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1. Introduction. Let X (respectively, φ) be a separable, infinite dimen-
sional complex Banach (respectively, Hubert) space. We denote by S3(ϊ)
the algebra of all bounded linear operators acting in X. Let T be a
bounded linear operator on 3E. We call the bi-commutant of T the set
of operators commuting with all operators which commute with T. A
closed subspace 2) of X is said to be hyperinvariant for T if £2) c ?) for
any operator S that commutes with T.

The purpose of the present note is to show the existence of hyper-
invariant subspaces for an operator T with a spectrum condition and with
a growth condition on the resolvent of T. The result will be considered
as a generalization of those results on invariant subspaces in [2], [5]. In
the case of a Hubert space, such an operator, T = A + B, where A is
a normal operator with some spectrum condition and B is a compact
operator with some condition, has been studied in [2], [5].

Throughout this note, we denote by σ(T), σp(T), σc(T), σr(T) and p{T)
the spectrum, the point spectrum, the continuous spectrum, the residual
spectrum and the resolvent set of T, respectively (see Chap. VII of Part
I of [3]). For any complex number λ and a subset E of the complex
plane, we put d(X, E) = inf2eJS |λ — z\. We understand a smooth arc to
be such a one that has a continuous second derivative when parametrized
with respect to arc length. We assume a Jordan curve J is positively
oriented and for a fixed λ0 on J, where J has a parametrization λ = g(s)
(0 ^ s ^ l(J)), in terms of arc length s from λ0, g(0) = λ0, g(s) = g(s + l(J)),
and g(s) is continuous on J and g'(s), g"(s) are continuous except points
λ* = g(sk), sk < sk+ί, k = 1, 2, , n on J, where l(J) denotes the whole
length of J.

2. The existence of hyperinvariant subspaces for some operators.
We denote by /, a Jordan curve, which consists of a finite number of recti-
fiablθr smooth arcs in the complex plane. The set of all operators T e 35(X)
such that σ(T)czJ will be denoted by S3(ϊ; J), (it may well be the case
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that the spectrum separates the complex plane).
Let Γ G 3 5 ( Ϊ ; J ) .

DEFINITION 2.1. We say that the resolvent of T has the growth
condition (C) near J if

[* loglog M{δ)dδ < co
Jo

for some sufficiently small ε > 0, where M(δ) = supdatJ)^δ II (λ/— T7)"1!!-

In [2], the resolvent is said to have polar growth of order n (respect-
ively, exponential growth of order p) near J if d(X, J)n\\(Xl — Γ)"1!!
(respectively, d(X, J)plog \\(Xl - ΪTMI), λ £ / is bounded near J. If the
resolvent has exponential growth of order p (for any p > 0) near J, then
it has the growth condition (C) near J. (Obviously, the resolvent has
polar growth of order n near /, then it has exponential growth of order
p for any p > 0). This growth condition in Definition 2.1 plays an im-
portant role in the future. In this section we have the following result.

THEOREM 2.2. Let Te33(£; J) such that the resolvent of T has the
growth condition (C) near J. If o(T) is not reduced to a single point,
then T has a proper closed hyper invariant subspace.

We shall divide the proof into portions. The assertion follows im-
mediately in the case that σ(T) is disconnected. In fact, if σ(T) is dis-
connected, let σ0 be a proper open and closed subset of its spectrum σ(T)
and let Γo be a contour enclosing σQ but no other point of σ(T) — σQ and
lying in p(T), then the spectral projection E(σ0) corresponding to σQ,

E(σQ) = — ( (XI - T)~ιdX
2πi JΓQ

is an idempotent distinct from 0 and / which commutes with every oper-
ator commuting with T and E(σ0) would define a proper closed hyperin-
variant subspace E(σo)% of X with respect to T (see Chap. XI of [11]).
Therefore we have only to show that there can exist no operator T e
S3(ϊ; J) such that the resolvent of T has the growth condition (C) near
/ and σ(T) is connected subarc of / and ϊ admits no proper closed hyper-
invariant subspace under T.

Now we need the following generalization of Levinson's theorem [7,
Lemma 27.1, p. 135].

LEMMA 2.3. (Ljubic and Macaev [8]). Suppose that M(δ) is non-
increasing function (δ > 0) satisfying the following conditions, M(δ) —> oo
as δ—+0 and
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log log M(δ)dδ < oo
Jo

for some sufficiently small ε > 0, and suppose that Jo is a smooth arc in
the complex plane, beginning at some point z0. Then there exists a func-
tion analytic except for z = zQ satisfying the following conditions:

( i ) I f(z) I ̂  1/M(δ) along some beak Γ (Fig. 1) formed by two smooth

Jo

Fig. 1

arcs tangent to Jo on opposite sides at the point zQ, where δ = d(z,JQ);
(ii) f(z) is continuous on the inside and on the beak Γ;
(iii) f(z) Φθ (for ZΦ oo), /(oo) = 0.

Using Lemma 2.3 we have the followings. For any point μeJ,
which is not a singular point of J, we denote /J(λ) and fj(X) analytic
functions whose existence is assured by Lemma 2.3, constructed with
respect to the majorant M(δ) and curves J£ and Jj respectively (J+ and
J~ are the Jordan curve J issuing from the point μeJ respectively in
positive and negative directions). We denote corresponding beaks by Γ$
and Γ~; respectively. Let Δ = [a, β] be any segment of the curve J,
where a, β are not singular points of J {a precedes β in a positive direc-
tion along J). Put

and denote by ΓΔ the contour obtained by joining Γi and Γj by means
of any two simple curves, which consists of a finite number of rectifiable
smooth arcs (Fig. 2). The function Fj(X) is evidently analytic on the

rΛ

Fig. 2
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inside of ΓΔ, continuous on the inside and on ΓΔ and does not vanish on
the inside of ΓΔ. From the construction following estimates hold

FΔ(X) = 0{ljM{d{\ J))) for λ • a,XeΓΔ,

FΔ(X) = O(l/M(d(X, J))) for X > β, X e ΓΔ ,

where O( ) is Landau's symbol.

LEMMA 2.4. Let Te58(£;J) such that σ(T) is a connected set (not
a single point) and the resolvent of T has the growth condition (C) near
J. For each pair of points α, β where a precedes β in a positive di-
rection along J and they are not singular points of J, we put

@(α, β) = {x; xe?ί9 (XI — T)~ιx is continuable to a function which is

analytic on p(T) (j {the arc (a, β)}} ,

©(α, β) = {x; x 6 X, (λ/ — T)~ιx is continuable to a function which is

analytic on ρ(T) U [the arc (β, a)}} .

Then both @(α, β) and ©(α, β) are closed subspaces of X, invariant under T.

PROOF. Because both of the invariance and the linearity of @(α, β)
are plain, we have only to prove that @(α, β) is closed. Let xne&(a, β),
(n = 1, 2, 3, •) and xn —> x as n —* co. Let JF2(λ, T: xn) denote the analytic
continuation of (λ/ — T)~ιxn, then for every positive number ε, let Δ =
[α + ε, β — ε] in above argument. Then R(X, T: xn) are analytic on the
inside of ΓΔ. Here we define the function such that

(FΔ{\){\ - a - e)(λ - β + e)Λ(λ, Γ: α?Λ)

if XΦ a + ε and XΦ β — ε ,

if λ = α + s or \ = β — ε ,

then r̂w(λ) are analytic on the inside of ΓΔ and strongly continuous on
ΓΔ, which follows from estimates of FΔ(X). By the maximum modulus
principle, {gn(X)} is a uniform Cauchy sequence with respect to λ, hence
the limit function gQ(X) is analytic on the inside of ΓΔ and so

M λ ) = go(X){FΔ(X)(X - a - e ) ( λ - β + ε ) } " 1

is also analytic on the inside of ΓΔ. It follows that (XI — T)~xx has an
analytic continuation to a neighbourhood of the arc (a + ε, β — ε) for any
sufficiently small ε > 0, and hence to a neighbourhood of the arc {a, β).
Thus xe&(a,β). The assertion for ©(α, β) will be proved in just the
same way. The proof of Lemma 2.4 is now completed.

LEMMA 2.5. Let T, @(α, β) and @(α, β) be the same as in Lemma
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2.4 and Δ — [β, a]. For any vector xeX,, the function g(X) is defined
such that

(Fj(X)(X - α)(λ - β)(Xl - T^x if XeΓΔ- {a, β} ,
q(X) = \

(0 ifX^aorX = β.

If b(z) is any numerical-valued function analytic in and continuous on
I 31 <£ 1 and if τ is the conformal mapping from the inside of Γj to the
unit disc, then the contour integral

y=\ b{z)g{τ-\z))dz

belongs to the space @(α, β), where CQ denotes the boundary of the unit
disc (suppose that Co is positively oriented). Moreover, unless x belongs
to the space <2>(α, β) there exists a function b(z) analytic in and continuous
on \z\^l such that the vector y defined by (*) is non-zero.

PROOF. Clearly, the function g(τ~1(z)) is continuous on Co. Using
the resolvent equation, we have

(μl - T)~ιg(\) = (μ- λ)-^(λ) - (μ - X^F^X^X - α)(λ - β){μl - T)~ιx

for μeρ(T) Π ExtΓj , where ExtΓj denotes the outside of Γj, thus

(μI-TΓy=\ dz
μ - τ~\z)

b{z)F7(τ-\z)){τ-1(z) - a)(τ-ι(z) - 0){μl - T)~ιx .
μ - r-H^)

for the vector y of (*). By Cauchy's theorem, the second term is zero.
Therefore we have

(**) {μl-τn=\ 6 ( z ) g ( Γy) dz
}c0 μ — z~\z)

for the vector y of (*). Since the final expression of (**) is plainly
analytic on the outside of Γj, it follows that ye&(a, β). Next, we sup-
pose that the vector y defined by (*) is zero for each b(z) which is analytic
in and continuous on | s | <£ 1, i.e., for all such b(z)

b(z)g(τ~1(z))dz = 0 .
o

Therefore the vector-valued function ^(τ"1^)) defined on Co must be the
boundary value of a vector-valued function analytic in and continuous on
\z\ ^ 1. Therefore g(X) must be analytically continuable to the inside of
Γj. Thus (XI— T)~ιx must be continuable across the arc (β,oc), i.e.,
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x e ©(α, β). The proof of Lemma 2.4 is now completed.

Let T, @(α, β), ©(α, β), A, 2 and Co be the same as above. Let τ
(respectively, v) be a conformal mapping from the inside of ΓΔ (respect-
ively, ΓΔ) to the unit disc. Now we define the function gΔ(X) such that

(Fj(X)(X - a)(x - β)(xl- T)-1 if XeΓj - {a, β} ,

" (0 if X = a or X = β .

Let bj(z) be a function analytic in and continuous on \z\ ^ 1 such that
the contour integral

j σ bj(z)g-2{τ-ι{z))xdz

is non-zero for some vector a?ί©(α, β). In just the same way we can
define gΔ{X) and bΔ{z) with respect to A instead of 2.

LEMMA 2.6. If we put

S = \ bj{z)gj{τ-\z))dz and W=\ bΔ(z)gΔ{v~\z))dz,
JC0 J C 0

then Sϊ, W3L, where bar denotes the closure, are hyper invariant subspaces
under T and

{0}cSϊc @(α, β) , {0} c W e <©(α, /3) .

PROOF. From the proof of preceding Lemmas, the last assertions
follows. Let A be any operator in 33(ϊ) such that AT = TA. Since both
operators S, W are elements of the bi-commutant of T, it follows

The proof of Lemma 2.6 is now completed.

PROOF OF THEOREM. Suppose that T is an operator satisfying the
hypotheses of Lemma 2.4. By Lemma 2.4 and Lemma 2.6, we have only
to show that @(α, β) and ©(α, /3) are non-trivial. We may assume σ(Γ)
lies on both arcs (α, /S) and (/S, #), because we can choose the pair of
points a, β arbitrary on J. This implies @(α, /S) Φ X and ©(#, /3) ^ ϊ .
Thus we have only to show that @(α, /3) ^ {0} and ©(α, β) Φ {0}. By
Lemma 2.5, @(α, /9) ^ 3£, ©(α, /3) ^ X imply ©(α, /3) ^ {0}, @(α, /3) ^ {0}
respectively. Since both @(αr, /3), ©(<̂ , /3) are non-trivial and by definitions
in Lemma 2.6 S Φ 0, T7 =£ 0. Thus from Lemma 2.6 the assertion follows.

3. Perturbation and hyperinvariant subspaces. In the sequel J will
stand a finite union of simple rectifiable smooth arcs in the complex plane
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(not separating the complex plane). Instead of X we consider a Hubert
space £. Let CL be the set of all compact operators acting in £. Let
T e Coo. We denote by Cω the class of compact operators for which

where μ,{T), ft(Γ), , μn(T), are the eigenvalues of (T*T)1/2 arranged
in decreasing order and repeated according to multiplicity (see [4, §15
of Chap. Ill]) and the class Cp is the set of all compact operators such
that | |2Ί | , = {Σ^=,μn{TYYlP, (1^P< oo) is finite (see [3, §9 of Chap.
XI]). It is easy to see that Cp c Cω for arbitrary p (1 ̂  p <<*>). In fact,
from Holder's inequality it follows that

where 1/p + 1/q = 1. The class Cω was introduced in the paper of
V.I. Macaev [9]. To an operator Te C« we associate the sequences \(T)y

λ2(T), , Xn(T), of eigenvalues of T numbered according to decreasing
values of their moduli and repeated according to multiplicity and the
function n{t, T) (respectively, τ(ί, I7)), for t > 0, giving the number of
terms of the sequence λΛ(2τ) (respectively, μn(T)), n = 1, 2, , n, ,
exceeding 1/ί in modulus.

The purpose of this section is to show that the following theorem
holds.

THEOREM 3.1. Let T be an operator in 33(φ). Write T = A + B,
where T is the sum of a normal operator A, whose spectrum lies on J
and a compact operator B which belongs to the class Cω. If o{T) is not
reduced to a single point, then T has a proper closed hyperinvariant
subs pace in φ.

On the existence of invariant subspace, in [5] the author has proved
in the case that the perturbing term belongs to one of the classes
Cp (1 ^ p < oo). In §3 of [2], Apostol studies operators of the form
A + B9 which the resolvent of A has polar growth of order n near J and
BeCp (l£p< oo).

REMARK. In the above theorem if σ(T) is a single point, then T has
a proper closed invariant subspace. In fact, since the operator T may
be translated, we may assume without loss of generality that σ(T) = {0},
from Lemma 2.3 of [5] it follows that the Hubert space admits a proper
closed invariant subspace under T, using Aronszajn-Smith theorem [1].

We shall use the following known result.
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LEMMA 3.2. (see [4, §5 of Chap. I]) Let T be as above (in the theorem).
Then any point X with λ& o(A) ( c J ) is either λe p(T) or an eigenvalue
with finite multiplicity of T.

LEMMA 3.3. If T has an eigenvalue with finite multiplicity, then §
admits a proper closed subspace which is hyper invariant under T.

PROOF. Let λ0 be an eigenvalue with n multiplicity and ST = TS
(S e$8(§)). Then the eigensubspace of T corresponding to λ0 is an n-
dimensional subspace invariant under S. In fact, since

(T - \I)S{(T - λoirtO)} = S(T - \I){(T - λJΓίO)} = S(0) - {0} .

Therefore we have
S{(T - λ0JΓ(0)} c (Γ - λo/Γ(O) .

The proof of Lemma 3.3 is now completed.

The assertion in Theorem follows from Lemma 3.3 and an argument
in §2 in each case that one of the following condition is satisfied:

(i) σ(T) - σ(A) Φ 0 (ii) σ{T) is disconnected .

Therefore we have only to show that there can exist no operator T =
A + B, where A is normal such that σ(A) aJ,BeCω and 0"(T)(c σ{A)) is a
connected subarc of J and $ admits no proper closed hyperinvariant sub-
space under T.

In the sequel, we shall show a growth condition of the resolvent of
T near its spectrum σ(T). If S has finite dimensional range, S = PS,
where P is the orthogonal projection on the range of S. Thus S* = S*P,
so that S* also has finite dimensional range. Let φ0 be a finite dimen-
sional space including both the range of S and the range of S*. Then
plainly, φ0 is invariant under S and S*9 and since (S$o, %) = O&o", S*x) = 0
for all xeQy we have S$0

L = {0} and similarly S*φ0

1 = {0}. We denote
by Φ = {<ply φ2y , φn} an orthonormal basis of φ0 and define an n x n
matrix S{n) = (<iij)izi,jgn by the following relation

Sψi = Σ *ifPi (J = 1, 2, , n) .
4 = 1

Thus S{n) is the matrix of the operator S\$o (= the restriction of S to
φ0) with respect to the basis Φ.

We define

A(S) = dβt (I(n) - S{n))

the determinant of I{n) — S(n), where J(n) is the n x n identity matrix.
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Now, we denote by K = (k^)^,^ the cofactor matrix of J(n, — S(n)

i.e., kij is the (j, i) cofactor of I(n) — Sin). We have

(J(β) - $ . , ) * = K(Iι%) - Sι%)) = A(S)/(.)

We define an n x w matrix (/^X^,^ = S{n)K and an operator H on £
such that

= Σ Σ M ^ , <P,)<Pi for a e $ .
j 1

Then we have ifφoc: Φo and iϊφo1 = {0}. Therefore the restriction H\ φ0 of
H to φo is the operator whose matrix representation with respect to the basis
Φ is the matrix (hiS). For operators (A(S)J + H)(I - S) and (I - S) x
(A(S)I + if), the subspaces $0 and ^o1 are invariant and it follows that
by the above relations

(A(S)/ + H)(I - S)x = (I- S)(A(S)I + H)x = A(S)a?

for any a?eφox Moreover, since

A(S)/(.) + S l t ) ϊ = (/(., - S(.,)JΓ + S(m)X = K ,

we have the matrix relations

i.e., by restriction each operator to φ0 we have the last above relations
with respect to the basis Φ. Thus we have the following equations of
operators on the subspace φ0,

therefore we obtain the operator relations on §,

(A(S)I + H)(/ - S) = (I - S)(A(S)I + H) = A(S)I

So that ( I - S)"1 exists, when DJβ) φ 0, i.e., l$σ(S),

(I - S)-1 = 1+ DJSyΉ.

Now, we define

Di(S) = Dι(S)((I-S)-ιx,y)

for unit vectors x, y in φ

LEMMA 3.4. Lei S be a finite dimensional operator, l$σ(S)9 and
let A(S) α^d A(S) 6β as above. Then we have the followings,
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log I D2(S) I ̂  Σ log (1 + μ,(S)) + 3 log (3 + μ

PROOF. TO prove the second assertion, it is sufficient to establish the
corresponding inequality for the operator obtained by restricting / +
D^Sy1!! to the subspace φ 0 . In fact, since HS&i = {0}, the restriction
(I — S)~ι to φo1 is I\ φo1 and the second assertion follows from the first
assertion. Now, the matrix representation of (/ + D^S)"1!!) | φ 0 with
respect to the basis Φ of φ 0 is / ( n ) + D^S^S^K and we have

(j = 1, 2, , n). Thus we have

((A(S)/ + H)φj9 φ<) = kid .

Given any unit vectors x, y in ξfQ9 we may put x = xιφι + + xn<Pn

and y = y.φ, + + ynφn, where Σ?=i I^Γ = Σf=i \Vi\z = l T h e n

A(S)((/ - S Γ a , 2/) - ((A(S)I + H)x, y)

0 ^ y 2 - - - yn~

= Σ fcί/»yl/ί = ~ det ^ 2 -t(w) ^ ( Λ )

On the other hand, since we have the relation (by Lemma 16 of Chap.
XL 9 of [3]),

log det

0 yι

#2 J-(n) &(n)
3 = 1 3 = 1

with the eigenvalues {λy} (respectively, {/ίy}) of

" 1 Vι V2 V

So = x2 S(n)

(respectively, (S0*S0)
1/2). If we put



GROWTH OF THE RESOLVENT 327

0 0 0

xί 0

ynl Γ 0 0 0 0

0

0 Si.)

.o J Lo
then So = S, + S2 + S3 + S4. By virtue of corollary 3 of Chap. XI. 9
of [3], for f*j(S0) we have the followings

- μλ(Sύ = 2 + μι(S) ,

" I

0

0

. 0

" 0

0

0

0 0

0

ϋi y*

0

μt(S0) ^ ^S,) = μt(S) ,

therefore we have

Σ log (1 + μj(S0)) £ Σ log(l +
i=i i=i

^ Σ log (1 +

log (4 +

+ 3 log (3

Thus the second assertion follows. The first assertion follows immediately,
in fact

log I A(S) I = Σ log 11 - \(S) I ̂  Σ log (1 + μ,(S)) .

This completes the proof of Lemma 3.4.

Now without loss of generality, we may assume that ||JS|| <̂  1/2.
For any sufficiently small number δ > 0, let P be the projection to the
spectral subspace of (B*By'2 relative to (δ, 1/2] and B, = BP, B2 = B(I - P).
Since A is normal, we have \\{XI - A)~γ\\^ {d{\σ{A))}~\ Thus by
11 B2(XI - A)-111 ^ δ/d(\ σ(A)),
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li (XI - A -
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-1!! = | | ( λ J - A)-ι{I- B2(\I

for λ with d(X, σ(A)) ^ 2<5. We have

log || (XI- T)~ι\\

^ log \\(XI- A - B2)-ι\\ + log | | {I- - A - B^T'
Now, to obtain an estimate of the second term in the sequel, extending
the method for estimating the resolvent of a compact operator in [10],
we shall show a growth condition of the resolvent of T near its spectrum
σ(T) ( c σ(A)). Let Dk(X) = D^B^XI - A - B,)-1), for k = 1, 2. Let z =
r(λ) be the conformal mapping of the domain {λ; d(X, σ(A)) 2: 2d} onto the
disc of radius r with center at the origin and τ(°o) = 0. We put n(t) =
n(t, BSt-^I - A - BJ-1), by Jensen's formula [6, Theorem 5, p. 14]

dt = -λ-
2π

log I DJτ *)) | dθ - log

2π Jo

Thus we have for any unit vectors x, y in Q,

- A - B,)-1}

dθ +

±- Γ log+
2π Jo

1 Γ27Γ

= — \ l o g +

2π Jo

1 C2π

Jo «
-dί

e"))! + log-

+

^J-ΓΓΊog+
2π LJo

^ Σ log {1 + Λ
i

+ Σ log {l +

-A-Bt

— A —

+ 3 log (3 + 1/25) ,
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where \, λ2 e {λ: d(X, σ{A)) — 28}, since the inequality 1 + t ^ e* for a real
number ί, it follows

^ Σ II5i(λ*/ - A - B2y
ι\l + 3 log (3 + l/2δ)

i=l

^(2/δ)| I « + 3 log (3 + 1/25).

Thus we have, for any unit vectors x, y in φ and for λ with d(X, σ{A)) ^ 2δ,

ί - A - B,)"1}"1*, 1/) IMJ L £ log+1 ({I - ^(τ-H

On the other hand by the Poisson-Jensen formula [12, Theorem 1.1, p. 1]

we have

r(z - zk)log I ({I - BSr\pe^)I -A- BfY% y) \ - Σ log
r2 - zkz

= J - Γ log I ({I - B,Hr\re»)I -A- Bf% y) \
2π Jo

x dβ

r2 - 2rρ cos (θ - φ) + p2

where z = peiφ, 0 ^ p < r and {zk} are zeros of the function
({/ - B^Z-^I - A - B2yr% v)

in IzI < r. Since 0 < \r(z - zk)/(r2 - zkz)\ < 1 and

r — p r2 —
r + p = r2 - 2rp cos (/? - φ) + p2

we have

l og I ({I - B^ipe^I - A - B2)~T% V) I

^ _ r + _ £ 1 f2π

 ] o g + 1 ( { j _ Bi(τ-i{reiθ)I _ A

r — p 2π Jo

^ ^ L £ . {(2/δ) || Bx ||x + 3 log (3 + 1/2S)} .
r — p

Since τ is a conformal mapping, therefore we have

r + p
r - p

1 | | 1 + 3 log (3 + l/2δ)} ,

for λ with d(λ, σ(A)) ^ 3δ. Therefore from the already proved inequalities
in above, we have
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, + 3log(3

for X with d(X, σ{A)) ^ 3d.

We put 7(ί) = 7(ί, B). Using this function we can write

log || (XI - Γ)-11| ^ log (1/δ) + 0(1/δ). {(2/δ)y(l/δ) + 3 log (3 + l/2δ)} ,

for λ with d(X, σ(A)) ^ 3d. Then we have for sufficiently small δ > 0,

sup log log || (XI- T)~ι\\

^ log log (1/δ) + 0 log (1/δ) + log (2/δ) +

+ log{31og(3

Here, log log (1/δ) and log (1/δ) are integrable on some interval (0, ε], let
us prove that logτ(l/<5) is integrable on (0, ε]. This follows from the
assumption, BeCω, in fact

l/e

while

7(ί)ί

with ε/^i?) == 1, since log w < 1 + 1/2 + 1/3 + + 1/n, we have

^ Σ'μk(B)/k ^

where X' denotes the summation over k such that μk(B) ^ 1/ί. Therefore
we can obtain the following growth condition of the resolvent of T near
its spectrum

Γ log log M(δ)dδ < oo ,
Jo

where M(δ) = s u p d ( ; > , σ U ) ) ^ | | ( λ l - Γ ) " 1 ^

From the above growth condition of the resolvent of T near its
spectrum, by virtue of Theorem 2.2 (in section 2) Theorem in this section
was obtained.

COROLLARY 3.5. Let Te?d($). If T - T* eCω(i.e., the imaginary
part of T belongs to Cω) and o(T) is not reduced to a single point, then
T has a proper closed hyperinvariant subspace in § .
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