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Introduction. In a previous paper [4] the present author proved the
following

THEOREM A. Let M be an n-dimensional compact, connected hyper-
surface with constant mean curvature immersed in an (n + l)-dimensional
Riemannian manifold of non-negative constant curvature. If the second
fundamental tensor H satisfies

(0.1) trace H2 < — - — (trace H)2,
n — 1

then M is a totally umbilical hypersurface and consequently a sphere.

Then in [5] we generalized Theorem A to a submanifold of any codi-
mension and proved.

THEOREM B. Let M be a compact, connected submanifold of dimension
n immersed in an (n + p)-dimensional Riemannian manifold of non-
negative constant curvature and suppose that the connection of the normal
bundle is fiat. If the mean curvature vector field is parallel with respect
to the connection of the normal bundle and the inequality

(0.2) Σ trace HI < —±— Σ (trace HA)
2

A=I n — 1 Λ=I

is satisfied, then M is a totally umbilical submanifold, where HA's are the
second fundamental tensors with respect to unit normals NΛ.

The purpose of the present paper is to prove the following

THEOREM. Let M be a complete, connected submanifold of dimension
n (*> 3) immersed in an (n + p)-dimensional Riemannian manifold of
positive constant curvature whose mean curvature vector field is parallel
with respect to the connection of the normal bundle. If the second fun-
damental tensors HA satisfy (0.2), then M is umbilical with respect to the



462 M. OKUMURA

mean curvature normal direction. Furthermore, if the ambient manifold
is an (n + p)-dimensional sphere (n ^ 3), M is a minimal submanifold of
a small sphere.

1. Preliminaries. Let M be an ^-dimensional submanifold of an
(n + ^-dimensional Riemannian manifold M of constant curvature c. The
Riemannian connections of M and M are denoted by V and V respectively,
whereas the connection in the normal bundle of M in M is denoted by D.
Let N19 , Np be mutually orthogonal unit normal vectors at a point
peM and extend them to local vector fields in a neighborhood of p. We
define — HAX(A = 1, 2, •••, p) to be the tangential components of VXNA

for Xe TP{M) and call HA the second fundamental tensor with respect to
NA. We know that the HA's are symmetric linear transformations on
Tp(M). Then we have the following equations of Gauss and Weingarten:

(1.1) Vx Y = Vx Y + Σ g(HAX, Y)NA ,

(1.2) FXNA= -HAX+DXNA,

where g is the Riemannian metric of M. Since DXNA is normal to M, it
is expressed as a linear combination of JV̂ , that is,

(1.3) DXNA=±SAB(X)NB.

The ambient manifold being of constant curvature c, the curvature
tensor R(X, Y)Z, scalar curvature K, and the normal curvature RN are
respectively given by

(1.4) R(X, Y)Z = c{g( Γ, Z)X - g(X, Z) Y)

+ Σ {g(HΛY, Z)HAX - g(HAX, Z)HAY} ,

(1.5) K=n(n- l)c + Σ (trace HAf - Σ trace Hj ,
A=l A=l

(1.6) RN{X, Y)NA = Σ g([HΛ, HB]X, Y)NB

= ±WχSAB)Y-{VγSAB)X

+ Σ (SAC(Y)SCB(X) - SAC(X)SCB(Y))}NB ,

where we put

[HA, HB]X = HAHBX — HBHAX.
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The mean curvature vector N is defined by

(1.7) N= ± (trace HA)NA,

and it is well known that JV is independent of the choice of unit normal
vector to M.

For some HA, if there exists a function pA such that

(1.8) HAX=pAX,

at each point of M, we call M is umbilical with respect to normal NA at p.

2. Lemmas. First we state the following

LEMMA 1. [5]. Let αu α2, , αn and k be n + 1 fa ^ 2) real numbers
satisfying the inequality

(2.1) ±a] + k< — 1 — (Σ a{f ,
<=i n — 1 <=i

then for any pair of distinct i and j = 1, 2, , n, we have

(2.2) k < 2 0 ^ .

PROOF. Since (Σ?=i ^Y = Σ?=iα ' + 2 Σ"<i α ^ , we have from (2.1),

(n - 2) Σ αξ - 2 Σ ^αy + (n - l)fc < 0 ,

that is,

(2.3) (w - 2)al - 2αnf Σ ^ + fa - 2) Σ α? - 2 Σ a^ + fa - l)fc < 0 .

We regard that (2.3) is a quadratic inequality with respect to an. Then,
an being a real number, the discriminant of (2.3) must be positive. Thus
we get

(τι-1 \2 ( /n-l \ /w-1

Σ α,) > fa - 2){fa - l )(g αS + fc) - ( Σ
from which

n - l 1

(2.4) Σ«l + A ; < - ^
i l ^

Continuing the same process (n — 2)-times, we have (2.2).

Next we prove the

LEMMA 2. Let M be an n-dimensional submanifold of a Riemannian
manifold M of constant curvature c. If the second fundamental tensors
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HA satisfy (0.2) at a point pe M, then the sectional curvature R(i, j) for
the plane section spanned by E{ and Eά is greater than c at p.

PROOF. From (0.2) it follows that M has no minimal point. So we
can choose the first unit normal vector Nγ to M in the direction of the
mean curvature vector N. Then by the definition of the mean curvature
vector we can easily see that

(2.5) trace HA = 0 , A = 2, 3, , p .

Let Eί9 E2, , En be orthonormal eigenvectors of the second funda-
mental tensor ίZΊ and alf α2, , an corresponding eigenvalues to Elf E2, ,
En. Then denoting components of HA {A = 2, •••,#>) by Xfi9 we have,
from (0.2) and (2.5),

(2.6) — 1 — ( t aλ* >±a\+± ± (λAλά) .
71 — 1 \i=l / * = l Λ = 2 i,k=l

Applying Lemma 1 to (2.6), we have

2 α Λ > ± ± (λλλά) ^ Σ {(λίi)2 + 2(KY + (K)2} ^ 2 Σ { |λ^ | + (λ£ )2} .
.4 = 2 i,k=l A = 2 A = 2

Thus we have

(2.7) a&i > Σ ίlVΛ/yl +

On the other hand, by (1.4), the sectional curvature R(i, j) for the plane
section spanned by E{ and Es is given by

(2.8) R(i, j) = g(R(Ei9 Ej)Ejf E<) - e + α Λ +

Combining (2.7) and (2.8) we have

R(i, j) > c + Σ ίlViλ/yl + λ ^ } ^ c .
^ = 2

This completes the proof.

LEMMA 3. Let M be a complete, connected submanifold of dimension
n > 2 immersed in an (n + p)-dimensional Riemannian manifold of posi-
tive constant curvature c. If the second fundamental tensors HA satisfy
(0.2) on M, then M is compact.

PROOF. Let X be a unit vector and Et be a unit eigenvector of Hx

which corresponds to the eigenvalue a^ Then, putting X = Σ?=i &Ej, the
sectional curvature for the plane section spanned by X and E{ is
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g(R(X, Et)Et, X) = c{± {x'f - (x*y}+ a
i

Σ jά Σ+ Σ jλά Σ /* (Σ
A=2 I j,k=l \j-l

Thus Ricci tensor Ric (X, X) becomes

Ric (X, X) =
i = l

= (n - ΐ)c + Σ {«iai(«1)2 + + flί*^)1 + +

ΣΣ(Σ^)
[̂ = 2 ί = l j = l

because of Σ?=i λ ά — 0, where the roof "Λ" denotes a term which will be
omitted.

Substituting

2a,ah > Σ Σ λ^λ/*

into the last equation and making use of Σ?=i (χΎ — h we have

Ric (X, X) >(n - ΐ)c + Σ l^^- Σ KK - Σ

^ (n - i)c + Σ j ^ = - ^ Σ ifait - Σ (λ£λ£) Σ (ί»4

^4=2 I 2 Jιfc = l i = l fc=l

= (w - l)c + ^-z— Σ Σ λfftλ/fc ^ (n - l ) c > 0 ,
2 ^=2 i,fc=i

where we have used Cauchy-Schwarz inequality. Thus, from Myers'
theorem [3], M is compact.

3. Proof of Theorem. Let / be the square of the length of the sec-
ond fundamental tensor with respect to Nlf that is,

(3.1) / = trace HI .

The Laplacian for / is given by

(3.2) ±4f = trace (Δ'HύH, + g(FHlf Ffli) ,

where

and we extend the metric g to the tensor space in the standard fashion.
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Using recent results of J. A. Erbacher [2], we have

(3.3) ΔΉX = ncH, - c(trace H^I + Σ (trace HA)H1HA

- ± (traceHAH^HA + Σ [HA, H,HA] + ± HA[Hlt HA]
A=l A=l A=l

+ Σ Σ {VEiSιA)(E,)HA + 2 Σ Σ
i = l A = l t = l A = l

- Σ Σ S1A(E<)SAB(E<)HB .
ί = l

By the assumption of Theorem, Nλ is parallel with respect to the con-
nection of the normal bundle and so we have

DXN, = ± S1A(X)NA = 0 ,
A = l

from which SίA = 0. Consequently we get [Hlf HA] = 0.
Substituting these into (3.3) and making use of (3.2), we have

(3.4) LA trace Hf = nc trace Hi - c(trace Hλ)
2 + (trace Hx)(trace ίfx

3)

+ Σ trace (iT^) 2 - (trace Htf - Σ (trace HlHl)
A=2 A=2

- Σ (trace HAH,Y + ff(Ffli, FH,) .
A = 2

Thus at a point pe M, we have

(3.5) i - J trace ^ 2 = ncίf, a\ - — (Σ ^) 2 )

+ Σ (o*αj + Σ (λϋλ/, - (λ .̂)2))(αί - α,)2 + g(FHιt FH,)
i<j A=2

^ nc(± a\ - — f Σ «ί)Ί + (Λ(*. i) - β)(α, - α,)2 + ff(Ffli, FH,),
\i=ι γι \i=ι J /

because of (2.7), (2.8) and the fact that Σ;>; afriMj = 0 for A ^ 2.
From Lemma 3, ikf is compact and so by Hopf 's theorem and Lemma

2, we see that FHt — 0 and

(3.6) ^ = α2 = = an Φ 0 .

This shows that M is umbilical with respect to the mean curvature
vector Hx and Hx is parallel. Furthermore, if the ambient manifold M is
an (n + ^-dimensional sphere in Euclidean n + p + 1 space En+p+1

y then,
using ZλrίZΊ = 0, we have, for example by [1] or [7], that M is a minimal
submanifold of a sphere S^+p-1. This completes the proof.
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REMARK. From (1.5), the condition (0.2) can be written as

(3.7) K> n(n- l)c + (n - 2) Σ trace HI .
A = l
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