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In the present paper, we shall investigate an extension of the Gelfand
representation of commutative C*-algebras to finite von Neumann algebras
from the point of view of continuous reduction theory. Comparing with
the successful treatment of this method in commutative cases, the re-
duction theory of non-commutative von Neumann algebras seems to have
been, somewhat, depending upon measure theoretic arguments. However,
if an another reduction theory can be patterned after Gelfand represen-
tation theorem it may give a considerable contribution to the theory of
operator algebras. There have been many literatures in this direction as
found in the recent comprehensive survey on representations of algebras
by continuous sections by Hofmann [6].

Let 21 be a von Neumann algebra with center Q. A basic idea in those
discussions is to construct a suitable fibre algebra at each point of the
spectrum Ω of 3 without the pathology of measure zero, and to consider
a representation of 21 as an algebra of cross-sections in this fibred space.
For example, if we consider a minimal closed ideal I(cύ) containing a point
ω e Ω, we get a quotient factorial C*-algebra 2l/I(ω) and a representation
of 21 as a C*-algebra of continuous cross-sections, or of continuous operator
fields ([4], [14]). A peculier situation in a von Neumann algebra, however,
is that there is a one-to-one correspondence ω «-> 2ftω between the spectrum
Ω and the maximal ideal space of 2t. The correspondence can be also
considered for the commutant 2t' on the same space Ω, so there would
be a representation theory taking this advantage for von Neumann
algebras. The situation has been exploited extensively by Teleman [12]
in his algebraic reduction theory of a von Neumann algebra by using
sheaf theory

In the following we shall propose a reduction theory of a finite von
Neumann algebra following the idea in the Sakai's exposition [7] and
Vesterstrom [16]. We set the C*-algebra 2l(ω) = 2t/3Kω at ωeΩ as the
fibre and ask further the algebra 2t(ω) to be a von Neumann algebra.
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Since this can not be expected in general as shown in Takemoto [9] and
[10], we naturally assume SI to be a finite von Neumann algebra. In this
case, the maximal ideal Wlω is particularly determined by k|-application
and the algebra Sl(ω) turns out to be a finite factor. On the other hand,
one notable property of a von Neumann algebra among C*-algebras is
that it has the duality 21 = (SI*)*, the conjugate space of the predual SI*.
We mainly take this duality into our arguments, considering represen-
tations of SI and SI* as an algebra of bounded weakly continuous fields
over St(ω)'s and as Banach spaces of functional fields over Sl(ω)'*s. We
start first with a von Neumann subalgebra Ssf of 3 and the conditional
expectation ε to j y . By means of this ε we define an ideal Έlω to each
point ω of the spectrum Ω of Ssf to the effect that the quotient algebra
Sl(ft)) = St/SKω becomes a finite von Neumann algebra. We shall introduce
a certain Banach space of cr-weakly continuous j^-module mappings to
j ^ (the module predual of SI), which turns out to be the space of all
continuous fields over {Sl(ω)*; ωe Ω} (Proposition 2.4). The algebra SI will
be represented as an algebra of all bounded weakly continuous fields over
{Sl(ω), 31(0))*; ωe Ω} under the duality between two spaces of cross-sections
(Theorem 3.3). This could be regarded as a Gelfand type representation
of SI. In § 4 we shall treat the reduction of subalgebras of SI. The result
of Takesaki [11] will be proved from our view point as one of consequences.
The situation will, then, be clarified further in Theorem 4.8 giving a

necessary and sufficient condition that 33(ω) = S(ω) holds for a point
ω e Ω, where the notations mean the weak closure of 33(ω) and S3 in Si(ω)
and SI for a C*-subalgebra 33. In the final §6 we give a connection be-
tween cr-weakly continuous j^-module mappings and those elements in
the module predual of SI.

1. Preliminaries. In this section we provide some notations and
facts that will be used later. We assume, throughout our discussions,
S( to be a ^-finite von Neumann algebra. But the reader will notice that
the assumption is merely used for convenience and the proofs can be
mostly effected without this assumption. We shall be concerned with a
von Neumann subalgebra Jϊf in the center 3 of SI. Let Ω be the spectrum
of Jϊf. We identify J^ with C(Ω), the space of all complex-valued con-
tinuous functions on Ω. Let τ be a faithful normal trace of SI. We fix this
trace τ throughout our discussion. Then, it is known (cf. [15]) that there
exists a unique faithful normal projection ε of norm one to J ^ invariant
by r, called the conditional expectation to Stf. The projection ε satisfies,
as in the case of bj-application to the center, the equality ε(x*x) = ε(xx*)
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for every x e 21. In fact, for every x e 2i and a e stf, we have

(aε(x*x)f τ> = (ε(ax*x), r>

= <αa?*α?,-τ> = (xax*, r>

= (axx*, τ) = (aε(xx*)y τ> ,

and

(a(ε(x*x) - ε(xx*)), τ> = 0 .

Hence ε(x*x) = ε(xx*).

Let J*f($L, Szf) be the Banach space of all bounded linear mappings
of SI into s/ with uniform norm. By an j^-module mapping, we mean
a mapping Φ in -5^(31, jzf) such that Φ(axb) = aΦ(x)b for every α, 6 e J ^ .
We define the mapping εα(αe2i) by εa(x) = ε(ax) = ε(xa), then εa is a σ-
weakly continuous j^-module mapping to Jϊf. Let F a be the closure of
{εa;ae 21} in =5 (̂21, J ^ ) . This is a closed invariant subspace of -Sf (21, J ^ )
in the following sense. For each a e 21 we consider linear transformations
La and i2α on -£*(&, J ^ ) defined by LaΦ(x) = Φ(ax), RaΦ(x) = Φ(aα). Then

L σ F « c F « and i 2 α F a c F a for every α e S l .

In particular, for a function / e j ^ , LfΦ(x) = RfΦ(x) = Φ(/α?) =fΦ(x). Hence
we understand by /oφ the product of / and Φ and in this sense F« is an
j^-module. Let ω be a point of Ω. The set of all x e 21 with e(x*x)(ω) = 0
forms a closed ideal Wlω of 2t. When J^f = Q,ε coincides the bs|-application
and 9Kω becomes a maximal ideal. Let 2t(ω) be the quotient C*-algebra
of 21 by 3Kω. The quotient homomorphism will be denoted by πω and the
image of x by x(ω). Let Φ be a bounded j^-module mapping to Szf such
that Φ(2Kω) c SKω Π J&. Then, Φ(α?)(α>) only depends on the image x(ω)
for each #e2i and \Φ(x)(ω) \ ̂  | | Φ | | ||aj(ω)||. Hence Φ gives rise to a
bounded functional Φ(ω) on Sl(ω) by <a?(ω), Φ(ω)} = Φ(x)(ω). In particular,
all elements in F a induce bounded functionals on 2t(ω) at each point ω.
Put F«(ω) = {Φ(ω); Φ e F«}. Vn(ω) is an invariant subspace of the conjugate
space 2l(ω)*, that is, for every Φe F«, Ra{ω)LHω)Φ(ω) belongs again to Vn(ω)
where

= (J>(ω)x(ω)a(ω),

It will be shown that Fa(ft>) is even closed in 2l(ω)* and 2l(ω) becomes
the dual space of V^(ω). We shall realize F a as the space of all con-
tinuous fields over {F«(ω)}. Hence, our first concern is to show the
continuity of the function ω-» | |Φ(ω) | | for ΦeV*. Here our case is a
little different from those cases treated in [7] and [16] but the proof
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proceeds along the same line as in them. We only provide the whole
proof of the key lemma.

LEMMA 1.1. Let Φ be a σ-weakly continuous jy-module mapping to
such that Φ(Ttω) c 5Dΐω Π J ^ for each ωeΩ. Then there exists a unitary

element ue Si such that \\Φ(ω) || = Φ(u){ω). Hence the function ω —> ||Φ(ω)\\
is continuous on Ω.

PROOF. Let φ be a faithful normal state of s*f and put ψ = φ°Φ.
Then f is a tf-weakly continuous linear functional on 21 and, since 21 is
finite, there exists a unitary element u with (u, ψ> •= \\jr\\. Therefore,

and Ruψ is a positive functional on 21. We assert that RUΦ is a positive
mapping. In fact, let x be a positive element and write real and imagi-
nary parts of Φ(xu) into their positive and negative parts;

Φ(xu) = h+ - hr + i(k+ - Ar)

We can find a projection p of J / such that pk+ = k+ and pkr = 0. Then

0 ^ (Φ(pxu), φ} = (pΦ(xu)9 φ)

Hence <fc+, >̂ = 0 and k+ = 0. Similarly AT = 0 and also we get hr = 0.
Thus Φ(xu) :> 0. Therefore, the functional Ru{ω)Φ(ω) becomes positive.
Since u(ω) is a unitary element in 2l(ω), we have;

- \\Ru{ω)Φ(o>)\\ =
= <^(ω), Φ(ω)> = Φ(u)(ω) for each ωeΩ .

This completes the proof.
We notice that | |Φ| | = sup {||Φ(ω)||; ωe Ω) for such a mapping. In

fact, we have ||Φ(α>)|| ^ | |Φ| | and for each #e2l with ||g|| ^ 1,

|| = sup {\Φ(x)(ω) I; ωei3}

= sup {| (x(ω), Φ(ω)) |; ω e Ω]

2. Continuous functional fields over preduals. Let S be a closed
subset of Ω and put J — {xe%; ε(x*x)(ω) = 0 for every ωeS}. J is a
closed ideal of 21. Let I = Jzf Π /, then J is a closed ideal of j ^ . By
the definition of F«, Φ(J) c /for every Φ e V%. Hence the induced mapping
Φ(S) from a/jΞgt(S) to j*/I= jr(S) is defined by Φ(S)(x(S)) = Φ(»)(S)
where a?(S) means the image of α? in 2t(S). Let F,(S) = {Φ(S);Φe FJ,
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then Fa(S) is an invariant subspace of £?(%{S), Jf{S)). The following
lemma is a slight modification of Proposition 1.3 in [16]. We omit the
proof.

LEMMA 2.1. For each Φ e F a,
(i) Φ(S) is norm bounded and ||Φ(S)|| = sup {||Φ(ω)||; ωe S). More-

over, \\Φ(S)\\ coincides with the quotient norm in VJK where K is the
kernel of the mapping Φ—*Φ(S).

(ii) Fa(S) formes a closed invariant subspace of Jέf($L(S), Jϊf(S)).

In particular in case where S = {ω}, Fa(ω) is a closed invariant sub-
space of 2t(ω)*. Another consequence of this lemma is that for any-
functional Φ(ω) with \\Φ(ω) || < 1 there exists an element Φoe F a such that
φo(ω) = Φ(ω) and | |Φ 0 | | < l This fact will be often used later.

Now we can also prove the following generalization of the result of
[7] and [16] following the lines of their arguments. We leave the proof
to the reader.

PROPOSITION 2.2. For each ωeΩ, %{ώ) is isomorphic Fa(ω)* =
2t(ω)**/Fa(ω)° where Fa(ω)° means the polar of Fa(ω) in St(ω)**. Thus,
%{ω) is a finite von Neumann algebra with the predual Fa(ω) and the
faithful normal trace ε(ω) = ε^ω).

From the above fact an element Φ in F a can be regarded as a func-
tional field over preduals VΆ{ω)fs. We denote this field by Φ and put
V% = {Φ; Φe F«}. We shall give the definition of a continuous field defined
by {V*(ω), V*}.

DEFINITION 2.3. A functional field Ψ over {V^{ω)\ is said to be con-
tinuous with respect to F a iff, for each ε > 0 and ωQ e Ω, there exist an
element Φ 6 F a and a neighborhood U(ω0) of ω0 such that \\Φ(ω) — Ψ(ω) \\ < ε
for every ωe U(ω0).

Let C(Ω, Vv(ω), F«) be the set of all continuous fields. Then, the
function ω-+\\Ψ(ω)\\ is continuous for each Ψe C(Ω, Fa(ω), F«) and we
define the norm | |y | | = max {||y(ω)||; ωeΩ}. It is known (cf. [2], [14])
that with this norm C(Ω, Fa(ω), Fa) becomes an j^-module

The following proposition is rather a standard result in the theory
of continuous fields.

PROPOSITION 2.4. The correspondence Φ<^Φ gives an isometry between
V and C(Ω, Fa(ω), Fa).

PROOF. By the remark after Lemma 1.1, the correspondence gives
an isometry from F into C(Ω, V%{oή, Fa). We assert that the isometry
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is onto. Take a continuous field Ψ and a positive number ε. By the
definition of continuity there exists a family {(U(ω), Φω); ωeΩ} of pairs
of closed and open neighborhoods and elements of F a such that \\Ψ(rj) —
0ωO?)|| < ε for every ηe U{ω). Since Ω is compact, there exists a finite
subcovering {Z7(â ); i = 1, 2, , ri) of {Ϊ7(ω); ωeΩ} and, as each Ϊ7(ω) is
closed and open, we may assume that {U{ω$} are mutually disjoint. Let
Zi be the projection in Szf corresponding to U{ω^). Writing as Φ =
Σ?=12;oφω., we see that Φe F a and \\W(ω) — Φ(ω)\\ < ε for every ωeΩ.
Hence,

\\Ψ - Φ\\ = sup{||?Γ(ω) - Φ(ω)\\;ωeΩ) < ε .

As ε is arbitrary, this means Ψ e V*. This completes the proof.

From this proposition we see that each continuous field is realized as
a module mapping in F«.

It should be noticed that contrary to the present case, the space of
all continuous field is usually quite bigger than the original induced family
of fields. For example, C(Ω) can be considered as C(Ω, C(ω), C) where
C(ω) is the fibre of complex numbers and C is the set of all constant
functions.

3. Weakly continuous operator fields over von Neumann algebras
and the Gelfand representation of St. An element x e % can be considered
as an operator field over finite von Neumann algebras {$ί(ω); ωeΩ}. We
denote this operator field by x and call this the Gelfand representation
of x. Let € = {x; xeW). We shall characterize those fields in § among
operator fields over {5ϋ(ω)}.

DEFINITION 3.1. An operator field a over {SI(ω)} is called a bounded
weakly continuous field if the function α>—•||α(ω)|| is bounded and, for
each Φ e F«, the function ω —> (a(ω)9 Φ(ω)} is continuous on Ω.

Let W(Ω, 2t(ω), F«(ft>)) be the space of all bounded weakly continuous
fields. We consider in W(Ω, 2l(ω), V%{ω)) the norm 11 a\\ = sup{|| a(ω) \\;ωeΩ}.
Then, it is a straightforward calculation to see that the space is an όzf-
module Banach space. Let [roFJ be the closed subspace of 21* spanned
by {τoφ; Φe V*}. The space is invariant and total, that is, (x, φ} = 0 for
every φe [τoV*] implies x = 0. Hence SI* = [roFJ. Let μ be the normal
measure in Ω corresponding to the restriction of τ to Stf. The next
lemma can be proved following after the proof of Proposition 1.4 in [16].
We omit the detail.

LEMMA 3.2. For each σ-weakly continuous s$f-module making Φ to
such that Φ(Wω) c Wlω Π J^, we have;
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| | roφ| | = ( \\Φ(ω)\\dμ .
JΩ

Now take an element x e 2t, then for each Φ e V* we have

(x(ω), Φ(ω)) = Φ(x)(ω) and ||a?|| = sup {\\x(ω) | |; ω e Ω) .

Hence x is a bounded weakly continuous field whose norm is equal to
that of x. As we have named before this may be regarded as a non-
commutative extension of the Gelfand representation of commutative C*-
algebras to the case of finite von Neumann algebras. In fact, we get the
following representation theorem.

THEOREM 3.3. The representation x—+x gives an isometry between 21
and W(Ω,yL(ω), V«(α>)), that is, € = W(Ω,$ί(ω), Fa(ω)).

PROOF. It suffices to show that the correspondence is onto, so let a
be a bounded weakly continuous field over {2t(ω), V%{ω)}. For each Φ e F a,
we have

^ \\a\\^\\Φ(ω)\\dμ

The last equality holds by Lemma 3.2. Since the correspondence φ—>τoφ
is one-to-one, we can consider a bounded linear functional,

τoφ —• i <α(ω), Φ(ω)}dμ ,
JΩ

that can be extended to the space [ro7fl] = 51*. Therefore, there exists
an element α e 21 such that

α, τoφ} = ί <α(α>), Φ(ω))dμ

for every Φ e V%. We assert that a(ω) = α(ω) for every ωeΩ. In fact,
for each / G J / and ΦeV*, foφ belongs to Vn and hence

f(ω)(a(ω) - α(ω), Φ(ω)>d^ = ( (a(ω) - a(ω), foφ(ω)}dμ
JΩ

= \ <α(ω), foφ(ω))dμ - f <α(ω), foφ(ω))dμ
JΩ JΩ

= \ f°Φ(a)(ω)dμ - <α, τo/cφ>

(α), r> = 0 .

Therefore,
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<α(ω) — a(ω), Φ(ω)) = 0 μ-a.e. ω .

Since the above function is continuous, this implies

<α(ω) — a{ω), Φ(ω)} = 0 for every ω e Ω .

Thus, by Proposition 2.2, α(ω) = a(ω) for every ω e £? and α is the cor-
responding element of SI to the field α. Moreover, we have | |α | | = | |α | | .
This completes the proof.

Notice that, in case of SI = j y , Vu is nothing but the space C(Ω)
itself considered as the space of mappings in C(Ω) by multiplications and
the above representation is reduced to the usual Gelfand representation.
Thus our treatment means that we are not concerned with the whole
measure theoretic duality L°°(Ω, μ) = L\Ω, μ)* but are rather inclined to
know the nuclear relation between their subspaces (C(Ω), C(Ω)) by con-
sidering the module duality in our fibred space. Essentially our discussion
is a decomposition theory of the conditional expectation ε into numerical
normal traces. In particular, when j^f = 3, the expectation ε is the fc|-
application and the fibre algebras 2t(ω)'s become finite factors (unfortu-
nately, mostly acting on non-separable Hubert spaces). The decomposition
of the trace τ invokes a measure theoretic reduction theory of finite von
Neumann algebras, whereas the decomposition of the b|-application leads
us to the present reduction theory of continuous type.

It is also to be noticed that the above representation is compatible
with multiplication and *-operation in the sense that the element xy goes
to the field composed by pointwise multiplication of x and y and #* goes
to the field defined by {x(ω)*}. Therefore, in this case, W(Ω, St(ω), V%{ω))
becomes a C*-algebra by pointwise multiplication and *-operation and the
representation is actually a ^isomorphism. However, even if we give a
functional field, the space of bounded weakly continuous field with respect
to this functional field might not be closed with pointwise multiplication,
that is, this space might not be an algebra.

It is known ([16; Theorem 3.4]) that, in general, one can not expect
the continuity of the function ω —> ||a?(fi>)|| for xe%. However, as seen
from Lemma 2.1 the function ω—*||α?(ω)|| can be expressed as the sup-
remum of a family of continuous function, {| (x(ω), Φ(ω)} |; \\Φ\\ < l , Φ e V*}.
Therefore, it is lower semicontinuous, and hence continuous except for a
non-dense subset.

Let V be the space of all σ-weakly continuous g-rcwclule mapping
from 21 to 3 Halpern has proved ([5; Theorem 3]) that an arbitrary von
Neumann algebra SI is expressed as the space of all bounded 3-m°clule
mappings from V to Q, the module dual of V. In the present case where
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21 is a σ-finite von Neumann algebra, an element xe% gives rise to a
bounded j ^ - m o d u l e mapping θx from F a to s^ by defining ΘX(Φ) = Φ(x).
Moreover, we have;

\\θx\\ = suV{\\θx{Φ)\\; Φ eV*,\\Φ\\ <l)

= sup {\Φ(x)(ω) I; ω e Ω, Φe V,, | | Φ | | < 1}

- sup {| <x(ω), Φ(ω)} |; ω e Ω, Φ(ω) e V%(ω), \\Φ(ω) | | < 1}

= swp{\\x(ω)\\;ωeΩ} = | | g | | .

That is, the correspondence x—+θx is an isometry. Therefore, we get the
following more precise formulation of this kind of representation theorem.

THEOREM 3.4. Let 31 be a σ-finite finite von Neumann algebra, then
the above correspondence gives an isometry between SI and the space of all
bounded jy-module mappings from V% to

PROOF. We must show that the correspondence is onto. Let θ be a
bounded j^-module mapping from V* to j y . Take a point o)0eΩ and
fix. We shall show that θ gives rise to a bounded linear functional θ(ω0)
on Fa(ω0). Let Φ be an element of Vn. Then θ(Φ)(ω0) depends only on
the functional Φ(ωQ). In fact, consider an another element Ψ e V% such
as Ψ(o)0) = Φ(ω0). Then, for any positive number ε there exists a closed
and open neighborhood U of ω0 such that

\\Ψ(ω) - Φ(ω)\\ < e/\\θ\\ for every ωeU.

Let z be a corresponding projection of j^f to Z7. We have,

\\z{Φ-Ψ)\\ = \\z{Φ-Ψ)\\^εl\\θ\\.

Hence,

\θ(Φ)(ω0) - θ(Ψ)(ωo)\ = \z(ωo)θ(Φ - Ψ)(ωQ)\

= \θ(zo(Φ - Ψ))(ωo)\^ \\θ\\.\\z(Φ - W)\\ £ ε .

As ε is arbitrary, θ(Φ)(ω0) — θ(Ψ)(ω0). We define the linear functional
θ(ω0) by <^(ω0), Φ(ω0)) = θ(Φ)(ω0). By Lemma 2.1, θ(ω0) is bounded and
||ί(α>0)|| ^ \\θ\\, hence θ{ω)e%{ω). Clearly the field ω-+θ(ω) is a bounded
weakly continuous field over {SI(ω), V%(ω)}. Hence, by Theorem 3.3, there
is an element x e 31 such that x(ω) = θ(ω) for every ωeΩ. Thus,

θβ(Φ)(ω) = Φ(x)(ω) - <x(ω), Φ(ω))

= (θ(ω), Φ(ω)} = θ(Φ)(ω)

and ΘX{Φ) = Θ(Φ) for every Φ e V*.

Henceforth we call F a the module predual of 31.
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4. Restricted functional fields to subalgebras. Let S be a C*-
subalgebra of SI. We assume always 35 contains the unit of St. We
mean by 35(ω) the quotient image of 35 in 2t(α>). 35(α>) is a C*-subalgebra
of 2t(ω). We denote by Φ|8 and Φ(ω)\mω) the restrictions of Φ and Φ(ω)
to 35 and 35(α>), respectively. In §1, we have noted that the equality

= sup {||Φ(α>)||; ω eΩ} holds for a bounded ^ - m o d u l e mapping Φ to

such as Φ(SKω) c 3Kω Π J ^ . However, the calculation also goes through
the same way in this case of restricted mappings and we get

LEMMA 4.1. Let 35 be a C*-subalgebra of SI, then

The following lemma should be due to Theorem 7 in Dixmier [1;
Chapter I, §6], once one notices that the functional (x(co), ε(ω)} = ε(x)(ω)
is a normal trace of 3t(ω). We omit the detail.

LEMMA 4.2. For the conditional expectation ε of SI to j ^ , we have

\ε(ab)\ ^ ε ( | α δ | ) ^ | | α | | e ( | 6 | )

for every a, b e 21 where \ a | means the absolute value of an operator α.

As a consequence of this Lemma, we get the following

LEMMA 4.3. Let 35 be a C*-subalgebra of Sί. Then, for each a e 35,
we have;

/or ωefl.

PROOF. By the above Lemma, we have, for each #e35,

|<a?(α>),eβ(ω)>| = |eβ(a?)(ω)| = |e(oα?)(ω)|

Hence,

l |e .(ω) | β ( . , l l^e( |α | )(ω).

Let 35(ω) be the weak closure of 35(ω) in SI(α>), and let a(ω) = u\a(ω)\
be the polar decomposition of a(ω). The element \a(ω)\ = \a\(ω) belongs

to 35(ί£>) and ue^8(ω). Hence,

- <|α(ω)|, ε(ω)} = <u*α(ω), ε(ω))

= (u\ Raiω)ε(ω)) = <u*, εa(ω))
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Therefore,

ε(\a\)(ω) = \\εa(ω)\mω)\\ for every ωeΩ .

By Lemma 4.1,

Now let 33 be a von Neumann subalgebra of 21 containing j ^ . Then
33 itself is a σ-finite finite von Neumann algebra whose center contains
S/. Hence one can construct the module predual of 33 as we have done
for St. Let λ be the restriction of ε to 33, then λ is the conditional ex-
pectation to sf with respect to the trace r | 8, the restriction of τ to 33.
Let V8 be the uniform closure of {λα; αe33} in ^(33, Ssf). The following
result corresponds to the fact for usual predual spaces, that is, the fact

THEOREM 4.4. Let 33 be a von Neumann subalgebra containing
then F 8 = Vu\* — {Φ\%; Φ e Fa}. Hence V«|8 is a closed invariant subspace
of

PROOF. Let δ be the conditional expectation to 33 with respect to τ,
that is, δ is a unique faithful normal projection to 33 invariant by τ. By
the uniqueness, we have ε = λo<5. Take an element εa in F a . Then, for
#eS3,

ea(χ) = ε(ax) = \od(ax) = X(δ(a)x)

= λ ί ( β ) (a?) .

Hence, εα|8 = λ3(α) e F s and F«|8 c F 8 .
Conversely, take an element f e y 8 . Then the mapping ψoδ belongs

to £f<&L,jf) and ||^*oδ|| = \\W\\. Let {αn} be a sequence in 33 such that
| |λβ n - y | | - ^ 0 . Put Φn = Xanoδ and Φ = ψoδ We have, for xe%

Φn(x) = Xanoδ(x) = X(anδ(x)) = Xoδ(anx)

= ean(x) and ΦneV*.

Moreover,

\\φn - φ\\ = \\(χan - Ψhδ\\ = \\xan - w\\-+o.

Therefore, Φ e Vπ and Ψ = Φ|8 e F a | 8 .

A consequence of this theorem is the following proof of Takesaki's
theorem in terms of fields of algebras and their preduals.

THEOREM 4.5 (Takesaki [11]). Let 33 be a von Neumann subalgebra
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of 2t containing Szf. Then, for each ω e Ω, 33(ω) is a von Neumann sub-
algebra of %(ω).

PROOF. Let V^(ω) be the fibre induced from V9. Then, V^(ω) is
the predual of the von Neumann algebra 33/35 Π 9Kω. Let θ be the *-
isomorphism between 23(ω) and 23/33 Π Wlω, then Theorem 4.4 shows that
*θ induces an isometry between V%{ω) and the quotient space Fa(ω)/S3(ω)°
where 33(ω)° means the polar of 33(ω) in V*{ω). Since (Ft(ω)/5B(ύ>)0)* =

€(ω), the weak closure of 33(ω), we have ^(SS/SS Π 2Kβ) = »(5) = 33(ω).

Combining this with Theorem 3.3 we have

COROLLARY 4.6. Let S8 be a von Neumann subalgebra of 31 containing
Sf, then S3 ccm &e considered as the set of all bounded weakly continuous
fields ranging over 33(ω)'s.

It has been pointed out in [17] that in every quotient image of a von
Neumann algebra the image of the center coincides with the center of
the quotient algebra. Therefore, each Q(ω) is the center of St(ω), hence
a von Neumann subalgebra. Let fc| be the b|-application of 2ί, that is,
the unique faithful normal expectation to 3 such that b|(a?*α?) = b| (&&*).

PROPOSITION 4.7. The center 3 of 31 cem be considered as the set of
all bounded weakly continuous fields ranging over $(ωys. Furthermore,
the mapping b)(ω): x(ω) —> b|(α?)(α>) is ίfee ^-application of the finite von
Neumann algebra 3t(ω).

PROOF. AS ε is the unique τ-invariant conditional expectation, we
have ε = e^b) where εx is the restriction of ε to Q. Suppose x(ώ) = 0,
then ε(x*x)(ω) = 0. Hence

ê bi(α?*α?)(α>) ^ e1(b|(ίc)*b|(α?))(tt>) = 0 ,

and ύ[(x)(ω) = 0. Thus b|(ω) is well defined and one easily sees that lq(ω)
is a projection of norm one from §I(α>) to 3 ( ω ) s u c ' 1 a s b|(fi>)(a;*(ω)αj(α>)) =
b)(ω)(a?(α>)α?*(α>)). Therefore, fcl(ω) is the ^-application of %{ω) (cf. [1;
Chapter III, 8]).

Now Theorem 4.4 and Lemma 1.1 show that the function ω —>
\\Φ(ω)U(ω)\\ is continuous for each ΦeV* for such a von Neumann
subalgebra 33 as S3 Z) J ^ \ And Corollary 4.5 says that in this case the
quotient image of S3 is weakly closed in %(ω). The next theorem will
clarify this situation. Let § be the weak closure of 33.

THEOREM 4.8. Let S3 be a C*-subalgebra of SI containing Jϊf. Then

$3(w0) = %}((o0) for a point coQeΩ if and only if, for each Φ e F a , the
function ω —• || Φ(ω) | 8 ( ω ) || is continuous at ω0.
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That is, the continuity of restriction functional fields covers a weak
point of the discontinuity of the quotient homomorphism πω.

PROOF OF THE THEOREM. By Corollary 4.5, 93(ω0) c S8(ωQ). Suppose
that 93(ωo)£Ξ2}(α)0)> then there exists an element Φ(ω0) e V*(ω0) such that
Φ(β>o) [»~O> = 0 a n ( * \\Φ(ωo) |8(«O)II = l By the assumption, there exists an
open and closed neighborhood U of ω0 such that ||Φ(α>) | 8 ( ω ) | | ^ 1/2 for
ω e U. Let z be the characteristic function of U. Then ||2oφ(α>) | 8 ( ω ) || 1*
for all ωeΩ. Hence, by Lemma 4.1,

= | | * o φ | 5 | | = \\zoΦ\9\\

= sup {\\zoφ(ω) \mω)\\: ω e Ω) ^ 1/2 ,

a contradiction. Notice that, as ΦeV% is σ-weakly continuous, | | Φ | 8 | | =

| | Φ | 8 | | . Therefore, €(ωQ)^%(ω0).

Conversely, assume 23(ω0) = &(a)0). Let d be the conditional expec-
tation to JB invariant by τ. For each a e 31 and ωeΩ,

||e β (ω)| 8 ( ω ) || = ||eβ(ω) |8%|| ^ ||eβ(ω

= e(\δ(a)\)(ω)

by Lemma 4.3. In particular, since SJ(ω0) = 8(α>0), l|Sα(β>o) lβ<ωo>ll =
II εβ(ω0) |s{ft,0) || = ε(| 3(α) |)(ω0). Therefore, the function ω -> || εa(ω) | 8 ( ω ) || is
upper semi-continuous at ω0. On the other hand, since ||εβ(α>) | 8 ( ω ) | | =
sup{|<α;(cy), εa(ω)) |; x(ω) e 8(fi>), ||α?(α))|| ^ 1} = sup{| <x(ω),ea(ω))\;x(ω) e 8(ω),
||a?(α>)|| < 1} = sup{|<α?(α>), εβ(ω)>|; α?eS3, | |g | | < 1} for each ωeΩ and the
function ω —> <a?(fi>), εα(ω)> is continuous, the function ω—*||εβ(α>) |8 { β > ) | | is
lower semi-continuous on 42. Therefore, the function ω—* ||εβ(ω) | 8 ( β 0 | | is
continuous at ω0. As F« is the uniform closure of the set {εα;αe2t}, the
function ω —> ||Φ(α>) | 8 ( ω ) || is continuous at ω0 for every Φ in V%.

We remark that the above condition is not enough to assure 93 = S
as we see, for example, in the case of commutative algebras. In order
to get weak closedness of 95 we need the following condition.

THEOREM 4.9. Let 58 be a C*-subalgebra of SI containing Jzf, then
the following conditions are equivalent;

(1) 93 is a von Neumann subalgebra,
(2) For each εae V%, there exists an element v of 93 with \\v\\ ̂  1

such that | |εβ(ω) | 8 ( ω ) | | = εa(v)(ω) = ε(av)(ω) for every ωeΩ.
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PROOF. The implication (1) ==> (2) has been already obtained from
Lemma 1.1 and Theorem 4.4. We must show the converse. Since each
element of $ is a linear combination of unitary elements, it suffices to
show that each unitary element u of $ belongs to 33. From the as-
sumption, there is an element ve^S with ||v|| ^ 1 such that

\\eu(ω) \mω)\\ = εu(v)(ω) = ε{uv)(ω)

for every ωeΩ. On the other hand, by Lemma 4.3,

Since S(ω) = ?8(ω) by Theorem 4.8, this implies,

I K ( ω ) | β ( β ) | | = II e.(ω) 1.72,11 = \\εu(ω) | 5 ( β ) | |

= 1 .

Hence, ε(uv) = 1.
Let uv = h+ — h~ + ik be the decomposition of uv into positive and nega-

tive real parts and imaginary part. Then ε(uv) = ε(/&+) — e(h~) + iε(fc) = 1,
and ε(k) = 0. Thus, 1 = ε(nv) <: ε(h+) ^ 1. Therefore, e(l - h+) = 0 and
fe+ = 1. Hence e(λ~) = 0 and hr = 0. Namely, wv = 1 + ik. However, the
inequality

1 ^ \\uv\\ = | | l + iifc|| - | | 1 + Λ2||1/2

implies k = 0. Hence uv = 1, and % = v* 6 33. This completes the proof.

5. Restricted fields to closed subsets. Let S be a closed subset of
Ω. Then we can consider the C*-algebra consisting of restrictions of all
bounded weakly continuous fields with the norm

Denote this C*-algebra by %.\S. Let F a | S be the space of all restrictions
of those fields in F* to S with the norm

Then one may expect that under certain conditions these two spaces of
fields, 211 S and F a | S inherit the original duality between 2t and F a in
this localization. The answer to this question is nothing but recent
Vesterstrom's result ([16; Theorem 1.2]). In fact, as we have explained
in §2, if we define the ideal J= {x; ε(x*x)(ω) = 0 foτωeS) = Π<oeSWlω

the quotient C*-algebra St/J = 9t(S) is isomorphic to € | S and V*(S) is
isometric to F« | S. With these things, Vesterstr0m's theorem can be
stated in the following way;
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THEOREM 5.1. The couple (% \S,V*\ S) preserves the duality if S is
itself a countably decomposable hyperstonean space and % \ S becomes σ-
finite finite von Neumann algebra with the module predual V% \ S.

If one could prove an suitable extension theorem for bounded weakly-
continuous fields, one could give an another proof of the above theorem.

6. We have remarked before that in case of St = j ^ = C(Ω), C(Ω)
itself is the module predual space. Now, C(Ω) is a dense subset of
Lι{Ω, μ) and U{Ω, μ) is considered as the space of all σ-weakly continuous
linear functional on C(Ω). In connection with this, we give an adaptation
of Theorem 1.3 in [16] in the following form. From this theorem one
might be able to say that the space of all σ-weakly continuous j^-module
mappings to Ssf is the completion of F a in some sense.

THEOREM 6.1. Let Φ be a σ-weakly continuous Szf-module mapping
of 31 to s^, then there exist a sequence of orthogonal projections {zn} in
j&f and a sequence of elements {Φn} in V* such that Φ — ΣΛ=I3«OΦΛ.

PROOF. Since the functional τoφ is σ-weakly continuous there exists
a sequence {Ψn} in V, such that τoψn converges uniformly to τoφ. Hence-
forth we can employ the same arguments as in the proof of Theorem 1.3
in [16] and find a sequence {zn} of orthogonal projections in s/ and a
sequence {Φw}of elements in V% with Σϊ=i zn = 1 such that

Hence, for every a e,

(aΦ(x), τ> = <β(ax), τ>

= ( Σ Φn(axzn), τ) = (a Σ Φ*(xzn), τ) .
\n=ί I \ w=l /

Therefore, Φ(x) = ΣΓ=i^°^(^) for every #e3t and Φ = Σ?=i^»°Φ«

So far as we are concerned with the case s%f — ,3 the expectation ε
is unique as the b|-application. In general case we have

COROLLARY 6.2. Let ελ and ε2 be conditional expectations to jzf and
Tlι

ω and %Jll be the ideals determined by εx and ε2 for ωeΩ. Let VI and
VI be the module predual of 31 for εx and ε2. Then Wω = Wω and Vi(ω) =
Vi(o>) except for a non-dense subset of Ω.

PROOF. By the above theorem, there exists a non-dense subset N in
Ω such that ε^WJ) c 2K2

ω Π J / and ε2(SKi,) c SKL ί l J / for every ωeΩ ~ N.
Then, if α> e SW2

ω, α;*α; e Wω and ε1(a?*a?)(α>) = 0. Hence αeSfti,. Similarly
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x e Wω implies x e Wω. Thus Wω = Wω for ω e Ω ~ N. It follows from
the unicity of the predual of the von Neumann algebra SX(ω) that V1{ω) =
V2(ω) for every ωeΩ ~ N.

ADDED IN PROOF: (January 1973). During our revising the present
paper, the article: S. Stratila and L. Zsidό; "An algebraic reduction theory
for ΫΓ*-algebras, I" has appeared. Following the idea based on Sakai [7]
their arguments are concerned with the case of semi-finite von Neumann
algebras. Thus they naturally lead to the same kind of context as ours,
though our point of view and results presented here are somewhat dif-
ferent from their's.
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