GENERALIZED CENTRAL SPHERES AND THE NOTION OF SPHERES IN RIEMANNIAN GEOMETRY

Dedicated to Professor Shigeo Sasaki on his 60th birthday

Katsumi Nomizu

(Received November 20, 1971)

In a euclidean space E^{n+1} an n-plane or an n-sphere of radius r may be characterized as an umbilical hypersurface with mean curvature equal to 0 or $1 / r$. A similar characterization is possible for an n-plane or an n-sphere in a euclidean space E^{n+p} where $p>1$, as shown by E. Cartan [1], p. 231. Indeed, it is possible to determine all umbilical submanifolds of dimension n in an $(n+p)$-dimensional space form \widetilde{M}, which can be regarded as " n-planes" or " n-spheres" according to whether the mean curvature is 0 or not.

In an arbitrary Riemannian manifold \tilde{M} of dimension $n+p$, a natural analogue of an n-plane is an n-dimensional totally geodesic submanifold (equivalently, umbilical submanifold with zero mean curvature). In terms of a geometric notion of the development of curves, Cartan [1], p. 116, characterizes such n-planes in \widetilde{M} as follows. Let M be an n-dimensional submanifold of \tilde{M}. For every point x of M and for every curve τ in M starting at x, the development τ^{*} of τ into the euclidean tangent space $T_{x}(\widetilde{M})$ lies in the euclidean subspace $T_{x}(M)$ if and only if M is totally geodesic in \widetilde{M}.

The purpose of the present paper is to show that a natural analogue of an n-sphere in an arbitrary Riemannian manifold M is an n-dimensional umbilical submanifold with non-zero parallel mean curvature vector by characterizing such a submanifold as follows: for every point x of M and for every curve τ in M starting at x, the development τ^{*} lies in an n sphere in $T_{x}(\widetilde{M})$. The situation can be further clarified by introducing a generalization of central sphere defined in [5], which is also a generalization of the notion of osculating circle for a space curve. Namely, for an n-dimensional submanifold M with non-zero mean curvature in an arbitrary Riemannian manifold \tilde{M}, we associate to each point x of M a certain n-sphere $S^{n}(x)$ in $T_{x}(\widetilde{M})$ which we call the central n-sphere at x. For every curve τ in M from x to y, the affine parallel displace-

Work supported by an NSF grant GP 28419.
ment along τ (with respect to the affine connection in \tilde{M}) maps $S^{n}(x)$ upon $S^{n}(y)$ if and only if M is an " n-sphere" in \widetilde{M}. This fact (in the case of codimension 1) is quite similar to the result on umbilical hypersurfaces in a space with normal conformal connection due to S. Sasaki [4]. It is perhaps possible to relate these two results in a direct way.

Our main results are stated as Theorems 1,2 and 3.
Finally, we remark that it is proved in [3] that if a Riemannian manifold \tilde{M} admits sufficiently many n-spheres for some $n, 2 \leqq n<\operatorname{dim} \tilde{M}$, then \tilde{M} is a space form.

1. Preliminaries. We shall summarize the notations and facts which we need in this paper.

Let M be an n-dimensional submanifold in an $(n+p)$-dimensional Riemannian manifold \widetilde{M}. The Riemannian connections of \widetilde{M} and M are denoted by $\tilde{\nabla}$ and ∇, respectively, whereas the normal connection (in the normal bundle of M in \widetilde{M}) is denoted by ∇^{\perp}. The second fundamental form α is defined by

$$
\tilde{\nabla}_{X} Y=\nabla_{X} Y+\alpha(X, Y)
$$

where X and Y are vector fields tangent to M. For any vector field ξ normal to M, the tensor field A_{ξ} of type $(1,1)$ on M is given by

$$
\tilde{\nabla}_{x} \xi=-A_{\xi}(X)+\nabla_{\frac{1}{x}} \xi,
$$

where X is a vector field tangent to M. We have

$$
g(\alpha(X, Y), \xi)=g\left(A_{\xi} X, Y\right)
$$

for X and Y tangent to M and ξ normal to M, where g is the Riemannian metric on \widetilde{M}. For the detail, see [2], Vol. II, Chap. 7.

The mean curvature vector field η of M is defined by the relation

$$
\operatorname{trace} A_{\xi} / n=g(\xi, \eta)
$$

for all ξ normal to M. We say that η is parallel (with respect to the normal connection) if $\nabla_{\frac{1}{X}} \eta=0$ for every X tangent to M.

We say that M is umbilical in \widetilde{M} if

$$
\alpha(X, Y)=g(X, Y) \eta
$$

for all X and Y tangent to M. Equivalently, M is umbilical in \widetilde{M} if

$$
A_{\xi}=g(\xi, \eta) I
$$

for all ξ normal to M, where I is the identity transformation.
It is known that if \tilde{M} is a space form (a Riemannian manifold of
constant sectional curvature), then an umbilical submanifold M of \tilde{M} has parallel mean curvature vector.

We now recall the notion of development of a curve. Let \tilde{M} be a Riemannian manifold, and let τ be a curve from x to y. In addition to the linear parallel displacement along τ, we consider the affine parallel displacement $\tilde{\tau}$ along τ which is an affine transformation of the affine tangent space $T_{x}(\tilde{M})$ at x onto the affine tangent space $T_{y}(\tilde{M})$ at y. By parametrizing τ by x_{t} so that $x_{0}=x$ and $x_{1}=y$, we denote by τ_{0}^{t} and $\tilde{\tau}_{0}^{t}$ the linear and affine parallel displacements along the curve τ (in the reversed direction) from x_{t} to x_{0}. When the point x_{t} is considered as the origin of the affine tangent space $T_{x_{t}}(M), \widetilde{\tau}_{0}^{t}\left(x_{t}\right), 0 \leqq t \leqq 1$, is a curve in the affine space $T_{x}(\widetilde{M})$, which is called the development τ^{*} of τ into $T_{x}(\widetilde{M})$. For the detail, see [2], Vol. I, p. 131. Proposition 4.1 there shows, for a smooth curve $\tau=x_{t}, 0 \leqq t \leqq 1$, how we can obtain the development τ^{*} : Set

$$
Y_{t}=\tau_{\tau}^{t} \bar{x}_{t}, \quad 0 \leqq t \leqq 1,
$$

where \vec{x}_{t} denotes the tangent vector of τ at x_{t}. Then the development τ^{*} of τ is a (unique) curve $C_{t}, 0 \leqq t \leqq 1$, in the affine tangent space $T_{x}(\widetilde{M})$ with $C_{0}=x$ such that the tangent vector $d C_{t} / d t$ is parallel to Y_{t} in $T_{x}(\widetilde{M})$.

This process can be extended to the case of a piecewise smooth curve. For simplicity, consider a curve composed of two smooth curves $\tau=x_{t}$, $0 \leqq t \leqq a$, and $\mu=x_{t}, a \leqq t \leqq b$. Let $\tau^{*}=C_{t}, 0 \leqq t \leqq a$, be the development τ in $T_{x}(\widetilde{M})$. Let $C_{t}, a \leqq t \leqq b$, be a (unique) curve starting at the end point of τ^{*} such that its tangent vector $d C_{t} / d t$ is parallel to $\tau_{0}^{a} \mu_{a}^{t}\left(\bar{x}_{t}\right)$ for each $t, a \leqq t \leqq b$. Then $C_{t}, 0 \leqq t \leqq b$, is the development of the composed curve $\mu \cdot \tau$. This fact depends on the following. If τ is a curve (smooth or piecewise smooth) from x to y and if μ is a curve from y to z, then the affine parallel displacement along $\mu \cdot \tau$ is the composite of those along τ and μ. It also follows that if μ^{*} is the development of μ in $T_{y}(\widetilde{M})$, then the development $(\mu \cdot \tau)^{*}$ in $T_{x}(M)$ is equal to the composite $\tilde{\tau}^{-1}\left(\mu^{*}\right) \cdot \tau^{*}$. We shall make use of these facts.
2. Main results. Let M be an n-dimensional submanifold in an $(n+p)$-dimensional Riemannian manifold \widetilde{M}. For each point x of M, let η_{x} be the mean curvature vector and $H_{x}=\left\|\eta_{x}\right\|$ the mean curvature. If $H_{x} \neq 0$, we consider the n-dimensional sphere $S^{n}(x)$ with center at η_{x} / H_{x}^{2} and of radius $1 / H_{x}$ that lies in the euclidean subspace of dimension $n+1$ of $T_{x}(\tilde{M})$ spanned by $T_{x}(M)$ and η_{x}. We shall call $S^{n}(x)$ the central n sphere at x for the submanifold M.

Remark. If the ambient space \tilde{M} is a euclidean space E^{n+p}, then the
affine tangent space $T_{x}(\widetilde{M})$ can be naturally identified with E^{n+p} itself. Thus the central n-sphere $S^{n}(x)$ is indeed an n-sphere in E^{n+p}. We consider two special cases:
(1) If M is a surface in E^{3} with non-zero mean curvature H_{x}, then the central sphere $S^{2}(x)$ is a sphere in E^{3} with radius $1 / H_{x}$ that is tangent to M at x.
(2) Let $M=x(s)$ be a curve in E^{3} parametrized by arc length s with non-zero curvature $k(s)$. Considering M as a 1 -dimensional submanifold, we find that the mean curvature vector is equal to $k e_{2}$, where e_{2} is the principal normal vector. Thus the central 1 -sphere at $x(s)$ is nothing but the osculating circle at this point.

We now assume that M has non-zero mean curvature at each point x and consider the following three properties:
(A) For every x in M and for every curve τ in M starting at x, the development τ^{*} of τ into $T_{x}(\widetilde{M})$ lies in the central n-spheres $S^{n}(x)$.
(B) For every curve τ in M from x to y, the affine parallel displacement $\tilde{\tau}$ maps $S^{n}(x)$ upon $S^{n}(y)$.
(C) M is umbilical and has parallel mean curvature vector.

We now state our main results.
Theorem 1. Let M be a connected n-dimensional submanifold in an $(n+p)$-dimensional Riemannian manifold \widetilde{M} with non-vanishing mean curvature. Then conditions (A), (B) and (C) are equivalent.

In the case of $\widetilde{M}=E^{n+p}$, the central n-spheres are n-spheres in E^{n+p}. On the other hand, if τ is a curve in M from x to y, the development τ^{*} of τ into $T_{x}(\widetilde{M})=E^{n+p}$ is nothing but τ itself. Thus if M satisfies condition (A), every point y of M lies in the central n-sphere $S^{n}(x)$, and hence M is part of the n-sphere $S^{n}(x)$ in E^{n+p}. The converse is obvious. We may also paraphrase condition (B) by the statement that all central n-spheres $S^{n}(x), x \in M$, coincide. As for condition (C), note that an umbilical submanifold of E^{n+p} (more generally, of any space form) has parallel mean curvature vector, provided $\operatorname{dim} M \geqq 2$. For $\operatorname{dim} M=1$, if $M=x(s)$ is a curve with non-vanishing curvature, then the assumption of parallel mean curvature implies that the curvature is constant and the torsion is 0 , that is, M is (part of) a circle.

Theorem 2. Let M and \widetilde{M} be as in Theorem 1. Under condition (C), the development τ^{*} of a geodesic τ in M starting at x is a great circle of the central n-sphere $S^{n}(x)$.

Finally, we consider a condition weaker than (A) which does not involve the mean curvature vector, namely,
$\left(\mathrm{A}_{0}\right)$ At some point x of M, there is an n-sphere $\Sigma^{n}(x)$ in $T_{x}(\widetilde{M})$ such that every curve τ in M starting at x is developed upon a curve on $\Sigma^{n}(x)$.

We have
Theorem 3. Let M and \tilde{M} be as in Theorem 1. If M satisfies condition $\left(\mathrm{A}_{0}\right)$, then M satisfies condition (C), hence (A) and (B) as well, and $\Sigma^{n}(x)$ is indeed the central n-sphere $S^{n}(x)$.
3. Proofs. We shall proceed to prove (1) equivalence of (A) and (B); (2) implication (C) $\rightarrow(A)$; (3) Theorem 2; and, finally, (4) implication $\left(A_{0}\right) \rightarrow$ (C).
(1) Assume (B) and let τ be a curve from x to y. Then $\tilde{\tau}^{-1}\left(S^{n}(y)\right) \subset$ $S^{n}(x)$. Thus the end point $\tilde{\tau}^{-1}(y)$ of the development τ^{*} of τ into $T_{x}(\tilde{M})$ lies in $S^{n}(x)$. Conversely, assume (A), and let τ be a curve from x to y. In order to show $\tilde{\tau}\left(S^{n}(x)\right) \subset S^{n}(y)$, it is sufficient to show that there exists a neighborhood U^{*} of x in $S^{n}(x)$ such that $\tilde{\tau}\left(U^{*}\right) \subset S^{n}(y)$. For this purpose we first consider a mapping f of a normal neighborhood V of x in M into $S^{n}(x)$: for any point $z \in V$, let $f(z)$ be the end point of the development μ^{*} of the geodesic μ in V from x to z. Since f is a differentiable mapping of V into $S^{n}(x)$ whose differential at x is the identity mapping, it follows that there is a neighborhood U of x in M such that $U^{*}=f(U)$ is a neighborhood of x in $S^{n}(x)$. In order to prove that $\tilde{\tau}\left(U^{*}\right) \subset$ $S^{n}(y)$, let $z^{*} \in U^{*}, z^{*}=f(z), z \in U$, and let μ be the geodesic in U from x to z. Then the development $\left(\mu \cdot \tau^{-1}\right)^{*}$ of the composed curve $\mu \cdot \tau^{-1}$ lies in $S^{n}(y)$. Since $\left(\mu \cdot \tau^{-1}\right)^{*}=\tilde{\tau}\left(\mu^{*}\right) \cdot\left(\tau^{-1}\right)^{*}$, its end point $\tilde{\tau}\left(z^{*}\right)$ lies in $S^{n}(y)$.
(2) We now assume (C) and prove (A). Let $\tau=x_{t}$ be a curve in M with $x_{0}=x$. Let $\xi_{1}, \xi_{2}, \cdots, \xi_{p}$ be an orthonormal basis in the normal space at x such that $\xi_{1}=\eta_{x} / H_{x}$ (unit mean curvature vector). We displace ξ_{1}, \cdots, ξ_{p} along τ with respect to the normal connection ∇^{\perp} to obtain $\left(\xi_{1}\right)_{t}, \cdots,\left(\xi_{p}\right)_{t}$, which form an orthonormal basis in the normal space at x_{t} for each t. Since the mean curvature vector η is parallel with respect to ∇^{\perp} by assumption, $\left(\xi_{1}\right)_{t}$ is the unit mean curvature vector at x_{t} (and, of course, H is a constant). Since M is umbilical, we have

$$
A_{\left(\xi_{1}\right)_{t}}=H I \text { and } A_{\left(\xi_{i}\right)_{t}}=0 \text { for } 2 \leqq i \leqq p
$$

along τ.
We observe that each $\left(\xi_{i}\right)_{t}, 2 \leqq i \leqq p$, is parallel along τ with respect to the linear connection $\widetilde{\nabla}$ in \widetilde{M}. Indeed, we have

$$
\tilde{\nabla}_{\vec{x}_{t}}\left(\xi_{i}\right)_{t}=-A_{\left(\xi_{i}\right)_{t}}\left(\vec{x}_{t}\right)+\nabla_{\vec{x}_{t}}^{\perp}\left(\xi_{i}\right)_{t}=0
$$

along t.

We set

$$
\tilde{X}_{t}=\tau_{0}^{t}\left(\bar{x}_{t}\right) \text { for each } t,
$$

and let $\tau^{*}=\widetilde{x}_{t}$ be the development of τ into $T_{x}(\widetilde{M})$ so that $d \widetilde{x}_{t} / d t=\widetilde{X}_{t}$. The relations

$$
g\left(\widetilde{X}_{t}, \xi_{i}\right)=g\left(\vec{x}_{t},\left(\xi_{i}\right)_{t}\right)=0, \quad 2 \leqq i \leqq p
$$

show that τ^{*} lies in the euclidean subspace of dimension $n+1$ in $T_{x}(\widetilde{M})$ spanned by $T_{x}(M)$ and ξ_{1}.

Define $\left(\tilde{\xi}_{1}\right)_{t} \in T_{x}(\tilde{M})$ by $\left(\tilde{\xi}_{1}\right)_{t}=\tau_{0}^{t}\left(\left(\xi_{1}\right)_{t}\right)$ for each t. Since

$$
g\left(\tilde{X}_{t},\left(\tilde{\xi}_{1}\right)_{t}\right)=g\left(\bar{x}_{t},\left(\xi_{1}\right)_{t}\right)=0,
$$

we see that $\left(\tilde{\xi}_{1}\right)_{t}$ is perpendicular to τ^{*} at \tilde{x}_{t}. Set

$$
u_{t}=\widetilde{x}_{t}+(1 / H)\left(\tilde{\xi}_{1}\right)_{t},
$$

which is a curve in $T_{x}(\tilde{M})$. We shall show that u_{t} is actually a single point, say, $u=x+(1 / H) \xi_{1}$ and so

$$
\left\|\widetilde{x}_{t}-u\right\|=1 / H
$$

which shows that τ^{*} lies on the hypersphere in $T_{x}(\widetilde{M})$ with center u and of radius $1 / H$. Thus τ^{*} lies on the central n-sphere $S^{n}(x)$.

To show that u_{t} is a single point we need
Lemma. $\quad d\left(\tilde{\xi}_{1}\right)_{t} / d t=-H \widetilde{X}_{t}$.
By definition of $\left(\xi_{1}\right)_{t}$ and $\left(\tilde{\xi}_{1}\right)_{t}$ we have

$$
\left(\widetilde{\xi}_{1}\right)_{t+h}=\tau_{0}^{t} \tau_{t}^{t+h}\left(\xi_{1}\right)_{t+h}
$$

and

$$
\left(\tilde{\xi}_{1}\right)_{t}=\tau_{0}^{t}\left(\xi_{1}\right)_{t}
$$

By linearity of τ_{0}^{t} we have

$$
\left[\left(\tilde{\xi}_{1}\right)_{t+h}-\left(\tilde{\xi}_{1}\right)_{t}\right] / h=\tau_{0}^{t}\left[\tau_{t}^{t+h}\left(\xi_{1}\right)_{t+h}-\left(\xi_{1}\right)_{t}\right] / h
$$

As $h \rightarrow 0$, we get $d\left(\tilde{\xi}_{1}\right) / d t$ from the left-hand side. The right-hand side gives

$$
\begin{aligned}
\tau_{0}^{t}\left(\widetilde{\nabla}_{\vec{x}_{t}}\left(\xi_{1}\right)_{t}\right) & =\tau_{0}^{t}\left(-A_{\left(\xi_{1}\right)} \vec{x}_{t}\right) \\
& =-\tau_{0}^{t}\left(H{\underset{x}{x}}_{t}\right)=-H \widetilde{X}_{t} .
\end{aligned}
$$

This proves the lemma.
Now we use the lemma to obtain

$$
\begin{aligned}
d u_{t} / d t & =d \widetilde{x} / d t+(1 / H) d\left(\tilde{\xi}_{1}\right)_{t} / d t \\
& =\widetilde{X}_{t}+(1 / H)\left(-H \widetilde{X}_{t}\right)=0
\end{aligned}
$$

which shows that u_{t} is a single point and completes the proof that (C) implies (A).
(3) We prove Theorem 2. Assume (C) and let $\tau=x_{t}$ be a geodesic in M such that $x_{0}=x$. As before, let $\widetilde{X}_{t}=\tau_{0}^{t}\left(\vec{x}_{t}\right)$ for each t. For the fixed value of t, \widetilde{X}_{t} is obtained as follows: let $Y_{s}, 0 \leqq s \leqq t$, be a unique parallel family of tangent vectors along τ such that $Y_{t}=\bar{x}_{t}$. Then $\tilde{X}_{t}=$ Y_{0}. Now choosing $\left(\xi_{1}\right)_{t}, \cdots,\left(\xi_{p}\right)_{t}$ along τ as before, we may write

$$
Y_{s}=Z_{s}+\sum_{i=1}^{p} \varphi^{i}(s)\left(\xi_{i}\right)_{s}, \quad 0 \leqq s \leqq t
$$

where Z_{s} is tangent to M at x_{s}. We find

$$
\begin{aligned}
& \widetilde{\nabla}_{\vec{x}_{s}} Y_{s}= \widetilde{\nabla}_{\vec{x}_{s}} Z_{s} \\
&+\sum_{i=1}^{p}\left(d \varphi^{i} / d s\right)\left(\xi_{i}\right)_{s} \\
&-\sum_{i=1}^{p} \varphi^{i} A_{\left(\xi_{i}\right)_{s}}\left(\vec{x}_{s}\right)+\sum_{i=1}^{p} \varphi^{i} \nabla_{\vec{x}_{s}}^{\frac{1}{x_{s}}}\left(\xi_{i}\right)_{s} \\
&=\nabla_{\vec{x}_{s}} Z_{s}+H g\left(\vec{x}_{s}, Z_{s}\right)\left(\xi_{1}\right)_{s} \\
&+\sum_{i=1}^{p}\left(d \varphi^{i} / d s\right)\left(\xi_{i}\right)_{s}-H \varphi^{1}(s) \bar{x}_{s}
\end{aligned}
$$

by virtue of $\alpha\left(\vec{x}_{s}, Z_{s}\right)=g\left(\vec{x}_{s}, Z_{s}\right) \eta_{s}, A_{\left(\xi_{1}\right)_{s}}=H I, A_{\left(\xi_{i}\right)_{s}}=0$ for $2 \leqq i \leqq p$, and $\nabla_{x_{s}}^{\perp}\left(\xi_{i}\right)_{s}=0$ for $1 \leqq i \leqq p$. Thus the equation $\nabla_{\vec{x}_{s}} Y_{s}=0$ is equivalent to a system of equations

$$
\begin{aligned}
& \nabla_{\bar{x}_{s}} Z_{s}=H \varphi^{1}(s) \bar{x}_{s} \\
& d \varphi^{1} / d s=-H g\left(\bar{x}_{s}, Z_{s}\right) \\
& d \varphi^{i} / d s=0,2 \leqq i \leqq p
\end{aligned}
$$

and the terminal condition $Y_{t}=\vec{x}_{t}$ is given by

$$
Z_{t}=\bar{x}_{t} \text { and } \varphi^{i}(t)=0 \text { for } 1 \leqq i \leqq p
$$

Since τ is a geodesic, that is, $\nabla_{\vec{x}_{s}} \vec{x}_{s}=0$, we see that the unique solution is given by

$$
\begin{aligned}
& Z_{s}=\cos H(t-s) \bar{x}_{s} \\
& \varphi^{1}(s)=\sin H(t-s) \\
& \varphi^{i}(s)=0 \text { for } 2 \leqq i \leqq p
\end{aligned}
$$

Thus we obtain

$$
\begin{aligned}
\widetilde{X}_{t} & =Y_{0}=Z_{0}+\varphi^{1}(0)\left(\xi_{1}\right)_{0} \\
& =\cos (H t) \vec{x}_{0}+\sin (H t)\left(\xi_{1}\right)_{0}
\end{aligned}
$$

where $\left(\xi_{1}\right)_{0}$ is the unit mean curvature vector ξ_{1} at x. And \vec{x}_{0} is the initial (unit) tangent vector of the geodesic τ. Thus the development τ^{*} of τ
is given by

$$
\tilde{x}_{t}=\left(x+\xi_{1} / H\right)+\left(\sin (H t) \vec{x}_{0}-\cos (H t) \xi_{1}\right) / H,
$$

which is a great circle on the central n-sphere $S^{n}(x)$. We have thus proved Theorem 2.
(4) We now prove Theorem 3. Assume $\left(\mathrm{A}_{0}\right)$ and let u and r be the center and the radius of the given sphere $\Sigma^{n}(x)$. Let y be an arbitrary point of M. For any curve $\tau=x_{t}$ in M such that $x_{0}=x$ and $x_{1}=y$, its development $\tau^{*}=\widetilde{x}_{t}$ lies on $\Sigma^{n}(x)$. For each t, we define

$$
\left(\tilde{\xi}_{1}\right)_{t}=\left(u-\widetilde{x}_{t}\right) / r \in T_{x}(\widetilde{M}) .
$$

Let $\xi_{1}=\left(\tilde{\xi}_{1}\right)_{0}, \xi_{2}, \cdots, \xi_{p}$ be an orthonormal basis in the normal space to M at x. We define $\left(\xi_{i}\right)_{t} \in T_{x_{t}}(\widetilde{M})$ along τ as follows:

$$
\tau_{0}^{t}\left(\left(\xi_{1}\right)_{t}\right)=\left(\tilde{\xi}_{1}\right)_{t}, \tau_{0}^{t}\left(\left(\xi_{i}\right)_{t}\right)=\xi_{i} \text { for } 2 \leqq i \leqq p .
$$

We show that for each value, say, s, of $t,\left(\xi_{i}\right)_{s}$ is perpendicular to M at x_{s}, where $1 \leqq i \leqq p$. Indeed, if we alter the curve τ after x_{s} so that it goes out of x_{s} in the direction of a tangent vector $Y \in T_{x_{s}}(M)$ and call the new curve τ^{\prime}, then its development $\tau^{* *}$ still lies on $\Sigma^{n}(x)$. Hence $\tau_{0}^{s}(Y)$ is perpendicular to $\left(\tilde{\xi}_{1}\right)_{s}$, as well as to ξ_{2}, \cdots, ξ_{p}. Thus Y is perpendicular to $\left(\xi_{1}\right)_{s},\left(\xi_{2}\right)_{s}, \cdots,\left(\xi_{p}\right)_{s}$. Since Y is an arbitrary tangent vector to M at x_{s}, this proves our assertion.

Now, by definition of $\left(\tilde{\xi}_{1}\right)_{t}$, we have

$$
d\left(\tilde{\xi}_{1}\right)_{t} / d t=-\widetilde{X}_{t} / r=-(1 / r) \tau_{0}^{t}\left(\vec{x}_{t}\right)
$$

where $\widetilde{X}_{t}=d \widetilde{x}_{t} / d t$. From the argument for the preceding lemma we have

$$
d\left(\widetilde{\xi}_{1}\right)_{t} / d t=\tau_{0}^{t}\left(\widetilde{\nabla}_{\vec{x}_{t}}\left(\xi_{1}\right)_{t}\right) .
$$

These two equations imply

$$
\tilde{\nabla}_{\vec{x}_{t}}\left(\xi_{1}\right)_{t}=-(1 / r) \vec{x}_{t},
$$

that is,

$$
\nabla^{\frac{1}{x_{t}}}\left(\xi_{1}\right)_{t}=0 \text { and } A_{\left(\xi_{1}\right)_{t}}\left(\bar{x}_{t}\right)=(1 / r) \vec{x}_{t}
$$

The second equation is valid at each point x_{t} of τ if \vec{x}_{t} is replaced by any tangent vector $Y \in T_{x_{t}}(M)$, because the curve τ may be altered to a new curve τ^{\prime} which goes out of x_{t} in the direction Y just as in the previous argument, whereas $A_{\left(\xi_{1}\right)_{t}}$ depends only on $\left(\xi_{1}\right) t$ and is not affected by the alteration of τ. We have thus

$$
\begin{gather*}
\nabla_{\bar{x}_{t}}^{\perp}\left(\xi_{1}\right)_{t}=0 \tag{1}\\
A_{\left(\xi_{1}\right) t}=(1 / r) I . \tag{2}
\end{gather*}
$$

For $2 \leqq i \leqq p,\left(\xi_{i}\right)_{t}$ is parallel along τ, that is,

$$
\tilde{\nabla}_{\vec{x}_{t}}\left(\xi_{i}\right)_{t}=0
$$

which implies

$$
\nabla_{\bar{x}_{t}}^{\frac{1}{x_{i}}}\left(\xi_{i}\right)_{t}=0 \text { and } A_{\left(\xi_{i}\right)_{t}}\left(\bar{x}_{t}\right)=0
$$

Applying the previous argument, we see that the second equation is valid if \vec{x}_{t} is replaced by any $Y \in T_{x_{t}}(M)$. Hence

$$
\begin{align*}
\nabla_{x_{t}}^{\frac{1}{t}}\left(\xi_{i}\right)_{t} & =0, & & 2 \leqq i \leqq p \tag{3}\\
A_{\left(\xi_{i}\right)_{t}} & =0, & & 2 \leqq i \leqq p
\end{align*}
$$

From (1) and (3) it follows that $\left(\xi_{i}\right)_{t}, 1 \leqq i \leqq p$, form an orthonormal basis in the normal space at x_{t}. From (2) and (4) we see that the mean curvature vector η is given by

$$
\begin{equation*}
(\eta)_{x_{t}}=(1 / r)\left(\xi_{1}\right)_{t} \tag{5}
\end{equation*}
$$

and that for each point x_{t}

$$
\begin{equation*}
A_{\xi}=g(\xi, \eta) I \text { for every } \xi \text { normal to } M \text { at } x_{t} \tag{6}
\end{equation*}
$$

The relation (5) for $t=0$ shows that $1 / r=H_{x}=\left\|\eta_{x}\right\|$ and $\xi_{1}=\eta_{x} / H_{x}$. Thus the given sphere $\Sigma^{n}(x)$ is indeed the central n-sphere $S^{n}(x)$.

The relation (6) for $t=1$, namely, at the end point y of τ shows that y is umbilical. Since y is an arbitrary point of M, we conclude that every point of M is umbilical. It now remains to show that η is parallel with respect to ∇^{\perp}. Let $y \in M$ and $Y \in T_{y}(M)$. Let μ be a curve starting at y in the direction of Y. By applying our argument to the curve $\mu \cdot \tau$, we see that (5) is valid at every point, namely, the mean curvature vector η is $1 / r$ times $\left(\xi_{1}\right)_{t}$ which is parallel along the curve with respect to ∇^{\perp} by virtue of (1). In particular, $\nabla_{\bar{Y}}^{\frac{1}{Y}} \eta=0$ at y. This completes the proof of Theorem 3.

Bibliography

[1] E. Cartan, Leçons sur la géométrie des espaces de Riemann, Gauthier-Villars, Paris, 1946.
[2] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Volumes I and II, Wiley-Interscience, New York, 1963 and 1969.
[3] D. S. Leung and K. Nomizu, The axiom of spheres in Riemannian geometry, J. Differential Geometry 5(1971), 487-489.
[4] S. SASAKI, Geometry of the conformal connexion, Sci. Rep. Tôhoku Imp. Univ. Ser. I, 29(1940), 219-267; also, Geometry of conformal connexions (in Japanese), Kawade Shobo, Tokyo, 1947.
[5] G. Thomsen, Über konforme Geometrie I. Grundlagen der konformem Flächentheorie, Abh, Math. Seminar Hamburg 3(1923), 31-56.

[^0]
[^0]: Department of Mathematics
 Brown University

