GENERALIZED CENTRAL SPHERES AND THE NOTION OF SPHERES IN RIEMANNIAN GEOMETRY

Dedicated to Professor Shigeo Sasaki on his 60th birthday

Katsumi Nomizu

(Received November 20, 1971)

In a euclidean space E^{n+1} an n-plane or an n-sphere of radius r may be characterized as an umbilical hypersurface with mean curvature equal to 0 or 1/r. A similar characterization is possible for an n-plane or an n-sphere in a euclidean space E^{n+p} where p>1, as shown by E. Cartan [1], p. 231. Indeed, it is possible to determine all umbilical submanifolds of dimension n in an (n+p)-dimensional space form \tilde{M} , which can be regarded as "n-planes" or "n-spheres" according to whether the mean curvature is 0 or not.

In an arbitrary Riemannian manifold \widetilde{M} of dimension n+p, a natural analogue of an n-plane is an n-dimensional totally geodesic submanifold (equivalently, umbilical submanifold with zero mean curvature). In terms of a geometric notion of the development of curves, Cartan [1], p. 116, characterizes such n-planes in \widetilde{M} as follows. Let M be an n-dimensional submanifold of \widetilde{M} . For every point x of M and for every curve τ in M starting at x, the development τ^* of τ into the euclidean tangent space $T_x(\widetilde{M})$ lies in the euclidean subspace $T_x(M)$ if and only if M is totally geodesic in \widetilde{M} .

The purpose of the present paper is to show that a natural analogue of an n-sphere in an arbitrary Riemannian manifold M is an n-dimensional submanifold as follows: for every point n-dimensional n-sphere in n-dimensional sphere defined in [5], which is also a generalization of the notion of osculating circle for a space curve. Namely, for an n-dimensional submanifold n-dimensional n-dimensional submanifold n-dimensional submanifold

Work supported by an NSF grant GP 28419.

130 K. NOMIZU

ment along τ (with respect to the affine connection in \widetilde{M}) maps $S^n(x)$ upon $S^n(y)$ if and only if M is an "n-sphere" in \widetilde{M} . This fact (in the case of codimension 1) is quite similar to the result on umbilical hypersurfaces in a space with normal conformal connection due to S. Sasaki [4]. It is perhaps possible to relate these two results in a direct way.

Our main results are stated as Theorems 1, 2 and 3.

Finally, we remark that it is proved in [3] that if a Riemannian manifold \tilde{M} admits sufficiently many n-spheres for some $n, 2 \leq n < \dim \tilde{M}$, then \tilde{M} is a space form.

1. Preliminaries. We shall summarize the notations and facts which we need in this paper.

Let M be an n-dimensional submanifold in an (n+p)-dimensional Riemannian manifold \widetilde{M} . The Riemannian connections of \widetilde{M} and M are denoted by $\widetilde{\nabla}$ and ∇ , respectively, whereas the normal connection (in the normal bundle of M in \widetilde{M}) is denoted by ∇^{\perp} . The second fundamental form α is defined by

$$\widetilde{\nabla}_{x} Y = \nabla_{x} Y + \alpha(X, Y)$$
,

where X and Y are vector fields tangent to M. For any vector field ξ normal to M, the tensor field A_{ξ} of type (1,1) on M is given by

$$\widetilde{
abla}_{\scriptscriptstyle X} \xi = - \ A_{\scriptscriptstyle \xi}(X) +
abla_{\scriptscriptstyle X}^{\scriptscriptstyle \perp} \xi$$
 ,

where X is a vector field tangent to M. We have

$$g(\alpha(X, Y), \xi) = g(A_{\xi}X, Y)$$

for X and Y tangent to M and ξ normal to M, where g is the Riemannian metric on \tilde{M} . For the detail, see [2], Vol. II, Chap. 7.

The mean curvature vector field η of M is defined by the relation

trace
$$A_{\varepsilon}/n = g(\xi, \eta)$$

for all ξ normal to M. We say that η is parallel (with respect to the normal connection) if $\nabla_X^{\perp} \eta = 0$ for every X tangent to M.

We say that M is umbilical in \tilde{M} if

$$\alpha(X, Y) = g(X, Y)\eta$$

for all X and Y tangent to M. Equivalently, M is umbilical in M if

$$A_{\xi} = g(\xi, \eta)I$$

for all ξ normal to M, where I is the identity transformation.

It is known that if M is a space form (a Riemannian manifold of

constant sectional curvature), then an umbilical submanifold M of \tilde{M} has parallel mean curvature vector.

We now recall the notion of development of a curve. Let \widetilde{M} be a Riemannian manifold, and let τ be a curve from x to y. In addition to the linear parallel displacement along τ , we consider the affine parallel displacement $\widetilde{\tau}$ along τ which is an affine transformation of the affine tangent space $T_x(\widetilde{M})$ at x onto the affine tangent space $T_y(\widetilde{M})$ at y. By parametrizing τ by x_t so that $x_0 = x$ and $x_1 = y$, we denote by τ_0^t and $\widetilde{\tau}_0^t$ the linear and affine parallel displacements along the curve τ (in the reversed direction) from x_t to x_0 . When the point x_t is considered as the origin of the affine tangent space $T_x(M)$, $\widetilde{\tau}_0^t(x_t)$, $0 \le t \le 1$, is a curve in the affine space $T_x(\widetilde{M})$, which is called the development τ^* of τ into $T_x(\widetilde{M})$. For the detail, see [2], Vol. I, p. 131. Proposition 4.1 there shows, for a smooth curve $\tau = x_t$, $0 \le t \le 1$, how we can obtain the development τ^* : Set

$$Y_t = \tau_c^t \overline{x}_t, \ 0 \leq t \leq 1$$
,

where \bar{x}_t denotes the tangent vector of τ at x_t . Then the development τ^* of τ is a (unique) curve C_t , $0 \le t \le 1$, in the affine tangent space $T_x(\widetilde{M})$ with $C_0 = x$ such that the tangent vector dC_t/dt is parallel to Y_t in $T_x(\widetilde{M})$.

This process can be extended to the case of a piecewise smooth curve. For simplicity, consider a curve composed of two smooth curves $\tau=x_t$, $0 \le t \le a$, and $\mu=x_t$, $a \le t \le b$. Let $\tau^*=C_t$, $0 \le t \le a$, be the development τ in $T_x(\widetilde{M})$. Let C_t , $a \le t \le b$, be a (unique) curve starting at the end point of τ^* such that its tangent vector dC_t/dt is parallel to $\tau_0^a \mu_a^t(\overline{x}_t)$ for each t, $a \le t \le b$. Then C_t , $0 \le t \le b$, is the development of the composed curve $\mu \cdot \tau$. This fact depends on the following. If τ is a curve (smooth or piecewise smooth) from x to y and if μ is a curve from y to z, then the affine parallel displacement along $\mu \cdot \tau$ is the composite of those along τ and μ . It also follows that if μ^* is the development of μ in $T_y(\widetilde{M})$, then the development $(\mu \cdot \tau)^*$ in $T_x(M)$ is equal to the composite $\tilde{\tau}^{-1}(\mu^*) \cdot \tau^*$. We shall make use of these facts.

2. Main results. Let M be an n-dimensional submanifold in an (n+p)-dimensional Riemannian manifold \tilde{M} . For each point x of M, let η_x be the mean curvature vector and $H_x = ||\eta_x||$ the mean curvature. If $H_x \neq 0$, we consider the n-dimensional sphere $S^n(x)$ with center at η_x/H_x^2 and of radius $1/H_x$ that lies in the euclidean subspace of dimension n+1 of $T_x(\tilde{M})$ spanned by $T_x(M)$ and η_x . We shall call $S^n(x)$ the central n-sphere at x for the submanifold M.

REMARK. If the ambient space \widetilde{M} is a euclidean space E^{n+p} , then the

affine tangent space $T_x(\tilde{M})$ can be naturally identified with E^{n+p} itself. Thus the central n-sphere $S^n(x)$ is indeed an n-sphere in E^{n+p} . We consider two special cases:

- (1) If M is a surface in E^3 with non-zero mean curvature H_x , then the central sphere $S^2(x)$ is a sphere in E^3 with radius $1/H_x$ that is tangent to M at x.
- (2) Let M = x(s) be a curve in E^3 parametrized by arc length s with non-zero curvature k(s). Considering M as a 1-dimensional submanifold, we find that the mean curvature vector is equal to ke_2 , where e_2 is the principal normal vector. Thus the central 1-sphere at x(s) is nothing but the osculating circle at this point.

We now assume that M has non-zero mean curvature at each point x and consider the following three properties:

- (A) For every x in M and for every curve τ in M starting at x, the development τ^* of τ into $T_x(\widetilde{M})$ lies in the central n-spheres $S^n(x)$.
- (B) For every curve τ in M from x to y, the affine parallel displacement $\tilde{\tau}$ maps $S^n(x)$ upon $S^n(y)$.
 - (C) M is umbilical and has parallel mean curvature vector. We now state our main results.

Theorem 1. Let M be a connected n-dimensional submanifold in an (n+p)-dimensional Riemannian manifold \tilde{M} with non-vanishing mean curvature. Then conditions (A), (B) and (C) are equivalent.

In the case of $\widetilde{M}=E^{n+p}$, the central n-spheres are n-spheres in E^{n+p} . On the other hand, if τ is a curve in M from x to y, the development τ^* of τ into $T_x(\widetilde{M})=E^{n+p}$ is nothing but τ itself. Thus if M satisfies condition (A), every point y of M lies in the central n-sphere $S^n(x)$, and hence M is part of the n-sphere $S^n(x)$ in E^{n+p} . The converse is obvious. We may also paraphrase condition (B) by the statement that all central n-spheres $S^n(x)$, $x \in M$, coincide. As for condition (C), note that an umbilical submanifold of E^{n+p} (more generally, of any space form) has parallel mean curvature vector, provided dim $M \geq 2$. For dim M=1, if M=x(s) is a curve with non-vanishing curvature, then the assumption of parallel mean curvature implies that the curvature is constant and the torsion is 0, that is, M is (part of) a circle.

THEOREM 2. Let M and \tilde{M} be as in Theorem 1. Under condition (C), the development τ^* of a geodesic τ in M starting at x is a great circle of the central n-sphere $S^n(x)$.

Finally, we consider a condition weaker than (A) which does not involve the mean curvature vector, namely, (A₀) At some point x of M, there is an n-sphere $\Sigma^n(x)$ in $T_x(\widetilde{M})$ such that every curve τ in M starting at x is developed upon a curve on $\Sigma^n(x)$.

We have

THEOREM 3. Let M and \widetilde{M} be as in Theorem 1. If M satisfies condition (A_0) , then M satisfies condition (C), hence (A) and (B) as well, and $\Sigma^n(x)$ is indeed the central n-sphere $S^n(x)$.

- 3. **Proofs.** We shall proceed to prove (1) equivalence of (A) and (B); (2) implication (C) \rightarrow (A); (3) Theorem 2; and, finally, (4) implication (A₀) \rightarrow (C).
- (1) Assume (B) and let τ be a curve from x to y. Then $\tilde{\tau}^{-1}(S^n(y)) \subset S^n(x)$. Thus the end point $\tilde{\tau}^{-1}(y)$ of the development τ^* of τ into $T_x(\tilde{M})$ lies in $S^n(x)$. Conversely, assume (A), and let τ be a curve from x to y. In order to show $\tilde{\tau}(S^n(x)) \subset S^n(y)$, it is sufficient to show that there exists a neighborhood U^* of x in $S^n(x)$ such that $\tilde{\tau}(U^*) \subset S^n(y)$. For this purpose we first consider a mapping f of a normal neighborhood V of x in M into $S^n(x)$: for any point $z \in V$, let f(z) be the end point of the development μ^* of the geodesic μ in V from x to z. Since f is a differentiable mapping of V into $S^n(x)$ whose differential at x is the identity mapping, it follows that there is a neighborhood U of x in M such that $U^* = f(U)$ is a neighborhood of x in $S^n(x)$. In order to prove that $\tilde{\tau}(U^*) \subset S^n(y)$, let $z^* \in U^*$, $z^* = f(z)$, $z \in U$, and let μ be the geodesic in U from x to x. Then the development x is end point x is in x. Since x is in x in x is the identity x in x in
- (2) We now assume (C) and prove (A). Let $\tau = x_t$ be a curve in M with $x_0 = x$. Let $\xi_1, \xi_2, \dots, \xi_p$ be an orthonormal basis in the normal space at x such that $\xi_1 = \eta_x/H_x$ (unit mean curvature vector). We displace ξ_1, \dots, ξ_p along τ with respect to the normal connection ∇^{\perp} to obtain $(\xi_1)_t, \dots, (\xi_p)_t$, which form an orthonormal basis in the normal space at x_t for each t. Since the mean curvature vector η is parallel with respect to ∇^{\perp} by assumption, $(\xi_1)_t$ is the unit mean curvature vector at x_t (and, of course, H is a constant). Since M is umbilical, we have

$$A_{\langle oldsymbol{arepsilon}_{1}
angle_{t}} = HI$$
 and $A_{\langle oldsymbol{arepsilon}_{i}
angle_{t}} = 0$ for $2 \leqq i \leqq p$

along τ .

We observe that each $(\xi_i)_t$, $2 \leq i \leq p$, is parallel along τ with respect to the linear connection $\widetilde{\nabla}$ in \widetilde{M} . Indeed, we have

$$\widetilde{
abla}_{ec{x}_t}^{-}(\xi_i)_t = -A_{(\xi_i)_t}(ec{x}_t) +
abla^{\!\!oldsymbol{ol{oldsymbol{ol{oldsymbol{ol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol{x}}}}}}}}}}}(ec{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}}$$

along t.

We set

$$\widetilde{X}_t = au_0^t(\overline{x}_t)$$
 for each t ,

and let $au^* = \widetilde{x}_t$ be the development of au into $T_x(\widetilde{M})$ so that $d\widetilde{x}_t/dt = \widetilde{X}_t$. The relations

$$g(\widetilde{X}_t, \xi_i) = g(\overline{x}_t, (\xi_i)_t) = 0$$
, $2 \leq i \leq p$,

show that τ^* lies in the euclidean subspace of dimension n+1 in $T_x(\widetilde{M})$ spanned by $T_x(M)$ and ξ_1 .

Define $(\tilde{\xi}_1)_t \in T_x(\tilde{M})$ by $(\tilde{\xi}_1)_t = \tau_0^t((\xi_1)_t)$ for each t. Since

$$g(\tilde{X}_{t}, (\tilde{\xi}_{1})_{t}) = g(\bar{x}_{t}, (\xi_{1})_{t}) = 0$$

we see that $(\tilde{\xi}_1)_t$ is perpendicular to τ^* at \tilde{x}_t . Set

$$u_t = \widetilde{x}_t + (1/H)(\widetilde{\xi}_1)_t,$$

which is a curve in $T_x(\widetilde{M})$. We shall show that u_t is actually a single point, say, $u = x + (1/H)\xi_1$ and so

$$||\widetilde{x}_t - u|| = 1/H$$
,

which shows that τ^* lies on the hypersphere in $T_x(\widetilde{M})$ with center u and of radius 1/H. Thus τ^* lies on the central n-sphere $S^n(x)$.

To show that u_t is a single point we need

LEMMA. $d(\widetilde{\xi}_1)_t/dt = -H\widetilde{X}_t$.

By definition of $(\xi_1)_t$ and $(\xi_1)_t$ we have

$$(\widetilde{\xi}_1)_{t+h} = \tau_0^t \tau_t^{t+h} (\xi_1)_{t+h}$$

and

$$(\tilde{\xi}_1)_t = \tau_0^t(\xi_1)_t$$
 .

By linearity of τ_0^t we have

$$[(\widetilde{\xi}_1)_{t+h} - (\widetilde{\xi}_1)_t]/h = \tau_0^t [\tau_t^{t+h}(\xi_1)_{t+h} - (\xi_1)_t]/h$$
.

As $h \to 0$, we get $d(\tilde{\xi}_1)/dt$ from the left-hand side. The right-hand side gives

$$egin{aligned} au_0^t (\widetilde{
abla}_{x_t}^-(\xi_1)_t) &= au_0^t (-A_{(\xi_1)_t} \overline{x}_t) \ &= - au_0^t (H \overline{x}_t) = -H \widetilde{X}_t \; . \end{aligned}$$

This proves the lemma.

Now we use the lemma to obtain

$$egin{aligned} du_t/dt &= d\widetilde{x}/dt + (1/H)d(\widetilde{\xi}_1)_t/dt \ &= \widetilde{X}_t + (1/H)(-H\widetilde{X}_t) = \mathbf{0} \ , \end{aligned}$$

which shows that u_t is a single point and completes the proof that (C) implies (A).

(3) We prove Theorem 2. Assume (C) and let $\tau = x_t$ be a geodesic in M such that $x_0 = x$. As before, let $\widetilde{X}_t = \tau_0^t(\overline{x}_t)$ for each t. For the fixed value of t, \widetilde{X}_t is obtained as follows: let Y_s , $0 \le s \le t$, be a unique parallel family of tangent vectors along τ such that $Y_t = \overline{x}_t$. Then $\widetilde{X}_t = Y_0$. Now choosing $(\xi_1)_t, \dots, (\xi_p)_t$ along τ as before, we may write

$$Y_s = Z_s + \sum_{i=1}^p \varphi^i(s)(\xi_i)_s, \qquad 0 \leq s \leq t',$$

where Z_s is tangent to M at x_s . We find

$$egin{aligned} \widetilde{
abla}_{ec{x}_s}Y_s &= \widetilde{
abla}_{ec{x}_s}^{ec{}}Z_s + \sum_{i=1}^p (darphi^i/ds)(\xi_i)_s \ &- \sum_{i=1}^p arphi^i A_{(\xi_i)_s}(ec{x}_s) + \sum_{i=1}^p arphi^i
abla_{ec{x}_s}^{ec{}}(\xi_i)_s \ &=
abla_{ec{x}_s}^{ec{}}Z_s + Hg(ec{x}_s,\, Z_s)(\xi_1)_s \ &+ \sum_{i=1}^p (darphi^i/ds)(\xi_i)_s - Harphi^1(s) \overline{x}_s \;, \end{aligned}$$

by virtue of $\alpha(\bar{x}_s, Z_s) = g(\bar{x}_s, Z_s)\eta_s$, $A_{(\xi_1)_s} = HI$, $A_{(\xi_i)_s} = 0$ for $2 \le i \le p$, and $\nabla^{\perp}_{\bar{x}_s}(\xi_i)_s = 0$ for $1 \le i \le p$. Thus the equation $\nabla^{\perp}_{\bar{x}_s}Y_s = 0$ is equivalent to a system of equations

$$egin{align}
abla_{ec{x}_s} Z_s &= H arphi^{_1}(s) \overline{x}_s \ darphi^{_1} / ds &= - H g(\overline{x}_s, \, Z_s) \ darphi^i / ds &= 0, \, 2 \leq i \leq p \; , \end{array}$$

and the terminal condition $Y_t = \overline{x}_t$ is given by

$$Z_t = \bar{x}_t$$
 and $\varphi^i(t) = 0$ for $1 \leq i \leq p$.

Since τ is a geodesic, that is, $\nabla_{\vec{x}_s} \vec{x}_s = 0$, we see that the unique solution is given by

$$egin{aligned} Z_s &= \cos H(t-s) \overline{x}_s \ & arphi^{\scriptscriptstyle 1}(s) &= \sin H(t-s) \ & arphi^i(s) &= 0 \ ext{for} \ 2 \leqq i \leqq p \ . \end{aligned}$$

Thus we obtain

$$egin{aligned} \widetilde{X}_t &= Y_0 = Z_0 + arphi^1(0)(\xi_1)_0 \ &= \cos{(Ht)} \overline{x}_0 + \sin{(Ht)}(\xi_1)_0 \ , \end{aligned}$$

where $(\xi_1)_0$ is the unit mean curvature vector ξ_1 at x. And \bar{x}_0 is the initial (unit) tangent vector of the geodesic τ . Thus the development τ^* of τ

is given by

$$\widetilde{x}_t = (x + \xi_{\scriptscriptstyle 1}/H) + (\sin{(Ht)} \overline{x}_{\scriptscriptstyle 0} - \cos{(Ht)} \xi_{\scriptscriptstyle 1})/H$$
 ,

which is a great circle on the central *n*-sphere $S^n(x)$. We have thus proved Theorem 2.

(4) We now prove Theorem 3. Assume (A_0) and let u and r be the center and the radius of the given sphere $\Sigma^n(x)$. Let y be an arbitrary point of M. For any curve $\tau = x_t$ in M such that $x_0 = x$ and $x_1 = y$, its development $\tau^* = \tilde{x}_t$ lies on $\Sigma^n(x)$. For each t, we define

$$(\tilde{\xi}_1)_t = (u - \tilde{x}_t)/r \in T_x(\tilde{M})$$
.

Let $\xi_1 = (\tilde{\xi}_1)_0, \, \xi_2, \, \cdots, \, \xi_p$ be an orthonormal basis in the normal space to M at x. We define $(\xi_i)_t \in T_{x,t}(\tilde{M})$ along τ as follows:

$$\tau_0^t((\xi_1)_t) = (\tilde{\xi}_1)_t, \, \tau_0^t((\xi_i)_t) = \xi_i \text{ for } 2 \leq i \leq p$$
.

We show that for each value, say, s, of t, $(\xi_i)_s$ is perpendicular to M at x_s , where $1 \leq i \leq p$. Indeed, if we alter the curve τ after x_s so that it goes out of x_s in the direction of a tangent vector $Y \in T_{x_s}(M)$ and call the new curve τ' , then its development τ'^* still lies on $\Sigma^n(x)$. Hence $\tau_0^s(Y)$ is perpendicular to $(\xi_1)_s$, as well as to ξ_2, \dots, ξ_p . Thus Y is perpendicular to $(\xi_1)_s, (\xi_2)_s, \dots, (\xi_p)_s$. Since Y is an arbitrary tangent vector to M at x_s , this proves our assertion.

Now, by definition of $(\tilde{\xi}_1)_t$, we have

$$d(ilde{\xi}_{\scriptscriptstyle 1})_{\scriptscriptstyle t}/dt = - ilde{X}_{\scriptscriptstyle t}/r = -(1/r) au_{\scriptscriptstyle 0}^{\scriptscriptstyle t}(\overline{x}_{\scriptscriptstyle t})$$
 ,

where $\widetilde{X}_t = d\widetilde{x}_t/dt$. From the argument for the preceding lemma we have

$$d(\widetilde{\xi}_{\scriptscriptstyle 1})_t/dt = au_{\scriptscriptstyle 0}^t(\widetilde{
abla}_{x_t}^{\scriptscriptstyle -}(\xi_{\scriptscriptstyle 1})_t)$$
 .

These two equations imply

$$\widetilde{
abla}_{\overrightarrow{x}_t}(\hat{\xi}_{\scriptscriptstyle 1})_t = -(1/r) \overrightarrow{x}_t$$
 ,

that is,

$$abla_{\overline{x}_t}^\perp(\xi_{\scriptscriptstyle 1})_t=0 \,\, ext{ and }\,\, A_{(\xi_{\scriptscriptstyle 1})_t}(\overline{x}_t)=(1/r)\overline{x}_t$$
 .

The second equation is valid at each point x_t of τ if \bar{x}_t is replaced by any tangent vector $Y \in T_{x_t}(M)$, because the curve τ may be altered to a new curve τ' which goes out of x_t in the direction Y just as in the previous argument, whereas $A_{(\xi_1)_t}$ depends only on $(\xi_1)t$ and is not affected by the alteration of τ . We have thus

$$\nabla^{\perp}_{x_t}(\xi_1)_t = 0$$

$$A_{(arepsilon_1)t} = (1/r)I$$
 .

For $2 \leq i \leq p$, $(\xi_i)_t$ is parallel along τ , that is,

$$\widetilde{
abla}_{x_t}^{-}(\hat{\xi}_i)_t=0$$
 ,

which implies

$$abla_{ec x_i}^\perp(\xi_i)_t = 0 \ ext{and} \ A_{(\xi_i)_i}(ec x_t) = 0$$
 .

Applying the previous argument, we see that the second equation is valid if \bar{x}_t is replaced by any $Y \in T_{x_t}(M)$. Hence

$$abla^{\perp}_{x_t}(\hat{\xi}_i)_t = 0, \qquad 2 \leqq i \leqq p$$

$$egin{align} egin{align}
abla_{x_t}^\perp(\xi_i)_t &= 0, & 2 \leq i \leq p \ A_{(\ell_i)_t} &= 0, & 2 \leq i \leq p \ .
onumber \end{aligned}$$

From (1) and (3) it follows that $(\xi_i)_i$, $1 \le i \le p$, form an orthonormal basis in the normal space at x_i . From (2) and (4) we see that the mean curvature vector η is given by

$$(5) (\eta)_{x_t} = (1/r)(\xi_1)_t$$

and that for each point x_t

(6)
$$A_{\xi} = g(\xi, \eta)I$$
 for every ξ normal to M at x_t .

The relation (5) for t=0 shows that $1/r=H_x=||\eta_x||$ and $\xi_1=\eta_x/H_x$. Thus the given sphere $\Sigma^n(x)$ is indeed the central n-sphere $S^n(x)$.

The relation (6) for t=1, namely, at the end point y of τ shows that y is umbilical. Since y is an arbitrary point of M, we conclude that every point of M is umbilical. It now remains to show that η is parallel with respect to ∇^{\perp} . Let $y \in M$ and $Y \in T_y(M)$. Let μ be a curve starting at y in the direction of Y. By applying our argument to the curve $\mu \cdot \tau$, we see that (5) is valid at every point, namely, the mean curvature vector η is 1/rtimes $(\xi_1)_t$ which is parallel along the curve with respect to ∇^{\perp} by virtue of (1). In particular, $\nabla_{x}^{\perp} \eta = 0$ at y. This completes the proof of Theorem 3.

BIBLIOGRAPHY

- [1] E. CARTAN, Leçons sur la géométrie des espaces de Riemann, Gauthier-Villars, Paris,
- [2] S. KOBAYASHI AND K. NOMIZU, Foundations of differential geometry, Volumes I and II, Wiley-Interscience, New York, 1963 and 1969.
- [3] D. S. LEUNG AND K. NOMIZU, The axiom of spheres in Riemannian geometry, J. Differential Geometry 5(1971), 487-489.
- [4] S. SASAKI, Geometry of the conformal connexion, Sci. Rep. Tôhoku Imp. Univ. Ser. I, 29(1940), 219-267; also, Geometry of conformal connexions (in Japanese), Kawade Shobo, Tokyo, 1947.
- [5] G. THOMSEN, Über konforme Geometrie I. Grundlagen der konformem Flächentheorie, Abh, Math. Seminar Hamburg 3(1923), 31-56.

DEPARTMENT OF MATHEMATICS BROWN UNIVERSITY