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Introduction. Let GL(2, C) be the group of non-singular (2 x 2)-

matrices. An element u = (^ λ of GL(2, C) operates on C2 as follows:

(z, w) —>(az + bw, cz + dw) .

Let M be a subset of GL(2, C) defined by

Then I is a complex manifold. Let 0 be the origin of C2. We put
W = C2 — 0. Let ue M. Then u defines a properly discontinuous group

Gtt - {uw I n e Z]

of automorphisms (holomorphic isomorphisms) without fixed point of W.
Hence we have a complex manifold

Vu = W/Gu .

Vu is easily seen to be compact. It is called a Hopf surface. It can be
shown that the collection

forms a complex analytic family (X, π, M). We denote by Aut(F t t ) the
group of automorphisms of Vu.

The purpose of this note is prove the following theorem.

THEOREM. The disjoint union

A = Π Aut(V.)
ueM

admits a (reduced) analytic space structure such that
1) λ: A —• M is a surjective holomorphic map, where λ is the canoni-

cal projection,
2) the map

defined by
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is holomorphic, where

AXX={(f,P)eAx X\X(f) = π(P)}

the fiber product of A and X over M,
3) the map M-+A defined by

is holomorphic, where lu is the identity map of Vu,
4) the map

defined by

(f,g)-rιf,
is holomorphic, where

AXA = {(f,g)eAx A\X(f) = X(g)} ,

the fiber product of A and A over M.

1. The complex analytic family of Hopf surfaces. By a complex
analytic family of compact complex manifolds, we mean a triple (X, π, M)
of complex manifolds X and M and a proper holomorphic map of X onto
M which is of maximal rank at every point of X, i.e.,

rank J(f)P = dim M

for all Pe X, where J(f)P is the Jacobian matrix of / at P. In this case,
each fiber π~\u), u e M, is a compact complex manifold. M is called the
parameter space of the family (X, π, M).

Now, let

M={($*)eGL(29C)\a,β,teC, 0 < | α | < l , 0

and

W = C2 - 0 .

We define a holomorphic map

η:Mx W-+Mx W

by

η(u, x) = (u, ux) .
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Then Ύ] is an automorphism, for rfx is given by

(u, x) —> (u, u~~γx) .

We put G = {ηn \ n e Z).

LEMMA 1. G is a properly discontinuous group of automorphisms
without fixed point ofMx W.

PROOF. We assume that (u, unx) = (u, x) for an integer n Φ 0. Then
unx = x. We write

and x = (z, w). Then

unx = (anz + α * ~ @n tw, βnw) , if a Φ β ,
\ a - β )

= (anz + nan~~ιtw, anw) , if a = β .

Since 0 < | a \ < 1 and 0 < | β \ < 1, unx = x implies that w = 0, so that
2 = 0, a contradiction. Hence G has no fixed point. In order to show-
that G is a properly discontinuous group, it is enough to show that, for
a compact subset Kγ of M and a compact subset K2 of TΓ,

{neZlψiK, x iQ Π (iζ x K2) Φ 0}

is a finite set. There are positive constants c and c£ such that

\a\,\β\^e<l and 11 \ ̂  d

for all ( J *) e iΓ^ We define a norm | | in C2 by

I (2, w) I = 12 I + I w I .

Then there are positive constants a and & such that

a ^ \x I ̂  δ

for all α; e ίΓ2. Now

I t6wa? I = I anz + Ύntw \ + \ βnw \

where u = (^ Λ e K19 x = (z, w) e K2 and

α^jr i f α ^ ^ ?

= wα:71"1 , if α = β .

Hence, for a positive integer n,
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\unx I fg \a \n\z I + \yn \\ t \\ w | + \β\n\ w \

^ cnb + ncn~ιdb + cnb->0

as n —> + oo. Thus there is a positive integer iV such that

I unx I < a

for all n ^ N. Next, we show that there is a positive integer AT7 such
that

I u~nx I > 6

for all n^N' and for all (u, x) e Kγ x iΓ2. We assume the converse.
Then there are a sequence of points {{uv, ^)}v=1,2,... of Kγ x K2 and a se-
quence of integers

such that

We put 2/, = M - W ^ , v = 1, 2, . Then #v = < ^ , , v = 1, 2, . We put

Vv = (z[, w[) and u, = (Q "J") > y - 1, 2, .

Then

α/v — f^ίi Uι> — yiΛ v &y I /KlΊ/M/pj ^Ov t^v/ > I* — -1-, Λ , >

where

Hence

as v-» +00. This

Now

is contained in

By Lemma 1,

1 *^v 1 = \^ u

contradicts

{X

{neZlΠK,

{neZ

the quotient

β. '

to

»K-i,i,.. C

x ^ 2 ) n i

1 -JV' <

space

if

if

κ2

»<

A .

Φ0}

q.e.d.
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X=(Mx W)/G

is a complex manifold. Let ft: M x W—>M be the canonical projection.
Then πη = ft. Hence there is a holomorphic map

π:X-+M

such that the diagram

Mx W-^-»X
\ /

* \ /*
M

is commutative, where p is the canonical projection. Since p is a cover-
ing map, π is a surjective holomorphic map of maximal rank at every
point of X.

LEMMA 2. π is a proper map.

PROOF. Let K be a compact subset of M. We show that π~\K) is
compact. Let {Pvh=i,2,... be a sequence of points in π~\K). We want to
choose a subsequence of {PvK=i,2,... converging to a point of π~\K). We
may assume that {τr(Pv)}v=1,2,... converges to a point ue K. We put ̂  =
π(P,), i; - 1,2, . . . . We put

and

" VO βj '

Then α^ ~> α, βv-+ β and ίv —* £ as y —> + oo. We may assume that there
are positive constants clf c2 and d such that

cγ ^ I au I ̂  c2 < 1 , d ^ I /3v I ̂  c2 < 1 and | ίv | ^ d

for all ι;. Let xι/,v = l,2, «-, be points of T7 such that

pfa*, xu) = Pv, v = 1, 2, .

We put

%u = (zu, wv) , y = 1, 2, .

We define a norm | | in C2 by

(z, w) I = I z I + I w I .

First, we assume that there is a subsequence
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v, < v2 < . .

such that

wn = 0 , k = 1, 2, .

Then zn Φ 0, fc = 1, 2, . Thus there are integers nk, k - 1, 2, ,
such that

cx ^ I aUk I ̂  I aϊ*zUk | ^ 1 .

We put ^ = α ? * ^ , k = 1, 2, . . . . We put a?:, = (z[k, 0), ft = 1, 2, . . . .
Then α;'̂  = u*ξxyjtf k = 1, 2, . Hence

i ^ = P(un, Xuk) = p(u»k, <k) , k = 1, 2, .

Since ^ ^ | α ^ | ^ 1, fc = 1, 2, , we may assume that {α? }̂Jfc=1,2,... con-
verges to a point # e W. Then {P^K^i,^... converges to p(u, x).

Now, we may assume that wv Φ 0, v = 1, 2, . Since there are
integers nu, v — 1, 2, , such that

c i ^ l & l ^ | / S Γ ^ | ^ 1 , P = 1,2, .- . ,

we may assume that

c, ^ I wv I ̂  1 , i; = 1, 2, . . . .

(We use %J»Ό?V instead of a;v.) Hence we may assume that {wu}v=U2}... con-
verges to a point weC, ct ^ | w \ ̂  1. Since the Riemann sphere C is
compact, we may assume that {zv}^UZt... converges to a point z of C. If
2 Φ oo, then # = (z, w) is a point of TFand {PJv=i,2,... converges to p(u, x).
If ^ = oo, we may assume that

K I«! | < 12« | < > + o o .

Then there is a sequence of positive integers {nu}UsslΛ,... such that

Ci ^ I α y I ̂  I a^zv \ ̂  1 , x; = 1, 2, .

Let N be a positive integer such that

for all n^ N. We may assume that | ̂  | is so large that

Then

I nr \~N < r*~N ^ \ v \ < \ 9 \ w — 1 9 . . .

Hence
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I otfzy I > 1 , v = 1, 2, .

This shows that

nu> N, v = 1, 2, .

Hence

I n P c f ^ i I ̂  -%- v = 1, 2, . . . .

We put

z[ = 60s, + TΛWV , i; = 1, 2, ,

where

if

if

Then

^ I α?-*,, I + I ΊXWV I ̂  1 + -|-, v = 1, 2, .

Hence we may assume that {z'K=i,2,.. converges to a point z' e C, cx/2 ^
I «Ί ^ 1 + c,/2. Since | w> \ ̂  1, v = 1, 2, . ,

I ̂ Wv I ̂  I i9vW. I ̂  I /3v I g c2 , y = 1, 2, .

We may assume that {β^wv}v=U2t... converges to wf e C. We put x =
(z\ w') G W. Then {PJv=1,2,... converges to p(^, x). q.e.d.

Lemma 2 shows that (X, π, ikf) is a complex analytic family of com-
pact complex manifolds. Each fiber π^u), ueM, is called a Hopf
surface. Each fiber can be written as

π~\u) = u x Vu

where

Vu = W/Gu

and

Gu = {un I n e Z) .

A similar but simpler argument to the proof of Lemma 1 shows that Gu

is a properly discontinuous group of automorphisms without fixed point
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of W. Henceforth, we identify π~\u) with V%.

2. Automorphism groups of Hopf surfaces. Let ueM. Let Vu be
the corresponding Hopf surface. Let Aut(FM) be the group of automor-
phisms of Vu. Let

Cu = {v G GL(2, C) I uv = ιm} .

Then Cw is a complex Lie subgroup of GL(2, C). We define a homomor-
phism

hu:Cu-+ Aut(FM)

by

v—>v

where v is an automorphism of Vu defined by

v: p(x) —> p(vx)

for all xe W, where p: W—>VU is the canonical projection. Since uv =
vu, v is well defined.

LEMMA 3. ker (hu) = Gu.

PROOF. Let uneGu. Then

un\ p(x) - > j)(wΛα?) = i>(α?) .

Hence GM c ker (Att). Conversely, let v e ker (Λ%). Then

p(vx) = p(α )

for all a? e TΓ. Hence, for each x e W, there is an integer k(x) such that

vx = ttfc(!β)αj .

We show that

&(cx) = Jc(x)

if c G C and c =£ 0. In fact

uk(cx)cχ __ v^Cfl.j _ c v χ __ ^ ί * ) ^ — U

k{x)CX

so that

Since Gtt operates on W without fixed point,

k(cx) = k(x) .

Thus we may consider & to be a Z-valued function on PX(C), the 1-di-
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mensional protective space. Since the cardinal number of the set P\C)
is greater than that of Z, there are distinct points Lx and L2 in P\C)
such that fc(Li) = k(L2). We put k = k{L^) — k(L2). Let a?j. and x2 be
points in W such that x1 e Lx and α;2 e L2. Then, for any point xe W,
there are complex numbers a and 6 such that

x = axλ + 6#2 .

Here we regard x, x1 and x2 as vectors Oα;, 0xl9 and 0#2 respectively. Then

vx = 0(0$! +• &#2) = αv^ + 6vα;2 = aukx1 + δ^fcx2 = ukx .

Hence t; = uk. q.e.d.

Now, we determine Aut(Fw) following the argument in [1]. Let

f:Vu-+Vu

be an automorphism. Since W is the universal covering space of Vu,
there is an automorphism

/: W-* W

such that the diagram

W -ί--> W

[p [p
V > V

is commutative where p is the canonical projection. Moreover / satisfies

f(ux) = u9f(x)

for all x e W, where u9 is a generator of Gu, (u9 — u or u~ι). We show
uβ = u. By Hartogs's theorem, / is extended to an automorphism

/: C2 -> C2

which maps 0 to 0. If

f(ux) = u-y(x)

for all xeW, then

unf(unx) = f(x)

for n = 1, 2, and for all α e W. We fix a? = (2, w) e TΓ. We put u =

^
%
x = (α

w
2 + y

n
tw, β

n
w)

where
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tt. - ff» if CLΦβ,
a - β

— nan~ι, if α = j 8 .

Hence

I unx I ^ I a \n\ z I + I y n \ \ 111 w | + | β \n\ w | —> 0

as n —• + oo. Hence

/(^α;) -> 0

as Tϊr —* +oo, for the extended map / maps 0 to 0. On the other hand,
there is an integer N such that

\u*?(u*x)\< \f(unx)\

for all n^ N. In fact, it is enough to take N such that

\βN\ + \ΎN\\t\<l.

Hence

I unf(unx) I -> 0

as n —• + oo. This contradicts to

unf(unx) - f(x) , w = 1, 2, .

Hence

f(ux) = w/(α?)

for all a? e TF. We write the extended automorphism / : C2 —> C2 as

7(2, w) = (g(z, U7), λ(2, w)).

Then the above condition is written as

g(az + tw, βw) = ag(z, w) + th(z, w) ,

h(az + tw, βw) = βh{z, w) .

We expand g and h in the power series of z and w at the origin:

g(z, w) =

h(z, w) = Σ dpqz
pw9.

p+q>0

Case 1. β = a and t = 0; u —

In this case, above equations reduce to

Σ ap+qcpqz
pwq = Σ occpqz

pwq,
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Σ acp+qdpqz
pwg = Σ adpqz

pwq .
p-rg>0 p+q>0

Since 0 < | a | < 1, we get

cpq = dPq = 0 ,

if p + q > 1. Hence

g(z, w) = c10z + c01w ,

Λ(z, w) = d10z + dwii; .

Since / is an automorphism, the matrix Q° ^01J is non-singular. Thus

for all

Δut (V.) s GL<£> C) = %-, d i m ^ - 4 ,

= (JO).

Case 2. ^ = a atwi t ^ 0; u =

In this case, above equations reduce to

Σ epg(α2 + tw)p(aw)q = Σ (αcM + tdpg)zpwq,
+0 + > 0

+ M W = Σ
p+g>0 p+q>0

From the last equation, we have

d10 = 0 and dP9 = 0 , if p + q > 1 .

Hence

h(z, w) = dOi^

Hence, from the first equation, we have

c10 = dQ1 and cM = 0 , if p + q > 1 .

Thus

flr(s, w) = c10^ + c01te? ,

Since (Λ10 ^Λ e Cw, we have

for all « =
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Case 3. β Φ a and t = 0; u = (Q 2)

In this case, above equations reduce to

Σ cpqa
pβgzpwq = Σ acpqz

pw9 ,
p+q>0 p+q>0

Σ d^a'β z'W = Σ βdpqz
vw>.

p+q>0 p+q>0

Hence, if p > 0 and g > 0, then

cpq = 0 and dpg = 0 .

If p = 0, then

cOg(/89 - α) = 0 ,

do,(^9 - β) = 0 .

Hence c01 = 0 and dOq = 0, if g > 1. If g = 0, then

cί,0(αp - α) = 0 ,

dpo(αp - β) = 0 .

Hence d10 = 0 and cp0 = 0, if p > 1. Case 3 is thus divided as follows.

Case 3-A. βq = a for some q^2; u = (jf^Y

In this case, / is generally written as

/: («, w) —> (α^ + &^9, dw)

where ad φ 0 and & is arbitrary. We note that

We introduce a group operation in the set Cu x C as follows:

(*', 6')(v, &) - Wv, a'b + 6'dO

where v — (Q d) a n ( i ^' = (n cZ')* ^ y ^ s ^ r o u P operation, Cu x C becomes
la complex Lie group. Cu is then isomorphic to the complex Lie subgroup

Cu x 0 of Cu x C. The group Cu x C is isomorphic to the group of
automorphisms / o f W such that /u = te/. The isomorphism is given by

where

/: (z, w) —»(az +
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Hence there is a surjective homomorphism

gu:Cu x C->Aut(FM) .

We show that ker (gu) is equal to Gu x 0. First, for an integer n, un x
0 corresponds to the automorphism

/ = un: (z, w) —• (anz, βnw)

of W which corresponds to the identity map of Vu. Next, let

/ : (z, w) —> (az + bwq, dw) , ad Φ 0 ,

be an automorphism of W which corresponds to the identity map of Vu.
Then, for each x = (z, w) e W, there is an integer k(x) such that

az + δwg = ak{x)z ,

In particular, let xeW where

TΓ' = {fe w) e W\ z Φ 0 and w Φ 0} .

Then, by the second equation, d = βk{x). Hence k(x) = k is constant for
x e W. By the first equation, a = ak and 6 = 0. Hence ker (gu) is equal
to Gu x 0. Thus

( yog Λ\

Z β j , g' ^ 2. We note that the center of the group Cu x C is

l ( ( θ d) ' δ ) G C% X C | α = ώ? and b = °1 *
Hence Gu x 0 is contained in the center.

Case 3-B. ap = β for some p ^ 2; w = (Q Jϊ)-

In this case, / is generally written as

/: (z, w) —> (α ,̂ d-w; + bzp)

where ad Φ 0 and 6 is arbitrary. We note that

We introduce a group operation in the set C, x C as follows:

« V){v, b) = (v'v, d'b + Va>)
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where v = (Z j) and v' = (Q^\ % this group operation, Cu x C becomes
a complex Lie group. Cu is then isomorphic to the complex Lie subgroup
Cu x 0 of Cu x C. By a similar argument to Case 3-A, we have

for all u = (?ap)> V ^ 2. We note that the center of the group Cu x C is

Hence Gtt x 0 is contained in the center.

Case 3-C. w = (Λ /Q )> $q Φ cc for any positive integer q and ap Φ β

for any positive integer p.

In this case, / is generally written as

/ : (z, w) —> (az, dw)

where ad Φ 0. We note that

Thus

for all u — [Q jq) s u c h that βq Φ a for any positive integer q and ap Φ β

for any positive integer p.

Case 4. a φ β and t Φ 0, % = (Q J )

Let « = (« ») and , - (J « « f « > Then , - . (J ~ « - "
and S = yuy"1. Thus /̂ induces a holomorphic isomorphism

defined by

y: pu(z, w) -> j>2:(i/(«, ^)) = 2>s:(« + w, w)
\ α — /3 /

where ί>tt: W-* Vu and p^: TΓ-^ F^ are canonical projections. Hence

A u t ( F w ) ~ Aut(Vj)
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by the correspondence

fe Aut (Vu) - yfy'1 e Aut (7j) .

Thus Case 4 reduces to Case 3. We note that, in Case 4,

C a s e 4 - A . / 3 9 = a for some q ^ 2 a n d t Φ 0 .

where the group operation in C» x C is defined as in Case 3-A:

(vr, b')(v, b) = (v'v, a'b + 6'd )

where * = ( j j ) , e = ((o - d)/(α - £))« and t>' = ( j j ' | ) , e' = ((α' - #)/(« - /S))ί.

Case 4-JB. ap — β for some p ^ 2 â icZ ^ =̂  0.

where the group operation in Cu x C is defined as in Case 3-B:

(v\ b'){v, b) = (v'v, d'b + δ'αp)

where v = ( j j), β = ((α - d)/(α - /S))ί and v' = ( j ' | ) , e' - ( « - d')/(« "

Case 4-C. ^ — (ô  o)> ^ ̂  0, βq Φa for any positive integer q and ap Φ

β for any positive integer p.

3. Proof of Theorem. In §2, we have shown that Aut(K) is
isomorphic to Cu x C/Gu x 0 if u is in one of Case 3-A, Case 3-B, Case
4-A and Case 4-B, and is isomorphic to Cu/Gu if u is in one of other
cases. We introduce an analytic space structure in the disjoint union of
these quotient groups. If this is done, an analytic space structure in
HUGM Aut(FJ is induced by it.

We consider closed subvarieties

ZOf X2, Xz, , I2, I3,

o f l x GL(2, C)x C defined by

Zo = {(u, v,b)eMx GL(2, C) x C\uv = vu, b = 0},
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χk = {(u, v,b)eMx GL(2, C) x C\uv = vu, βk = a}

f o r k = 2, 3, , w h e r e u = I j A a n d

y4 = {(^ v , 6) eΛf x GL(2, C) x C\uv = vu, ak = β}

for k = 2, 3, , where w = (Q i ) tt i s c l e a r t h a t ^ -Xi, , Fi, ^
are mutually disjoint, while each of them intersects Zo. Let Z be the
union of these subvarieties:

LEMMA 4. Z is a closed subvariety ofMx GL(2, C) x C.

PROOF. First, we show that Z is closed in M x GL(2, C) x C. Let

{{uv, vU9 δv)K=i,2,... be a sequence of points in Z converging to a point

(u, v,b)eMx GL(2, C) x C. Since u,vv = v,uv, v = 1, 2, , we have uv =

vw. We put % = (ίfo)- We assume that

i.e., ak Φ β, βk Φ a for any k ^ 2. Since α:fe and /S& converge to 0 as
k —> + oo, there is a positive number ε such that

(1) I ak - β I > ε and | βk - a \ > ε

for all k ^ 2. We may assume that

(2) e < 3 ( l - | α | ) and ε < 3 ( l - | / 5 | ) .

We put uu = (o" i v ) ' v - 1 , 2, . Then α v ->α, β>-+β and ί v ->ί as

y —* + oo. Hence there is an integer No such that

(3) I α — «v I < -I" a n d l / 5 - ^ K τ
ύ O

for all v ^ iSΓ0. Now we show that there is an integer N, N ^ iV0, such
that

(4) \a«-aΐ\<±. and | βk - βt \ < -|-
O O

for all k ^ 2 and for all i; ^ JSΓ We show the first half of (4). The
second half is shown in a similar way. We assume the converse. Then
there are a sequence No ^ vι < v2 < of integers and a sequence klf

k2, of integers each of which is greater than 1 such that
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I a - - av* I ̂  —

for n = 1, 2, . If {kl9 k2, } is bounded, then there is a subsequence
knv k%2, such that

k%1 = k%2 = = k , a constant .

Then

for m = 1, 2, •••. On the other hand, α£nm—>α* as m—>+oo, a con-
tradiction. Hence we may assume that

Ίjt ^ s " Jι» ^^ . . .
*Ί ^^ **/2 ^^

Then

(by (3)). The right hand side converges to 0 as n —> + oo by (2), a con-
tradiction. This shows (4). By (1), (3) and (4),

| α £ V | >

for all k ;> 2 and for all v ^ N. This proves that

for any v^ N. Hence (M,, I;V, 6,) e Zo for all v^ N. Hence &v = 0 for all
v ^ JV so that & = 0, i.e., (u, v, b) = (u, v, 0) e Zo. Hence Z is closed.

Next, let (u, v, b) e Xk. We put u = (β *) . Then /3fc = α. We show

that there is a positive number ε such that

( 5) Z n j "-W(", e)) = (X, U Zo) Π μr\N(u, 6))

where μ: M x GL(2, C) x C—> ikΓ is the canonical projection and

N{u,e) = \(^pjeM\\a-a'\<s and |/3-/3'|<εJ .

It is enough to claim that there is a positive number ε such that

(6) (β + β'f Φa + a! and {a + a'f" Φ β + β'

for any kr Φk, k' ^ 1, for any &" ^ 1 and for any βf and a! with | y3'| < e
and I a! \ < ε. (It is enough to prove (6) for any kr Φk, k! ^ 2 and for
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any k" Ξ> 2 for our present purpose. But we use the case kf = k" = 1
afterwards.) We show the first half of (6). The second half is shown
in a similar way. We assume the converse. Then there are sequences

K k i , {/3'L=i,2,... such that

| α £ l < — and | # | < —
v v

for v = 1, 2, , and a sequence klf k2, of positive integers each of
which is different from k such that

(7) (/3 + β[)k» = a + a[

for v = 1, 2, . If {&!, &2, •} is bounded, then there is a subsequence
knv K2, such that

k%1 — k%%— = k\φ k) , a constant .

Then

03 + tf J * = « + < m

for m = 1, 2, . The left hand side converges to βk' as ra —> + oo, while
the right hand side converges to a. Hence βk' = a, a contradiction.
Hence we may assume that

fti < fea < .

Then

-^Oas v->+oo t Hence the left hand side of (7) converges to 0 as v —•
+ oo, while the right hand side of (7) converges to a, a contradiction.
Hence (5) is proved. Let (u, v, b)eZ0Γ) Xk- Then (5) shows that Z
coincides with Zo U I f c in a neighbourhood of {u, v, b). Let (u, v, b) e Xk —
Zo. Then 6 ^ 0 . The open subset

N = { « v', V) 6 μ-ι(N(u, e)) \ V Φ 0}

of μ~ι(N(u, ε)) does not intersect ZQ, and

(8) Zf)N=XkΠN.

Thus Z coincides with Xk in a neighbourhood of (u, v, 6). In a similar
way to (5), we can show that, for every point (u, v, b) e Ykf there is a
positive number ε such that

(9) Zf] μ~\N{u, 6)) = (Yk U Zo) n ^ ( i V K e)) .
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L e t (u, v, b)eZof] Yk. Then (9) shows t h a t Z coincides w i t h Zo U Yk in
a neighbourhood of (u, v, 6). L e t (u, v, b)eYk — Zo. Then 6 ^ 0 and

(10) Zf]N= YkΠN

where N is the open subset of μ~~\N{u, ε)) defined above. Hence Z coin-
cides with Yk in a neighbourhood of {u, v, b). Finally, let (u, v, b)eZ0 —
(Ufĉ 2 Xk) U (Ufc£2 YJC)- Then b = 0 and w = m&. A similar proof to the
proof of (5) shows that there is a positive number ε such that

(11) Z n μrι(N(u, ε)) = Zof] μ'\N(uf ε)) .

This means that Z coincides with Zo in a neighbourhood of (u, v, 0).
This completes the proof of Lemma 4. q.e.d.

Let

ζ:Z->Z

be an automorphism defined by

(u, v, 0)eZ0-* (u, uv, 0)eZ0,

(u, v, b)eXk—>(u, uv, ab) eXk,

(u, v, b)eYk-+ (u, uv, βb) e Yk,

where uv is the product of matrices u and v and u = U\ o)* We note

that ζ: ZQ —> ZQ and ζ: Xfc —> Xfc (resp. ζ: Zo —> Zΰ and ζ: Yk —> Ffc) coincide
on Zo Π Xfc (resp. Zo Π Yk) The inverse

ζ - 1 : ^ — Z

is given by

( ,̂ v, 0) 6 Zo -> (%, ̂ -1v, 0) e ̂ o,

, v, b)eXk-> (u, u~% —) e X

We put

H={ζn\neZ}.

LEMMA 5. H is a properly discontinuous group of automorphisms

without fixed point of Z.

PROOF. Let (u, v, b) e Z. We assume that ζn(u, v, b) = (u, v, b) for
an integer n. Then unv = v. Hence un = 1 so that n = 0. Next, we
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show that, for any compact set K in Z,

KΦ 0}

is a finite set. Let p and R be positive numbers such that

I det u I ̂  p < 1 and — ^ | det v | ^ i2
i?

for all (w, v, &) e if, where det w is the determinant of u. Then there is
a positive integer n0 such that

Then, for any positive integer n ^ n0,

I det unv I = I det u \n I det v I ̂  pnR < —
R

I det ^-wv I = I det u \~n \ det v \ ̂  ! θ - w —
R

and

Hence

is contained in

{neZ\ —n0 < n < n0} . q.e.d.

By Lemma 5, the quotient space

A = Z/H

is an analytic space such that the canonical projection

q:Z-+ A

is a covering map. Let

be the restriction to Z of the projection map

μ:Mx GL(2,C) x C->M.

Then λζ = λ. Hence there is a holomorphic map

such that the diagram
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M

is commutative. Since {u, 1, 0) e ZQ c Z, where 1 is the identity matrix
of GL(2, C), λ is surjective, so that λ is surjective. By the construction
above, each fiber λ" 1 ^) is naturally isomorphic to

Cu x C/Gu x 0

if u is in one of Case 3-A, Case 3-B, Case 4-A and Case 4-B, and is
isomorphic to

CJGU

if u is in one of other cases.
Now, we prove l)-4) of the theorem. 1) is already done. Next, we

show 2). We define a holomorphic map

r:ZX(Mx W)->AχX

M M

by

((u, v, 6), (u, x)) -> (q(u, v, 6), p(u, x))
where p: M x W—»X is the canonical projection. Then r is a covering
map. Let ((u, v, b), (u, x))eZχ (M x W). Let / be the automorphism

M

of W corresponding to {u, v, 6), see § 2. Let / be the automorphism of
Vu corresponding to q(u, v, δ). Since the diagram

(f,(u,x))eZX(Mx W)-^-+(f,P)eAx X
M

(u,f(x))eM x W Z >AP)eX,

where P = p(u, x), is commutative, and since r and p are covering maps,
it is enough to show that f(x) depends holomorphically on (u, v, b, x).
Since the problem is local, it is enough to show that f(x) depends holo-
morphically on (u, v, 6, x) in a neighbourhood of any point (u0, v0, 60, x0).

Case A. (u0, v0, b0) eZQ- (\Jk>2 Xk) U ( U ^ 2 Γ4).

In this case, by (11) in the proof of Lemma 4, there is a positive
number ε such that

Z Π Γι(N(u» 6)) = ZoΠ μ-\N(u0, ε)) .

Let (u, v, 0) G Z Π μ-\N{uQ, ε)) = ZQ Π μ~\N{uQ, έ)). Let / be the automor-
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phism of W corresponding to (u, v, 0). Then

f(x) = v(x)

for all x e W, as the argument in § 2 shows. v{x) depends holomorphically
on (v, x).

Case B. (uOy v0, &0) e l f c - Zo.

In this case, by (8) in the proof of Lemma 4,

Zf)N=Xkf)N,

where N = {(u, v, b) e μ-\N(uQ, e)) | b Φ 0}. Let (u, v, b) e Z n N = Xk Π JSΓ.

Then 6 ^ 0 and βk = a where u = (Q o) L e t / be the automorphism

of TΓ corresponding to (u, v, b). Let x = (z, w) e W. Then f(x) is written

as

f(x) = (az + a~~ d tw + bw\ dw)

where u = ( j j ) and v = ( j j), β = ((α - d)/(α-£))«. In fact, / = r1^/

where 2/ = (n '^α£~ ̂ j and 5(2, w) = (α« + bwk, dw), (see Case 4-A in §2).

Hence f(x) depends holomorphically on (u, v, b, x)e(Zf] N) x W.

Case C. (u0, v0, δ0) eXkΠ Zo.

In this case, by (5) in the proof of Lemma 4,

Z n μ-^Niuo, e)) = (Xfc U Zo) Π rWiuo, e)) .

Let

(«, « , i ) 6 Z n ^"W(«., β)) = OX* U ̂ 0) Π j t r^M,, ε)) .

Let / be the automorphism of W corresponding to (u, v, b). Let x =
(z, w) e W. Then it is easy to see that f(x) is written as

f(x) = (az + a ~ d tw + bw\ dw)
\ a - β I

for all (u, v, 6, x) e (Z Π frl(N(uo, e))) x TΓ, where u = ( j j ) and v = ( j j ) ,

e = ((α - d)/(α - /3))ί. (We note that a Φ β in Z Π μ~\N{uQ, ε)) = (Xk U ̂ 0) Π
μ~\N{uQ, ε)) by (6) of the proof of Lemma 4.) This shows that f{x) depends
holomorphically on (u, v, 6, x).

Case D . (M 0 , V0, b0) e Yk — Zo.

In this case, by (10) in the proof of Lemma 4,
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= Ykf)N,

where N = {(», v, b) e μ-ι(N(u0, e)) | 6 Φ 0}. Let (u, v, b) e Z Π N = YkΓ) N.

Q 1). Let / be the automorphism of

W corresponding to (u, v, b). Let x = (z, w) e W. Then /(α;) is written as

f
(x
) = fίu, (β +

/5 α: - £ \ a - β
b(z + — ^ ) f c + dw)
V a - β / /

where w = ( j j ) and v = ( j j), e = ((α - d)/(α - /5))ί. In fact, / = y^gy

where 1/ = (J *^α ϊ" ̂ ) a n d ^fe w ) = (a*f dw + δ«*), (see Case 4-B in §2).
Hence f(x) depends holomorphically on (u, v, 6, x) e (Z Π N) x W.

Case E. (u0, v0, b0) eYkΠ Zo.

In this case, by (9) in the proof of Lemma 4,

Z Π / r ^ n , e)) = (Γfc U Zo) ΓΊ μ~\N{v<«, e)) .

Let / be the automorphism of W corresponding to (u, v, 6). Let x =

(«, w) G TΓ. Then

Lw)k ,
I

+ t L +
a-β a-β \ a-β

biz + wX + dw)
V a - β I I

for all (u, v, b, x)e(Zf) μ~ι{N{u0, e))) x W, where u - ( j j ) and i; = ( j j),
e = ((α — d)/(α — β))£. Hence /(α?) depends holomorphically on (w, v, 6, x).

This completes the proof of 2) of the theorem.

Next, we prove 3) of the theorem. Let 1 be the (2 x 2)-identity
matrix. Then the map

ueM->(u, 1,0) eZ0<zZ

is holomorphic. Hence the map

ueM-+q(u, 1, 0)6 A

is holomorphic. It is clear that q(u, 1, 0) corresponds to the identity

map of Vu.
Finally we show 4) of the theorem. We define a holomorphic map

S.ZXZ-+AXA
M M
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by

((«, v, b), (u, v', b')) — (q(u, v, b), q(u, v', b')) .

Then s is a covering map. Let ((«, v, b), (u, v', &')) eZX Z. We define

a product

(u,v',V)(u,v,b)eZ

by

(1) («, v', b')(u, v, b) = (u, v'v, a'b + b'd"),

if u is in Case 3-A or 4-A of §2, where u = (%J\ v = (%$), e =

((a - d)/(a - β))t and v' = ( j ' | ) , e' - ((α' - d')/(a - β))t,

(2) («, «', V)(tt, v, 6) = (w, v'v, d'6 + Va>),

if « is in Case 3-B or 4-B of §2, where u = (%j\ υ = (%%), e =

((o - d)/(α - β))t and t;' = ( j ' | ) , e' = ((a' - d')l(a - β))t,

(3) (u,v',0)(u,v,0) = (u,v'v,0),

if u is in one of other cases. Then, as in the proof of 2) of the theorem,
by diving in various cases, we can easily see that the map

((«, v, b), (u, v', b'))eZXZ-^(u, v', b')(u, v,b)eZ
M

is holomorphic. We define a product

q(u, v', V)q{u, v,b)eA

by

q(u, v', V)q{u, v, b) = q((u, v', V)(u, v, b)) .

This is well defined, as is easily shown by dividing in various cases.
Since the map s defined above and the map q are covering maps, the map

(q(u, v, δ), q(u, v', V)) e i X A - q(u, v', V)q(u, v,b)eA
M

is holomorphic. It is clear that q(u, v', V)q(u, v, b) corresponds to the
composition gf of automorphisms g and / of Vu corresponding to q(u, v', V)
and q(u, v, b) respectively.

Now, we define a holomorphic map

by
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8: (u, v, 0) e Zo -* (u, v~\ 0)eZ0 ,

S: (u, v, b)eXk-> (u, v~\ - -A-) e Xk ,

9: (u, v, b) e Yk -+ (u, v~\ - -L) e Yk ,
\ ad /

where u = (% *) and v = (βfy,e = ((α - d)/(a - β))t. We note that 9: Zo ~>

Zo and Θ: Xk — Xk (resp. 9: Zo -> Zo and 9: Yk -* Yk) coincide on Zo Π Xk

(resp. ^o Π Yjc)- I t is easy to see that θζ = ζ#. Hence we can define a map

by

%(w, v, b)) = q(9(u, v, b)) .

Since q is a covering map, 0 is holomorphic. It is clear that θ(q(u, v, b))
corresponds to the inverse f~ι of the automorphism / of Vu corresponding
to q(u, v, 6). This completes the proof of 4) of the theorem.
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