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Introduction. The notion of maximal families of compact complex
submanifolds of complex manifolds was introduced by Kodaira [3]. In
[4], we have proved the existence of maximal families. In this paper,
we generalize the notion of maximal families and prove the following
theorem. (For the definitions of terminologies, see §1.)

THEOREM. Let (X, 7w, S) be a family of complex manifolds. Let o be
a point of S and let V be a compact complex submanifolds of 7w~ (0). Then
there exists a maximal family (Y, ¢, T, f) of compact complex submani-
folds of (X, m, S) with a point t,€ T such that f(t,) = o0 and p'(t,) = V.

The method of the proof is similar to that of [4].

As an application, we give a proof of Kodaira’s theorem (Theorem

1, [2]) on the stability of compact complex submanifolds of complex
manifolds.

1. Definitions. By an analytic space, we mean a reduced, Hausdorff,
complex analytic space. By a complex fiber space, we mean a triple
(X, m, S) of analytic spaces X and S, and a surjective holomorphic map
w X— 8.

DEFINITION 1.1. A complex fiber space (X, z, S) is called a family
of complex manifolds if and only if there are an open covering {X,} of
X, open sets 2, of C", open sets S, of S and holomorphic isomorphisms

Net Xo— 2, X S,
such that the diagram

X, 220, %8,

N
1':\ /pro;
Sa

is commutative for each a. S is called the parameter space of the family
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(X, n, S). If # is a proper map, we say that (X, x, S) is a family of
compact complex manifolds.

Let (X, m, S) be a family of complex manifolds. Let T be an analytic
space and let f: T— S be a holomorphic map. We put

X ={@x,t)e X X T|r() = f()} .
Let p: f*X — T be the restriction of the projection map X x T— T. Then

it is easy to see that (f*X, ¢, T) is a family of complex manifolds. This
family is called the induced family of (X, z, S) over f.

DerFINITION 1.2. Let (X, 7, S) be a family of complex manifolds. A
quadruplet (Y, ¢, T, f) is called a family of compact complex submanifolds
of fibers of the family (X, n, S) if and only if

1) f is a holomorphic map of T into S,

2) Y is a subvariety of f*X,

3) p is the restriction of the map

e f*X—T,
where (f*X, ¢, T) is the induced family of (X, 7, S) over f, and
4) (Y, p, T) is a family of compact complex manifolds.
T is called the parameter space of the family (Y, o, T, f).

REMARK. Each fiber p#'(t),te T, of (Y, , T, f) is of the form V X
t where V is a compact complex submanifold of z7'(f(t)). We identify

V x t with V.

DEFINITION 1.8. A family (Y, g, T, f) of compact complex submani-
folds of fibers of a family (X, =, S) is said to be maximal at a point te
T if and only if, for any family (Z, A, R, g) of compact complex submani-
folds of fibers of (X, , S) with a point r€ R such that f(f) = g(r) and
£ (t) = N7X(r), there are an open neighborhood U of r in R and a holo-
morphic map

hU—T
such that

1) k) =t,

2) fh =g, and

3) A'g) = p'(k(g)) for all ge U.

A maximal family is a family which is maximal at every point of its
parameter space. '

2. Local expressions of families. Let (X, 7, S) be a family of com-

plex manifolds. Let o be a point of S. Let V be a compact complex
submanifold of 77'(0). Since the problem is local, we may replace S by
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a small neighborhood of 0. Thus we may cover V by a finite number
of open sets {X.};.; of X having the following property: for each i¢e I,
there is a holomorphic isomorphism

77,;: Xi hand W,,, X S
such that the diagram

X, W, x S

AN /.
r:\ /prOJ
S

is commutative, where W, is an open set of C”. We may assume that
there is in W, a coordinate system

(Wiy 2;) = (W}, e, Wi, 2}, o0, 28, r+d=mn,
such that
72.(VN X)) = {(w;, 2;,0) € W; X o|lw; = 0} .
We put
U, = {z:€C*(0,z)e W} .

Then (U;, ;) is a local chart of V. We sometimes identify U; with V' N
X;. We may assume that

W,-——‘D,;X U,,

where D; is a polydisc in C" with the center 0.

Now, let (Y, &, T, f) be a family of compact complex submanifolds of
fibers of (X, 7, S). We write V, instead of ¢ '(tf). We assume that there
is a point ¢, such that f({,) =0 and V,, = V. We may replace T by a
sufficiently small neighborhood of t,, We may assume that there is an
ambient space I" of T. Then, by the implicit function theorem, we can
show the following proposition. Since the proof is straightforward, we
omit it.

PROPOSITION 2.1. For each i€ I, there is a holomorphic map ¢; of
U; x I into D; such that, for each fixed te T,

(Ve N X)) = {(w;, 2;, f(B)) € W; X S{w; = ¢i(2;, )} «

3. Some lemmas. Let (X, 7, S) be a family of complex minifolds.
Let o be a point of S. Let V be a compact complex submanifold of 7~*(o).
We cover V by a finite number of open subsets {X.};., of X such that,
for each i€ I, there is a holomorphic isomorphism
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B

it
such that the diagram

X, 25w, x8
AN /.
7:\ /prOJ
S

is commutative, where S is an open neighborhood of o in S and VTQ is
an open set of C". We may assume that there is an ambient space 2 of
S. We may assume that 2 is a polydisc in C* with the center o = 0. Let
() = (s} +-+, 8"
be the standard coordinate system in C'. N
Now, as in §2, we may assume that there is in W, a coordinate
system
(Wi, 2)) = (Wi, =+, Wi, 2, +00,2), r+d=mn,
such that
7(V N Xi) = {(w;, 2;, 0) € Wi X o|lw; = 0} .
We put
U: = {z:.€C*(0,2) e W} .
Then (T;, 7:) is a local chart of V. We sometimes identify U; with ¥V n
X.. We may assume that
W,; = Di X ﬁ i
where D, is a polydise in € with the center 0.
For gach 1€ I, let U; be an open set of V such that
1) U, is compact and is contained in U,
2) Ui Ui = V. -
We may assume that U; and U, are connected and Stein for all 7¢ I.
For each 7¢ IL let D; be a polydisc in C™ with the center 0 such that D,
contained in D;. Let 2 be a polydisec in C* with the center o = 0 such
the 2 is contained in 2. We put
W,=D; xU;,
S=8ne,
X, =97(W; x 8.
We write S instead of S’ to simplify the notation. It is clear that
U=VnX.
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Now, we consider the map
P =00 (XN X) - n(Xn X)) .

We want to extend the map 7, to an ambient space of 7,(X;N X;). This
is done as follows.

Let P be point of U;N U,. Then it is clear that there is an open
neighborhood W, x S, of 7,(P) in 7(X; N X,) such that

1) S;=2,NS where 2, is a polydisc in C' contained in Q with the
center o = 0, and

2) Wp,= Dp x Up where D, is a polydise in C* with the center 0
contained in D, and U, is an open neighborhood of P in V contained
in U,n0,.
We cover 7,(U; N U,) by open sets {W, x Ss}» in 7,(X; N X,) satisfying the
above conditions 1) and 2). We choose a finite subcovering {W; X S;}i_s,....,
of {W, x Sz}, where S;=2,NS and W, = D;x U, Then {Uj},,,. .,
covers 7,(U; N U,). The following lemma will be proved in §7.

LEMMA 3.1. There is a Stein open set U in U, such that
UinﬁkCUCLlJUI‘
Let 2, be a polydise in C' with the center o = 0 contained in M), 2,.
We put S, =2,N S. Let D, be a polydisc in C with the center 0 con-

tained in M, D;. We put W, = D, x U. Then W, is Stein. It is clear
that

(T:NT)c W,xocC W, xo.
It is also clear that
W, x S,cuX:n X,) .
The following lemma will be proved in §7.
LEMMA 3.2. Taking 2, and D, sufficiently small, we have
nwXNX)NnD, x U, xS)c W, xS,.

We take 2, and~Do sllﬂ‘iciently small so that Lemma 3.2 is satisfied.
Since W, x S, c 7:.(X; N X,), the map %, = 7" is defined on W, x S,.
Since W, x S, is a closed subvariety of the Stein manifold W, x 2,,

Niks Wo X So"—) W; X S,,
is extended to a holomorphic map
Nir: W, X 2, — W.- X 2, .

The extended map 7;, is written as follows:
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Nir(Wiy 24y 8) = (Fir(We, 24, ), Gir(Wiy 24, 8), 8) »
where
fu: W, x Q,— D;
and
gz W, x 2,— U,
are holomorphic maps.
Henceforth, we assume that, for each 7¢ I,
U: = {ze Uillal <1},
D; = {w; e D;||w;| <1},
Wi = {(w;, z) e Willwi| <1, |z| <1},
and
2= {sed|ls| <1},

where |z;| = max, |?5|, 2; = (2}, --+, 2%), and so on. We may assume that
there is a positive number ¢,, 0 < ¢, < 1, such that

2, ={sel]|s| <&}
and
Do = {wkeDkHwk[ <Ea} .

Let ¢,0 < e <1, be a small positive number such that the open sets
Uz, iel, of V defined by

U: ={ze Uz <1 - ¢
again cover V. We put
Wi = {(w;, z) e Wil|lw;| <1, |z]|<1—¢}
=D; x U;,
and
X = (We x S) .
For a positive number ¢ with 0 < ¢ < ¢,, we put
2, ={seQ||s| <¢},
S.=8na,,
and
D, = {w. e D,||w,| < ¢}.
The following Lemmas 3.3, 3.4 and 3.5 will be prove.d in §7.
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LEMMA 8.3. There is a small positive number € with 0 < € < ¢, such
that if w,€ D, and se€ ., then, for all z,€ Us N Uy, gu(w,, 2, 8) 8 defined
and is a point of U,.

LEMMA 3.4. Given any 0,0 < 0 =< 1, there is a small positive number
€ with 0 < ¢ < ¢, such that if w,€ D, and s 2., then, for all z,€ Us N U,,
Jir(wy, 2, 8) 1s defined and

| fir(wy, 2, 8)| < 0.

LEMMA 3.5. There is a small positive number € with 0 < € < €, such
that if w,e D, and se 8., then

v;l(wk, zky S) € Xi ﬂ Xk fo"' all Rk € U.;e ﬂ Uk .

Let ¢/,0 < e < e <1, be a small positive number such that the open
sets U, 1€ I, of V defined by

Uy ={zeUllz| <1 —¢}
again cover V. We put
Wi = {(w;, z:) € Wil|lw;] <1,z <1—¢}
=D, x UY
and
Xy =9 (W x S).
The following lemma will be proved in §7.

LEMMA 3.6. There its a small positive number ¢ with 0 < ¢ < &, such
that if w,e D.,se S, and 97 (w,, 2, 8) € X N X, then
2,eUsNU,.

The set U in Lemma 3.1 depends on the indices ¢ and k. On the
other hand, we may assume that ¢, is independent of indices, for the set

of indices is a finite set. Thus 2,, S, and D, are independent of indices.
We write

U= U(ik)
and
Wo = Wo(ik) .

Then 7;:( W, X 2,) is an open set of W,;,, X 2, and contains U; N U; N U,.
The following lemma will be proved in §7.

LEMMA 3.7. There is a small positive number € with 0 < € < ¢, such
that if w,€ D, and s€ 2,, then
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1) (wy, 2, 8) € P5( Wiy X 2,) for all z,e U;NU; N Uy,
2)  gi(wy, 2, 8) € UPN U for all 2,€e UsNU;NU, where U’ =
{z:e Ullz;| <1 — e/2} and U* = {z;€ U;||z;| <1 — ¢/2}.

4. Banach spaces C”(]|). We use the same notations as in §3.
Henceforth we assume that S c € is a neat imbedding of S at o, [1].
Thus 7 is equal to the dimension of the Zariski tangent space T,S at o.
We assume that S is defined in £ as the common zeros of holomorphic

functions
e(s), +++, e,(s) .
It is easy to see that
(1) e,(00=0, a=1,+-+,m,
(2) (0e,J0sP)(0) =0, a=1,+-+,m B=1, ¢+, 1.
In §3, we extended the map
T = 9’ W, X 8, — W x S,
to the map
N Wy x 2, > W, x 2, .
We wrote the extended map 7;, as follows:
Nin(Wy, 21, 8) = (Fur(Wy, Zi, 8), Gir(Wiy 21y 8), 8) «
LEMMA 4.1. Let z, be a point of U;N U,. Then the matrices
(afik/awk)(o.zk,o) and (afik/as)m,zk,o)
are independent how to extend the map 7.

Proor. The first assertion is ovbious. We prove the second as-
sertion. In a neighborhood of (0, z,, 0) in W, X 2,, another extension of

N, is written as

m
w; = fi(W,y 24y 8) = fur(Wy, 24, 8) + 21 asi(Wy, 25, S)eq(s) ,
=

2 = gi(Wy, 21y 8) = Gun(Wy, 24, 8) + Z_‘.l b5 (W, 24y S)ea(S) 5

where af, and bZ, are vector valued holomorphic functions in the neigh-
borhood. Hence

(af'i’k/as)(o,zk,o) = (afik/as)(o,zk,o) + az=l (aaig/as)(o;zk,a)ea(o)
+ f‘__,l 30, 2, 0)(0e,/0s),
= (afik/as)(o,zk,o)
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by 1) and 2) above. q.e.d.
LEMMA 4.2. Let 2z, be a point of U;NU; N U,. Then
(OF:1/08) 0,200 = (Of 13/0W3)0,25,00(Of 51/08) 0,200 + (Of3/08) 0,25,01 5
where z; = g;(0, 2, 0).

Proor. Let z, be a point of U; N U; N U,. Then there are a neigh-
borhood Y of (0, 2, 0) in W, X 2, and vector valued holomorphic func-
tions

da(wk’zkas)! a:l,---,m

on Y such that 7;;0%;, is defined on Y and

(3)  fulWir 2 ) = Fis W4, 21, 9), G51Ws, 22, 9), 8) + 35 d*(ws, 2, 8)eas) -
Hence, noting that f;;(0, 2;, 0) = 0, we have
(O 51/08) 0,200 = (OF13/0W3) 0,25,0(0 51/08) 0,200 + (O 3/08) 0,2,0
+ 3 (003 0.0y,0ea(0) + 3% d(0, 24, 0)(0e/d5)c -
The third and the fourth terms vanish by (1) and (2) above. q.e.d.
Differentiating (3) above with respect to w,, we get
LEMMA 4.3. Let z, be a point of U, NU; NU,. Then
OF al0WR) 0,100 = O ii[0W;) 0,25,0)(OF 5/ OWi) 0,540 5
where z; = g;,(0, 2, 0).
We define a matrix valued holomorphic function F;(z,) on U;N U, by
Fu(z,) = (afik/awk)(o,zk,o) .
Then, by Lemma 4.3, we have
Fi(z) = Fij(z) Fiu(2) »

where z,€ U; N U; N U, and 2;=9¢;:(0, 2;, 0). The holomorphic vector bundle
F on V defined by the transition matrices {F),} is called the mormal
bundle of V in w*(0).

We define a matrix valued holomorphic function N;.(z,) on U; N U, by

Fi(z) (af«:k/as)m,zk,o)) ,
0 1

where 1 is the (I x [l)-identity matrix. Then by Lemmas 4.2 and 4.3, we
have

N;i(zi) = (

N;u(z:) = Nij(2;)Nji(2) »
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where z,e€ U; N U; N U, and z; = ¢,,(0, 2, 0).

DEFINITION 4.1. By the mormal bundle of V in X, we mean the
holomorphic vector bundle N on V defined by the transition matrices
{Ni}-

From the definitions of F and N, we have
LEMMA 4.4. There is the following exact sequence:
0O-F—->N—->VxTS—0,
where V x T,S is the trivial bundle on V with the fiber T,S.

We do not use the bundle N in the sequel.

Now, we refer some results in §2 of [4]. We define additive groups
Cc’,p=0,1,2 ..., as follows.

An element ¢ = {€4..4, € C? is a function which associates to each
(» + 1)-ple (%, -, ,) of indices of I a holomorphic section Eige.riy of the
normal bundle F' on Ui N :--N f ., NU,. In particular, an element
& = {¢;} e C’is a function which associates to each index e I a holomorphic
section &; of F' on U..

We define the coboundary map
0: C?» — CH
by
)ity @ = 5 (=D ity for 26 U0 - N TN Ty, -

Then it is easy to see that
*=0.

We introduce a norm | | in C?. For each & = {; ;}e€ C?, we define

|§1 by
I§] =sup{|é}. ;R n=1,-0,7,
zeUiN -+~ UU;,_ NU;, (o, »-+, 1) € I™},
where & is the representation of the component &,...i, of & with respect
to the coordinate (w;, z;). In particular, we define [&| for £ e C° by
& =sup{|&l:n=1, +., 7,7 I, 2zc U}

where &} is the representation of &; with respect to the coordinate (w;, z;).
Note that we denoted | |, in [4] instead of | |.
We put

C(| ) = {£eC?l§] < + o} .
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It is easy to see that C?(| |) is a Banach space and the coboundary map o
maps C?(] |) continuously into C?+(| |).
We put, for p =0,1,2, ---,
z*(| ) ={ceC*( Io¢ =0},
B*(| ) =oC* n C*( |)
and
H*(| ) =2Z*( )/B*( |) .
It is clear that H°(| |) is canonically isomorphic to the 0-th cohomology
group HV, F') of F.
By Lemmas 2.3 of [4] and 2.4 of [4], there are continuous linear maps

EB( h—C( D

and
E;: B(| )—C( )
such that
0F = the identity map on B |),
0E, = the identity map on B'(] |) .
We put

A4=1—Ej.

Then 4 is a projection map of C'(| |) onto Z(| |).

By Lemma 2.5 of [4], B'(] |) = 6C%(| |) and is closed in Z'(] |). Again,
by Lemma 2.5 of [4], H'(] |) is canonically isomorphic to H'(V, F'), the first
cohomology group of F. Thus there is a subspace H'(] |)* of Z'(] |) iso-

morphic to H(V, F') such that Z'(||) splits into the direct sum of B(] |)
and H'(| |):

zZ(h=B(hSH(D.
Let
B:Z'(| )—B'( )
and
H:Z\(| )—H'( )

be the projection maps corresponding to the splitting.
By Lemma 4.2, {(3fi1/08)(0,z;,n} is an element of Z'(| [). Thus we have

* We use the same notation for the convenience.
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a continuous linear map
o: T,S—Z'( |)

defined by
0@)alz) = 3, COFal0) ey
for z;e U; N U,, where
= z a*(6/3s%),
and

2, = 91:(0, 25, 0) «

5. Proof of the theorem. We use the same notations as in §3 and
§4. We consider the product

c(h)xTS

of the Banach space C°(| |) introduced in §4 and the Zariski tangent space
T,S. We introduce a norm | | in C°(| |) x T,S as follows:

[(, s)| = max {|g], [s]} for (4,5)eC(| ) X T.S,

where

. é a a
[sl_mgxlaal lfs—agla(as“)o.

Then C°(] |) x T,S is a Banach space.
We identify 2 with an open set of T.S by
e d) e 0o S ar( 9
(@ +--,d) € ;a<asa>oeToS.

Let V'’ be a complex submanifold of 77'(s), s€ S, such that

1) VVcUZX, and

2) for each ie I, there is a holomorphic map ¢; on U; into D; such
that

P(X; N V') = {(w;, z;, ) € W; X s|w; = ¢:(2:)} -
For such V’, we associate an element
(3,9)eC(l ) X T.S,

where ¢ = {¢;}€C°(| |) and seSc 2c T,S.
The proof of the following lemma will be given in §7.

LEMMA 5.1. There is a small positive number €, 0 < € < 1, such that
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of V' corresponds to
(3,8)eC(l ) X T.S
with |(g, s)| < €, then
Vicy Xz,
Using Lemma 5.1, we prove

LEMMA 5.2. There is a small positive number €, 0 < € < 1, such that
if a complex submanifold V' of ©7'(s), s€ S, corresponds to

(¢,9eC(l ) x T,S
with |(¢, 8)| < &, then V' is compact.

Proor. Let ¢ satisfy Lemma 5.1. Let {P*,_,,,... be a sequence of
points in V'. We want to choose a subsequence converging to a point
of V'. By Lemma 5.1, we may assume that

{Phors,... € X¢
for a fixed ie I. We put
n,(P*) = (wy, 2%, 8) , v=12 ...,
Then
wi = ¢;(2%) , y=12 ...,
For each P*, we associate a point Q' in V defined by
7(Q) = (0, 2, 0) .

Then Q* € Us,v =1,2, ---. Thus we may assume that {@'},_,.,... converges
to a point Qe U;,. We put

74Q) = (0, 2;, 0) .
Now we put
P = n7'(4:(z), 2;, 8) € X
Then Pe V'’ and

bi(2:) = ¢i(1i5rl z) = lim ¢,(z) = lim w; .

Hence {P*},_,,,... converges to P. q.e.d.
Now, let ¥V’ be a compact complex submanifold of 77'(s), se S, such
that 1) and 2) above hold. Then the corresponding

(4,9)eC( ) x T.S
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must satisfy the following compatibility conditions:
3) seS and

4)  fuldu(2e), 2i, 8) = 8i(0:(B4(24), 21, 8)) for ($iu(2), 21, 8) € PU(Xi N X) N
7(s).

Conversely if an element (3, s) e C°(| |) x T,S with [(, s)| < &, (¢ satis-
fying Lemma 5.2), satisfies 8) and 4), then it is clear that a compact
complex submanifold V'’ of 7~'(s) is defined by the equations:

w; = 6;(2;) for 2, U, 1€,

and satisfies 1) and 2).

Henceforth, let ¢,0 < ¢ < 1, be a small positive number which satis-
fies Lemmas 3.3, 3.4 (for 6 = 1), 3.5, 3.6, 3.7 and 5.2. Let B, be the open
e-ball of C°(] |) with the center 0. Let Q. be the open ¢-ball of T,S with
the center 0. We put

S.=8SNnA..

We assume that S is defined in 2 as the common zeros of holomorphic
functions

e:(8), +++, e,(s) .
We define a holomorphic map
e:2—C"
by
e(s) = (eu(s), =+, en(s)) -
Then
S. = {se2.]e(s) = 0} .
Now, we define a map
K:B. x 2. —C |
by
K(g, $)i(z:) = [i(du(2a), 21y 8) — 6:(9i(84(24), 24, 8))  for 2z;€ Ug N Uy,

where z;, = ¢,:(0, 2;, 0). By Lemmas 3.3 and 3.4, f:.(8:(24) 21 5) and g:.(64(25),
Zi, 8) are defined, and

|fik(¢k(2k), z, 8| <1
and

19:6(9:(20), 2, 8) | < 1.
Hence ¢,(g9:.(¢:(2:), 2, 8)) is defined and
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[9:(9:(31(21), 21, 8)) | < €
Hence
|K(g,8)| <1+e.
Thus
K:B, x 2,—C( |)

is well defined.
Let

gCc()xTS—-T,S

be the projection map.
We put

Ml = {(¢’ S)G Be X QelK(¢’ S) = 0}
and
M = {(¢, s) e B. X 2.|K(9, 5) = 0, e8(3, 8) = e(s) = 0}
= {(¢, s) € B. X S.| K(g, s) = 0} .

Now we take an element (g, s)e B, X 2. which satisfies 3) and 4)
above. Let z; be any fixed point of U N U,. By Lemma 3.5,

(8:(24), 24, 8) € NU(X; N X3)
where z, = 9.0, 2;, o). Hence, by 4),
K(g, 8)i(2) =0 .
Since z;e U N U, is arbitrary,
K(g,s) =0.
Hence (g, s) € M.

Conversely, let (¢,s)e M. Then se S.. Thus 3) is satisfied. Let z,
be a point of U,. We assume that

(86(2), 24, 8) € (X N XF) ©
Then, by Lemma 3.6,
2, e U:NU,.
Since K(g, s) = 0, we have
Fil@(2e), 21y 8) = 6:(9:(86(24), 24, 8)) for (¢u(24), 24, 8) € M(XF' N XY
Hence the equations

w; = ¢i(2;), €U 1el,
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define a complex submanifold V'’ of #~'(s). Thus, by the principle of
analytic continuation, the equations

w; = ¢:(z;), #z,€U,tel,
define V'. Hence (3, s) satisfies 4). V’ is compact by Lemma 5.2. Thus
the problem is reduced to analyze the set M.
PRrROPOSITION 5.1. Let € be sufficiently small. Then
K:B. x 2. —C( )
s an analytic map, and
K'0,00=0+0:C( ) x T.S—C ),

where 6 and ¢ are continuwous linear maps defined in §4, and 0 + o 1is
defined by
(0 + 0)(8, 8) = dp + o5 .
ProoF. The proof of the first half is similar to that of Lemma 3.4,
[4]. Only what we have to note is that we use Cauchy’s estimate for
holomorphic functions of variables (w,s). The rest goes pararell to the
proof of Lemma 3.4, [4]. We prove the second half. Let (¢,s)e B, X Q..
Since K(0, 0) = 0,
K(g, s) — K(0, 0) = K(g, s) -
K(8, 8)i(2:) = Fir(8u(21), 21y 8) — $:(9::(91(21), 24, 8))
= [fi(8(21), 21y 8) — Fii(0, 24, 0)] — $:(2)
— [8:(9::(8:(21), 2i, 8)) — $:(9:4(0, 24, 0))]
where z, = ¢,:(0, 2;, 0). Hence
K(8, 8)i(2:) = (0fi1/OW) 0,24,006(k) + (O i4/08)0.24,018
+ o(g, 8) — #:i(2:) — (a¢i/azi)zi(agik/8wk)(O,zk,o)¢k(zk)
— (09:/02;).,(09:4/98) 0,21,,08 + o(g, s) ,
where o(¢, s) is some function of (¢, s) (and of z,) such that

lo(g, 8)I/1(3,8)|—0 as [(g,8)—0.
There are constants C, and C, such that

l(agik/awk)(o,zk,o){ =G
and
I(agik/a'S)(o,zk,o)l =G, for 2, UsNU, .
On the other hand, there is a constant C, such that
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[(04:/02:).;| < Cil¢| for z,eUs.

Hence ,
—(3¢i/azi)z,~(agik/awk)<0.zk,o)¢k(zk) = o(g, s) ,
_(a¢i/azi)zi(agik/as)(O,zk,o)s = O(¢9 S) .

Hence

K(g, 8)in(2:) = Fiu(2)pu(2) — 8:(2:) + (0f11/08)0,24,008 + 0(8, 8)
= (08)ur(2:) + 0(8)ir(2:) + 0(g, 8) .
Thus

K(g, 8) = 0¢ + o8 + o(g, 5) . g.e.d.
Now, we define a map
L:B. x 2.—C( ) x TS
by
L(g, s) = (¢ + E,BAK($, s) — Eidg, s) ,
where continuous linear maps E,, B, 4 and ¢ are defined in §4. Then L
is analytic by Proposition 5.1. We have L(0,0) = 0 and

, 1+ E,BAo — E E,BAo
0,0 = . )

_ (1 E,Bo

o 1 /°
(We note that B46 = 6 and 4o = ¢.) Thus L’(0, 0) is a continuous linear
isomorphism. Hence, by the inverse mapping theorem, there are a small

positive number ¢, an open neighborhood U of (0,0) in B, x 2, and an
analytic isomorphism @ of B, X £, onto U such that

LIU=0".
We put
LM,NU) =T,
and
LMnNnU)=T.

Then M\NU = &(T,) and M NU = o(T).
LemMmA 5.3. T,c (H(| )N B.) x Q...
ProoF. Let (4,8)e M, N U. Then
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L(g, s) = (¢ + E,BAK(¢, s) — Euop, s) = (¢ — Ey 9, s) .
But d(¢ — E\0¢) = 0p — 0¢ = 0. q.e.d.
COROLLARY 1. T, ={( s)e (H( |)n B.) x 2. |K®(&, s) = 0}.
COROLLARY 2. T = {(& s)e (H'| |)n B.) x S..|K®(&, s) = 0}.

Corollary 1 follows from the definition of M, and Lemma 5.3. Corollary 2

follows from Corollary 1.
Now, let (§,s)e(H(| ) N B.) x 2.. We put (¢,s) = @&, s). Then

= 0 = 0(¢p + E,BAK(9, s) — Eo¢) = BAK(¢,s) = BAK®(&, s) .
Hence
Ko(&,s) = HAK®(E, s) + BAK®(§, s) + EOK®(E, s)
= HAKO®(¢, s) + E0K?(¢, s) ,
where H and E are continuous linear maps defined in §4.
PROPOSITION 5.2. Let €' be sufficitently small. Then
T={¢s)e(H( NN B.) x S.|HAK®(, s) = 0} .
COROLLARY. If HYV,F) =0, then
T=H()NB,) xS, .

PrOOF OF PROPOSITION 5.2. The proof is almost similar to that of
Lemma 3.6, [4]. Only what we have to note are the following two points.
A). By 2) of Lemma 3.7, if (¢, s) € B, X 2., then

Ci = 9in(du(2i), 2, 8) € UFP N USE for 2, = 910, 2;,0€ UsNU; NU, .
B). We put, for (¢,s)e B, x £,
R'(K(g, 9), ¢, 5) = {R'(K(9, 5), 8, )i} € C*(| |) »
R'(K(9, 8), ¢, 8)iit(2:) = [ii(8i(L)), Ciy 8) — [ii(Fir(8e(24), 24, 8), ;i 8)
+ Fij(2:) K(9, 8)ix(25)
Then
R'(K(g, ), ¢, 8)isn(2:) = [135(8:(Ls), Ciy 8) — Fin(Be(24), 24,y 8) + Fij(25) K($, 3);1(25)

for s€ S,. The rest goes pararell to the proof of Lemma 3.6, [4]. q.e.d.
Now, for each t = (¢, s)e T, we put

o(t) = (4(2), f(?)) -
Then
¢: T—C )
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and
fiT—S

are analytic maps. f is actually the projection map
t=(§38)—s.

If we write

#(t) = {g:(z;, 1)} »
then it is easy to see that

oo U; x T—Cr

is a holomorphic map. For each te T, we denote V, the compact com-
plex submanifold of 7~'(f(t)) defined in X; by the equation

w; = ¢:(2;, ) for z,e U;.

Note that
Vio=V.
We put
Y={xt)eX x T|zeV}
and

¢ = the restriction to Y of the projection map
XxT—-T.

LeEmMA 5.4. (Y, ¢, T, f) is a family of compact complex submanifolds
of fibers of (X, m, S).

PRrROOF. Since V, c 7n7'(f(t)), we have Y < f*X. Next, we note that
Y N (X x T) = {(ni'(w;, 2, 8), O) | w; = ¢i(25, 1), s = f(})} -
Hence Y is a subvariety of f*X. Since the projection
(078, B), 2, f(2)), £) — (2;, 1)

gives a local isomorphism, (Y, #, T) is a family of complex manifolds.

q.e.d.
We identify each fiber p#'(t) = V, x t,te T, with V,.

LEmMMA 5.5. (Y, p, T, f) is a mazimal family.
PrROOF. Let ¢, be a point of 7. Let (Z, N\, R, g) be a family of com-
pact complex submanifolds of fibers of (X, #, S) with a point »,€ R such

that A7'(r,) = V,,. V., is covered by {X};.;» We introduce a new coordi-
nate system (w}, 2;,8) in W; x 2 where



256 M. NAMBA

w; = w; — $:(2;, t,) -
Then V,, is given in X; by the equations
w; =0
and
s = f(t.) = g(r.) .

By Proposition 2.1, there are an open neighborhood R’ of 7,, an ambient
space G’ of R’ and a vector valued holomorphic function +; on U; X G’
such that, for each fixed r¢ R/,

2:(7H(r) N X5) = {(wi, 2, 8) € Wi X S|wi = ¥(2;, 7), 5 = g(7)} .
We put
Bi(25, 1) = Yz, 1) + $i(2:, L)

for re R’ and

#'(r) = {9i(=i, M}ier »
Then

(¢'(r), g(r))eC(l |) x S

Note that

(¢,(’ro)y g(,ro)) = Q(to) M

It is easy to see that ¢ is an analytic map of R’ into the Banach space
C°(| ), provided that R’ is sufficiently small. We may assume that

@' (r), g(r)e U= &(B. x 2.) for re R'.
Since the equations
w; = $i(%s, 7)
and
s = g(r)
define a compact complex submanifold of 77*(g(r)),
@), 9(r)eUNM for reR’ .

Hence

L(#'(r), 9(r))e T for reR’.
We put

k(r) = L(¢'(r), (7)) .
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Then % is a holomorphic map of R’ into T. We have

O(h(r)) = (¢'(r), 9(r))
so that

Vi = A7) for re R’ . q.e.d.
Lemma 5.5 completes the proof of the theorem.

REMARK. Among maximal families, our maximal family (Y, g, T, f)
is a special one. It is so called effectively parametrized. In other words,
the map h with the property:

L (h(r)) = NHr) for re R’
is uniquely determined.

6. A stability of compact complex submanifolds of complex mani-
folds.

DEFINITION 6.1 ([2]). Let V be a compact complex submanifold of a
complex manifold W. V is called a stable submanifold of W if and only
if, for any family (X, =, S) of complex manifolds with a point oe S such
that 7'(0) = W, there are a neighborhood U of o in S and a closed sub-
variety N of #'(U) such that

1) (N, 7', U) is a family of compact complex manifolds where 7’ =
7| N and

2) 7o) =V. ‘

The following theorem is due to Kodaira (Theorem 1, [2]). Here we
give another proof.

THEOREM (Kodaira). Let V be a compact complex submanifold of a
complex manifold W. Let F be the mormal bundle of V in W. If
HYV,F) =0, then V is a stable submanifold of W.

Proor. Let (X, w, S) be a family of complex manifolds with a point
o€ S such that 77'(0) = W. Let (Y, u, T, f) be the maximal family of
compact complex submanifolds of fibers of (X, 7, S) constructed in §5 with
respect to V. If H'(V, F') = 0, then, by the corollary of Proposition 5.2,

T=(H()NB.) xS, .
We define a map
§: S, —T
by
i) = (0, s) .
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Then j is a holomorphic injection. Let N be the closed subvariety of
77}(S,) defined in X; by the equation:
w; = ¢i(;, J(8)) for zeU;.
Then it is easy to see that (N, n, S.), 7’ = 7|N, satisfies 1) and 2) of

Definition 6.1. q.e.d.
REMARK. In the above proof, we can take j any holomorphic map
728, —T
such that
3(0) = (0, o)
and

fJj = the identity map on S, .

7. Proofs of lemmas in §3 and §5. In order to prove lemmas in
§3 and §5, we need the following lemma.

LEMMA T7.1. Let A be a compact subset of a Hausdorff space X. Let
A),v=1,2 +--, be compact subsets of X such that

1) AQ)DA@2)D -+ DA and

2) N. A@p) = A.
Let U be an open mneighborhood of A. Then there exists am integer v
such that U D A(v).

PROOF OF LEMMA 3.1. Let {U},_..,... be a sequence of Stein open sets
in V such that

1) U;oUi> Ui .-+ DU, where U; > U} means that U} is compact
and is contained in U,, and so on, and

2 NU=T.

In a similar way, let {U;},_..,.. be a sequence of Stein open sets in
V such that

8) U,oUioU;> .-+ 22U, and

4) nv UI::J = Uk'

Then we have

5 0.nU,>UNUi>--->U;NU, and

6) N.(UNnT;)=TU,nT.

By Lemma 7.1, there is v such that

UL:UoT:nt:oU:nU: T NT, .

Thus U = Uy N U; satisfies the requirement. q.e.d.

Proor oF LEMMA 3.2. Let {2,},_.... be a sequence of polydises in 2,
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with the center o such that

1) 2,092,592, --- and

2) N2 =o.

Weput S, =2,n8S,v=1,2,.--. In asimilar way, let {D,},_,.,.. be
a sequence of polydisecs in D, with the center 0 such that

3) DyoD, >D,> --- and

49 N.D, =0.
Then we get

5 @ENX)NDix Tex 82 XN X)N(Ds x T x §) D +++ D
nk(Uin Uk) and

6) N. %N X)ND, x T, x 8) = (U0 Ty).
Thus, by Lemma 7.1, there is v such that
wWXNX)nD, x U, xS)c W, x8§,.
Hence
2XnNX)ND, x U, xS)cW, xS,.
Thus we have
wWXNX)ND, x U x 8) (W, x8)N (D, x Uy X 8,)
=D, xUxS,. q.e.d.
ProoF oF LEMMA 3.3. It is clear that if |w,| <e, |s| <e, and z,€
Usn U, then
(wy, 24, )€ W, X 2,.
Hence g,.(w,, 2, s) is defined.
For any fixed z, € 7,(U; N U,), we have
1940, 2, 0)| =1 — €.
Hence there is an open neighborhood
D(z;) x Ulz;) x 2(2)
of 2z, in W, x 2, such that

1) D(z,) and 2(z,) are polydises with the centers 0 and o respectively
and

2) |gu(wy, 21, )| <1 for (wy, 21, 5) € D(z) X Ulze) X L20)-
We cover 7,(Uf N U,) by such open sets in W, x 2,. Since U;N U,
is compact, there is a finite subcovering

{D; X Uy X Q}acty.coom
of 7,(U:NT,). We take ¢,0 < ¢ < ¢, so that
Q. C [;] 2,
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and
D, c QD; .

Now if |w,| < e and |s| < ¢, then
|gi(Wi, 21, 8)| <1 for all z,e UsN U, . q.e.d.

The proof of Lemma 3.4 is almost similar to that of Lemma 3.3
above, so we omit it.

Proor oF LEMMA 3.5. Since
W, x S, cn(X;n Xy,
we have
iy, 2, ) e XN XN X, = XN X,

for 2, e Us N U,, |w,| < e, and se8S,. We take ¢ satisfying Lemmas 3.3
and 3.4 for 6 = 1. Then

|ga(wy, 2, 8)| < 1
and
[ fae(we, 2i, 8)| <1
for 2,€e UsN U, |w,| < ¢ and seS,. This implies that
N (wy, 2, 8) € X;
for 2, e UsNU,, |w,| <€ and s S.. q.e.d.
Proor or LEMMA 3.6. For each integer v > 1/e,, we put
AW) = (Pe Xy N X,|lw,| =1/v and [s|<1p},

where 7,(P) = (wy, %, s). Then each A(v) is compact. It is easy to see
that {A(v)} is a decreasing sequence of compact sets and

NAY) =T NT, .

By Lemma 7.1, there is v such that

AR) c (D, x (Usn Ty x 8) .
Thus, if P = ;' (w,, 2, s) € X{’ N X,, then

Pe A) c 5D, x (U nT) x 8),

provided that |w,| < 1/v and se€ S,,. This implies that z,€ Us nT,. Of
course Pe X, implies that z,€ U,. Hence z,€ U N U,. q.e.d.

Proor oF LEMMA 3.7. We first prove 1). Let vy, be an integer greater



ON MAXIMAL FAMILIES OF COMPACT COMPLEX SUBMANIFOLDS 261

than 1/e,. For any integer v greater than or equal to v,, we put
2, = {se||s| <1/v}

and
Dy, = {wi€ Di||w,| <1/} .
Then
W. x 2, 2 Dy,, x (—IT NT; NT) X 2y, D Dijpyin X (U NT; N T)
X Qo2+ D2U0NU;NU,
and

n(Dxle(UﬂUﬂUk)Xgl/y)—UﬂU no,.

V)JO

By Lemma 7.1, there is v such that
N7 (Woin X Q) D Dy x (TN T;NTy) X Dy,

Thus ¢ = 1/v satisfies the requirement.
Next we prove 2). We have

gjk(o, Rk O) = Z; e—l']—ien_lTje C Uie,z n U;lz

for all 2,e U;NU;NU, For any point z,e U; N U; N U,, there are a
neighborhood Uf(z,) of 2z, in U, and a positive number &(z,), 0 < &(z,) <
€,, such that if |w,| < e(z)), |s| < e(z;) and z, € U(z,), then g;,(w,, z, s) is
defined and is a point of U N Uj*. We cover U N U: N U, by a finite
number of such U(z}), ---, U(zi). We put

¢ = min {&(z}), -, e(z2)} .
Then ¢ satisfies the requirement. q.e.d.
Proor oF LEMMA 5.1. Let
. X, — U,

be the projection map defined by

TN (w;, 2, 8) = 7; .
For each positive integer v, we set

Av) = (97w, 2, ) e Xl |wi] < 1/v, |2/ <1 and [s| < 1py},

and

AQ) = H A cX.

Since A;(v) is compact for each 7€ I, A(y) is also compact. It is clear
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that
VcAy).
We show that
O Ay =V.

Let be N, A(v). Then there are an index 7€ I and a subsequence
: pl < Y, < cee
such that be 4;(v,),a =1,2, ---. Then
|wi(b)| = 1/v. ,
lz:(b)| = 1
and
[s(®)| =< 1/v,
for @ = 1,2, .-+, where 7,(8) = (wi(b), z:(b), s(b)). Thus wi(d) =0, [2:(0)| =
1 and s(b) = o. Hence be U, V. By Lemma 7.1, there is v such that
A(y) C L;J Xz .

Then ¢ = 1/y satisfies the requirement. q.e.d.
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