Tôhoku Math. Journ. 25 (1973), 503-507.

3-DIMENSIONAL RIEMANNIAN MANIFOLDS WITH DENSE ORBITS

Dedicated to Professor Shigeo Sasaki on his 60th birthday

Shōbin Kashiwabara

(Received February 26, 1973)

Let M be an *n*-dimensional connected differentiable Riemannian manifold (n > 1) admitting an intransitive effective connected Lie group H of isometries on M. (The word "differentiable" means "of class C^{∞} ".) For each $p \in M$, the differentiable submanifold $H(p) = \{h(p) \mid h \in H\}$ is usually called an H-orbit. Let I(M) denote the Lie group of all isometries on Mand $I_0(M)$ its identity component. The group H can be regarded as an analytic subgroup of $I_0(M)$ and the closure \overline{H} (in $(I_0(M))$) of H forms a subgroup which is a connected Lie group. The closure of an H-orbit consists of one point or has the structure of a regularly imbedded connected differentiable submanifold (cf. [2]). This follows from the fact that the closure $\overline{H(p)}$, $p \in M$, coincides with the \overline{H} -orbit through p, i.e., $\overline{H(p)} = \overline{H}(p)$. We call such a manifold $\overline{H(p)}$ the closure manifold of H(p). For any $q \in \overline{H(p)}$, we can see $\overline{H(p)} = \overline{H(q)}$.

In the following, suppose an *H*-orbit regarded as a subset of *M* is dense in *M*. Then $I_0(M)$ acts on *M* transitively and hence it is shown that *M* is complete. The following two theorems have been already proved (see [3]):

THEOREM 1. 1) Every H-orbit is dense in M,

2) any element of \overline{H} carries every H-orbit onto an H-orbit, and

3) M has the structure of a foliated manifold (cf. [4]) with the H-orbits as its leaves.

THEOREM 2. The group \overline{H} has a 1-parameter subgroup γ with the following properties: for any $x \in M$,

1) $\gamma(x) \subset H(x)$, but the closure manifold $\overline{\gamma(x)}$ (in M) is not included in H(x),

2) $\overline{\gamma(x)}$ is homeomorphic to a torus of dimension > 1 and a Euclidean metric is induced from M, and

3) H(x) has a structure of product bundle with $\gamma(y)$, $y \in H(x)$, as its fibers.

S. KASHIWABARA

The purpose of this note is, on the foundation of the theorems above, to establish the following theorem. From this theorem we may see an intuitive structure of M in connection with γ -orbits.

THEOREM. Suppose further M is 3-dimensional, compact and orientable. Then,

1) M is homeomorphic to a torus,

2) the metric on M is locally Euclidean,

3) the group \overline{H} is the transitive group of parallel translations on M, and more precisely, M is expressed as one of the Types I-III.

To interpret the Types above, we shall first define some notations. Let T^m denote an *m*-dimensional torus with Euclidean metric and σ a 1-parameter group of isometries on T^m such that a σ -orbit is dense in T^m . Then, the group σ is a 1-parameter group of parallel translations on T^m and the σ -orbits are parallel to each other. Let *I* denote the segment $\{t \mid 0 \leq t \leq c\}, c > 0$, of straight line. For 3-dimensional Riemannian manifolds with the same structure as *M*, we define Types as follows:

Type I: Riemannian manifold T^3 with the σ -orbits as its γ -orbits, such that its *H*-orbits coincide with the γ -orbits.

Type II: Riemannian manifold T^3 with the σ -orbits as its γ -orbits. The *H*-orbits are defined by 2-dimensional planes (totally geodesic submanifolds), parallel to each other, which contain γ -orbits.

Type III: Riemannian manifold constructed from the metric product $T^2 \times I$ by identifying (x, c) with $(\psi(x), 0)$ for all $x \in T^2$, where ψ denotes a parallel translation of T^2 . (This manifold is homeomorphic to a torus.) Here, for each $(x, t) \in T^2 \times I$, the γ -orbit through the point is defined by $(\sigma(x), t)$ and similarly the *H*-orbit by a plane consisting of the set of γ -orbits intersecting the geodesic through (x, t), parallel to a fixed geodesic which is not contained in a closure manifold of γ -orbit.

Before proving Theorem, we prepare two lemmas. First take up an *n*-dimensional connected foliated manifold N with complete bundle-like metric, which is also a fiber bundle over a circle C with the leaves as its fibers. Let L(p) denote the leaf through $p \in N$ and L_p the subspace of the tangent space N_p at p, tangent to L(p). Let Γ_p denote the geodesic through $p \in N$, orthogonal to L(p), with the orientation concordant with a fixed one of C, by the canonical projection of N onto C. The geodesic Γ_p intersects orthogonally all the leaves. Let $\Gamma_p(s)$ denote the geodesic Γ_p parametrized by arc-length s, where $\Gamma_p(0) = p$. There exists the smallest positive number c such that $\Gamma_p(c) \in L(p)$, and it is independent of p. For any real number a, let φ_a denote the map of N onto itself defined by

504

 $\mathcal{P}_a(x) = \Gamma_x(a)$ for any $x \in N$. The map \mathcal{P}_a carries every leaf onto a leaf. We call such a map a *leaf map*. Particularly, put $\mathcal{P} = \mathcal{P}_c$.

LEMMA 1. In N suppose the point set $\{\mathcal{P}^{\lambda}(x)\}$ $(\lambda = 1, 2, \dots)$, for any fixed $x \in N$, has x as one of its accumulation points if the set is infinite. Then, every isometry in $I_0(N)$ carries every leaf of N onto a leaf.

PROOF. Suppose Lemma 1 does not hold true. Then there exists an isometry $f \in I_0(N)$ near enough to the identity, which does not carry some leaf onto a leaf. So we have a point $p \in N$ such that $f_* \cdot L_p \neq L_{f(p)}$. Put $\Gamma' = f \cdot \Gamma_p$. The geodesic Γ' passes through f(p) and is orthogonal to $f_* \cdot L_p$, but intersects every leaf obliquely.

1) The case where Γ_p is closed. There is the smallest positive integer m such that $\Gamma_p(mc) = p$. Then the length of Γ_p is equal to mc and so is also that of Γ' . However, it is seen that the length of Γ' is greater than mc, the metric on N being bundle-like. This is obviously a contradiction.

2) The case where Γ_p is non-closed. Put $p_{\lambda} = \Gamma_p(\lambda c)$, then $p_{\lambda} \in L(p)$ and $p_{\lambda} = \mathcal{P}^{\lambda}(p)$. The set $\{p_{\lambda}\}$ has p as one of its accumulation points by the assumption. Let $\Gamma_{p,\lambda}$ denote the geodesic arc $\Gamma_p(s)$, $0 \leq s \leq \lambda c$. Put $\Gamma'_{\lambda} = f \cdot \Gamma_{p,\lambda}$. We may show that, if we take some integer $\tau > 0$ such that p_{τ} is near enough to p, then Γ'_{τ} has longer length than $\Gamma_{p,\tau}$. This contradicts the fact that Γ'_{τ} and $\Gamma_{p,\tau}$ have the same length.

Accordingly, every isometry in $I_0(N)$ near enough to the identity carries every leaf onto a leaf. We may thus see that Lemma 1 is true.

LEMMA 2. Suppose N satisfies the following conditions:

1) every leaf is homeomorphic to a torus and the induced metric is Euclidean,

2) $I_0(N)$ is transitive, and

3) $I_0(N)$ has a subgroup G which leaves each leaf invariant and which is there the transitive group of parallel translations.

Then, N is regarded as a Riemannian manifold constructed from the metric product $T^{n-1} \times I$ by identifying (x, c) with $(\psi(x), 0)$ for all $x \in T^{n-1}$ and for some $\psi \in I_0(T^{n-1})$.

PROOF. For any $p \in N$, we have $g \in G$ by the assumption 3) such that $g(p) = \mathcal{P}(p)$. Generally, $g^{\lambda}(p) = \mathcal{P}^{\lambda}(p)$. This shows that, if the point set $\{\mathcal{P}^{\lambda}(p)\}$ is infinite, the set has p as one of its accumulation points. Accordingly, by Lemma 1 every isometry in $I_0(N)$ carries every leaf onto a leaf.

Next, it is easy to see that, for a 1-parameter group of G, its orbits

are geodesics in each leaf and are preserved by any leaf map. We may hence conclude that any leaf map is a projective motion of every leaf onto a leaf. Take up the closed geodesics C_i $(i = 1, 2, \dots, n-1)$ in L(p)generating the fundamental group $\pi_1(L(p), p)$, then these images by a leaf map \mathcal{P}_a are also closed geodesics in the leaf $L(\mathcal{P}_a(p))$. Since, further, there is an isometry in $I_0(N)$ carrying L(p) onto $L(\mathcal{P}_a(p))$, we may easily see that a leaf map \mathcal{P}_a carries, isometrically, C_i onto $\mathcal{P}_a(C_i)$ and so L(p)onto $L(\mathcal{P}_a(p))$. This fact proves Lemma 2, since $I_0(T^{n-1})$ is the transitive group of parallel translations on T^{n-1} .

PROOF OF THEOREM. 1) The case where *H*-orbits are 1-dimensional. Then, *M* is of Type I (see [2]) and $I_0(M)$ is the transitive group of parallel translations. We can see $\bar{H} = I_0(M)$ easily.

2) The case where the *H*-orbits are 2-dimensional and where there exists a γ -orbit whose closure manifold coincides with *M*. Then, $I_0(M)$ is the same one as in 1) above and similarly we obtain $\overline{H} = I_0(M)$. We can thus see that *M* is of Type II.

3) The case where the *H*-orbits are 2-dimensional and where there is no γ -orbit whose closure manifold coincides with M. Then, by Theorem 2, the closure manifold of every γ -orbit is homeomorphic to a 2-dimensional torus and the induced metric is Euclidean. This closure manifold coincides with a $\overline{\gamma}$ -orbit in *M*, where $\overline{\gamma}$ denotes the closure (in \overline{H}) of γ . The group $\overline{\gamma}$ must be a toral subgroup of *H*. Let $\overline{\gamma}_p$ denote the isotropy subgroup of $\overline{\gamma}$ at $p \in M$. Then, for any $q \in \overline{\gamma}(p)$, we have $\overline{\gamma}_p = \overline{\gamma}_q$. So $\overline{\gamma}_p$ leaves $\overline{\gamma}(p)$ pointwise invariant. Since, moreover, every $\overline{\gamma}$ -orbit has dimension 2 and M is orientable, the group $\bar{\gamma}_p$ consists of the identity only. It follows hence that the group $\overline{\gamma}$ has dimension 2 and acts, in each $\overline{\gamma}$ -orbit, as the transitive group of parallel translations. Accordingly, M is regarded as a foliated manifold with the $\bar{\gamma}$ -orbits as its leaves. And the metric on M is bundle-like and M has the structure of a fiber bundle over a circle, with the $\overline{\gamma}$ -orbits as its fibers. Thus M satisfies the conditions in Lemma Therefore, M is expressed as a Riemannian manifold constructed from 2. the metric product $T^2 \times I$ by identifying (x, c) with $(\psi(x), 0)$ for all $x \in T^2$ and for some $\psi \in I_0(T^2)$. Since M reduces to a 3-dimensional torus with Euclidean metric, $I_0(M)$ is the transitive group of parallel translations. We have thus $H = I_0(M)$. It is now obvious that M is of Type III.

The conclusions above complete the proof of our Theorem.

REMARK. By using Lemma 2, we may prove the following theorem: An *n*-dimensional compact connected Lie group G is abelian if and only if G has an (n-1)-dimensional abelian analytic subgroup. As the neces-

506

sity is evident, we shall prove the sufficiency. Let K denote an (n-1)dimensional abelian analytic subgroup of G and \overline{K} the closure (in G) of K. If $\overline{K} = G$, the sufficiency follows immediately. So we consider the case $\overline{K} \neq G$. Then, $\overline{K} = K$ and K is compact. Hence K is a toral subgroup of G. We introduce on G a left invariant Riemannian metric. Since then every left translation on G reduces to an isometry on G, we may also treat G as a group of isometries on the Riemannian manifold G. Every K-orbit coincides with a right coset of K. The foliated manifold G, with the K-orbits as the leaves, satisfies the same condition as N in Lemma 2. Accordingly, the metric on G must be Euclidean and G homeomorphic to a torus. And, the group G coincides with the transitive group of parallel translations on G. This shows that G is abelian. The sufficiency has been thus proved. From this theorem and the previous one, we have: A 3-dimensional compact connected Lie group is abelian if and only if it has a non-closed analytic subgroup.

BIBLIOGRAPHY

- [1] S. HELGASON, Differential Geometry and Symmetric Spaces, Academic Press, 1962.
- [2] S. KASHIWABARA, A fibering of Riemannian manifolds admitting 1-parameter groups of motions, Tôhoku Math. J., 17(1965), 266-270.
- [3] S. KASHIWABARA, Riemannian manifolds with dense orbits under Lie groups of motions, Tôhoku Math. J., 20 (1968), 254-256.
- [4] B. L. RHEINHART, Foliated manifolds with bundle-like metrics, Ann. of Math., 69 (1959), 119-132.

DEPARTMENT OF MATHEMATICS KANAZAWA UNIVERSITY KANAZAWA, JAPAN