1, we prove
Lemma 5.2. There is a small positive number $\varepsilon, 0<\varepsilon<1$, such that if a complex submanifold V^{\prime} of $\pi^{-1}(s), s \in S$, corresponds to

$$
(\phi, s) \in C^{\circ}(| |) \times T_{0} S
$$

with $|(\phi, s)|<\varepsilon$, then V^{\prime} is compact.
Proof. Let ε satisfy Lemma 5.1. Let $\left\{P^{\nu}\right\}_{\nu=1,2, \ldots}$ be a sequence of points in V^{\prime}. We want to choose a subsequence converging to a point of V^{\prime}. By Lemma 5.1, we may assume that

$$
\left\{P^{\nu}\right\}_{\nu=1,2, \ldots} \subset X_{i}^{e}
$$

for a fixed $i \in I$. We put

$$
\eta_{i}\left(P^{\nu}\right)=\left(w_{i}^{\nu}, z_{i}^{\nu}, s\right), \quad \nu=1,2, \cdots
$$

Then

$$
w_{i}^{\nu}=\phi_{i}\left(z_{i}^{\nu}\right), \quad \nu=1,2, \cdots
$$

For each P^{ν}, we associate a point Q^{ν} in V defined by

$$
\eta_{i}\left(Q^{\nu}\right)=\left(0, z_{i}^{\nu}, o\right) .
$$

Then $Q^{\nu} \in U_{i}^{e}, \nu=1,2, \cdots$. Thus we may assume that $\left\{Q^{\nu}\right\}_{\nu=1,2} \ldots$ converges to a point $Q \in U_{i}$. We put

$$
\eta_{i}(Q)=\left(0, z_{i}, o\right) .
$$

Now we put

$$
P=\eta_{i}^{-1}\left(\phi_{i}\left(z_{i}\right), z_{i}, s\right) \in X_{i} .
$$

Then $P \in V^{\prime}$ and

$$
\phi_{i}\left(z_{i}\right)=\phi_{i}\left(\lim _{\nu} z_{i}^{\nu}\right)=\lim _{\nu} \phi_{i}\left(z_{i}^{\nu}\right)=\lim _{\nu} w_{i}^{\nu} .
$$

Hence $\left\{P^{\nu}\right\}_{\nu=1,2, \ldots}$ converges to P. q.e.d.

Now, let V^{\prime} be a compact complex submanifold of $\pi^{-1}(s), s \in S$, such that 1) and 2) above hold. Then the corresponding

$$
(\phi, s) \in C^{0}(| |) \times T_{0} S
$$

must satisfy the following compatibility conditions:
3) $s \in S$ and
4) $f_{i k}\left(\phi_{k}\left(z_{k}\right), z_{k}, s\right)=\phi_{i}\left(g_{i k}\left(\phi_{k}\left(z_{k}\right), z_{k}, s\right)\right)$ for $\left(\phi_{k}\left(z_{k}\right), z_{k}, s\right) \in \eta_{k}\left(X_{i} \cap X_{k}\right) \cap$ $\pi^{-1}(s)$.

Conversely if an element $(\phi, s) \in C^{0}(| |) \times T_{o} S$ with $|(\phi, s)|<\varepsilon$, $(\varepsilon$ satisfying Lemma 5.2), satisfies 3) and 4), then it is clear that a compact complex submanifold V^{\prime} of $\pi^{-1}(s)$ is defined by the equations:

$$
w_{i}=\phi_{i}\left(z_{i}\right) \quad \text { for } z_{i} \in U_{i}, i \in I,
$$

and satisfies 1) and 2).
Henceforth, let $\varepsilon, 0<\varepsilon<1$, be a small positive number which satisfies Lemmas 3.3, 3.4 (for $\delta=1$), 3.5, 3.6, 3.7 and 5.2. Let B_{ε} be the open ε-ball of $C^{0}(| |)$ with the center 0 . Let Ω_{ε} be the open ε-ball of $T_{o} S$ with the center o. We put

$$
S_{\varepsilon}=S \cap \Omega_{\varepsilon} .
$$

We assume that S is defined in Ω as the common zeros of holomorphic functions

$$
e_{1}(s), \cdots, e_{m}(s)
$$

We define a holomorphic map

$$
e: \Omega \rightarrow C^{m}
$$

by

$$
e(s)=\left(e_{1}(s), \cdots, e_{m}(s)\right)
$$

Then

$$
S_{\varepsilon}=\left\{s \in \Omega_{\varepsilon} \mid e(s)=0\right\}
$$

Now, we define a map

$$
K: B_{\varepsilon} \times \Omega_{\varepsilon} \rightarrow C^{1}(| |)
$$

by

$$
K(\phi, s)_{i k}\left(z_{i}\right)=f_{i k}\left(\phi_{k}\left(z_{k}\right), z_{k}, s\right)-\dot{\phi}_{i}\left(g_{i k}\left(\phi_{k}\left(z_{k}\right), z_{k}, s\right)\right) \quad \text { for } \quad z_{i} \in U_{i}^{e} \cap U_{k},
$$

where $z_{k}=g_{k i}\left(0, z_{i}, o\right)$. By Lemmas 3.3 and $3.4, f_{i k}\left(\phi_{k}\left(z_{k}\right), z_{k}, s\right)$ and $g_{i k}\left(\phi_{k}\left(z_{k}\right)\right.$, z_{k}, s) are defined, and

$$
\left|f_{i k}\left(\phi_{k}\left(\dot{z}_{k}\right), z_{k}, s\right)\right|<1
$$

and

$$
\left|g_{i k}\left(\phi_{k}\left(z_{k}\right), z_{k}, s\right)\right|<1 .
$$

Hence $\phi_{i}\left(g_{i k}\left(\phi_{k}\left(z_{k}\right), z_{k}, s\right)\right)$ is defined and

$$
\left|\phi_{i}\left(g_{i k}\left(\phi_{k}\left(z_{k}\right), z_{k}, s\right)\right)\right|<\varepsilon .
$$

Hence

$$
|K(\phi, s)|<1+\varepsilon .
$$

Thus

$$
K: B_{\varepsilon} \times \Omega_{\varepsilon} \rightarrow C^{1}(| |)
$$

is well defined.
Let

$$
\beta: C^{0}(| |) \times T_{o} S \rightarrow T_{o} S
$$

be the projection map.
We put

$$
M_{1}=\left\{(\phi, s) \in B_{\varepsilon} \times \Omega_{\varepsilon} \mid K(\phi, s)=0\right\}
$$

and

$$
\begin{aligned}
M & =\left\{(\phi, s) \in B_{\varepsilon} \times \Omega_{\varepsilon} \mid K(\phi, s)=0, e \beta(\phi, s)=e(s)=0\right\} \\
& =\left\{(\phi, s) \in B_{\varepsilon} \times S_{\varepsilon} \mid K(\phi, s)=0\right\} .
\end{aligned}
$$

Now we take an element $(\phi, s) \in B_{\varepsilon} \times \Omega_{\varepsilon}$ which satisfies 3) and 4) above. Let z_{i} be any fixed point of $U_{i}^{e} \cap U_{k}$. By Lemma 3.5,

$$
\left(\phi_{k}\left(z_{k}\right), z_{k}, s\right) \in \eta_{k}\left(X_{i} \cap X_{k}\right),
$$

where $z_{k}=g_{k i}\left(0, z_{i}, o\right)$. Hence, by 4),

$$
K(\phi, s)_{i k}\left(z_{i}\right)=0 .
$$

Since $z_{i} \in U_{i}^{e} \cap U_{k}$ is arbitrary,

$$
K(\phi, s)=0 .
$$

Hence $(\phi, s) \in M$.
Conversely, let $(\phi, s) \in M$. Then $s \in S_{\varepsilon}$. Thus 3) is satisfied. Let z_{k} be a point of U_{k}. We assume that

$$
\left(\phi_{k}\left(z_{k}\right), z_{k}, s\right) \in \eta_{k}\left(X_{i}^{e^{\prime}} \cap X_{k}^{e^{\prime}}\right) .
$$

Then, by Lemma 3.6,

$$
z_{k} \in U_{i}^{e} \cap U_{k} .
$$

Since $K(\phi, s)=0$, we have

$$
f_{i k}\left(\phi_{k}\left(z_{k}\right), z_{k}, s\right)=\phi_{i}\left(g_{i k}\left(\phi_{k}\left(z_{k}\right), z_{k}, s\right)\right) \quad \text { for }\left(\phi_{k}\left(z_{k}\right), z_{k}, s\right) \in \eta_{k}\left(X_{i}^{e^{\prime}} \cap X_{k}^{e^{\prime}}\right) .
$$

Hence the equations

$$
w_{i}=\phi_{i}\left(z_{i}\right), \quad z_{i} \in U_{i}^{e^{\prime}}, i \in I
$$

define a complex submanifold V^{\prime} of $\pi^{-1}(s)$. Thus, by the principle of analytic continuation, the equations

$$
w_{i}=\phi_{i}\left(z_{i}\right), \quad z_{i} \in U_{i}, i \in I
$$

define V^{\prime}. Hence (ϕ, s) satisfies 4). V^{\prime} is compact by Lemma 5.2. Thus the problem is reduced to analyze the set M.

Proposition 5.1. Let ε be sufficiently small. Then

$$
K: B_{\varepsilon} \times \Omega_{\varepsilon} \rightarrow C^{1}(| |)
$$

is an analytic map, and

$$
K^{\prime}(0,0)=\delta+\sigma: C^{0}(| |) \times T_{o} S \rightarrow C^{1}(| |),
$$

where δ and σ are continuous linear maps defined in §4, and $\delta+\sigma$ is defined by

$$
(\delta+\sigma)(\phi, s)=\delta \phi+\sigma s
$$

Proof. The proof of the first half is similar to that of Lemma 3.4, [4]. Only what we have to note is that we use Cauchy's estimate for holomorphic functions of variables (w, s). The rest goes pararell to the proof of Lemma 3.4, [4]. We prove the second half. Let $(\phi, s) \in B_{\varepsilon} \times \Omega_{\varepsilon}$. Since $K(0, o)=0$,

$$
\begin{aligned}
K(\phi, s)-K(0, o)= & K(\phi, s) . \\
K(\phi, s)_{i k}\left(z_{i}\right)= & f_{i k}\left(\phi_{k}\left(z_{k}\right), z_{k}, s\right)-\phi_{i}\left(g_{i k}\left(\phi_{k}\left(z_{k}\right), z_{k}, s\right)\right) \\
= & {\left[f_{i k}\left(\phi_{k}\left(z_{k}\right), z_{k}, s\right)-f_{i k}\left(0, z_{k}, o\right)\right]-\phi_{i}\left(z_{i}\right) } \\
& -\left[\phi_{i}\left(g_{i k}\left(\phi_{k}\left(z_{k}\right), z_{k}, s\right)\right)-\phi_{i}\left(g_{i k}\left(0, z_{k}, o\right)\right)\right],
\end{aligned}
$$

where $z_{k}=g_{k i}\left(0, z_{i}, o\right)$. Hence

$$
\begin{aligned}
K(\phi, s)_{i k}\left(z_{i}\right)= & \left(\partial f_{i k} / \partial w_{k}\right)_{\left(0, z_{k}, o\right)} \phi_{k}\left(z_{k}\right)+\left(\partial f_{i k} / \partial s\right)_{\left(0, z_{k}, 0\right)} s \\
& +o(\phi, s)-\phi_{i}\left(z_{i}\right)-\left(\partial \phi_{i} / \partial z_{i}\right)_{z_{i}}\left(\partial g_{i k} / \partial w_{k}\right)_{\left(0, z_{k}, o\right)} \phi_{k}\left(z_{k}\right) \\
& -\left(\partial \phi_{i} / \partial z_{i}\right)_{z_{i}}\left(\partial g_{i k} / \partial s\right)_{\left(0, z_{k}, o\right)} s+o(\phi, s),
\end{aligned}
$$

where $o(\phi, s)$ is some function of (ϕ, s) (and of z_{k}) such that

$$
|o(\phi, s)| /|(\phi, s)| \rightarrow 0 \quad \text { as } \quad|(\phi, s)| \rightarrow 0
$$

There are constants C_{1} and C_{2} such that

$$
\left|\left(\partial g_{i k} / \partial w_{k}\right)_{\left(0, z_{k}, o\right)}\right| \leqq C_{1}
$$

and

$$
\left|\left(\partial g_{i k} / \partial s\right)_{\left(0, z_{k}, o\right)}\right| \leqq C_{2} \quad \text { for } \quad z_{k} \in U_{i}^{e} \cap U_{k}
$$

On the other hand, there is a constant C_{3} such that

$$
\left|\left(\partial \phi_{i} / \partial z_{i}\right)_{z_{i}}\right| \leqq C_{3}|\phi| \text { for } z_{i} \in U_{i}^{e} .
$$

Hence

$$
\begin{aligned}
& -\left(\partial \phi_{i} / \partial z_{i}\right)_{z_{i}}\left(\partial g_{i k} / \partial w_{k}\right)_{\left(0, z_{k}, o\right)} \phi_{k}\left(z_{k}\right)=o(\phi, s), \\
& -\left(\partial \phi_{i} / \partial z_{i}\right)_{z_{i}}\left(\partial g_{i k} / \partial s\right)_{\left(0, z_{k}, o\right)} s=o(\phi, s)
\end{aligned}
$$

Hence

$$
\begin{aligned}
K(\phi, s)_{i k}\left(z_{i}\right) & =F_{i k}\left(z_{k}\right) \phi_{k}\left(z_{k}\right)-\phi_{i}\left(z_{i}\right)+\left(\partial f_{i k} / \partial s\right)_{\left(0, z_{k}, o\right)} s+o(\phi, s) \\
& =(\delta \phi)_{i k}\left(z_{i}\right)+\sigma(s)_{i k}\left(z_{i}\right)+o(\phi, s)
\end{aligned}
$$

Thus

$$
K(\phi, s)=\delta \phi+\sigma s+o(\phi, s)
$$

q.e.d.

Now, we define a map

$$
L: B_{\varepsilon} \times \Omega_{\varepsilon} \rightarrow C^{\circ}(| |) \times T_{o} S
$$

by

$$
L(\phi, s)=\left(\phi+E_{0} B \Lambda K(\phi, s)-E_{0} \delta \phi, s\right),
$$

where continuous linear maps E_{0}, B, Λ and δ are defined in $\S 4$. Then L is analytic by Proposition 5.1. We have $L(0, o)=0$ and

$$
\begin{aligned}
L^{\prime}(0,0) & =\left(\begin{array}{cc}
1+E_{0} B \Lambda \delta-E_{0} \delta & E_{0} B \Lambda \sigma \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & E_{0} B \sigma \\
0 & 1
\end{array}\right)
\end{aligned}
$$

(We note that $B \Lambda \delta=\delta$ and $\Lambda \sigma=\sigma$.) Thus $L^{\prime}(0,0)$ is a continuous linear isomorphism. Hence, by the inverse mapping theorem, there are a small positive number ε^{\prime}, an open neighborhood U of ($0, o$) in $B_{\varepsilon} \times \Omega_{\varepsilon}$ and an analytic isomorphism Φ of $B_{\varepsilon^{\prime}} \times \Omega_{\varepsilon^{\prime}}$ onto U such that

$$
L \mid U=\Phi^{-1}
$$

We put

$$
L\left(M_{1} \cap U\right)=T_{1}
$$

and

$$
L(M \cap U)=T
$$

Then $M_{1} \cap U=\Phi\left(T_{1}\right)$ and $M \cap U=\Phi(T)$.
Lemma 5.3. $\quad T_{1} \subset\left(H^{0}(\mid) \cap B_{\varepsilon^{\prime}}\right) \times \Omega_{\varepsilon^{\prime}}$.
Proof. Let $(\phi, s) \in M_{1} \cap U$. Then

$$
L(\phi, s)=\left(\phi+E_{0} B \Lambda K(\phi, s)-E_{0} \delta \phi, s\right)=\left(\phi-E_{0} \delta \phi, s\right) .
$$

But $\delta\left(\phi-E_{0} \delta \phi\right)=\delta \phi-\delta \phi=0$.
q.e.d.

Corollary 1. $\quad T_{1}=\left\{(\xi, s) \in\left(H^{0}(| |) \cap B_{\varepsilon^{\prime}}\right) \times \Omega_{\varepsilon^{\prime}} \mid K \Phi(\xi, s)=0\right\}$.
Corollary 2. $T=\left\{(\xi, s) \in\left(H^{0}(| |) \cap B_{\varepsilon^{\prime}}\right) \times S_{\varepsilon^{\prime}} \mid K \Phi(\xi, s)=0\right\}$.
Corollary 1 follows from the definition of M_{1} and Lemma 5.3. Corollary 2 follows from Corollary 1.

Now, let $(\xi, s) \in\left(H^{0}(\mid) \cap B_{\varepsilon^{\prime}}\right) \times \Omega_{\varepsilon^{\prime}}$. We put $(\phi, s)=\Phi(\xi, s)$. Then

$$
0=\delta \xi=\delta\left(\phi+E_{0} B \Lambda K(\phi, s)-E_{0} \delta \phi\right)=B \Lambda K(\phi, s)=B \Lambda K \Phi(\xi, s) .
$$

Hence

$$
\begin{aligned}
K \Phi(\xi, s) & =H \Lambda K \Phi(\xi, s)+B \Lambda K \Phi(\xi, s)+E \delta K \Phi(\xi, s) \\
& =H \wedge K \Phi(\xi, s)+E \delta K \Phi(\xi, s),
\end{aligned}
$$

where H and E are continuous linear maps defined in $\S 4$.
Proposition 5.2. Let ε^{\prime} be sufficiently small. Then

$$
T=\left\{(\xi, s) \in\left(H^{\circ}(| |) \cap B_{\varepsilon^{\prime}}\right) \times S_{\varepsilon^{\prime}} \mid H \Lambda K \Phi(\xi, s)=0\right\}
$$

Corollary. If $H^{1}(V, F)=0$, then

$$
T=\left(H^{\circ}(| |) \cap B_{\varepsilon^{\prime}}\right) \times S_{\varepsilon^{\prime}} .
$$

Proof of Proposition 5.2. The proof is almost similar to that of Lemma 3.6, [4]. Only what we have to note are the following two points. A). By 2) of Lemma 3.7, if $(\phi, s) \in B_{\varepsilon} \times \Omega_{\varepsilon}$, then

$$
\zeta_{j}=g_{j k}\left(\phi_{k}\left(z_{k}\right), z_{k}, s\right) \in U_{i}^{e / 2} \cap U_{j}^{e / 2} \text { for } z_{k}=g_{k i}\left(0, z_{i}, o\right) \in U_{i}^{e} \cap U_{j}^{e} \cap U_{k} .
$$

B). We put, for $(\phi, s) \in B_{\varepsilon} \times \Omega_{\varepsilon}$,

$$
\begin{aligned}
R^{1}(K(\phi, s), \phi, s)= & \left\{R^{1}(K(\phi, s), \phi, s)_{i j k}\right\} \in C^{2}(| |), \\
R^{1}(K(\phi, s), \phi, s)_{i j k}\left(z_{i}\right)= & f_{i j}\left(\phi_{j}\left(\zeta_{j}\right), \zeta_{j}, s\right)-f_{i j}\left(f_{j k}\left(\phi_{k}\left(z_{k}\right), z_{k}, s\right), \zeta_{j}, s\right) \\
& +F_{i j}\left(z_{j}\right) K(\phi, s)_{j k}\left(z_{j}\right) .
\end{aligned}
$$

Then

$$
R^{1}(K(\phi, s), \phi, s)_{i j k}\left(z_{i}\right)=f_{i j}\left(\phi_{j}\left(\zeta_{j}\right), \zeta_{j}, s\right)-f_{i k}\left(\phi_{k}\left(z_{k}\right), z_{k}, s\right)+F_{i j}\left(z_{j}\right) K(\phi, s)_{j k}\left(z_{j}\right)
$$

for $s \in S_{\varepsilon}$. The rest goes pararell to the proof of Lemma 3.6, [4]. q.e.d.
Now, for each $t=(\xi, s) \in T$, we put

$$
\Phi(t)=(\phi(t), f(t))
$$

Then

$$
\phi: T \rightarrow C^{\circ}(| |)
$$

and

$$
f: T \rightarrow S
$$

are analytic maps. f is actually the projection map

$$
t=(\xi, s) \rightarrow s
$$

If we write

$$
\phi(t)=\left\{\dot{\phi}_{i}\left(z_{i}, t\right)\right\},
$$

then it is easy to see that

$$
\phi_{i}: U_{i} \times T \rightarrow \boldsymbol{C}^{r}
$$

is a holomorphic map. For each $t \in T$, we denote V_{t} the compact complex submanifold of $\pi^{-1}(f(t))$ defined in X_{i} by the equation

$$
w_{i}=\phi_{i}\left(z_{i}, t\right) \quad \text { for } z_{i} \in U_{i}
$$

Note that

$$
V_{(0,0)}=V .
$$

We put

$$
Y=\left\{(x, t) \in X \times T \mid x \in V_{t}\right\}
$$

and

$$
\begin{aligned}
& \mu=\text { the restriction to } Y \text { of the projection map } \\
& \qquad X \times T \rightarrow T
\end{aligned}
$$

Lemma 5.4. ($Y, \mu, T, f)$ is a family of compact complex submanifolds of fibers of (X, π, S).

Proof. Since $V_{t} \subset \pi^{-1}(f(t))$, we have $Y \subset f^{*} X$. Next, we note that

$$
Y \cap\left(X_{i} \times T\right)=\left\{\left(\eta_{i}^{-1}\left(w_{i}, z_{i}, s\right), t\right) \mid w_{i}=\phi_{i}\left(z_{i}, t\right), s=f(t)\right\}
$$

Hence Y is a subvariety of $f^{*} X$. Since the projection

$$
\left(\eta_{i}^{-1}\left(\phi_{i}\left(z_{i}, t\right), z_{i}, f(t)\right), t\right) \rightarrow\left(z_{i}, t\right)
$$

gives a local isomorphism, (Y, μ, T) is a family of complex manifolds. q.e.d.

We identify each fiber $\mu^{-1}(t)=V_{t} \times t, t \in T$, with V_{t}.
Lemma 5.5. (Y, μ, T, f) is a maximal family.
Proof. Let t_{o} be a point of T. Let (Z, λ, R, g) be a family of compact complex submanifolds of fibers of (X, π, S) with a point $r_{0} \in R$ such that $\lambda^{-1}\left(r_{o}\right)=V_{t_{0}} \quad V_{t_{o}}$ is covered by $\left\{X_{i}\right\}_{i \in I}$. We introduce a new coordinate system (w_{i}^{\prime}, z_{i}, s) in $W_{i} \times \Omega$ where

$$
w_{i}^{\prime}=w_{i}-\phi_{i}\left(z_{i}, t_{o}\right) .
$$

Then $V_{t_{0}}$ is given in X_{i} by the equations

$$
w_{i}^{\prime}=0
$$

and

$$
s=f\left(t_{o}\right)=g\left(r_{o}\right)
$$

By Proposition 2.1, there are an open neighborhood R^{\prime} of r_{o}, an ambient space G^{\prime} of R^{\prime} and a vector valued holomorphic function ψ_{i} on $U_{i} \times G^{\prime}$ such that, for each fixed $r \in R^{\prime}$,

$$
\eta_{i}\left(\lambda^{-1}(r) \cap X_{i}\right)=\left\{\left(w_{i}^{\prime}, z_{i}, s\right) \in W_{i} \times S \mid w_{i}^{\prime}=\psi_{i}\left(z_{i}, r\right), s=g(r)\right\}
$$

We put

$$
\phi_{i}^{\prime}\left(z_{i}, r\right)=\psi_{i}\left(z_{i}, r\right)+\phi_{i}\left(z_{i}, t_{o}\right)
$$

for $r \in R^{\prime}$ and

$$
\phi^{\prime}(r)=\left\{\phi_{i}^{\prime}\left(z_{i}, r\right)\right\}_{i \in I} .
$$

Then

$$
\left(\phi^{\prime}(r), g(r)\right) \in C^{\circ}(| |) \times S
$$

Note that

$$
\left(\phi^{\prime}\left(r_{o}\right), g\left(r_{o}\right)\right)=\Phi\left(t_{o}\right) .
$$

It is easy to see that ϕ^{\prime} is an analytic map of R^{\prime} into the Banach space $C^{0}(| |)$, provided that R^{\prime} is sufficiently small. We may assume that

$$
\left(\phi^{\prime}(r), g(r)\right) \in U=\Phi\left(B_{\varepsilon^{\prime}} \times \Omega_{\varepsilon^{\prime}}\right) \quad \text { for } r \in R^{\prime}
$$

Since the equations

$$
w_{i}=\phi_{i}^{\prime}\left(z_{i}, r\right)
$$

and

$$
s=g(r)
$$

define a compact complex submanifold of $\pi^{-1}(g(r))$,

$$
\left(\phi^{\prime}(r), g(r)\right) \in U \cap M \text { for } r \in R^{\prime}
$$

Hence

$$
L\left(\phi^{\prime}(r), g(r)\right) \in T \quad \text { for } r \in R^{\prime}
$$

We put

$$
h(r)=L\left(\phi^{\prime}(r), g(r)\right)
$$

Then h is a holomorphic map of R^{\prime} into T. We have

$$
\Phi(h(r))=\left(\phi^{\prime}(r), g(r)\right)
$$

so that

$$
V_{h(r)}=\lambda^{-1}(r) \quad \text { for } r \in R^{\prime}
$$

Lemma 5.5 completes the proof of the theorem.
Remark. Among maximal families, our maximal family (Y, μ, T, f) is a special one. It is so called effectively parametrized. In other words, the map h with the property:

$$
\mu^{-1}(h(r))=\lambda^{-1}(r) \quad \text { for } r \in R^{\prime}
$$

is uniquely determined.
6. A stability of compact complex submanifolds of complex manifolds.

Definition 6.1 ([2]). Let V be a compact complex submanifold of a complex manifold W. V is called a stable submanifold of W if and only if, for any family (X, π, S) of complex manifolds with a point $o \in S$ such that $\pi^{-1}(o)=W$, there are a neighborhood U of o in S and a closed subvariety N of $\pi^{-1}(U)$ such that

1) $\left(N, \pi^{\prime}, U\right)$ is a family of compact complex manifolds where $\pi^{\prime}=$ $\pi \mid N$ and
2) $\pi^{\prime-1}(o)=V$.

The following theorem is due to Kodaira (Theorem 1, [2]). Here we give another proof.

Theorem (Kodaira). Let V be a compact complex submanifold of a complex manifold W. Let F be the normal bundle of V in W. If $H^{1}(V, F)=0$, then V is a stable submanifold of W.

Proof. Let (X, π, S) be a family of complex manifolds with a point $o \in S$ such that $\pi^{-1}(o)=W$. Let (Y, μ, T, f) be the maximal family of compact complex submanifolds of fibers of (X, π, S) constructed in $\S 5$ with respect to V. If $H^{1}(V, F)=0$, then, by the corollary of Proposition 5.2,

$$
T=\left(H^{\circ}(| |) \cap B_{\varepsilon^{\prime}}\right) \times S_{\varepsilon^{\prime}} .
$$

We define a map

$$
j: S_{\varepsilon^{\prime}} \rightarrow T
$$

by

$$
j(s)=(0, s) .
$$

Then j is a holomorphic injection. Let N be the closed subvariety of $\pi^{-1}\left(S_{\varepsilon^{\prime}}\right)$ defined in X_{i} by the equation:

$$
w_{i}=\phi_{i}\left(z_{i}, j(s)\right) \text { for } z_{i} \in U_{i}
$$

Then it is easy to see that ($N, \pi^{\prime}, S_{\varepsilon^{\prime}}$), $\pi^{\prime}=\pi \mid N$, satisfies 1) and 2) of Definition 6.1.
q.e.d.

Remark. In the above proof, we can take j any holomorphic map

$$
j: S_{\varepsilon^{\prime}} \rightarrow T
$$

such that

$$
j(o)=(0, o)
$$

and

$$
f j=\text { the identity map on } S_{\varepsilon^{\prime}} .
$$

7. Proofs of lemmas in §3 and §5. In order to prove lemmas in $\S 3$ and §5, we need the following lemma.

Lemma 7.1. Let A be a compact subset of a Hausdorff space X. Let $A(\nu), \nu=1,2, \cdots$, be compact subsets of X such that

1) $A(1) \supset A(2) \supset \cdots \supset A$ and
2) $\bigcap_{\nu} A(\nu)=A$.

Let U be an open neighborhood of A. Then there exists an integer ν such that $U \supset A(\nu)$.

Proof of lemma 3.1. Let $\left\{U_{i}^{\nu}\right\}_{\nu=1,2, \ldots}$ be a sequence of Stein open sets in V such that

1) $\widetilde{U}_{i} \supset U_{i}^{1} \supset U_{i}^{2} \supset \cdots \supset U_{i}$, where $\widetilde{U}_{i} \supset U_{i}^{1}$ means that $\overline{U_{i}^{1}}$ is compact and is contained in \tilde{U}_{i}, and so on, and
2) $\bigcap_{\nu} \overline{U_{i}^{\nu}}=\overline{U_{i}}$.

In a similar way, let $\left\{U_{k}^{\nu}\right\}_{\nu=1,2, \ldots}$ be a sequence of Stein open sets in V such that
3) $\widetilde{U}_{k} \supset U_{k}^{1} \supseteq U_{k}^{2} \supset \cdots \supset U_{k}$ and
4) $\bigcap_{\nu} \overline{U_{k}^{\nu}}=\overline{U_{k}}$.

Then we have
5) $\widetilde{U}_{i} \cap \widetilde{U}_{k} \supset U_{i}^{1} \cap U_{k}^{1} \supseteq \cdots \supset U_{i} \cap U_{k}$ and
6) $\bigcap_{\nu}\left(\overline{U_{i}^{\nu}} \cap \overline{U_{k}^{\nu}}\right)=\overline{U_{i}} \cap \overline{U_{k}}$.

By Lemma 7.1, there is ν such that

$$
U_{\lambda} U_{\lambda} \supset \overline{U_{i}^{\nu}} \cap \overline{U_{k}^{\nu}} \supset U_{i}^{\nu} \cap U_{k}^{\nu} \supset \overline{U_{i}} \cap \overline{U_{k}} .
$$

Thus $U=U_{i}^{\nu} \cap U_{k}^{\nu}$ satisfies the requirement.
q.e.d.

Proof of Lemma 3.2. Let $\left\{\Omega_{\nu}\right\}_{\nu=1,2, \ldots}$ be a sequence of polydiscs in Ω_{0}
with the center o such that

1) $\Omega_{0} \supset \Omega_{1} \supset \Omega_{2} \supset \cdots$ and
2) $\cap_{\nu} \bar{\Omega}_{\nu}=0$.

We put $S_{\nu}=\Omega_{\nu} \cap S, \nu=1,2, \ldots$. In a similar way, let $\left\{D_{\nu}\right\}_{\nu=1,2, \ldots}$. be a sequence of polydiscs in D_{0} with the center 0 such that
3) $D_{0} \supseteq D_{1} \supset D_{2} \supset \cdots$ and
4) $\cap_{\nu} \overline{D_{\nu}}=0$.

Then we get
5) $\quad \eta_{k}\left(\overline{X_{i}} \cap \overline{X_{k}}\right) \cap\left(\overline{D_{1}} \times \overline{U_{k}} \times \overline{S_{1}}\right) \supset \eta_{k}\left(\overline{X_{i}} \cap \overline{X_{k}}\right) \cap\left(\overline{D_{2}} \times \overline{U_{k}} \times \overline{S_{2}}\right) \supset \cdots \supset$ $\eta_{k}\left(\overline{U_{i}} \cap \overline{U_{k}}\right)$ and
6) $\cap_{\imath}\left(\eta_{k}\left(\overline{X_{i}} \cap \overline{X_{k}}\right) \cap\left(\overline{D_{\nu}} \times \overline{U_{k}} \times \overline{S_{\imath}}\right)\right)=\eta_{k}\left(\overline{U_{i}} \cap \overline{U_{k}}\right)$.

Thus, by Lemma 7.1, there is ν such that

$$
\eta_{k}\left(\overline{X_{i}} \cap \overline{X_{k}}\right) \cap\left(\overline{D_{\imath}} \times \overline{U_{k}} \times \overline{S_{\imath}}\right) \subset W_{o} \times S_{o} .
$$

Hence

$$
\eta_{k}\left(X_{i} \cap X_{k}\right) \cap\left(D_{\imath} \times U_{k} \times S_{\imath}\right) \subset W_{o} \times S_{o} .
$$

Thus we have

$$
\begin{aligned}
& \eta_{k}\left(X_{i} \cap X_{k}\right) \cap\left(D_{\imath} \times U_{k} \times S_{\imath}\right) \subset\left(W_{\diamond} \times S_{o}\right) \cap\left(D_{\imath} \times U_{k} \times S_{\imath}\right) \\
& \quad=D_{\imath} \times U \times S_{\imath} .
\end{aligned} \quad \text { q.e.d. }
$$

Proof of Lemma 3.3. It is clear that if $\left|w_{k}\right|<\varepsilon_{o},|s|<\varepsilon_{o}$ and $z_{k} \in$ $U_{i}^{e} \cap U_{k}$, then

$$
\left(w_{k}, z_{k}, s\right) \in W_{o} \times \Omega_{0}
$$

Hence $g_{i k}\left(w_{k}, z_{k}, s\right)$ is defined.
For any fixed $z_{k} \in \eta_{k}\left(\overline{U_{i}^{e}} \cap \overline{U_{k}}\right)$, we have

$$
\left|g_{i k}\left(0, z_{k}, o\right)\right| \leqq 1-e .
$$

Hence there is an open neighborhood

$$
D\left(z_{k}\right) \times U\left(z_{k}\right) \times \Omega\left(z_{k}\right)
$$

of z_{k} in $W_{o} \times \Omega_{o}$ such that

1) $D\left(z_{k}\right)$ and $\Omega\left(z_{k}\right)$ are polydiscs with the centers 0 and o respectively and
2) $\left|g_{i k}\left(w_{k}, z_{k}^{\prime}, s\right)\right|<1$ for $\left(w_{k}, z_{k}^{\prime}, s\right) \in D\left(z_{k}\right) \times U\left(z_{k}\right) \times \Omega\left(z_{k}\right)$.

We cover $\eta_{k}\left(\overline{U_{i}^{e}} \cap \overline{U_{k}}\right)$ by such open sets in $W_{0} \times \Omega_{0}$. Since $\overline{U_{i}^{e}} \cap \overline{U_{k}}$ is compact, there is a finite subcovering

$$
\left\{D_{\lambda} \times U_{\lambda} \times \Omega_{\lambda}\right\}_{\lambda=1, \ldots, m}
$$

of $\eta_{k}\left(\overline{U_{i}^{e}} \cap \overline{U_{k}}\right)$. We take $\varepsilon, 0<\varepsilon<\varepsilon_{0}$, so that

$$
\Omega_{\varepsilon} \subset \bigcap_{\lambda} \Omega_{\lambda}
$$

and

$$
D_{\iota} \subset \bigcap_{\lambda} D_{\lambda} .
$$

Now if $\left|w_{k}\right|<\varepsilon$ and $|s|<\varepsilon$, then

$$
\left|g_{i k}\left(w_{k}, z_{k}, s\right)\right|<1 \text { for all } z_{k} \in U_{i}^{e} \cap U_{k}
$$

The proof of Lemma 3.4 is almost similar to that of Lemma 3.3 above, so we omit it.

Proof of Lemma 3.5. Since

$$
W_{o} \times S_{o} \subset \eta_{k}\left(\widetilde{X}_{i} \cap \widetilde{X}_{k}\right),
$$

we have

$$
\eta_{k}^{-1}\left(w_{k}, z_{k}, s\right) \in \widetilde{X}_{i} \cap \widetilde{X}_{k} \cap X_{k}=\widetilde{X}_{i} \cap X_{k}
$$

for $z_{k} \in U_{i}^{e} \cap U_{k},\left|w_{k}\right|<\varepsilon_{o}$ and $s \in S_{\varepsilon_{0}}$. We take ε satisfying Lemmas 3.3 and 3.4 for $\delta=1$. Then

$$
\left|g_{i k}\left(w_{k}, z_{k}, s\right)\right|<1
$$

and

$$
\left|f_{i k}\left(w_{k}, z_{k}, s\right)\right|<1
$$

for $z_{k} \in U_{i}^{e} \cap U_{k},\left|w_{k}\right|<\varepsilon$ and $s \in S_{c}$. This implies that

$$
\eta_{k}^{-1}\left(w_{k}, z_{k}, s\right) \in X_{i}
$$

for $z_{k} \in U_{i}^{e} \cap U_{k},\left|w_{k}\right|<\varepsilon$ and $s \in S_{\varepsilon}$.
Proof of Lemma 3.6. For each integer $\nu>1 / \varepsilon_{o}$, we put

$$
A(\nu)=\left\{P \in \overline{X_{i}^{e^{\prime}}} \cap \overline{X_{k}}| | w_{k} \mid \leqq 1 / \nu \quad \text { and } \quad|s| \leqq 1 / \nu\right\},
$$

where $\eta_{k}(P)=\left(w_{k}, z_{k}, s\right)$. Then each $A(\nu)$ is compact. It is easy to see that $\{A(\nu)\}$ is a decreasing sequence of compact sets and

$$
\bigcap_{\nu} A(\nu)=\overline{U_{i}^{e^{\prime}}} \cap \overline{U_{k}} .
$$

By Lemma 7.1, there is ν such that

$$
A(\nu) \subset \eta_{k}^{-1}\left(\widetilde{D}_{k} \times\left(U_{i}^{e} \cap \widetilde{U}_{k}\right) \times S\right) .
$$

Thus, if $P=\eta_{k}^{-1}\left(w_{k}, z_{k}, s\right) \in X_{i}^{e^{\prime}} \cap X_{k}$, then

$$
P \in A(\nu) \subset \eta_{k}^{-1}\left(\widetilde{D}_{k} \times\left(U_{i}^{e} \cap \widetilde{U}_{k}\right) \times S\right),
$$

provided that $\left|w_{k}\right|<1 / \nu$ and $s \in S_{1 / \nu}$. This implies that $z_{k} \in U_{i}^{e} \cap \widetilde{U}_{k}$. Of course $P \in X_{k}$ implies that $z_{k} \in U_{k}$. Hence $z_{k} \in U_{i}^{e} \cap U_{k}$.

Proof of Lemma 3.7. We first prove 1). Let ν_{0} be an integer greater
than $1 / \varepsilon_{0}$. For any integer ν greater than or equal to ν_{0}, we put

$$
\Omega_{1 / \nu}=\left\{s \in \Omega_{0}| | s \mid<1 / \nu\right\}
$$

and

$$
D_{1 / \nu}=\left\{w_{k} \in D_{k}| | w_{k} \mid<1 / \nu\right\} .
$$

Then

$$
\begin{aligned}
& \widetilde{W}_{k} \times \Omega_{0} \supset \overline{D_{1 / \nu_{0}}} \times\left(\overline{U_{i}} \cap \overline{U_{j}} \cap \overline{U_{k}}\right) \times \overline{\Omega_{1 / \nu_{0}}} \supset \overline{D_{1 /\left(v_{0}+1\right)}} \times \overline{\left(U_{i} \cap \bar{U}_{j} \cap \overline{U_{k}}\right)} \\
& \quad \times \overline{\Omega_{1 /\left(v_{0}+1\right)}} \supset \cdots \supset \overline{U_{i}} \cap \bar{U}_{j} \cap \overline{U_{k}}
\end{aligned}
$$

and

$$
\bigcap_{v \geq v_{0}}\left(\overline{D_{1 / v}} \times\left(\overline{U_{i}} \cap \overline{U_{j}} \cap \overline{U_{k}}\right) \times \overline{\Omega_{1 / v}}\right)=\overline{U_{i}} \cap \overline{U_{j}} \cap \overline{U_{k}}
$$

By Lemma 7.1, there is ν such that

$$
\eta_{j \bar{j}-1}^{-1}\left(W_{o(i j)} \times \Omega_{o}\right) \supset \overline{D_{1 / \nu}} \times\left(\overline{U_{i}} \cap \overline{U_{j}} \cap \overline{U_{k}}\right) \times \overline{\Omega_{1 / \nu}} .
$$

Thus $\varepsilon=1 / \nu$ satisfies the requirement.
Next we prove 2). We have

$$
g_{j k}\left(0, z_{k}, o\right)=z_{j} \in \overline{U_{i}^{e}} \cap \overline{U_{j}^{e}} \subset U_{i}^{e / 2} \cap U_{j}^{e / 2}
$$

for all $z_{k} \in \overline{U_{i}^{e}} \cap \overline{U_{j}^{e}} \cap \overline{U_{k}}$. For any point $z_{k} \in \overline{U_{i}^{e}} \cap \overline{U_{j}^{e}} \cap \overline{U_{k}}$, there are a neighborhood $U\left(z_{k}\right)$ of z_{k} in \widetilde{U}_{k} and a positive number $\varepsilon\left(z_{k}\right), 0<\varepsilon\left(z_{k}\right)<$ ε_{0}, such that if $\left|w_{k}\right|<\varepsilon\left(z_{k}\right),|s|<\varepsilon\left(z_{k}\right)$ and $z_{k}^{\prime} \in U\left(z_{k}\right)$, then $g_{j k}\left(w_{k}, z_{k}^{\prime}, s\right)$ is defined and is a point of $U_{i}^{e / 2} \cap U_{j}^{e / 2}$. We cover $\overline{U_{i}^{e}} \cap \overline{U_{j}^{e}} \cap \overline{U_{k}}$ by a finite number of such $U\left(z_{k}^{2}\right), \cdots, U\left(z_{k}^{e}\right)$. We put

$$
\varepsilon=\min \left\{\varepsilon\left(z_{k}^{1}\right), \cdots, \varepsilon\left(z_{k}^{u}\right)\right\} .
$$

Then ε satisfies the requirement.
Proof of Lemma 5.1. Let

$$
\pi_{i}: \widetilde{X}_{i} \rightarrow \widetilde{U}_{i}
$$

be the projection map defined by

$$
\pi_{i} \eta_{i}^{\eta_{i}^{-1}}\left(w_{i}, z_{i}, s\right)=z_{i}
$$

For each positive integer ν, we set

$$
A_{i}(\nu)=\left\{\eta_{i}^{-1}\left(w_{i}, z_{i}, s\right) \in \widetilde{X}_{i}| | w_{i}\left|\leqq 1 / \nu,\left|z_{i}\right| \leqq 1 \text { and }\right| s \mid \leqq 1 / \nu\right\},
$$

and

$$
A(\nu)=\bigcup_{i \in I} A_{i}(\nu) \subset X .
$$

Since $A_{i}(\nu)$ is compact for each $i \in I, A(\nu)$ is also compact. It is clear
that

$$
V \subset A(\nu)
$$

We show that

$$
\bigcap_{\nu} A(\nu)=V .
$$

Let $b \in \bigcap_{\nu} A(\nu)$. Then there are an index $i \in I$ and a subsequence

$$
\nu_{1}<\nu_{2}<\cdots
$$

such that $b \in A_{i}\left(\nu_{\alpha}\right), \alpha=1,2, \cdots$ Then

$$
\begin{gathered}
\left|w_{i}(b)\right| \leqq 1 / \nu_{\alpha}, \\
\left|z_{i}(b)\right| \leqq 1
\end{gathered}
$$

and

$$
|s(b)| \leqq 1 / \nu_{\alpha}
$$

for $\alpha=1,2, \cdots$, where $\eta_{i}(b)=\left(w_{i}(b), z_{i}(b), s(b)\right)$. Thus $w_{i}(b)=0,\left|z_{i}(b)\right| \leqq$ 1 and $s(b)=0$. Hence $b \in \bar{U}_{i} \subset V$. By Lemma 7.1, there is ν such that

$$
A(\nu) \subset \bigcup_{i} X_{i}^{e} .
$$

Then $\varepsilon=1 / \nu$ satisfies the requirement.

References

[1] R. C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, PrenticeHall, Englewood Cliffs, N. J., 1965.
[2] K. Kodarra, On stability of compact submanifolds of complex manifolds, Amer. J. Math., 85 (1963), 79-94.
[3] K. Kodaira, A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds, Ann. of Math., (2) 75 (1962), 146-162.
[4] M. Namba, On maximal families of compact complex submanifolds of complex manifolds, Tôhoku Math. J., 24 (1972), 581-609.
mathematical Institute
Tôhoku University
Sendai, Japan

[^0]: * We use the same notation for the convenience.

