ON THE BOUNDEDNESS OF PSEUDO-DIFFERENTIAL OPERATORS OF TYPE ρ, δ WITH $0 \leqq \rho=\delta<1$

Dedicated to Professor Masanori Fukamiya on his 60th birthday

Kinji Watanabe

(Received May 15, 1973)

1. This article presents the proof of the following result;

Theorem. Let $0 \leqq \rho=\delta<1$ and let $P=p\left(X, D_{x}, X^{\prime}, D_{x^{\prime}}, X^{\prime \prime}\right)$ be a pseudo-differential operator whose symbol belongs to $S_{\rho, \dot{\delta}}^{0,0}$. Then P can be extended to a bounded map in L^{2}.

When $0 \leqq \delta<\rho \leqq 1$ similar results are obtained by Hörmander [4] [5] and Kumano-go [6] and when $\rho=\delta=0$, by Calderón and Vaillancourt [1]. In [2] they proved also the boundedness of $p\left(X, D_{x}, X^{\prime}\right) \in \boldsymbol{S}_{\rho, \delta}^{0}$ in L^{2} provided that $0 \leqq \rho=\delta<1$ and that its symbol $p\left(x, \xi, x^{\prime}\right)$ has compact support in ξ. On the other hand, Hörmander proved in [5] that this need not be true if $0<\rho<\delta<1$, and Chin-Hung Ching, in [3], proved the result also fails if $\rho=\delta=1$.

In the proof of our Theorem we shall use the result in [2] and the simplification theorem and the expansion formulas proved in [6].
2. Let \mathscr{S} be the space of C^{∞}-functions defind in R^{n} whose derivatives decrease faster than any power of $|x|$ as $|x| \rightarrow \infty$. For $u \in \mathscr{S}$ we define the Fourier transform $\widehat{u}(\xi)$ by

$$
\widehat{u}(\xi)=\int e^{i x, \xi\rangle} u(x) d x \quad\langle x, \xi\rangle=x_{1} \xi_{1}+\cdots+x_{n} \xi_{n}
$$

and by $H_{s},-\infty<s<\infty$, we denote the completion of \mathscr{S} in the norm

$$
\|u\|_{s}^{2}=\int\langle\xi\rangle^{2 s}|\hat{u}(\xi)|^{2} \boldsymbol{d} \xi,\langle\xi\rangle=\left(1+|\xi|^{2}\right)^{1 / 2}, \boldsymbol{d} \xi=(2 \pi)^{-n} d \xi
$$

We shall use notation

$$
\begin{aligned}
& \partial_{x_{j}}=\partial / \partial x_{j}, D_{x_{j}}=-i \partial_{x_{j}} ; \partial_{\hat{\xi}_{j}}=\partial / \partial \xi_{j}, D_{\xi_{j}}=-i \partial_{\xi_{j}}, \quad j=1,2, \cdots, n . \\
& \partial_{x}^{\alpha}=\partial_{x_{1}}^{\alpha_{1}} \cdots \partial_{x_{n}}^{\alpha_{n}}, \partial_{x, x^{\prime}, x^{\prime},}^{\alpha, \alpha_{\xi}^{\alpha}, \xi_{\xi}^{\prime}}=\partial_{x}^{\alpha, \beta_{x}^{\prime}} \partial_{x^{\prime}}^{\alpha^{\prime}} \partial_{x^{\prime}, o_{\xi}^{\alpha \prime}}^{\alpha_{\xi}^{\beta}} \partial_{\xi^{\prime}}^{\beta} \\
& |\alpha|=\alpha_{1}+\cdots+\alpha_{n}
\end{aligned}
$$

where $x, x^{\prime}, x^{\prime \prime}, \xi, \xi^{\prime}$ are points in R^{n} and $\alpha, \alpha^{\prime}, \alpha^{\prime \prime}, \beta, \beta^{\prime}$ denote n-dimen-
sional multi-indices of non-negative integers.
Definition i). We say that a C^{∞}-function $p\left(x, \xi, x^{\prime}\right)$, defined in the whole (x, ξ, x^{\prime})-space, belongs to $S_{\rho, \delta}^{m}, 0 \leqq \rho \leqq 1,0 \leqq \delta<1$, if and only if for any integer $j \geqq 0$

$$
|p|_{(\rho, \delta), j}^{(m)} \equiv \operatorname{Max}_{\left|\alpha+\alpha^{\prime}+\beta\right| \leq j} \operatorname{Sup}_{\left(x, \xi, x^{\prime}\right)}\left\{\left|\partial_{x, x^{\prime}}^{\alpha, \alpha^{\prime}} \partial_{\xi}^{\xi} p\left(x, \xi, x^{\prime}\right)\right|\langle\xi\rangle^{-m-\delta\left|\alpha+\alpha^{\prime}\right|+\rho|\beta|}\right\}<\infty
$$

and define the corresponding operator $p\left(X, D_{x}, X^{\prime}\right)$ (we denote $p\left(X, D_{x}, X^{\prime}\right) \in$ $\boldsymbol{S}_{\rho, \bar{\delta}}^{m}$) by

$$
p\left(X, D_{x}, X^{\prime}\right) u(x)=\iint e^{i\left\langle x-x^{\prime}, \xi\right\rangle} p\left(x, \xi, x^{\prime}\right) u\left(x^{\prime}\right) d x^{\prime} \boldsymbol{d} \xi, \quad u \in \mathscr{S}
$$

ii). We say that a C^{∞}-function $p\left(x, \xi, x^{\prime}, \xi^{\prime}, x^{\prime \prime}\right)$, defined in the whole $\left(x, \xi, x^{\prime}, \xi^{\prime}, x^{\prime \prime}\right)$-space, belongs to $S_{\rho, \delta}^{n, m^{\prime}}, 0 \leqq \rho \leqq 1,0 \leqq \delta<1$, if and only if for any integer $j \geqq 0$

$$
\begin{aligned}
& |p|_{\left\{\rho, \delta^{\prime}\right), j}^{\left(m, m^{\prime \prime}\right)} \equiv \operatorname{Max}_{\left|\alpha+\alpha^{\prime}+\alpha^{\prime \prime}+\beta+\beta^{\prime}\right| \leq j} \operatorname{Sup}_{\left(x, \xi, x^{\prime}, \xi^{\prime}, x^{\prime \prime}\right)}\left\{\left|\partial_{x, x, x^{\prime}, x^{\prime}}^{\alpha, \alpha^{\prime}, \alpha^{\prime}} \partial_{\xi, \xi^{\prime}}^{\beta, \xi^{\prime}} p\left(x, \xi, x^{\prime}, \xi^{\prime}, x^{\prime \prime}\right)\right|\right. \\
& \left.\cdot\langle\xi\rangle^{-m-\delta|\alpha|+\rho|\beta|}\left(\langle\xi\rangle+\left\langle\xi^{\prime}\right\rangle\right)^{-\delta\left|\alpha^{\prime}\right|}\left\langle\xi^{\prime}\right\rangle^{-m^{\prime}-\delta\left|\alpha^{\prime \prime}\right|+\rho\left|\beta^{\prime}\right|}\right\}<\infty
\end{aligned}
$$

and define the corresponding operator $P=p\left(X, D_{x}, X^{\prime}, D_{x^{\prime}}, X^{\prime \prime}\right)$ (we denote $P \in \boldsymbol{S}_{\rho, \dot{\delta}}^{m, m^{\prime}}$) by

$$
\begin{aligned}
P u(x) & =\iiint e^{i\left\langle x-x^{\prime}, \xi>+i<x^{\prime}-x^{\prime \prime}, \xi^{\prime}\right\rangle} p\left(x, \xi, x^{\prime}, \xi^{\prime}, x^{\prime \prime}\right) u\left(x^{\prime \prime}\right) d x^{\prime \prime} \boldsymbol{d} \xi^{\prime} d x^{\prime} \boldsymbol{d} \xi \\
& \in \mathscr{S}
\end{aligned}
$$

We shall consider $S_{\rho, \delta}^{m}$ and $S_{\rho, \dot{c}}^{m, m^{\prime}}$ as the linear topological space with countable norms $|p|_{(\rho, \hat{\delta}), j}^{(m)}$ and $|p|_{(\rho, \delta), j}^{\left(m, m^{\prime}\right)}, j=0,1, \cdots$, respectively.
iii). For $p\left(x, \xi, x^{\prime}, \xi^{\prime}, x^{\prime \prime}\right) \in S_{\rho, m^{\prime}}^{m, m^{\prime}}$ we may define a new symbol $p_{L}\left(x, \xi, x^{\prime}\right)$ (we call it the left simplified symbol of $p\left(x, \xi, x^{\prime}, \xi^{\prime}, x^{\prime \prime}\right)$) by

$$
p_{L}\left(x, \xi, x^{\prime}\right)=\iint e^{-i\langle\omega, \zeta\rangle}\langle\omega\rangle^{-n_{0}}\left\langle D_{\zeta}\right\rangle^{n_{0}} p\left(x, \xi+\zeta, x+\omega, \xi, x^{\prime}\right) d \omega d \zeta
$$

where n_{0} is an even integer $\geqq n+1$. By means of Theorem 1,1 in [6], which is still true even if $\rho=0,0 \leqq \delta<1$, we can see that $p_{L}\left(X, D_{x}, X^{\prime}\right)=$ $p\left(X, D_{x}, X^{\prime}, D_{x^{\prime}}, X^{\prime \prime}\right)$ and $p_{L}\left(x, \xi, x^{\prime}\right) \in S_{\rho, \dot{\delta}}^{m+m^{\prime}+n \dot{\delta}}$.

Remark. By Theorem 1,2 in [6] each operator $p\left(X, D_{x}\right) \in \boldsymbol{S}_{\rho, \delta}^{m}$ is continuous map from \mathscr{S} into itself and can be extended to a bounded map from $H_{s+m+n(\delta+1)+1}$ into H_{s} for any real s.

In particular

$$
\begin{equation*}
\left\|p\left(X, D_{x}\right) u\right\|_{0} \leqq C|p|_{(\rho, \delta), n+1}^{(m)}\|u\|_{m+n+1} \quad \text { for } \quad u \in \mathscr{S} \tag{2,1}
\end{equation*}
$$

where C is a constant dependent on m and n but not on p. This remark
means that each operator $p\left(X, D_{x}, X^{\prime}, D_{x^{\prime}}, X^{\prime \prime}\right) \in S_{\rho, \rho_{0}^{\prime \prime}}^{m, m^{\prime}}$ is continuous map from \mathscr{S} into itself and can be extended to a bounded map from $H_{s+m+m^{\prime}+n(3 \delta+1)+1}$ into H_{s} for any real s.

Then we have the following simplification theorem which is improved slightly on the Theorem 1,1 in [6].

Lemma 1. Let $0 \leqq \rho \leqq \delta<1$ and let $p\left(x, \xi, x^{\prime}, \xi^{\prime}, x^{\prime \prime}\right) \in S_{\rho}^{n, m^{\prime}}$. Then its left simplified symbol $p_{L}\left(x, \xi, x^{\prime}\right)$ belongs to $S_{\rho, \delta}^{m^{\prime \prime}}, m^{\prime \prime}=m+m^{\prime}+(\delta-\rho) n$ and satisfies
where $j^{\prime}=\max \left(3 n_{0}, 2 n_{0}+2+\left[(1-\delta)^{-1}\left(|m|+\left|m^{\prime}\right|+\delta j+\rho n_{0}+n+1\right)\right]\right)$ and C is a constant dependent on $n, m, m^{\prime}, \rho, \delta$ and j but not on p.

Proof. For each indices $\alpha, \alpha^{\prime \prime}, \beta$ set

$$
J_{\alpha, \alpha^{\prime \prime}, \beta}\left(x, x^{\prime}, \omega, \xi, \zeta\right)=\langle\omega\rangle^{-n_{0}}\left\langle D_{\zeta}\right\rangle^{n_{0}} \partial_{x, x^{\prime}}^{\alpha^{\prime}, \alpha^{\prime \prime}} \partial_{\xi}^{\beta} p\left(x, \xi+\zeta, x+\omega, \xi, x^{\prime}\right) .
$$

Then by integrating by parts we have

$$
\begin{aligned}
& \partial_{x, x^{\prime}}^{\alpha, \alpha^{\prime}} \partial_{\xi}^{\beta} p_{L}\left(x, \xi, x^{\prime}\right) \\
& \quad=\sum_{j=1}^{3} \int_{A_{j}} \int e^{-i\langle\omega, \zeta\rangle}\left(1+\langle\xi\rangle^{2 \rho}|\omega|^{2}\right)^{-n_{0} / 2}\left(1+\langle\xi\rangle^{2 \rho}\left(-\Delta_{\xi}\right)\right)^{n_{0} / 2} J_{\alpha, \alpha^{\prime \prime}, \beta} d \omega d \zeta \\
& \quad \equiv \sum_{j=1}^{3} I_{j}
\end{aligned}
$$

where $A_{1}=\left\{\zeta ;|\zeta| \leqq\langle\xi\rangle^{\delta} / 2\right\}, A_{2}=\left\{\zeta ;\langle\xi\rangle^{\delta} / 2 \leqq|\zeta| \leqq\langle\xi\rangle / 2\right\}, A_{3}=\{\zeta ;\langle\xi\rangle / 2 \leqq$ $|\zeta|\}$ and $\Delta_{\zeta}=\sum_{j=1}^{n} \partial^{2} / \partial \zeta_{j}^{2}$. Since for some constant $C>1$

$$
\begin{array}{lll}
C^{-1}\langle\xi\rangle \leqq\langle\xi+\zeta\rangle \leqq C\langle\xi\rangle & \text { when } & |\zeta| \leqq\langle\xi\rangle / 2 \\
\langle\xi+\zeta\rangle \leqq C\langle\zeta\rangle & \text { when } & |\zeta| \leqq\langle\xi\rangle / 2
\end{array}
$$

we have

$$
\begin{align*}
& \left|\partial_{\omega}^{\alpha^{\prime}} \partial_{\zeta}^{s^{\prime}} J_{\alpha, \alpha^{\prime \prime}, \beta^{\prime}}\left(x, x^{\prime}, \omega, \xi, \zeta\right)\right| \tag{2,2}\\
& \leqq \text { const }|p|_{\left\langle\rho, m^{\prime},\right| \alpha+\alpha^{\prime}+\alpha^{\prime \prime}+\beta+\beta^{\prime} \mid+n_{0}}^{m, \prime} \\
& \quad \cdot\left\{\begin{array}{lll}
\langle\xi\rangle^{m+m^{\prime}+\delta\left|\alpha+\alpha^{\prime}+\alpha^{\prime \prime}\right|-\rho\left|\beta+\beta^{\prime}\right|} & \text { when } & |\zeta| \leqq\langle\xi\rangle / 2 \\
\langle\zeta\rangle^{m_{+}+m^{\prime}++\delta\left|\alpha+\alpha^{\prime}+\alpha^{\prime \prime}\right|}\langle\omega\rangle^{-n_{0}} & \text { when } & |\zeta| \geqq\langle\xi\rangle / 2
\end{array}\right.
\end{align*}
$$

where $m_{+}=\max (m, 0)$ and $m_{+}^{\prime}=\max \left(m^{\prime}, 0\right)$.
We shall estimate for each I_{j}. Since

$$
I_{1}=\int_{A_{1}} \int e^{-i\langle\omega, \zeta\rangle}\left(1+\langle\xi\rangle^{2 \rho}|\omega|^{2}\right)^{-n_{0} / 2}\left(1+\langle\xi\rangle^{2 \rho}\left(-\Delta_{\zeta}\right)\right)^{n_{0} / 2} J_{\alpha, \alpha^{\prime \prime}, \beta} d \omega d \zeta
$$

from $(2,2)$ and $n_{0} \geqq n+1$ we have

$$
\begin{equation*}
\left|I_{1}\right| \leqq \text { const }|p|_{\left(\rho, m_{0}\right),\left|\alpha+\alpha^{\prime \prime}+\beta\right|+2 n_{0}}^{(m, \xi\rangle^{m_{0}+(\delta-\rho) n}} \tag{2,3}
\end{equation*}
$$

where $m_{0}=m+m^{\prime}+\delta\left|\alpha+\alpha^{\prime \prime}\right|-\rho|\beta|$.
By integrating by parts we write

$$
\begin{aligned}
I_{2}= & \int_{A_{2}} \int e^{-i\langle\omega, \zeta\rangle\langle\zeta\rangle^{-n_{0}}\left\langle D_{\omega}\right\rangle^{n_{0}}\left\{\left(1+\langle\xi\rangle^{2 \rho}|\omega|^{2}\right)^{-n_{0} / 2}\right.} \\
& \left.\cdot\left(1+\langle\xi\rangle^{2 \rho}\left(-\Delta_{\zeta}\right)\right)^{n_{0} / 2} J_{\alpha, \alpha^{\prime \prime}, \beta}\right\} d \omega d \zeta
\end{aligned}
$$

so that from $(2,4)$ and $\rho \leqq \delta$
$(2,4)\left|I_{2}\right| \leqq \mathrm{const}|\boldsymbol{p}|\{\rho, \delta),\left|\alpha+\alpha^{\prime \prime}+\beta\right|+3 n_{0} \mid \sum_{\left|\alpha_{1}^{\prime}+\alpha_{2}^{\prime}\right| \leq n_{0}}^{\left\langle m, m^{\prime}\right)} \int_{|\zeta| \geq\langle\xi\rangle^{\delta} / 2}\langle\zeta\rangle^{-n_{0}}\langle\xi\rangle^{-\rho n+\rho\left|\alpha_{1}^{\prime}\right|+\delta\left|\alpha_{2}^{\prime}\right|+m_{0}} \boldsymbol{d} \zeta$

$$
\leqq \text { const }|p|\left\{\left(\rho, \delta, m_{\left|\alpha+\alpha^{\prime \prime}+\beta\right|+3 n_{0}}^{(m, \xi\rangle^{m_{0}+(\delta-\rho) n}} .\right.\right.
$$

Let k be an integer such that

$$
\begin{align*}
& -2(1-\delta) k+m_{+}+m_{+}^{\prime}+\delta\left|\alpha+\alpha^{\prime \prime}\right|+n+1+\rho n_{0} \tag{2,5}\\
& \quad \leqq m_{-}+m_{-}^{\prime}-\rho|\beta| \\
& m_{-}=\min (m, 0), m_{-}^{\prime}=\operatorname{mim}\left(m^{\prime}, 0\right) .
\end{align*}
$$

By integrating by parts we write

$$
\begin{aligned}
I_{3}= & \int_{A_{3}} \int e^{-i\langle\omega, \zeta\rangle}\langle\zeta\rangle^{-2 k}\left\langle D_{\omega}\right\rangle^{2 k}\left\{\left(1+\langle\xi\rangle^{2 \rho}|\omega|^{2}\right)^{-n_{0} / 2}\right. \\
& \left.\cdot\left(1+\langle\xi\rangle^{2 \rho}\left(-\Delta_{\xi}\right)\right)^{n_{0} / 2} J_{\alpha, \alpha^{\prime \prime}, \beta}\right\} d \omega d \zeta
\end{aligned}
$$

so that from $(2,2)$ and $(2,5)$

$$
\begin{align*}
& \left|I_{3}\right| \leqq \text { const }|p|_{\langle\rho, o \delta),\left|, \alpha+\alpha^{\prime \prime}+\beta\right|+2 k+2 n_{0}}^{\left\langle m, m^{\prime}\right)} \int_{A_{3}}\langle\zeta\rangle^{-2(1-\delta) k+\rho n_{0}+m_{+}+m_{+}^{\prime}+\delta\left|\alpha+\alpha^{\prime \prime}\right|} d \zeta \tag{2,6}\\
& \leqq \text { const }|p| \begin{array}{l}
\left(\begin{array}{l}
\left.m, m_{0}^{\prime}\right) \\
\left(\rho,\left|\alpha+\alpha^{\prime \prime}+\beta\right|+2 k+2 n_{0}\right.
\end{array}\langle\xi\rangle^{m_{0}} .\right.
\end{array}
\end{align*}
$$

Hence from $(2,3),(2,4)$ and $(2,6)$ we have $p_{L}\left(x, \xi, x^{\prime}\right) \in S_{\rho, \delta}^{m^{\prime \prime}}$ and then completes the proof.

The following two Lemmas 2 and 3 are proved by Calderón and Vaillancourt [2] and by Kumano-go [6], respectively.

Lemma 2. Let $0 \leqq \rho=\delta<1$ and let $p\left(x, \xi, x^{\prime}\right) \in S_{\rho, \delta}^{0}$. Suppose that $p\left(x, \xi, x^{\prime}\right)$ has compact support in ξ. Then the operator $p\left(X, D_{x}, X^{\prime}\right)$ can be extended to a bounded map in H_{0} and its operator norm $\left\|p\left(X, D_{x}, X^{\prime}\right)\right\|$ satisfies

$$
\left\|p\left(X, D_{x}, X^{\prime}\right)\right\| \leqq C|p|_{(\rho, \delta), j_{0}}^{(0)}
$$

where $j_{0}=4+2[n / 2]+2[5 n / 4(1-\delta)]$ and C is a constant dependent on δ and n but not on the support of p.

Lemma 3. Let $0 \leqq \rho \leqq 1,0 \leqq \delta<1$, and let $p(x, \xi) \in S_{\rho, \delta}^{m}, q(x, \xi) \in S_{1,0}^{m,}$. Then the left simplified symbol $r(x, \xi)$ of $q\left(X, D_{x}\right) p\left(X^{\prime}, D_{x^{\prime}}\right)$ has the form

$$
\begin{aligned}
& r(x, \xi)=\sum_{|\alpha|<N}(-i)^{|\alpha|} / \alpha!\partial_{\xi}^{\alpha} q(x, \xi) \partial_{x}^{\alpha} p(x, \xi)+r_{N}(x, \xi) \\
& r_{N}(x, \xi) \in S_{\rho, \delta}^{m \prime \prime}, m^{\prime \prime}=m+m^{\prime}+(\delta-1) N, \quad N=1,2, \cdots,
\end{aligned}
$$

and satisfies

$$
\left|r_{N}\right|_{(\rho, \delta), j}^{\left(m^{\prime \prime}\right), j} \leqq C|q|_{(\rho, \delta), j+j^{\prime}}^{\left(m^{\prime}\right)}|p|_{(\rho, \delta), j+j^{\prime \prime}}^{(m)}, \quad j=0,1, \cdots,
$$

where

$$
\begin{aligned}
j^{\prime} & =N+[n \delta]+1+n_{0}, \\
j^{\prime \prime} & =N+[n \delta]+3+\left[(1-\delta)^{-1}\left(|m|+\left|m^{\prime}\right|+\delta[n \delta]+\delta N+\delta+j+n+1\right)\right]
\end{aligned}
$$

and C is a constant dependent on $n, m, m^{\prime}, \rho, \delta, N$ and j but not on p and q.

In [6] Kumano-go proved this result for the wider class when $0 \leqq \delta<1,0<\rho \leqq 1$ but in this proof there is no difficulty even if $\rho=$ $0,0 \leqq \delta<1$.
3. By the simplification theorem in [6] and Lemma 1, in order to prove Theorem, it is enough to show the following;

Theorem. Let $0 \leqq \rho=\delta<1$ and $p(x, \xi) \in S_{\rho, \delta}^{0}$. Then the map $p\left(X, D_{x}\right)$ can be extended to a bounded map from H_{0} into itself and satisfies for $u \in \mathscr{S}$

$$
\left\|p\left(X, D_{x}\right) u\right\|_{0} \leqq C_{1}|p|_{(\rho, \delta), j_{0}}^{(0)}\|u\|_{0}+C_{2}|p|_{(\rho, \delta), j}^{(0)}\|u\|_{\delta-1}
$$

where j_{0} is the integer given in Lemma $2, j$ is some large integer and $C_{k}, k=1,2$, are constants dependent on δ and n but not on p.

Corollary. Let $0 \leqq \rho=\delta<1$ and $p\left(x, \xi, x^{\prime}, \xi^{\prime}, x^{\prime \prime}\right) \in S_{\rho, \delta}^{m, m^{\prime}}$. Then the map $p\left(X, D_{x}, X^{\prime}, D_{x^{\prime}}, X^{\prime \prime}\right)$ can be extended to a bounded map from $H_{m+m^{\prime}+s}$ into H_{s} for any real s.

Proof of Theorem. At first we note that there is a partition $\left\{Q_{j} ; j=1,2, \cdots,\right\}$ of R^{n} into closed cubes such that (i) for some constant $C>1$,

$$
C^{-1}\langle\xi\rangle \leqq \operatorname{diam}\left(Q_{j}\right) \leqq C\langle\xi\rangle \quad \text { for } \quad \xi \in Q_{j}^{*} \quad j=1,2, \cdots,
$$

(ii) there is a bound on the number of overlaps of Q_{j}^{*}. Here we denote by Q_{j}^{*} the double of Q_{j}. For example such partition can be constructed as follows. Let $a_{\nu}=(3 / 2)^{\nu}, \nu=1,2, \cdots$. Set $Q_{1}=\left\{\xi ; \max \left|\xi_{k}\right| \leqq a_{1}\right\}$. Suppose that $\left\{\xi ; \max \left|\xi_{k}\right| \leqq a_{\nu}\right\}$ has the partition $\left\{Q_{1}, Q_{\lambda, j} ; \lambda \leqq \nu, j=\right.$ $\left.1,2, \cdots, 6^{n}-4^{n}\right\}$. Then we may define the partition $\left\{Q_{\nu+1, j} ; j=\right.$ $\left.1,2, \cdots, 6^{n}-4^{n}\right\}$ of $\bigcup_{r=1}^{n}\left\{\xi ; a_{\nu} \leqq\left|\xi_{r}\right| \leqq a_{\nu+1},\left|\xi_{s}\right| \leqq a_{\nu+1}, s \neq r\right\}$ by

$$
\begin{aligned}
& \left\{\xi ; a_{\nu} \leqq \xi_{r} \leqq a_{\nu+1}, l_{s} a_{\nu} / 2 \leqq \xi_{s} \leqq\left(1+l_{s}\right) a_{\nu} / 2, s \neq r\right\} \\
& \left\{\xi ;-a_{\nu+1} \leqq \xi_{r} \leqq-a_{\nu}, l_{s} a_{\nu} / 2 \leqq \xi_{s} \leqq\left(1+l_{s}\right) a_{\imath} / 2, s \neq r\right\} \\
& \quad r, s=1,2, \cdots, n, \quad l_{s}=-3,-2, \cdots, 2
\end{aligned}
$$

Then $\left\{Q_{j}\right\}$ is given by $\left\{Q_{1}, Q_{\nu, j} ; \nu=2,3, \cdots, j=1,2, \cdots, 6^{n}-4^{n}\right\}$. It is easy to see that $\left\{Q_{j}\right\}$ has the properties (i) and (ii). Take $\phi \in C^{\infty}\left(R^{n}\right)$ such that $0 \leqq \phi \leqq 1, \phi(\xi)=1$ on $\max \left|\xi_{k}\right| \leqq 1$ and the support of ϕ is contained in $\max \left|\xi_{k}\right| \leqq 3 / 2$. Set

$$
\phi_{j}(\xi)=\phi\left(\left(\xi-\xi_{(j)}\right) / d_{j}\right), \psi_{j}(\xi)=\phi_{j}(\xi) /\left(\Sigma_{j^{\prime}} \phi_{j^{\prime}}(\xi)^{2}\right)^{1 / 2} .
$$

Here $\xi_{(j)}$ is the center of Q_{j} and $d_{j}=\operatorname{diam}\left(Q_{j}\right) / 2 \sqrt{n}$. Then we have, from property (i) of $\left\{Q_{j}\right\},\left\{\psi_{j}(\xi)\right\}$ is bounded in $S_{1,0}^{0}$ and

$$
\begin{equation*}
\limsup _{N \rightarrow \infty}\left\|\sum_{j=1}^{N} \psi_{j}\left(D_{x}\right) u\right\|_{0} \geqq\|u\|_{0} \quad \text { for } \quad u \in \mathscr{S} . \tag{3,1}
\end{equation*}
$$

For

$$
\begin{aligned}
\left\|\sum_{j=1}^{N} \psi_{j}\left(D_{x}\right) u\right\|_{0}^{2} & =\int\left(\sum_{j=1}^{N} \psi_{j}(\xi)\right)^{2}|\hat{u}(\xi)|^{2} \boldsymbol{d} \xi \\
& \geqq \int \sum_{j=1}^{N} \psi_{j}(\xi)^{2}|\hat{u}(\xi)|^{2} \boldsymbol{d} \xi
\end{aligned}
$$

Let $p_{j}(x, \xi)=p(x, \xi) \psi_{i}(\xi)$ and let $q_{j}(x, \xi)$ be the left simplified symbol of $\psi_{j}\left(D_{x}\right) p\left(X^{\prime}, D_{x^{\prime}}\right)$. From Lemma 3, we write

$$
\begin{aligned}
& q_{j}(x, \xi)=p_{j}(x, \xi)+\sum_{1 \leqq|\alpha|<k}(-i)^{|\alpha|} / \alpha!r_{j, \alpha}(x, \xi)+r_{j, k}(x, \xi) \\
& r_{j, \alpha}(x, \xi)=\partial_{\xi}^{\alpha} \psi_{j}(\xi) \partial_{x}^{\alpha} p(x, \xi) \in S_{\rho, \delta}^{(\delta-1)|\alpha|}, r_{j, k}(x, \xi) \in S_{\rho, \delta}^{(o-1) k}
\end{aligned}
$$

From properties (i) and (ii) of $\left\{Q_{j}\right\}$ and $\operatorname{supp} \psi_{j} \subset Q_{j}^{*}$, for each $k \geqq 2$ $\left\{\sum_{j=1}^{N} p_{j}(x, \xi) ; N \geqq 1\right\},\left\{\sum_{j=1}^{N} r_{j, \alpha}(x, \xi)\langle\xi\rangle^{(1-\delta)|\alpha|} ; N \geqq 1\right\} \quad$ and $\quad\left\{\sum_{j=1}^{N} r_{j, k}(x, \xi)\right.$; $N \geqq 1\}$ are bounded in $S_{\rho, \delta}^{0}, S_{\rho, \delta}^{0}$ and $S_{\rho, \delta}^{(\delta-1) k}$, respectively. So that from Lemma 2
$(3,2) \quad\left\|\sum_{j=1}^{N} p_{j}\left(X, D_{x}\right) u\right\|_{0} \leqq \mathrm{const}|p|_{(\rho, j), j_{0}}^{(0)}\|u\|_{0}, \quad N=1,2, \cdots$,
$(3,3) \quad\left\|\sum_{j=1}^{N} r_{j, \alpha}\left(X, D_{x}\right) u\right\|_{0} \leqq \mathrm{const}|p|_{(\rho, \delta), j_{0}+|\alpha|}^{(0)}\|u\|_{\delta-1}, \quad N=1,2, \cdots$,

$$
1 \leqq|\alpha|<k
$$

for $u \in \mathscr{S}$. On the other hand, if we take k so large that

$$
(\delta-1) k+n+1 \leqq \delta-1
$$

from the inequality $(2,1)$ and Lemma 3 we have for $u \in \mathscr{S}$

$$
\begin{equation*}
\left\|\sum_{j=1}^{N} r_{j, k}\left(X, D_{x}\right) u\right\|_{0} \leqq \mathrm{const}|p|_{(\rho, j), j}^{(0)}\|u\|_{\delta-1}, \quad N=1,2, \cdots, \tag{3,4}
\end{equation*}
$$

for some large j. Hence from $(3,1),(3,2),(3,3)$ and $(3,4)$

$$
\begin{aligned}
\left\|p\left(X, D_{x}\right) u\right\|_{0} & \leqq \lim \sup \left\|\sum_{j=1}^{N} \psi_{j}\left(D_{x}\right) p\left(X^{\prime}, D_{x^{\prime}}\right) u\right\|_{0} \\
& \leqq \mathrm{const}|p|_{(\rho, \delta), j_{0}}^{(0)}\|u\|_{0}+\mathrm{const}|p|_{(\rho, \delta), j}^{(0)}\|u\|_{\delta-1}
\end{aligned}
$$

This completes the proof.
Proof of Corollary. Let $p_{1}(x, \xi)$ be the left simplified symbol of the left simplified symbol $p_{L}\left(x, \xi, x^{\prime}\right)$ of $p\left(x, \xi, x^{\prime}, \xi^{\prime}, x^{\prime \prime}\right)$. By Lemma 1 we have $p_{1}(x, \xi) \in S_{\rho, \delta}^{m+m^{\prime}}$. Let $p_{2}(x, \xi)$ be the left simplified symbol of $\left\langle D_{x}\right\rangle^{s} p_{1}\left(X^{\prime}, D_{x^{\prime}}\right)$. Then by Lemma 3 we can write

$$
\begin{aligned}
& p_{2}(x, \xi)=p_{3}(x, \xi)\langle\xi\rangle^{m+m^{\prime}+s}+p_{4}(x, \xi)\langle\xi\rangle^{m+m^{\prime}+s+\delta-1} \\
& p_{k}(x, \xi) \in S_{\rho, \delta}^{0}, \quad k=3,4 .
\end{aligned}
$$

So that the result follows from Theorem.

Bibliography

[1] A. P. Calderón and R. Vaillancourt, On the Boundedness of Pseudo-Differential Operators, J. of Math. Soc. Japan, 23 (1971), 374-378.
[2] A. P. Calderón and R. Vaillancourt, A Class of Bounded Pseudo-Differential Operators, Proc. Nat. Acad. Sci. U.S.A., 69 (1972), 1185-1187.
[3] Chin-Hung Ching, Pseudo-Differential Operators with nonregular symbols, J. Differential Equations 11 (1972), 436-447.
[4] L. Hörmander, Pseudo-Differential Operators and Hypoelliptic Equations, Proc. Symposium on Singular Integrals, Amer. Math. Soc. 10 (1967), 138-183.
[5] L. Hörmander, On the L^{2} Continuity of Pseudo-Differential Operators, Comm. Pure. Appl. Math. 24 (1971), 529-535.
[6] H. Kumano-Go, Algebras of Pseudo-Differential Operators, J. Fac. Sci. Univ. Tokyo 17 (1970), 31-50.

Mathematical Institute

TôHoku University
Sendai, Japan

