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Abstract. Given two positive continuous functions a and β, necessary
and sufficient conditions are given for the system u"(t) = f(t) + A(t)u(t)
to have an α-bounded solution u for each /3-bounded forcing function /.
Applications are given to a nonlinear perturbation problem: u"(t) =
A(t)u(t) + F(t, u(t)). Indications are given on how to extend these ideas
to nth order equations.

I. Introduction. Let Y be a finite-dimensional normed linear space
with norm | |, let R+ be the set of all nonnegative real numbers, and let
J*f[ Y] be the algebra of linear functions from Y to Y, with induced norm
|| ||. Let A be a continuous function from R+ to Stf\Y\. In [2] and [3,
Chapter V], W. A. Coppel has obtained necessary and sufficient conditions
for it to be true that if / is a bounded continuous function from R+ to
Y then there is a bounded solution u on R+ of

(1) u'(t) = f(t) + A(t)u(t) .

CoppeFs ideas have been amplified and extended by several authors, usually
in the direction of determining conditions which ensure that if / is in
one of two given function spaces then there is a solution u of (1) in the
other. For some recent results in this connection and an excellent dis-
cussion of this problem, we refer the reader to T. G. Hallam [4].

In the present work we shall conduct the same kind of study for
the second-order problem

(2) u"(t) = f{t) + A(t)u(t) .

If one rewrites (2) as a first-order equation over Y2 and then invokes
known results, one's hypotheses require extending the class of forcing
functions in a way unnatural to our purposes, and one's conclusions give
boundedness properties not only for u but also for u\ (Compare the
discussion of J. L. Massera and J. J. Schaffer [6, Chapter 12, §120].)
Thus we see the rationale for studying (2) as is.

II. Relatively bounded solutions. If 7 is a positive continuous func-
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tion on R+ then ^ ^ will denote the linear space to which / belongs
only in case / is a continuous function from R+ to Y and there is a
number 6 such that \f(t)\ ^ by(t) whenever t is in R+. If f is in &r<tf
let | | / | | r be the least number b such that |/(ί)| ^ bj(t) whenever t is in
R+. Now || ||r is a norm ^ ^ and g& fg' is a Banach space with respect
to || | | r.

Let each of a and β be a continuous positive function on jβ+, and
let each of Φly Φ2, Ψlf and Ψ2 be a twice continuously differentiate function
from R+ to s*f[Y\. We will assume throughout that conditions (Cl) and
(C2) are satisfied,
(Cl): If t is in (0, oo) and i is in {1, 2} then

and

(C2):

ΦΊ(O) = 0 , Ψ[(0) = 0 ,

φ.(0) = o , y,(0) - o,

Note that in the scalar case, or, more generally, if the set {A(t): t is
in R+) is a commutative subset of J^[Y], that Φx = Ψx and Φ2 = —Ψ2.
The following theorem is our main result.

THEOREM 1. There are four members Pu P2, P3, and PA (in general
not projections) of j&[ Y] such that if Γt and Γ2 are continuous functions
from R+ x R+ to Jxf\Y\ given by

+ Φ2(t)P3Ψ2(s) +

and

Γ2(t, s) = Φx{t){I - PdΨ^s) -

- Φ2(t)P3Ψ2(s) + Φ2(t)(I - PtW^s) ,

then (i) and (ii) are equivalent.
(i) If f is in ^ ^ then there is a solution u of (2) in ^a^\
(ii) The integral

) + (I-Pt)Ψ1(s)\\β(8)ds

is finite and there is a positive number K such that
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£ 11 Λ(«, s) 11 β(s)ds + j J I Γt(ί, β) 11 £(β)& ^ tfα(t)

whenever t is in R+.

In the proof of Theorem 1 we shall need the following lemma.

LEMMA. If t is in R+ then

ΦtfWzit) + Φ&W^t) = 0
and

Φ[(t)Ψ2(t) + Φ'&Wtf) = I •

PROOF. For the proof of this lemma we shall use systems. Let A
from R+ to j*r[Y2\ be given by

Let Φ be the fundamental solution solving

Φ\t) = Ά(t)Φ(t); Φ(0) =

Now Φ is given by

Let Ψ be given by Ψ(t) = Φ(t)~\ Now

"I 0

and

ψ\t) = -Ψ(t)A(t)

whenever t is in R+. Thus Ψ is given by

2 1

-Ψ[{t) W,(t)\

Now the conclusions of the lemma follow immediately from the relation

PROOF OF THEOREM 1. First assume (ii). Let / be in ^ ^ and let
u be given by

u(t) = ( Λ(ί, s)f(s)ds -
JO
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Clearly u is in &<<&. Also, (ii) tells us that

P2Ψ1(s)\\β(s)ds ^ Ka(0) .

This, with the first part of (ii), tells us that u is twice differentiable and
satisfies (2). Thus (ii) implies (i)

Now assume (i). Let M be that linear subset of Y2 to which (x, y)
belongs if and only if the solution v of

( 3 ) v"{t) = A(t)v(t); v(0) = x, v'(0) = y

is in ^ a ^ . Let P be a projection from Γ 2 to M. If / is in &£& let
uf be that member of && such that uf solves (2) and P(uf(0), u'f{ϋ)) =
(0, 0). We shall first show that there is a number L such that

\\Uf\\aύL\\f\\β

and

| ^ ( 0 ) | £L\\f\\β

whenever / is in &£&.

If u is a twice continuously differentiable function from R+ to Y, let
u from R+ to Y be given by u(t) = u"(t) - A(t)u(t). Let & be that
subset of ^cf^ to which u belongs if and only if u is twice continuously
differentiable and u is in ggfg'. If u is in Sf let \\u\\Ώ = | |w||β +
|wf(0)| + 11 #||/i. Now ^ is a linear space and || |U is a norm on ^ .
Suppose that {un}~=ι is a || H^-Cauchy ^"-valued sequence. Now we can
find (tt0, 2, /) in ^ α ^ x 7 x ^ ^ such shat || un - u0 \\a -• 0, | <(0) - z | -* 0,
and | | β w — /II^-^O as w—>co# If ί is in R+ then

= lim^oo un(t)

['« - s)u':(s)ds)

tz + lim^o. Γ(ί - s)(un(s)
Jo

tz+ \\t- s)(f(s) + A(s)uo(s))ds .
Jo

Thus u0 is twice differentiable, w£(0) = z, and β0 — /• So u0 is in ^ and
I|M* — ^o||z>-^O as n—> oo. Thus ^ is a Banach space with respect to

u>
Let T be the linear function from ^ to £%^ given by Γu = u.

Clearly T is continuous with operator norm not exceeding 1. Suppose n
is in £& and Tu = 0. Now w"(£) = A(ί)^(ί) whenever t is in i?+, 6̂ is in
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(since & is a subset of ^β<ar), and P(w(0), ̂ '(0)) = (0, 0). Thus
u = 0 and Γ is one-to-one. That T is onto follows from our hypothesis.
Thus according to [7, Theorem 4.1, p. 63], T~ι is a continuous function
from &^ to £&, and there is a number L such that

whenever/ is in &J&. Since \\u\\a ^ ||w||z> and |w'(0)| ^ ||W||D whenever
w is in 3ί, this completes the first part of the proof.

Since P is a linear function from Y2 into Y2 there are four members
Pl9 P2, P3, and P, of s*r\Y\ such that

Thus (P^ + P2y, Psx + P4y) is in M whenever (x, y) is in Y\ But if (x, y)
is in Y2 then the solution v of (3) is given by v(t) = Φ^fyx + Φ2(t)y. Thus
it is clear that if (x, y) is in Y2 then the function described by

t — ΦJfiiPp + P2y) + Φ2(t)(P,x + PAy)

is in &<<&.
Suppose that / is in ^ ^ , / has compact support, and wf from R+

to Y is given by

Wf{t) - ΓΛ(ί, s)f(s)ds -
Joo

(This second integral obviously exists since / has compact support.) Find
c in R+ such that f(t) = 0 if £ ̂  c. Now, if ί >̂ c, then

Vt(8]/(β)dβj
so the above observations tell us that wf is in ^ ^ . Routine compu-
tations and the identities of our lemma tell us that w"(t) = f(t) + A(t)wf(t)
whenever t is in R+. Now

and

(4) w}(0) =

Since P is a projection and P 2 = P, we have the identities



370 D. L. LOVELADY

P, = P» + P2P3 ,

X 2 ~= -*1-* 2 l M M 9

P3 = P3P, + P4P3 ,

P 4 = P3P2 + Pt .

These identities make it clear that P(wf(0), w'f(0)) = (0, 0). Thus we see
that if / is in &£& and has compact support, then wf = uf.

Since sf\Y\ is a finite-dimensional vector space, all norms on sf\Y\
are equivalent, and (ii) is true with respect to one norm on s$f[ Y] if and
only if (ii) is true with respect to every norm on A[Y]. Thus, to com-
plete the proof, we need only show that (ii) is true with respect to a
conveniently chosen norm.

Let m = dim(F), and let {zl9 ,zm} be a basis for Y. Let
{fi, ##,ίm} be linear scalar-valued functions on Y such that if x is in Y
then x = ξA&Zi + + ξm(x)zm. Now assume that | | is given by | x \ =
maxflf^a;)!, •••, |fm(a?)|} With this choice of | |, and the associated || ||,
we see that the formula given for wf and the formula (4) given for w'f(0),
together with an argument similar to that of [2, pp. 133-134], show that
(ii) holds with K = mL. This completes the proof of Theorem 1.

All of our results for continuous forcing functions satisfying bound-
edness conditions have straightforward analogues for integrability con-
ditions. For first-order equations the £fι case has been considered by
Coppel [3, Theorem 2, p. 131] and the S*?v case (p > 1) has been considered
by R. Conti [1]. The aforementioned work of Hallam [4] extends both of
these. If / is locally integrable, but not necessarily continuous, then
solutions of (2) will be thought of in the sense of Caratheodory, i.e., u
continuously differentiate, v/ absolutely continuous, and (2) satisfied almost
everywhere. If p is in [1, oo) we take ^fβ

p to be the space of all locally
integrable functions / from R+ to Y such that

Γl/(«)/iS(ί)|'cϊί
Jo

is finite.

THEOREM 2. These are equivalent:
(i) If f is in i ^ 1 then there is a solution u of (2) in ^ a ^ .
(ii) There is a number K such that \ \ - P3Ψ2(s) + (I - P4Wi(s) 11 β(s) ^ K

whenever s is in R+, such that ||/\(i, s) \\β(s) ̂  Ka{t) whenever 0 ^ s ^ t,
and such that \\Γ2(t, s)\\β(s) ^ Ka(t) whenever 0 ^ t ^ s.

THEOREM 3. Let p and q be in (1, oo) with p + q = pq. These are
equivalent.
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(i) If f is in £fβ

p then there is a solution u of (2) in
(ii) The integral

|| () (
Jo

is finite and there is a number K such that

*, s)\\qβ{sYds + j j |Λ(t , s)\\«β{syds ^ K*a(t)*

whenever t is in R+.

III. A perturbation problem. In this section we shall consider the
equation

(5) u"(t) = A(t)u(t) + F(t, u{t)) ,

in which F is a continuous function from R+ x Y to Y. Our work is
related to, but independent of, work of Hallam [5]. Also, our treatment
of (5) can be thought of as a second-order analogue of the first-order
work of Coppel [2], [3, Chapter III].

+
TEOREM 4. Let ω be a continuous function from R+ x R+ to R+

suppose ω(r, s) ^ ω(r, t) whenever (r, s, t) is in R+ x R+ x R+ and s ^ t,
suppose lim^oβ ω(t, ca(t))/β(t) = 0 whenever c is in R+, and suppose
\F(t,x)\ ίg ω(t, \x\) whenever (t,x) is in R+ x Y. Suppose also that (ii)
of Theorem 1 holds. Then if 7 is a positive number there is a member
c of R+ and a solution u of (5) on [c, ©o) such that \u(t)\ ^ Ίa(t) whenever
t is in [c, oo).

PROOF. Let 7 be a positive number. Now lim^o,, ω(t, Ίa(t))jβ(t) = 0,
so there is c in R+ such that ω(t, ya(t)) ^ (y/K)β(t) whenever t is in
[c, 00). Let J^ be the set to which / belongs only in case / is a con-
tinuous function from [c, 00) to Fand \f(t) \ ̂  Ύa(t) whenever t is in [c, 00).
If/ is in ^ 7 let T[f] be that continuous function g from [c, 00) to 7
given by

g(t) = j Λ(ί, 8)F(8,f(8))d8 -

Let / be in ^ 7 and gr = Γ[/]. Let ί be in [c, 00). Now
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£(7/K)\t\\Γ1(t,s)\\β(s)ds
JC

+ WK)\~\\Γt(t,8)\\β(8)d8

^ 7α(ί) .

Thus T maps J "̂" into
Suppose that {/J~=o is an ^valued sequence, and lim^*, /»(*) = /0(ί)

whenever £ is in [c, oo), the convergence being uniform on compact intervals.
If n is a nonnegative integer let gn = T[fn]. Let ε be a positive number.
Let -η = ε/(2K)9 and find d in [c, oo) such that 2ω(t, 7α(t)) ̂  /̂3(ί) whenever
ί is in [d, oo). Let n be a positive integer such that if n ^ n then
I-F(*,/»(*)) - F(t,fo(t)) I ̂  /̂3(ί) whenever t is in [c, d]. Let ^ ^ %. Now,
if t is in [c, d],

\gjfi - go(t)\ ^ jj|Λ(ί,s)||o|iΓ(s,/%(s)) - F(89f0(8))\ds

\j

d

t\\Γ2(t9s)\\o\F(s,fn(s)) - F(8,/

^ ηKa{t) + ηKa{t) =

Similarly,

Iflr (ί) - flro(*)l ^

whenever t^d. It is now clear that l im,^ gn(t) = βro(̂ ) whenever ί is
in [c, oo), and the convergence is uniform on compact intervals.

If / is in ^ 7 g = Γ[/], and t is in [c, oo), then

(6)

- \~^-Γ2(t,s)F(s,f(s))ds,
U dt

since, according to Lemma 2, /^(t, t) + Γ2(t, t) = 0 for all t. But (6) and
our hypotheses tell us that the family {gr: g is in T[^]} is uniformly
bounded on each compact interval of [c, oo). Thus the family T\J?r\ is
uniformly equicontinuous on each compact interval of [c, oo).
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We have now shown that the mapping T from &* to J^ satisfies
all the hypotheses of the variant of the Schauder—Tychonoff Theorem
given on [3, p. 9]. Thus there is a member u of J^~ such that u = T[u].
This u fulfills of the claims of Theorem 4, so the proof is complete.

IV Higher order systems. In this section we summarize briefly how
one would go about extending our work to a problem of the form

(7) £-U(t) = f(t) + A(t)u(t) ,

where n is a positive integer. Let t h e family {Φl9 •••, Φn) be determined

according to

Iiί j =

where we take a function to be its own 0th derivative. Let the family
{Ψu " , Ψn} be determined according to

(0 if j Φ k + 1 .

Let M be the linear subset of Yn determined just as M was in the
second-order case for Y2. Let P be the projection from Yn to M, and
find a family {P;y}?=i in j ^ [ Y] so that Pi3 is in the ith row and j t h column
of the natural matrix representation of P. Let the family {Q<i}JU be given

by Q,i = - P 4 i if i * i and Qu = I- Pa*
Now let A and A be given by

Λ(«, s) = Σ Σ Φk(t)PkjΨn+1-As)

and

Λ(ί,β) = ΣΣΦ»(ί)Q w 9 .+ ι_,(β).
fc=lj=l

Now the following theorem follows almost exactly as did Theorem 1.

THEOREM 5. These are equivalent:
(i) If f is in &f& then there is a solution u of (7) in
(ii) If k is an integer and 1 ^ k ^ n — 1
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ί~ —Γ2(t, s) I β(s)ds
Jo ot t=o\

is finite, and there is a number K such that

\(t,s)\\β(s)ds+ Γ||Γa(ί,8)

whenever t is in R+.

There is also a natural analogue to Theorem 4 in the nth order case.
We leave the construction of this analogue to the reader.
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