3-DIMENSIONAL RIEMANNIAN MANIFOLDS WITH DENSE ORBITS

Dedicated to Professor Shigeo Sasaki on his 60th birthday

Shōbin Kashiwabara

(Received February 26, 1973)

Let M be an n-dimensional connected differentiable Riemannian manifold ($n>1$) admitting an intransitive effective connected Lie group H of isometries on M. (The word "differentiable" means "of class C^{∞} ".) For each $p \in M$, the differentiable submanifold $H(p)=\{h(p) \mid h \in H\}$ is usually called an H-orbit. Let $I(M)$ denote the Lie group of all isometries on M and $I_{0}(M)$ its identity component. The group H can be regarded as an analytic subgroup of $I_{0}(M)$ and the closure \bar{H} (in $\left(I_{0}(M)\right.$) of H forms a subgroup which is a connected Lie group. The closure of an H-orbit consists of one point or has the structure of a regularly imbedded connected differentiable submanifold (cf. [2]). This follows from the fact that the closure $\overline{H(p)}, p \in M$, coincides with the \bar{H}-orbit through p, i.e., $\overline{H(p)}=\bar{H}(p)$. We call such a manifold $\overline{H(p)}$ the closure manifold of $H(p)$. For any $q \in \overline{H(p)}$, we can see $\overline{H(p)}=\overline{H(q)}$.

In the following, suppose an H-orbit regarded as a subset of M is dense in M. Then $I_{0}(M)$ acts on M transitively and hence it is shown that M is complete. The following two theorems have been already proved (see [3]):

Theorem 1. 1) Every H-orbit is dense in M,
2) any element of \bar{H} carries every H-orbit onto an H-orbit, and
3) M has the structure of a foliated manifold (cf. [4]) with the H-orbits as its leaves.

Theorem 2. The group \bar{H} has a 1-parameter subgroup γ with the following properties: for any $x \in M$,

1) $\gamma(x) \subset H(x)$, but the closure manifold $\overline{\gamma(x)}$ (in M) is not included in $H(x)$,
2) $\overline{\gamma(x)}$ is homeomorphic to a torus of dimension >1 and a Euclidean metric is induced from M, and
3) $H(x)$ has a structure of product bundle with $\gamma(y), y \in H(x)$, as its fibers.

The purpose of this note is, on the foundation of the theorems above, to establish the following theorem. From this theorem we may see an intuitive structure of M in connection with γ-orbits.

Theorem. Suppose further M is 3-dimensional, compact and orientable. Then,

1) M is homeomorphic to a torus,
2) the metric on M is locally Euclidean,
3) the group \bar{H} is the transitive group of parallel translations on M, and more precisely, M is expressed as one of the Types I-III.

To interpret the Types above, we shall first define some notations. Let T^{m} denote an m-dimensional torus with Euclidean metric and σ a 1-parameter group of isometries on T^{m} such that a σ-orbit is dense in T^{m}. Then, the group σ is a 1-parameter group of parallel translations on T^{m} and the σ-orbits are parallel to each other. Let I denote the segment $\{t \mid 0 \leqq t \leqq c\}, c>0$, of straight line. For 3-dimensional Riemannian manifolds with the same structure as M, we define Types as follows:

Type I: Riemannian manifold T^{3} with the σ-orbits as its γ-orbits, such that its H-orbits coincide with the γ-orbits.

Type II: Riemannian manifold T^{3} with the σ-orbits as its γ-orbits. The H-orbits are defined by 2 -dimensional planes (totally geodesic submanifolds), parallel to each other, which contain γ-orbits.

Type III: Riemannian manifold constructed from the metric product $T^{2} \times I$ by identifying (x, c) with $(\psi(x), 0)$ for all $x \in T^{2}$, where ψ denotes a parallel translation of T^{2}. (This manifold is homeomorphic to a torus.) Here, for each $(x, t) \in T^{2} \times I$, the γ-orbit through the point is defined by $(\sigma(x), t)$ and similarly the H-orbit by a plane consisting of the set of γ-orbits intersecting the geodesic through (x, t), parallel to a fixed geodesic which is not contained in a closure manifold of γ-orbit.

Before proving Theorem, we prepare two lemmas. First take up an n-dimensional connected foliated manifold N with complete bundle-like metric, which is also a fiber bundle over a circle C with the leaves as its fibers. Let $L(p)$ denote the leaf through $p \in N$ and L_{p} the subspace of the tangent space N_{p} at p, tangent to $L(p)$. Let Γ_{p} denote the geodesic through $p \in N$, orthogonal to $L(p)$, with the orientation concordant with a fixed one of C, by the canonical projection of N onto C. The geodesic Γ_{p} intersects orthogonally all the leaves. Let $\Gamma_{p}(s)$ denote the geodesic Γ_{p} parametrized by arc-length s, where $\Gamma_{p}(0)=p$. There exists the smallest positive number c such that $\Gamma_{p}(c) \in L(p)$, and it is independent of p. For any real number a, let φ_{a} denote the map of N onto itself defined by
$\varphi_{a}(x)=\Gamma_{x}(a)$ for any $x \in N$. The map φ_{a} carries every leaf onto a leaf. We call such a map a leaf map. Particularly, put $\varphi=\varphi_{c}$.

Lemma 1. In N suppose the point set $\left\{\varphi^{\lambda}(x)\right\}(\lambda=1,2, \cdots)$, for any fixed $x \in N$, has x as one of its accumulation points if the set is infinite. Then, every isometry in $I_{0}(N)$ carries every leaf of N onto a leaf.

Proof. Suppose Lemma 1 does not hold true. Then there exists an isometry $f \in I_{0}(N)$ near enough to the identity, which does not carry some leaf onto a leaf. So we have a point $p \in N$ such that $f_{*} \cdot L_{p} \neq L_{f(p)}$. Put $\Gamma^{\prime}=f \cdot \Gamma_{p}$. The geodesic Γ^{\prime} passes through $f(p)$ and is orthogonal to $f_{*} \cdot L_{p}$, but intersects every leaf obliquely.

1) The case where Γ_{p} is closed. There is the smallest positive integer m such that $\Gamma_{p}(m c)=p$. Then the length of Γ_{p} is equal to $m c$ and so is also that of Γ^{\prime}. However, it is seen that the length of $\Gamma^{\prime \prime}$ is greater than $m c$, the metric on N being bundle-like. This is obviously a contradiction.
2) The case where Γ_{p} is non-closed. Put $p_{\lambda}=\Gamma_{p}(\lambda c)$, then $p_{\lambda} \in L(p)$ and $p_{\lambda}=\varphi^{\lambda}(p)$. The set $\left\{p_{\lambda}\right\}$ has p as one of its accumulation points by the assumption. Let $\Gamma_{p, \lambda}$ denote the geodesic arc $\Gamma_{p}(s), 0 \leqq s \leqq \lambda c$. Put $\Gamma_{\lambda}^{\prime}=f \cdot \Gamma_{p, \lambda .}$. We may show that, if we take some integer $\tau>0$ such that p_{τ} is near enough to p, then Γ_{τ}^{\prime} has longer length than $\Gamma_{p, \tau}$. This contradicts the fact that Γ_{τ}^{\prime} and $\Gamma_{p, \tau}$ have the same length.

Accordingly, every isometry in $I_{0}(N)$ near enough to the identity carries every leaf onto a leaf. We may thus see that Lemma 1 is true.

Lemma 2. Suppose N satisfies the following conditions:

1) every leaf is homeomorphic to a torus and the induced metric is Euclidean,
2) $I_{0}(N)$ is transitive, and
3) $I_{0}(N)$ has a subgroup G which leaves each leaf invariant and which is there the transitive group of parallel translations.

Then, N is regarded as a Riemannian manifold constructed from the metric product $T^{n-1} \times I$ by identifying (x, c) with $(\psi(x), 0)$ for all $x \in T^{n-1}$ and for some $\psi \in I_{0}\left(T^{n-1}\right)$.

Proof. For any $p \in N$, we have $g \in G$ by the assumption 3) such that $g(p)=\varphi(p)$. Generally, $g^{2}(p)=\rho^{2}(p)$. This shows that, if the point set $\left\{\varphi^{\lambda}(p)\right\}$ is infinite, the set has p as one of its accumulation points. Accordingly, by Lemma 1 every isometry in $I_{0}(N)$ carries every leaf onto a leaf.

Next, it is easy to see that, for a 1-parameter group of G, its orbits
are geodesics in each leaf and are preserved by any leaf map. We may hence conclude that any leaf map is a projective motion of every leaf onto a leaf. Take up the closed geodesics $C_{i}(i=1,2, \cdots, n-1)$ in $L(p)$ generating the fundamental group $\pi_{1}(L(p), p)$, then these images by a leaf map φ_{a} are also closed geodesics in the leaf $L\left(\varphi_{a}(p)\right)$. Since, further, there is an isometry in $I_{0}(N)$ carrying $L(p)$ onto $L\left(\varphi_{a}(p)\right)$, we may easily see that a leaf $\operatorname{map} \varphi_{a}$ carries, isometrically, C_{i} onto $\varphi_{a}\left(C_{i}\right)$ and so $L(p)$ onto $L\left(\varphi_{a}(p)\right)$. This fact proves Lemma 2, since $I_{0}\left(T^{n-1}\right)$ is the transitive group of parallel translations on T^{n-1}.

Proof of Theorem. 1) The case where H-orbits are 1-dimensional. Then, M is of Type I (see [2]) and $I_{0}(M)$ is the transitive group of parallel translations. We can see $\bar{H}=I_{0}(M)$ easily.
2) The case where the H-orbits are 2-dimensional and where there exists a γ-orbit whose closure manifold coincides with M. Then, $I_{0}(M)$ is the same one as in 1) above and similarly we obtain $\bar{H}=I_{0}(M)$. We can thus see that M is of Type II.
3) The case where the H-orbits are 2-dimensional and where there is no γ-orbit whose closure manifold coincides with M. Then, by Theorem 2, the closure manifold of every γ-orbit is homeomorphic to a 2 -dimensional torus and the induced metric is Euclidean. This closure manifold coincides with a $\bar{\gamma}$-orbit in M, where $\bar{\gamma}$ denotes the closure (in \bar{H}) of γ. The group $\bar{\gamma}$ must be a toral subgroup of \bar{H}. Let $\bar{\gamma}_{p}$ denote the isotropy subgroup of $\bar{\gamma}$ at $p \in M$. Then, for any $q \in \bar{\gamma}(p)$, we have $\bar{\gamma}_{p}=\bar{\gamma}_{q}$. So $\bar{\gamma}_{p}$ leaves $\bar{\gamma}(p)$ pointwise invariant. Since, moreover, every $\bar{\gamma}$-orbit has dimension 2 and M is orientable, the group $\bar{\gamma}_{p}$ consists of the identity only. It follows hence that the group $\bar{\gamma}$ has dimension 2 and acts, in each $\bar{\gamma}$-orbit, as the transitive group of parallel translations. Accordingly, M is regarded as a foliated manifold with the $\bar{\gamma}$-orbits as its leaves. And the metric on M is bundle-like and M has the structure of a fiber bundle over a circle, with the $\bar{\gamma}$-orbits as its fibers. Thus M satisfies the conditions in Lemma 2. Therefore, M is expressed as a Riemannian manifold constructed from the metric product $T^{2} \times I$ by identifying (x, c) with $(\psi(x), 0)$ for all $x \in T^{2}$ and for some $\psi \in I_{0}\left(T^{2}\right)$. Since M reduces to a 3 -dimensional torus with Euclidean metric, $I_{0}(M)$ is the transitive group of parallel translations. We have thus $\bar{H}=I_{0}(M)$. It is now obvious that M is of Type III.

The conclusions above complete the proof of our Theorem.
Remark. By using Lemma 2, we may prove the following theorem: An n-dimensional compact connected Lie group G is abelian if and only if G has an $(n-1)$-dimensional abelian analytic subgroup. As the neces-
sity is evident, we shall prove the sufficiency. Let K denote an ($n-1$)dimensional abelian analytic subgroup of G and \bar{K} the closure (in G) of K. If $\bar{K}=G$, the sufficiency follows immediately. So we consider the case $\bar{K} \neq G$. Then, $\bar{K}=K$ and K is compact. Hence K is a toral subgroup of G. We introduce on G a left invariant Riemannian metric. Since then every left translation on G reduces to an isometry on G, we may also treat G as a group of isometries on the Riemannian manifold G. Every K-orbit coincides with a right coset of K. The foliated manifold G, with the K-orbits as the leaves, satisfies the same condition as N in Lemma 2. Accordingly, the metric on G must be Euclidean and G homeomorphic to a torus. And, the group G coincides with the transitive group of parallel translations on G. This shows that G is abelian. The sufficiency has been thus proved. From this theorem and the previous one, we have: A 3-dimensional compact connected Lie group is abelian if and only if it has a non-closed analytic subgroup.

Bibliography

[1] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, 1962.
[2] S. Kashiwabara, A fibering of Riemannian manifolds admitting 1-parameter groups of motions, Tôhoku Math. J., 17(1965), 266-270.
[3] S. Kashiwabara, Riemannian manifolds with dense orbits under Lie groups of motions, Tôhoku Math. J., 20 (1968), 254-256.
[4] B. L. Rheinhart, Foliated manifolds with bundle-like metrics, Ann. of Math., 69 (1959), 119-132.

