NORMALITY OF ALMOST CONTACT 3-STRUCTURE

Dedicated to Professor Shigeo Sasaki on his 60th birthday

Kentaro Yano, Shigeru Ishihara and Mariko Konishi

(Received May 9, 1972; Revised September 22, 1972)
0. Introduction. The almost contact 3 -structure has been defined by Kuo [5, 6], Tachibana [6, 12], Yu [12] and studied by them and Eum [16], Kashiwada [4], Ki [16], Sasaki [10], Yano [16]. Some topics related to almost contact 3 -structures have been considered by Ishihara, Konishi [1, 2, 3] and Tanno [13].

It is well known that the product of a manifold with almost contact 3 -structure and a straight line admits an almost quaternion structure (cf. [5]). Recently, Ako and one of the present authors [14, 15] have proved that, if for an almost quaternion structure (F, G, H) the Nijenhuis tensors $[F, F]$ and $[G, G]$ vanish, then the other Nijenhuis tensors $[H, H],[G, H]$, [$H, F]$ and $[F, G]$ vanish too (cf. Obata [7]), and that if the Nijenhuis tensor $[F, G]$ vanishes, then the other Nijenhuis tensors $[F, F],[G, G]$, $[H, H],[G, H]$, and $[H, F]$ vanish too. The main purpose of the present paper is to study almost contact 3 -structures in the light of this work.

1. Almost contact 3 -structure. Let M be an n-dimensional differentiable manifold ${ }^{1)}$ and let f, U and u be a tensor field of type (1,1), a vector field and a 1 -form in M, respectively. If f, U and u satisfy

$$
f^{2}=-I+u \otimes U, \quad f U=0, \quad u \circ f=0, \quad u(U)=1
$$

the 1-form $u \circ f$ being defined by $(u \circ f)(x)=u(f x)^{2}$ and I being the identity tensor field of type $(1,1)$, then the set (f, U, u) is called an almost contact structure (cf. [8, 9, 11]).

Let f_{1}, f_{2} be tensor fields of type $(1,1), U_{1}, U_{2}$ vector fields and u_{1}, u_{2} 1-forms in M. If (f_{1}, U_{1}, u_{1}) and (f_{2}, U_{2}, u_{2}) are both almost contact structures and satisfy

$$
\begin{gathered}
f_{1} f_{2}+f_{2} f_{1}=u_{1} \otimes U_{2}+u_{2} \otimes U_{1}, \quad f_{1} U_{2}+f_{2} U_{1}=0, \\
u_{1} \circ f_{2}+u_{2} \circ f_{1}=0, \quad u_{1}\left(U_{2}\right)=0, \quad u_{2}\left(U_{1}\right)=0,
\end{gathered}
$$

[^0]then the sets $\left(f_{1}, U_{1}, u_{1}\right)$ and $\left(f_{2}, U_{2}, u_{2}\right)$ are said to define an almost contact 3-structure in M.

If $\left(f_{1}, U_{1}, u_{1}\right)$ and $\left(f_{2}, U_{2}, u_{2}\right)$ define an almost contact 3 -structure, putting

$$
\begin{gathered}
f_{3}=f_{1} f_{2}-u_{2} \otimes U_{1}=-f_{2} f_{1}+u_{1} \otimes U_{2} \\
U_{3}=f_{1} U_{2}=-f_{2} U_{1}, \quad u_{3}=u_{1} \circ f_{2}=-u_{2} \circ f_{1}
\end{gathered}
$$

we can easily verify that $\left(f_{3}, U_{3}, u_{3}\right)$ defines an almost contact structure. We can also verify

$$
\begin{array}{rlrl}
f_{1} & =f_{2} f_{3}-u_{3} \otimes U_{2} & f_{2} & =f_{3} f_{1}-u_{1} \otimes U_{3} \\
& =-f_{3} f_{2}+u_{2} \otimes U_{3}, & & =-f_{1} f_{3}+u_{3} \otimes U_{1}, \\
U_{1} & =f_{2} U_{3}=-f_{3} U_{2}, & U_{2} & =f_{3} U_{1}=-f_{1} U_{3}, \\
u_{1} & =u_{2} \circ f_{3}=-u_{3} \circ f_{2}, & u_{2} & =u_{3} \circ f_{1}=-u_{1} \circ f_{3} \\
u_{2}\left(U_{3}\right)=0, & u_{3}\left(U_{2}\right)=0, & u_{3}\left(U_{1}\right)=0, \quad u_{1}\left(U_{3}\right)=0
\end{array}
$$

Therefore any two of $\left(f_{1}, U_{1}, u_{1}\right),\left(f_{2}, U_{2}, u_{2}\right)$ and $\left(f_{3}, U_{3}, u_{3}\right)$ define essentially the same almost contact 3 -structure. In this sense, we say that such almost contact structures $\left(f_{\lambda}, U_{\lambda}, u_{\lambda}\right)(\lambda=1,2,3)$ define in M an almost contact 3 -structure $\left\{\left(f_{\lambda}, U_{\lambda}, u_{\lambda}\right) ; \lambda=1,2,3\right\}$.
2. Almost quaternion structure. Let there be given, in a manifold \bar{M}, three tensor fields $F_{\lambda}(\lambda=1,2,3)^{3)}$ of type $(1,1)$ satisfying

$$
F_{\lambda}^{2}=-I, \quad F_{\lambda} F_{\mu}=-F_{\mu} F_{\lambda}=F_{\nu}
$$

where (λ, μ, ν) is an even permutation of $(1,2,3)$. Then the set $\left\{F_{\lambda} ; \lambda=\right.$ $1,2,3\}$ is called an almost quaternion structure in \bar{M}, where \bar{M} is necessarily $4 m$-dimensional.

For two tensor fields P and Q of type $(1,1)$ in \bar{M}, the Nijenhuis tensor $[P, Q]$ of P and Q is, by definition, a tensor field of type (1,2) such that

$$
\begin{align*}
& 2[P, Q](X, Y)=[P X, Q Y]-P[Q X, Y]-Q[X, P Y] \tag{2.1}\\
& \quad+[Q X, P Y]-Q[P X, Y]-P[X, Q Y]+(P Q+Q P)[X, Y]
\end{align*}
$$

and hence the Nijenhuis tensor $[P, P]$ of P is given by

$$
\begin{equation*}
[P, P](X, Y)=[P X, P Y]-P[P X, Y]-P[X, P Y]+P^{2}[X, Y] \tag{2.2}
\end{equation*}
$$

where X and Y denote arbitrary vector fields in \bar{M}. Ako and one of the present authors [14] (cf. [7]) have proved

Theorem A. If, for an almost quaternion structure $\left\{F_{\lambda} ; \lambda=1,2,3\right\}$,

[^1]the Nijenhuis tensors $\left[F_{1}, F_{1}\right]$ and $\left[F_{2}, F_{2}\right.$] vanish, then the other Nijenhuis tensors $\left[F_{3}, F_{3}\right],\left[F_{2}, F_{3}\right],\left[F_{3}, F_{1}\right]$ and $\left[F_{1}, F_{2}\right]$ vanish too.

They have also proved in [15]
Theorem B. If, for an almost quaternion structure $\left\{F_{\lambda} ; \lambda=1,2,3\right\}$, the Nijenhuis tensor $\left[F_{1}, F_{2}\right]$ vanishes, then the other Nijenhuis tensors [$\left.F_{1}, F_{1}\right],\left[F_{2}, F_{2}\right],\left[F_{3}, F_{3}\right],\left[F_{2}, F_{3}\right]$ and $\left[F_{3}, F_{1}\right]$ vanish too.
3. Almost contact 3 -structure and almost quaternion structure. Let M be a manifold with almost contact 3 -structure $\left\{\left(f_{\lambda}, U_{\lambda}, u_{\lambda}\right) ; \lambda=1,2,3\right\}$. We now consider the product space $M \times R$, where R is a straight line. Let X be a vector field in $M \times R$, which is naturally represented by a pair of a vector field x in M and a function α in M, i.e., ${ }^{4)}$

$$
X=\binom{x}{\alpha}
$$

We define torsor fields $F_{\lambda}(\lambda=1,2,3)$ of type $(1,1)$ in $M \times R$ by

$$
\begin{equation*}
F_{\lambda} X=F_{\lambda}\binom{x}{\alpha}=\binom{f_{\lambda} x-\alpha U_{\lambda}}{u_{\lambda}(x)} \tag{3.1}
\end{equation*}
$$

Then, using (1.1) and (3.1), we see easily

$$
\begin{equation*}
F_{\lambda}^{2}=-I, \quad F_{\lambda} F_{\mu}=-F_{\mu} F_{\lambda}=F_{\nu}, \tag{3.2}
\end{equation*}
$$

(λ, μ, ν) being an even permutation of (1,2,3), which shows that $\left\{F_{\lambda} ; \lambda=\right.$ $1,2,3\}$ defines an almost quaternion structure in $M \times R$. Thus we have (cf. [5, 12])

Lemma 3.1. If M is a manifold with an almost contact 3-structure $\left\{\left(f_{\lambda}, U_{\lambda}, u_{\lambda}\right) ; \lambda=1,2,3\right\}$, then the product space $M \times R$ admits an almost quaternion structure $\left\{F_{\lambda} ; \lambda=1,2,3\right\}$ defined by (3.2).

Since the almost quaternion manifold $M \times R$ is $4 m$-dimensional, M with almost contact 3 -structure is $(4 m-1)$-dimensional.
4. Nijenhuis tensors. For two vectors X and Y in $M \times R$ of the form $X=\binom{x}{\alpha}$ and $Y=\binom{y}{\beta}$, where x and y are arbitrary vector fields in M and α, β arbitrary functions in M, the bracket product of X and Y is a vector field of the form

$$
\begin{equation*}
[X, Y]=\binom{[x, y]}{x \beta-y \alpha} \tag{4.1}
\end{equation*}
$$

[^2]If we take account of (1.1), (2.2) and (4.1), we have, for the tensor field F defined by (3.1),

$$
\left[F, F^{\prime}\right](X, Y)=\binom{[f, f](x, y)+(d u)(x, y) U-\alpha\left(\Omega_{U} f\right) y+\beta\left(\mathfrak{R}_{U} f\right) x}{(d u)(f x, y)+(d u)(x, f y)-\alpha\left(\mathfrak{R}_{U} u\right)(y)+\beta\left(\mathfrak{R}_{U} u\right)(x)}
$$

\AA_{U} denoting the Lie derivation with respect to U and $d u$ being defined by $d u(x, y)=x u(y)-y u(x)-u([x, y])$, where we have used the formulas

$$
\left(\mathfrak{R}_{U} u\right)(x)=U u(x)-u([U, x]), \quad\left(\mathfrak{R}_{U} f\right) x=[U, f x]-f[U, x] .
$$

Thus we have $[F, F]=0$ if and only if

$$
\begin{cases}{[f, f]+(d u) \otimes U=0,} & \mathfrak{L}_{U} f=0 \tag{4.2}\\ (d u) \pi f=0, & \mathfrak{L}_{U} u=0\end{cases}
$$

where $d u \pi f$ is a 2 -form defined by

$$
((d u) \pi f)(x, y)=(d u)(f x, y)+(d u)(x, f y)
$$

On the other hand, it is well known that the first equation of (4.2) implies all the others (cf. [11]). Thus we have the following well known lemma:

Lemma 4.1. A necessary and sufficient condition that $[F, F]=0$ in $M \times R$, that is, the almost complex structure F is integrable in $M \times R$ is that

$$
\begin{equation*}
[f, f]+d u \otimes U=0 \tag{4.3}
\end{equation*}
$$

holds in M.
If the condition (4.3) is satisfied, then the almost contact structure (f, U, u) is said to be normal. Thus, taking account of Theorem A and Lemma 4.1, we have

Theorem 4.2. If, for an almost contact 3-structure $\left\{\left(f_{\lambda}, U_{\lambda}, u_{\lambda}\right) ; \lambda=\right.$ $1,2,3\}$, any two of almost contact structures $\left(f_{\lambda}, U_{\lambda}, u_{\lambda}\right)$ are normal, then the third is so (cf. [5]).

Next, using (1.2), (1.3), (1.4), (2.1), and (4.1), we find for F_{λ} defined by (3.1)

$$
\begin{aligned}
& 2\left[F_{1}, F_{2}\right](X, Y) \\
& \quad=\left(\begin{array}{r}
2\left[f_{1}, f_{2}\right](x, y)+d u_{1}(x, y) U_{2}+d u_{2}(x, y) U_{1}-\alpha\left(\mathfrak{R}_{U_{1}} f_{2}+\mathfrak{R}_{U_{2}} f_{1}\right) y \\
+\beta\left(\mathfrak{R}_{U_{1}} f_{2}+\mathfrak{R}_{U_{2}} f_{1}\right) x \\
\left(d u_{1} \pi f_{2}+d u_{2} \pi f_{1}\right)(x, y)-\alpha\left(\mathfrak{Z}_{U_{1}} u_{2}+\mathfrak{Z}_{U_{2}} u_{1}\right)(y)+\beta\left(\mathfrak{R}_{U_{1}} u_{2}+\mathfrak{Z}_{U_{2}} u_{1}\right)(x)
\end{array}\right)
\end{aligned}
$$

Thus we have

Lemma 4.2. A necessary and sufficient condition that $\left[F_{1}, F_{2}\right]$ vanishes in $M \times R$ is that in M

$$
\begin{cases}2\left[f_{1}, f_{2}\right]+d u_{1} \otimes U_{2}+d u_{2} \otimes U_{1}=0, & \mathfrak{R}_{U_{1}} f_{2}+\mathfrak{R}_{U_{2}} f_{1}=0 \tag{4.4}\\ \left(d u_{1}\right) \pi f_{2}+\left(d u_{2}\right) \pi f_{1}=0, & \mathfrak{R}_{U_{1}} u_{2}+\mathfrak{R}_{U_{2}} u_{1}=0\end{cases}
$$

We now prove that the first equation of (4.4) implies the last equation. If we put

$$
S(x, y)=2\left[f_{1}, f_{2}\right](x, y)+d u_{1}(x, y) U_{2}+d u_{2}(x, y) U_{1}
$$

then, computing $S\left(x, U_{\lambda}\right)$, we obtain
(4.5) $\quad S\left(x, U_{1}\right)=\left(\Omega_{U_{3}} f_{1}\right) x+f_{1}\left(\Omega_{U_{1}} f_{2}\right) x+f_{2}\left(\Omega_{U_{1}} f_{1}\right) x-\left(\Omega_{U_{1}} u_{1}\right)(x) U_{2}-\left(\Omega_{U_{1}} u_{2}\right)(x) U_{1}$,
(4.6) $S\left(x, U_{2}\right)=-\left(\Omega_{U_{3}} f_{2}\right) x+f_{1}\left(\Omega_{U_{2}} f_{2}\right) x+f_{2}\left(\Omega_{U_{2}} f_{1}\right) x-\left(\Omega_{U_{2}} u_{1}\right)(x) U_{2}-\left(\Omega_{U_{2}} u_{2}\right)(x) U_{1}$,
(4.7) $S\left(x, U_{3}\right)=f_{2}\left(\Omega_{U_{3}} f_{1}\right) x+f_{1}\left(\Omega_{U_{3}} f_{2}\right) x-\left(\Omega_{U_{1}} f_{1}\right) x+\left(\Omega_{U_{2}} f_{2}\right) x+d u_{1}\left(x, U_{3}\right) U_{2}$

$$
+d u_{2}\left(x, U_{3}\right) U_{1}
$$

Thus, if $S(x, y)=0$, using (4.5)-(4.7), we have

$$
\begin{aligned}
0= & f_{2}\left(S\left(x, U_{1}\right)\right)-f_{1}\left(S\left(x, U_{2}\right)\right) \\
= & S\left(x, U_{3}\right)-d u_{1}\left(x, U_{3}\right) U_{2}-d u_{2}\left(x, U_{3}\right) U_{1}+f_{2} f_{1}\left\{\left(\Omega_{U_{1}} f_{2}\right) x+\left(\Omega_{U_{2}} f_{1}\right) x\right\} \\
& -\left\{u_{1}\left(\left(\Omega_{U_{2}} f_{2}\right) x\right)+u_{2}\left(\left(\Omega_{U_{2}} f_{1}\right) x\right)\right\} U_{1}-\left\{u_{1}\left(\left(\Omega_{U_{2}} f_{1}\right) x\right)-u_{2}\left(\left(\Omega_{U_{1}} f_{1}\right) x\right)\right\} U_{2} \\
& +\left\{\left(\Omega_{U_{1}} u_{2}\right)(x)+\left(\Omega_{U_{2}} u_{1}\right)(x)\right\} U_{3} \\
= & f_{2} f_{1}\left\{\left(\Omega_{U_{1}} f_{2}\right) x+\left(\Omega_{U_{2}} f_{1}\right) x\right\}+\left\{\left(\Omega_{U_{1}} u_{2}\right)(x)+\left(\Omega_{U_{2}} u_{1}\right)(x)\right\} U_{3} \\
& -\left\{u_{1}\left(\left(\Omega_{U_{2}} f_{2}\right) x\right)+u_{2}\left(\left(\Omega_{U_{2}} f_{1}\right) x\right)-\left(\Omega_{U_{3}} u_{2}\right)(x)\right\} U_{1} \\
& -\left\{u_{1}\left(\left(\Omega_{U_{2}} f_{1}\right) x\right)-u_{2}\left(\left(\Omega_{U_{1}} f_{1}\right) x\right)-\left(\Omega_{U_{3}} u_{1}\right)(x)\right\} U_{2},
\end{aligned}
$$

from which, using $u_{3} \circ\left(f_{2} f_{1}\right)=-u_{1} \circ f_{1}=0, u_{3}\left(U_{1}\right)=0, u_{3}\left(U_{2}\right)=0$, and $u_{3}\left(U_{3}\right)=1$, we obtain

$$
\mathfrak{R}_{U_{1}} u_{2}+\mathfrak{R}_{U_{2}} u_{1}=0
$$

Thus we have
Lemma 4.3. The first equation of (4.4) implies the last equation.
From Lemmas 4.2 and 4.3, we have
Theorem 4.4. Let M admit an almost contact 3-structure $\left\{\left(f_{\lambda}, U_{\lambda}, u_{\lambda}\right)\right.$; $\lambda=1,2,3\} . A$ necessary and sufficient condition that $\left[F_{1}, F_{2}\right]$ vanishes in $M \times R$ is that in M

$$
\begin{gather*}
2\left[f_{1}, f_{2}\right]+d u_{1} \otimes U_{2}+d u_{2} \otimes U_{1}=0 \tag{4.8}\\
\mathfrak{R}_{U_{1}} f_{2}+\mathfrak{R}_{U_{2}} f_{1}=0, \quad d u_{1} \pi f_{2}+d u_{2} \pi f_{1}=0 .
\end{gather*}
$$

Taking account of Theorems B and 4.4, we have

Theorem 4.5. A necessary and sufficient condition that, for an almost contact 3 -structure $\left\{\left(f_{2}, U_{\lambda}, u_{\lambda}\right) ; \lambda=1,2,3\right\}$, the almost contact structures $\left(f_{\lambda}, U_{\lambda}, u_{\lambda}\right)$ are all normal is that the condition (4.8) is valid.
5. A special case. In this section, we assume that the almost contact 3 -structure $\left\{\left(f_{\lambda}, U_{2}, u_{\lambda}\right) ; \lambda=1,2,3\right\}$ satisfies the condition

$$
\begin{gather*}
2\left[f_{1}, f_{2}\right]+d u_{1} \otimes U_{2}+d u_{2} \otimes U_{1}=0 \tag{5.1}\\
\mathcal{\Omega}_{U_{1}} f_{2}=2 f_{3}, \quad \AA_{U_{2}} f_{1}=-2 f_{3}, \quad d u_{1} \pi f_{2}+d u_{2} \pi f_{1}=0
\end{gather*}
$$

Then, by Theorem 4.4, all of the almost contact structures $\left(f_{\lambda}, U_{\lambda}, u_{\lambda}\right)$ are normal.

Forming $\left(\Omega_{U_{2}} f_{1}\right) U_{1}=-2 f_{3} U_{1}$, we find by means of (1.1) and (1.3)

$$
-f_{1} \mathfrak{R}_{U_{2}} U_{1}=-2 U_{2}, \quad \text { i.e. } \quad f_{1}\left[U_{1}, U_{2}\right]=-2 U_{2}
$$

from which, applying f_{1},

$$
-\left[U_{1}, U_{2}\right]+u_{1}\left(\left[U_{1}, U_{2}\right]\right) U_{1}=-2 U_{3} .
$$

On the other hand, using Lemma 4.3, we obtain

$$
\begin{aligned}
u_{1}\left(\left[U_{1}, U_{2}\right]\right) & =-u_{1}\left(\Omega_{U_{2}} U_{1}\right)=\left(\mathfrak{R}_{U_{2}} u_{1}\right)\left(U_{1}\right) \\
& =-\left(\mathfrak{R}_{U_{1}} u_{2}\right)\left(U_{1}\right)=\mathfrak{R}_{U_{1}} u_{2}\left(U_{1}\right)=0
\end{aligned}
$$

and consequently

$$
\begin{equation*}
\left[U_{1}, U_{2}\right]=2 U_{3} \tag{5.2}
\end{equation*}
$$

Forming next $\left(\mathfrak{R}_{U_{2}} f_{1}\right) U_{2}=-2 f_{3} U_{2}$, we have

$$
\mathfrak{R}_{U_{2}}\left(f_{1} U_{2}\right)=2 U_{1}, \quad \text { i.e., } \quad \mathfrak{R}_{U_{2}} U_{3}=2 U_{1}
$$

and hence

$$
\begin{equation*}
\left[U_{2}, U_{3}\right]=2 U_{1} \tag{5.3}
\end{equation*}
$$

Similarly, forming $\left(\mathfrak{Z}_{U_{1}} f_{2}\right) U_{1}=2 f_{3} U_{1}$, we obtain

$$
\begin{equation*}
\left[U_{3}, U_{1}\right]=2 U_{2} \tag{5.4}
\end{equation*}
$$

Thus, summing up (5.2), (5.3), and (5.4), we have
THEOREM 5.1. If, for an almost contact 3 -structure $\left\{\left(f_{\lambda}, U_{\lambda}, u_{\lambda}\right) ; \lambda=\right.$ $1,2,3\}$, the condition (5.1) is satisfied, then we have

$$
\begin{equation*}
\left[U_{\lambda}, U_{\mu}\right]=2 U_{\nu} \tag{5.5}
\end{equation*}
$$

where (λ, μ, ν) is an even permutation of $(1,2,3)$.
Now, forming $u_{1} \circ\left(\Omega_{U_{1}} f_{2}\right)=2 u_{1} \circ f_{3}$, we find

$$
\begin{equation*}
\mathfrak{R}_{U_{1}}\left(u_{1} \circ f_{2}\right)=2 u_{1} \circ f_{3}, \quad \text { i.e., } \quad \mathbb{L}_{U_{1}} u_{3}=-2 u_{2} \tag{5.6}
\end{equation*}
$$

and consequently, by means of Lemma 4.3,

$$
\begin{equation*}
\mathfrak{R}_{U_{3}} u_{1}=2 u_{2} \tag{5.7}
\end{equation*}
$$

Similarly, we find also

$$
\mathfrak{Z}_{U_{1}} u_{2}=-\mathfrak{Z}_{U_{2}} u_{1}=2 u_{3}
$$

and

$$
\mathfrak{Z}_{U_{2}} u_{3}=-\mathfrak{R}_{U_{3}} u_{2}=2 u_{1}
$$

That is, we have
TheOrem 5.2. If, for an almost contact 3 -structure $\left\{\left(f_{\lambda}, U_{\lambda}, u_{\lambda}\right) ; \lambda=\right.$ $1,2,3\}$, the condition (5.1) is satisfied, then we have

$$
\begin{equation*}
\mathfrak{L}_{U_{2}} u_{\mu}=-\mathfrak{I}_{U_{\mu}} u_{\lambda}=2 u_{\nu} \tag{5.8}
\end{equation*}
$$

where (λ, μ, ν) is an even permutation of $(1,2,3)$.
Since we have assumed (5.1), we have, from (4.5),

$$
\begin{gather*}
\left(\mathfrak{Q}_{U_{3}} f_{1}\right)+f_{1}\left(\mathfrak{Z}_{U_{1}} f_{2}\right) x+f_{2}\left(\mathfrak{R}_{U_{1}} f_{1}\right) x-\left(\mathfrak{Q}_{U_{1}} u_{1}\right)(x) U_{2}-\left(\mathfrak{Q}_{U_{1}} u_{2}\right)(x) U_{1}=0 \\
\left(\mathfrak{Z}_{U_{3}} f_{1}\right) x+2 f_{1} f_{3} x-2 u_{3}(x) U_{1}=0 \\
\mathfrak{L}_{U_{3}} f_{1}=2 f_{2} \tag{5.9}
\end{gather*}
$$

Hence, from Theorems 4.5 and B, we also have

$$
\begin{equation*}
\mathfrak{Z}_{U_{1}} f_{3}=-2 f_{2} \tag{5.10}
\end{equation*}
$$

and

$$
\begin{equation*}
-\mathfrak{R}_{U_{3}} f_{2}=\mathfrak{R}_{U_{2}} f_{3}=2 f_{1} \tag{5.11}
\end{equation*}
$$

Thus we have
Theorem 5.3. If, for an almost contact 3-structure $\left\{\left(f_{\lambda}, U_{\lambda}, u_{\lambda}\right) ; \lambda=\right.$ $1,2,3\}$, the condition (5.1) is satisfied, then we have

$$
\begin{equation*}
\mathfrak{B}_{U_{\lambda}} f_{\mu}=-\Omega_{U_{\mu}} f_{\lambda}=2 f_{\nu} \tag{5.12}
\end{equation*}
$$

where (λ, μ, ν) is an even permutation of $(1,2,3)$.
6. Contact 3 -structure. Let (M, γ) be a Riemannian manifold with metric tensor γ and let (f, U, u) be an almost contact structure in M. When the conditions

$$
\gamma(x, y)=\gamma(f x, f y)+u(x) u(y), \quad u(x)=\gamma(U, x)
$$

are satisfied, γ is said to be a metric associated with (f, U) and (f, U) is called an almost contact metric structure in (M, (M). If, for an almost contact metric structure (f, U) in (M, γ), we put

$$
\Phi(x, y)=\gamma(f x, y),
$$

then Φ is a skew-symmetric tensor field of type $(0,2)$, i.e., a 2 -form. When the condition $\Phi=(1 / 2) d u$ is satisfied, (f, U) is called a contact structure in (M, γ). If, for a contact structure $(f, U), U$ is a Killing vector, then it is called a K-contact structure in (M, γ). For a K-contact structure, we have $f=\nabla U$, where ∇ denotes the covariant differentiation with respect to the Riemannian connection of (M, γ) (cf. [9]).

When, for an almost contact 3 -structure $\left\{\left(f_{\lambda}, U_{\lambda}, u_{\lambda}\right) ; \lambda=1,2,3\right\}$ in (M, γ), each of $\left(f_{\lambda}, U_{\lambda}, u_{\lambda}\right)$ is a contact structure (resp. a K-contact structure), the set $\left\{\left(f_{\lambda}, U_{\lambda}\right) ; \lambda=1,2,3\right\}$ is called a contact 3 -structure (resp. a K-contact 3 -structure) in (M, γ).

Let $\left\{\left(f_{\lambda}, U_{\lambda}\right) ; \lambda=1,2,3\right\}$ be a contact 3 -structure, then we have, from the definition,

$$
d u_{\lambda}(x, y)=2 \gamma\left(f_{\lambda} x, y\right)
$$

from which, we obtain

$$
d u_{\lambda} \pi f+d u_{\mu} \pi f_{\lambda}=0, \quad(\lambda \neq \mu)
$$

Thus, for a contact 3 -structure $\left\{\left(f_{\lambda}, U_{\lambda}\right) ; \lambda=1,2,3\right\}$, the condition (4.8) is equivalent to

$$
2\left[f_{1}, f_{2}\right]+d u_{1} \otimes U_{2}+d u_{2} \otimes U_{1}=0, \quad \mathfrak{R}_{U_{1}} f_{2}+\mathfrak{R}_{U_{2}} f_{1}=0
$$

Therefore, from Theorem 4.6, we have
Theorem 6.1. A necessary and sufficient condition that, for contact 3 -structure $\left\{\left(f_{\lambda}, U_{\lambda}\right) ; \lambda=1,2,3\right\}$ in a Riemannian manifold, each of $\left(f_{\lambda}, U_{\lambda}\right)$ is normal is that

$$
\begin{equation*}
2\left[f_{1}, f_{2}\right]+d u_{1} \otimes U_{2}+d u_{2} \otimes U_{1}=0, \quad \mathfrak{B}_{U_{1}} f_{2}+\mathfrak{R}_{U_{2}} f_{1}=0 \tag{6.1}
\end{equation*}
$$

Let $\left\{\left(f_{\lambda}, U_{\lambda}\right) ; \lambda=1,2,3\right\}$ be a K-contact 3 -structure in (M, γ). Then we have $f_{\lambda}=\nabla U_{\lambda}$ and hence, from (1.2),

$$
\begin{equation*}
\left[U_{\lambda}, U_{\mu}\right]=2 U_{,}, \tag{6.2}
\end{equation*}
$$

(λ, μ, ν) being an even permutation of (1,2,3). On the other hand, since U_{λ} are all Killing vectors, we have

$$
\begin{equation*}
\mathfrak{R}_{U_{2}} \nabla=\nabla \mathfrak{R}_{U_{2}} \tag{6.3}
\end{equation*}
$$

Thus, taking account of (6.2) and (6.3), we have

$$
2 f_{3}=2 \nabla U_{3}=\nabla \mathfrak{R}_{U_{1}} U_{2}=\mathfrak{R}_{U_{1}} \nabla U_{2}=\mathfrak{R}_{U_{1}} f_{2}
$$

and similarly

$$
2 f_{3}=-\mathfrak{K}_{U_{2}} f_{1}
$$

Consequently, for a K-contact 3 -structure $\left\{\left(f_{\lambda}, U_{\lambda}\right) ; \lambda=1,2,3\right\}$ in (M, γ), (5.1) is equivalent to

$$
2\left[f_{1}, f_{2}\right]+d u_{1} \otimes U_{2}+d u_{2} \otimes U_{1}=0
$$

Therefore we have
Theorem 6.2. A necessary and sufficient condition that, for a K contact 3 -structure $\left\{\left(f_{\lambda}, U_{\lambda}\right) ; \lambda=1,2,3\right\}$ in a Riemannian manifold, each of $\left(f_{\lambda}, U_{\lambda}\right)$ is normal is that

$$
2\left[f_{1}, f_{2}\right]+d u_{1} \otimes U_{2}+d u_{2} \otimes U_{1}=0
$$

Bibliography

[1] S. Ishihara and M. Konishi, Fibred Riemannian spaces with Sasakian 3-structure, Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo, 1972, 179-194.
[2] S. Ishihara and M. Konishi, On f-three-structure, Hokkaido Math. J., 1 (1972), 127-135.
[3] S. Ishihara and M. Konishi, Fibred Riemannian space with triple of Killing vectors, Kōdai Math. Sem. Rep. 25 (1973).
[4] T. KAShiwada, On three framed f-structures with some relations, to appear in Nat. Sci. Rep. Ochanomizu Univ., 22 (1972). 91-99.
[5] Y. Y. Kuo, On almost contact 3-structure, Tôhoku Math. J., 22 (1970), 235-332.
[6] Y. Y. Kuo and S. Tachibana, On the distribution appeared in contact 3 -structure, Taita J. of Math., 2 (1970), 17-24.
[7] M. Овата, Affine connections of manifolds with almost complex, quaternion or Hermitian structure, Japan. J. Math., 26 (1956), 43-77.
[8] S. SASAKI, On differentiable manifolds with certain structure which are closely related to contact structure I, Tôhoku Math. J., 12 (1960), 459-476.
[9] S. SASAKI, Almost contact manifolds, Lecture Note I, Tôhoku Univ.
[10] S. SASAKI, Spherical space forms with normal contact metric 3-structure, J. Diff. Geom., 6 (1972), 307-315.
[11] S. Sasaki and Y. Hatakeyama, On differentiable manifolds with certain structures which are closely related to contact structure II, Tôhoku Math. J., 13 (1961), 281-294.
[12] S. Tachibama and W. N. Yu, On a Riemannian space admitting more than one Sasakian structure, Tôhoku Math. J., 22 (1970), 536-540.
[13] S. Tanno, Killing vectors on contact Riemannian manifolds and fibering related to the Hopf fibrations, Tôhoku Math. J., 23 (1971), 313-334.
[14] K. Yano and M. Ako, Integrability conditions for almost quaternion structures, Hokkaido Math. J., 1 (1972), 63-86.
[15] K. Yano and M. Ako, An affine connection in an almost quaternion manifold, to appear in J. Diff. Geom.
[16] K. Yano, Sang-Seup Eum and U-Hang Ki, On almost contact affine 3-structure, Kōdai Math. Sem. Rep., 25 (1973).
Tokyo Institute of Technology

[^0]: ${ }^{1)}$ Manifolds, vector fields, tensor fields and other geometric objects we discuss are assumed to be differentiable and of class C^{∞}.
 ${ }^{2)}$ Here and in the sequel, x, y and z denote arbitrary vector fields in the manifold M.

[^1]: ${ }^{3)}$ In the sequel, Greek indices λ, μ, ν run over the range $\{1,2,3\}$.

[^2]: 4) In the sequel, $X, . Y$, and Z denote arbitrary vector fields of this type in $M \times R$, i.e., $X=\binom{x}{\alpha}, Y=\binom{y}{\beta}, Z=\binom{z}{\gamma}, x, y, z$ being vector fields and α, β, γ functions in M.
