AUTOMORPHISM GROUPS OF HOPF SURFACES

Makoto Namba

(Received April 27, 1973)

Introduction. Let $G L(2, C)$ be the group of non-singular (2×2) matrices. An element $u=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ of $G L(2, C)$ operates on C^{2} as follows:

$$
(z, w) \rightarrow(a z+b w, c z+d w)
$$

Let M be a subset of $G L(2, C)$ defined by

$$
M=\left\{\left(\begin{array}{ll}
\alpha & t \\
0 & \beta
\end{array}\right)|\alpha, \beta, t \in \boldsymbol{C}, 0<|\alpha|<1,0<|\beta|<1\} .\right.
$$

Then M is a complex manifold. Let 0 be the origin of C^{2}. We put $W=C^{2}-0$. Let $u \in M$. Then u defines a properly discontinuous group

$$
G_{u}=\left\{u^{n} \mid n \in \boldsymbol{Z}\right\}
$$

of automorphisms (holomorphic isomorphisms) without fixed point of W. Hence we have a complex manifold

$$
V_{u}=W / G_{u}
$$

V_{u} is easily seen to be compact. It is called a Hopf surface. It can be shown that the collection

$$
\left\{V_{u}\right\}_{u \in M}
$$

forms a complex analytic family (X, π, M). We denote by $\operatorname{Aut}\left(V_{u}\right)$ the group of automorphisms of V_{u}.

The purpose of this note is prove the following theorem.
Theorem. The disjoint union

$$
A=\coprod_{u \in M} \operatorname{Aut}\left(V_{u}\right)
$$

admits a (reduced) analytic space structure such that

1) $\lambda: A \rightarrow M$ is a surjective holomorphic map, where λ is the canonical projection,
2) the map

$$
A \underset{M}{\times} X \rightarrow X
$$

defined by

$$
(f, P) \rightarrow f(P),
$$

is holomorphic, where

$$
A \underset{M}{\times} X=\{(f, P) \in A \times X \mid \lambda(f)=\pi(P)\},
$$

the fiber product of A and X over M,
3) the $\operatorname{map} M \rightarrow A$ defined by

$$
u \rightarrow 1_{u}
$$

is holomorphic, where 1_{u} is the identity map of V_{u},
4) the map

$$
A \underset{M}{\times} A \rightarrow A
$$

defined by

$$
(f, g) \rightarrow g^{-1} f
$$

is holomorphic, where

$$
A \underset{M}{\times} A=\{(f, g) \in A \times A \mid \lambda(f)=\lambda(g)\},
$$

the fiber product of A and A over M.

1. The complex analytic family of Hopf surfaces. By a complex analytic family of compact complex manifolds, we mean a triple (X, π, M) of complex manifolds X and M and a proper holomorphic map of X onto M which is of maximal rank at every point of X, i.e.,

$$
\operatorname{rank} J(f)_{P}=\operatorname{dim} M
$$

for all $P \in X$, where $J(f)_{P}$ is the Jacobian matrix of f at P. In this case, each fiber $\pi^{-1}(u), u \in M$, is a compact complex manifold. M is called the parameter space of the family (X, π, M).

Now, let

$$
M=\left\{\left(\begin{array}{ll}
\alpha & t \\
0 & \beta
\end{array}\right) \in G L(2, C)|\alpha, \beta, t \in C, 0<|\alpha|<1,0<|\beta|<1\}\right.
$$

and

$$
W=C^{2}-0 .
$$

We define a holomorphic map

$$
\eta: M \times W \rightarrow M \times W
$$

by

$$
\eta(u, x)=(u, u x) .
$$

Then η is an automorphism, for η^{-1} is given by

$$
(u, x) \rightarrow\left(u, u^{-1} x\right)
$$

We put $G=\left\{\eta^{n} \mid n \in \boldsymbol{Z}\right\}$.
Lemma 1. G is a properly discontinuous group of automorphisms without fixed point of $M \times W$.

Proof. We assume that $\left(u, u^{n} x\right)=(u, x)$ for an integer $n \neq 0$. Then $u^{n} x=x$. We write

$$
u=\left(\begin{array}{ll}
\alpha & t \\
0 & \beta
\end{array}\right), \quad 0<|\alpha|<1, \quad 0<|\beta|<1
$$

and $x=(z, w)$. Then

$$
\begin{aligned}
u^{n} x & =\left(\alpha^{n} z+\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} t w, \beta^{n} w\right), & & \text { if } \alpha \neq \beta \\
& =\left(\alpha^{n} z+n \alpha^{n-1} t w, \alpha^{n} w\right), & & \text { if } \alpha=\beta
\end{aligned}
$$

Since $0<|\alpha|<1$ and $0<|\beta|<1, u^{n} x=x$ implies that $w=0$, so that $z=0$, a contradiction. Hence G has no fixed point. In order to show that G is a properly discontinuous group, it is enough to show that, for a compact subset K_{1} of M and a compact subset K_{2} of W,

$$
\left\{n \in \boldsymbol{Z} \mid \eta^{n}\left(K_{1} \times K_{2}\right) \cap\left(K_{1} \times K_{2}\right) \neq \varnothing\right\}
$$

is a finite set. There are positive constants c and d such that

$$
|\alpha|,|\beta| \leqq c<1 \quad \text { and } \quad|t| \leqq d
$$

for all $\left(\begin{array}{ll}\alpha & t \\ 0 & \beta\end{array}\right) \in K_{1}$. We define a norm $\left|\mid\right.$ in C^{2} by

$$
|(z, w)|=|z|+|w|
$$

Then there are positive constants a and b such that

$$
a \leqq|x| \leqq b
$$

for all $x \in K_{2}$. Now

$$
\left|u^{n} x\right|=\left|\alpha^{n} z+\gamma_{n} t w\right|+\left|\beta^{n} w\right|
$$

where $u=\left(\begin{array}{ll}\alpha & t \\ 0 & \beta\end{array}\right) \in K_{1}, x=(z, w) \in K_{2}$ and

$$
\begin{aligned}
\gamma_{n} & =\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, & & \text { if } \quad \alpha \neq \beta \\
& =n \alpha^{n-1}, & & \text { if } \quad \alpha=\beta
\end{aligned}
$$

Hence, for a positive integer n,

$$
\begin{aligned}
\left|u^{n} x\right| & \leqq|\alpha|^{n}|z|+\left|\gamma_{n} \| t\right||w|+|\beta|^{n}|w| \\
& \leqq c^{n} b+n c^{n-1} d b+c^{n} b \rightarrow 0
\end{aligned}
$$

as $n \rightarrow+\infty$. Thus there is a positive integer N such that

$$
\left|u^{n} x\right|<a
$$

for all $n \geqq N$. Next, we show that there is a positive integer N^{\prime} such that

$$
\left|u^{-n} x\right|>b
$$

for all $n \geqq N^{\prime}$ and for all $(u, x) \in K_{1} \times K_{2}$. We assume the converse. Then there are a sequence of points $\left\{\left(u_{\nu}, x_{\nu}\right)\right\}_{\nu=1,2}, \ldots$ of $K_{1} \times K_{2}$ and a sequence of integers

$$
n_{1}<n_{2}<\cdots
$$

such that

$$
\left|u_{\nu}^{-n_{\nu}} x_{\nu}\right| \leqq b, \quad \nu=1,2, \cdots
$$

We put $y_{\nu}=u_{\nu}^{-n_{\nu}} x_{\nu}, \nu=1,2, \cdots$. Then $x_{\nu}=u_{\nu}^{n} y_{\nu}, \nu=1,2, \cdots$. We put

$$
y_{\nu}=\left(z_{\nu}^{\prime}, w_{\nu}^{\prime}\right) \quad \text { and } \quad u_{\nu}=\left(\begin{array}{c}
\alpha_{\nu} t_{\nu} \\
0
\end{array} \beta_{\nu}\right), \quad \nu=1,2, \cdots .
$$

Then

$$
x_{\nu}=u_{\nu}^{n} y_{\nu}=\left(\alpha_{\nu}^{n} \nu z_{\nu}^{\prime}+\gamma_{\nu} t_{\nu} w_{\nu}^{\prime}, \beta_{\nu}^{n} w_{\nu}^{\prime}\right), \quad \nu=1,2, \cdots,
$$

where

$$
\begin{aligned}
\gamma_{\nu} & =\frac{\alpha_{\nu}^{n}-\beta_{\nu}^{n_{\nu}}}{\alpha_{\nu}-\beta_{\nu}}, & & \text { if } \quad \alpha_{\nu} \neq \beta_{\nu} \\
& =n_{\nu} \alpha_{\nu \nu-1}^{n_{\nu}}, & & \text { if } \quad \alpha_{\nu}=\beta_{\nu} .
\end{aligned}
$$

Hence

$$
\left|x_{\nu}\right| \leqq\left(c^{n_{\nu}}+n_{\nu} c^{n_{\nu}-1} d+c_{\nu}^{n_{\nu}}\right) b \rightarrow 0
$$

as $\nu \rightarrow+\infty$. This contradicts to

$$
\left\{x_{\nu}\right\}_{\nu=1,2, \ldots} \subset K_{2} .
$$

Now

$$
\left\{n \in \boldsymbol{Z} \mid \eta^{n}\left(K_{1} \times K_{2}\right) \cap\left(K_{1} \times K_{2}\right) \neq \varnothing\right\}
$$

is contained in

$$
\left\{n \in \boldsymbol{Z} \mid-N^{\prime}<n<N\right\}
$$

By Lemma 1, the quotient space

$$
X=(M \times W) / G
$$

is a complex manifold. Let $\tilde{\pi}: M \times W \rightarrow M$ be the canonical projection. Then $\tilde{\pi} \eta=\tilde{\pi}$. Hence there is a holomorphic map

$$
\pi: X \rightarrow M
$$

such that the diagram

is commutative, where p is the canonical projection. Since p is a covering map, π is a surjective holomorphic map of maximal rank at every point of X.

Lemma 2. π is a proper map.
Proof. Let K be a compact subset of M. We show that $\pi^{-1}(K)$ is compact. Let $\left\{P_{\nu}\right\}_{\nu=1,2, \ldots}$ be a sequence of points in $\pi^{-1}(K)$. We want to choose a subsequence of $\left\{P_{\nu}\right\}_{\nu=1,2, \ldots}$ converging to a point of $\pi^{-1}(K)$. We may assume that $\left\{\pi\left(P_{\nu}\right)\right\}_{\nu=1,2, \ldots}$ converges to a point $u \in K$. We put $u_{\nu}=$ $\pi\left(P_{\nu}\right), \nu=1,2, \cdots$ We put

$$
u_{\nu}=\left(\begin{array}{cc}
\alpha_{\nu} & t_{\nu} \\
0 & \beta_{\nu}
\end{array}\right), \quad \nu=1,2, \cdots
$$

and

$$
u=\left(\begin{array}{ll}
\alpha & t \\
0 & \beta
\end{array}\right)
$$

Then $\alpha_{\nu} \rightarrow \alpha, \beta_{\nu} \rightarrow \beta$ and $t_{\nu} \rightarrow t$ as $\nu \rightarrow+\infty$. We may assume that there are positive constants c_{1}, c_{2} and d such that

$$
c_{1} \leqq\left|\alpha_{\nu}\right| \leqq c_{2}<1, \quad c_{1} \leqq\left|\beta_{\nu}\right| \leqq c_{2}<1 \quad \text { and } \quad\left|t_{\nu}\right| \leqq d
$$

for all ν. Let $x_{\nu}, \nu=1,2, \cdots$, be points of W such that

$$
p\left(u_{\nu}, x_{\nu}\right)=P_{\nu}, \quad \nu=1,2, \cdots
$$

We put

$$
x_{\nu}=\left(z_{\nu}, w_{\nu}\right), \quad \nu=1,2, \cdots
$$

We define a norm $\left|\mid\right.$ in C^{2} by

$$
|(z, w)|=|z|+|w|
$$

First, we assume that there is a subsequence

$$
\nu_{1}<\nu_{2}<\cdots
$$

such that

$$
w_{\nu_{k}}=0, \quad k=1,2, \cdots
$$

Then $z_{\nu_{k}} \neq 0, \quad k=1,2, \cdots$. Thus there are integers $n_{k}, k=1,2, \cdots$, such that

$$
c_{1} \leqq\left|\alpha_{\nu_{k}}\right| \leqq\left|\alpha_{\nu_{k}}^{n_{k}} z_{\nu_{k}}\right| \leqq 1
$$

We put $z_{\nu_{k}}^{\prime}=\alpha_{\nu_{k}}^{n_{k}} z_{\nu_{k}}, k=1,2, \cdots$ We put $x_{\nu_{k}}^{\prime}=\left(z_{\nu_{k}}^{\prime}, 0\right), k=1,2, \cdots$. Then $x_{\nu_{k}}^{\prime}=u_{\nu_{k}}^{n_{k}} x_{\nu_{k}}, k=1,2, \cdots$. Hence

$$
P_{\nu_{k}}=p\left(u_{\nu_{k}}, x_{\nu_{k}}\right)=p\left(u_{\nu_{k}}, x_{\nu_{k}}^{\prime}\right), \quad k=1,2, \cdots
$$

Since $c_{1} \leqq\left|x_{\nu_{k}}^{\prime}\right| \leqq 1, k=1,2, \cdots$, we may assume that $\left\{x_{\nu_{k}}^{\prime}\right\}_{k=1,2, \ldots}$ converges to a point $x \in W$. Then $\left\{P_{\nu_{k}}\right\}_{k=1,2, \ldots}$ converges to $p(u, x)$.

Now, we may assume that $w_{\nu} \neq 0, \nu=1,2, \cdots$. Since there are integers $n_{\nu}, \nu=1,2, \cdots$, such that

$$
c_{1} \leqq\left|\beta_{\nu}\right| \leqq\left|\beta_{\nu}^{n_{\nu}} w_{\nu}\right| \leqq 1, \quad \nu=1,2, \cdots,
$$

we may assume that

$$
c_{1} \leqq\left|w_{\nu}\right| \leqq 1, \quad \nu=1,2, \cdots
$$

(We use $u_{\nu}^{n_{\nu}} x_{\nu}$ instead of x_{ν}.) Hence we may assume that $\left\{w_{\nu}\right\}_{\nu=1,2, \ldots}$ converges to a point $w \in C, c_{1} \leqq|w| \leqq 1$. Since the Riemann sphere \hat{C} is compact, we may assume that $\left\{z_{\nu}\right\}_{\nu=1,2, \ldots}$ converges to a point z of $\hat{\boldsymbol{C}}$. If $z \neq \infty$, then $x=(z, w)$ is a point of W and $\left\{P_{\nu}\right\}_{\nu=1,2, \ldots}$ converges to $p(u, x)$. If $z=\infty$, we may assume that

$$
1<\left|z_{1}\right|<\left|z_{2}\right|<\cdots \rightarrow+\infty .
$$

Then there is a sequence of positive integers $\left\{n_{\nu}\right\}_{\nu=1,2, \ldots}$ such that

$$
c_{1} \leqq\left|\alpha_{\nu}\right| \leqq\left|\alpha_{\nu}^{n_{\nu}} z_{\nu}\right| \leqq 1, \quad \nu=1,2, \cdots
$$

Let N be a positive integer such that

$$
\left|n c_{2}^{n-1} d\right| \leqq \frac{c_{1}}{2}
$$

for all $n \geqq N$. We may assume that $\left|z_{1}\right|$ is so large that

$$
c_{1}^{-N}<\left|z_{1}\right|
$$

Then

$$
\left|\alpha_{\nu}\right|^{-N} \leqq c_{1}^{-N}<\left|z_{1}\right| \leqq\left|z_{\nu}\right|, \quad \nu=1,2, \cdots
$$

Hence

$$
\left|\alpha_{\nu}^{N} z_{\nu}\right|>1, \quad \nu=1,2, \cdots
$$

This shows that

$$
n_{\nu}>N, \quad \nu=1,2, \cdots
$$

Hence

$$
\left|n_{\nu} c_{2}^{n}{ }^{n}-1 d\right| \leqq \frac{c_{1}}{2} \quad \nu=1,2, \cdots
$$

We put

$$
z_{\nu}^{\prime}=\alpha_{\nu}^{n} z_{\nu}+\gamma_{\nu} t_{\nu} w_{\nu}, \quad \nu=1,2, \cdots,
$$

where

$$
\begin{aligned}
\gamma_{\nu} & =\frac{\alpha_{\nu}^{n_{\nu}}-\beta_{\nu}^{n_{\nu}}}{\alpha_{\nu}-\beta_{\nu}}, & & \text { if } \quad \alpha_{\nu} \neq \beta_{\nu} \\
& =n_{\nu} \alpha_{\nu}^{n_{\nu}-1}, & & \text { if } \quad \alpha_{\nu}=\beta_{\nu}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \frac{c_{1}}{2}=c_{1}-\frac{c_{1}}{2} \leqq\left|\alpha_{\nu}^{n_{\nu}} z_{\nu}\right|-\left|\gamma_{\nu} t_{\nu} w_{\nu}\right| \leqq\left|z_{\nu}^{\prime}\right| \\
& \quad \leqq\left|\alpha_{\nu}^{n} z_{\nu}\right|+\left|\gamma_{\nu} t_{\nu} w_{\nu}\right| \leqq 1+\frac{c_{1}}{2}, \quad \nu=1,2, \cdots
\end{aligned}
$$

Hence we may assume that $\left\{z_{\nu}^{\prime}\right\}_{\nu=1,2, \ldots}$ converges to a point $z^{\prime} \in C, c_{1} / 2 \leqq$ $\left|z^{\prime}\right| \leqq 1+c_{1} / 2$. Since $\left|w_{\nu}\right| \leqq 1, \nu=1,2, \cdots$,

$$
\left|\beta_{\nu}^{n} w_{\nu}\right| \leqq\left|\beta_{\nu} w_{\nu}\right| \leqq\left|\beta_{\nu}\right| \leqq c_{2}, \quad \nu=1,2, \cdots
$$

We may assume that $\left\{\beta_{\nu}^{n_{\nu}} w_{\nu}\right\}_{\nu=1,2, \ldots}$ converges to $w^{\prime} \in C$. We put $x=$ $\left(z^{\prime}, w^{\prime}\right) \in W$. Then $\left\{P_{\nu}\right\}_{\nu=1,2, \ldots}$ converges to $p(u, x)$.
q.e.d.

Lemma 2 shows that (X, π, M) is a complex analytic family of compact complex manifolds. Each fiber $\pi^{-1}(u), u \in M$, is called a Hopf surface. Each fiber can be written as

$$
\pi^{-1}(u)=u \times V_{u}
$$

where

$$
V_{u}=W / G_{u}
$$

and

$$
G_{u}=\left\{u^{n} \mid n \in \boldsymbol{Z}\right\} .
$$

A similar but simpler argument to the proof of Lemma 1 shows that G_{u} is a properly discontinuous group of automorphisms without fixed point
of W. Henceforth, we identify $\pi^{-1}(u)$ with V_{u}.
2. Automorphism groups of Hopf surfaces. Let $u \in M$. Let V_{u} be the corresponding Hopf surface. Let $\operatorname{Aut}\left(V_{u}\right)$ be the group of automorphisms of V_{u}. Let

$$
C_{u}=\{v \in G L(2, C) \mid u v=v u\}
$$

Then C_{u} is a complex Lie subgroup of $G L(2, C)$. We define a homomorphism

$$
h_{u}: C_{u} \rightarrow \operatorname{Aut}\left(V_{u}\right)
$$

by

$$
v \rightarrow \tilde{v}
$$

where \widetilde{v} is an automorphism of V_{u} defined by

$$
\widetilde{v}: p(x) \rightarrow p(v x)
$$

for all $x \in W$, where $p: W \rightarrow V_{u}$ is the canonical projection. Since $u v=$ $v u, \widetilde{v}$ is well defined.

Lemma 3. $\operatorname{ker}\left(h_{u}\right)=G_{u}$.
Proof. Let $u^{n} \in G_{u}$. Then

$$
\tilde{u}_{n}: p(x) \rightarrow p\left(u^{n} x\right)=p(x) .
$$

Hence $G_{u} \subset \operatorname{ker}\left(h_{u}\right)$. Conversely, let $v \in \operatorname{ker}\left(h_{u}\right)$. Then

$$
p(v x)=p(x)
$$

for all $x \in W$. Hence, for each $x \in W$, there is an integer $k(x)$ such that

$$
v x=u^{k(x)} x .
$$

We show that

$$
k(c x)=k(x)
$$

if $c \in C$ and $c \neq 0$. In fact

$$
u^{k(c x)} c x=v(c x)=c v x=c u^{k(x)} x=u^{k(x)} c x
$$

so that

$$
u^{k(c x)-k(x)} c x=c x .
$$

Since G_{u} operates on W without fixed point,

$$
k(c x)=k(x) .
$$

Thus we may consider k to be a Z-valued function on $\boldsymbol{P}^{1}(\boldsymbol{C})$, the 1 -di-
mensional projective space. Since the cardinal number of the set $P^{1}(C)$ is greater than that of \boldsymbol{Z}, there are distinct points L_{1} and L_{2} in $\boldsymbol{P}^{1}(C)$ such that $k\left(L_{1}\right)=k\left(L_{2}\right)$. We put $k=k\left(L_{1}\right)=k\left(L_{2}\right)$. Let x_{1} and x_{2} be points in W such that $x_{1} \in L_{1}$ and $x_{2} \in L_{2}$. Then, for any point $x \in W$, there are complex numbers a and b such that

$$
x=a x_{1}+b x_{2} .
$$

Here we regard x, x_{1} and x_{2} as vectors $0 x, 0 x_{1}$, and $0 x_{2}$ respectively. Then

$$
v x=v\left(a x_{1}+b x_{2}\right)=a v x_{1}+b v x_{2}=a u^{k} x_{1}+b u^{k} x_{2}=u^{k} x
$$

Hence $v=u^{k}$.
q.e.d.

Now, we determine Aut (V_{u}) following the argument in [1]. Let

$$
f: V_{u} \rightarrow V_{u}
$$

be an automorphism. Since W is the universal covering space of V_{u}, there is an automorphism

$$
\tilde{f}: W \rightarrow W
$$

such that the diagram

is commutative where p is the canonical projection. Moreover \tilde{f} satisfies

$$
\tilde{f}(u x)=u^{g} \tilde{f}(x)
$$

for all $x \in W$, where u^{g} is a generator of G_{u}, $\left(u^{g}=u\right.$ or $\left.u^{-1}\right)$. We show $u^{g}=u$. By Hartogs's theorem, \tilde{f} is extended to an automorphism

$$
\tilde{f}: C^{2} \rightarrow C^{2}
$$

which maps 0 to 0 . If

$$
\tilde{f}(u x)=u^{-1} \tilde{f}(x)
$$

for all $x \in W$, then

$$
u^{n} \widetilde{f}\left(u^{n} x\right)=\widetilde{f}(x)
$$

for $n=1,2, \cdots$ and for all $x \in W$. We fix $x=(z, w) \in W$. We put $u=$ $\left(\begin{array}{ll}\alpha & t \\ 0 & \beta\end{array}\right)$. Then

$$
u^{n} x=\left(\alpha^{n} z+\gamma_{n} t w, \beta^{n} w\right)
$$

where

$$
\begin{aligned}
\gamma_{n} & =\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, & & \text { if } \alpha \neq \beta \\
& =n \alpha^{n-1}, & & \text { if } \quad \alpha=\beta
\end{aligned}
$$

Hence

$$
\left|u^{n} x\right| \leqq|\alpha|^{n}|z|+\left|\gamma_{n}\right||t||w|+|\beta|^{n}|w| \rightarrow 0
$$

as $n \rightarrow+\infty$. Hence

$$
\tilde{f}\left(u^{n} x\right) \rightarrow 0
$$

as $n \rightarrow+\infty$, for the extended map \tilde{f} maps 0 to 0 . On the other hand, there is an integer N such that

$$
\left|u^{n} \tilde{f}\left(u^{n} x\right)\right|<\left|\tilde{f}\left(u^{n} x\right)\right|
$$

for all $n \geqq N$. In fact, it is enough to take N such that

$$
\left|\beta^{N}\right|+\left|\gamma_{N}\right||t|<1
$$

Hence

$$
\left|u^{n} \tilde{f}\left(u^{n} x\right)\right| \rightarrow 0
$$

as $n \rightarrow+\infty$. This contradicts to

$$
u^{n} \tilde{f}\left(u^{n} x\right)=\tilde{f}(x), \quad n=1,2, \cdots
$$

Hence

$$
\tilde{f}(u x)=u \tilde{f}(x)
$$

for all $x \in W$. We write the extended automorphism $\tilde{f}: C^{2} \rightarrow C^{2}$ as

$$
\tilde{f}(z, w)=(g(z, w), h(z, w)) .
$$

Then the above condition is written as

$$
\begin{gathered}
g(\alpha z+t w, \beta w)=\alpha g(z, w)+t h(z, w), \\
h(\alpha z+t w, \beta w)=\beta h(z, w) .
\end{gathered}
$$

We expand g and h in the power series of z and w at the origin:

$$
\begin{aligned}
& g(z, w)=\sum_{p+q>0} c_{p q} z^{p} w^{q}, \\
& h(z, w)=\sum_{p+q>0} d_{p q} z^{p} w^{q} .
\end{aligned}
$$

Case 1. $\beta=\alpha$ and $t=0 ; u=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \alpha\end{array}\right)$.
In this case, above equations reduce to

$$
\sum_{p+q>0} \alpha^{p+q} c_{p q} z^{p} w^{q}=\sum_{p+q>0} \alpha c_{p q} z^{p} w^{q},
$$

$$
\sum_{p+q>0} \alpha^{p+q} d_{p q} z^{p} w^{q}=\sum_{p+q>0} \alpha d_{p q} z^{p} w^{q} .
$$

Since $0<|\alpha|<1$, we get

$$
c_{p q}=d_{p q}=0,
$$

if $p+q>1$. Hence

$$
\begin{aligned}
& g(z, w)=c_{10} z+c_{01} w \\
& h(z, w)=d_{10} z+d_{01} w
\end{aligned}
$$

Since \tilde{f} is an automorphism, the matrix $\left(\begin{array}{ll}c_{10} & c_{01} \\ d_{10} & d_{01}\end{array}\right)$ is non-singular. Thus

$$
\operatorname{Aut}\left(V_{u}\right) \cong \frac{G L(2, C)}{G_{u}}=\frac{C_{u}}{G_{u}}, \quad \operatorname{dim} \frac{C_{u}}{G_{u}}=4,
$$

for all $u=\left(\begin{array}{ll}\alpha & 0 \\ 0 & \alpha\end{array}\right)$.
Case 2. $\beta=\alpha$ and $t \neq 0 ; u=\left(\begin{array}{ll}\alpha & t \\ 0 & \alpha\end{array}\right)$.
In this case, above equations reduce to

$$
\begin{gathered}
\sum_{p+q>0} c_{p q}(\alpha z+t w)^{p}(\alpha w)^{q}=\sum_{p+q>0}\left(\alpha c_{p q}+t d_{p q}\right) z^{p} w^{q}, \\
\sum_{p+q>0} d_{p q}(\alpha z+t w)^{p}(\alpha w)^{q}=\sum_{p+q>0} \alpha d_{p q} z^{p} w^{q}
\end{gathered}
$$

From the last equation, we have

$$
d_{10}=0 \quad \text { and } \quad d_{p q}=0, \quad \text { if } p+q>1
$$

Hence

$$
h(z, w)=d_{01} w
$$

Hence, from the first equation, we have

$$
c_{10}=d_{01} \quad \text { and } \quad c_{p q}=0, \quad \text { if } p+q>1
$$

Thus

$$
\begin{gathered}
g(z, w)=c_{10} z+c_{01} w, \\
h(z, w)=c_{10} w
\end{gathered}
$$

Since $\left(\begin{array}{cc}c_{10} & c_{01} \\ 0 & c_{10}\end{array}\right) \in C_{u}$, we have

$$
\operatorname{Aut}\left(V_{u}\right) \cong \frac{C_{u}}{G_{u}}, \quad \operatorname{dim} \frac{C_{u}}{G_{u}}=2
$$

for all $u=\left(\begin{array}{ll}\alpha & t \\ 0 & \alpha\end{array}\right), t \neq 0$.

Case 3. $\beta \neq \alpha$ and $t=0 ; u=\left(\begin{array}{ll}\alpha & 0 \\ 0 & \beta\end{array}\right)$.
In this case, above equations reduce to

$$
\begin{aligned}
& \sum_{p+q>0} c_{p q} \alpha^{p} \beta^{q} z^{p} w^{q}=\sum_{p+q>0} \alpha c_{p q} z^{p} w^{q}, \\
& \sum_{p+q>0} d_{p q} \alpha^{p} \beta^{q} z^{p} w^{q}=\sum_{p+q>0} \beta d_{p q} z^{p} w^{q} .
\end{aligned}
$$

Hence, if $p>0$ and $q>0$, then

$$
c_{p q}=0 \quad \text { and } \quad d_{p q}=0
$$

If $p=0$, then

$$
\begin{aligned}
c_{0 q}\left(\beta^{q}-\alpha\right) & =0 \\
d_{0 q}\left(\beta^{q}-\beta\right) & =0
\end{aligned}
$$

Hence $c_{01}=0$ and $d_{0 q}=0$, if $q>1$. If $q=0$, then

$$
\begin{aligned}
c_{p 0}\left(\alpha^{p}-\alpha\right) & =0 \\
d_{p 0}\left(\alpha^{p}-\beta\right) & =0
\end{aligned}
$$

Hence $d_{10}=0$ and $c_{p 0}=0$, if $p>1$. Case 3 is thus divided as follows.
Case 3 -A. $\quad \beta^{q}=\alpha$ for some $q \geqq 2 ; u=\binom{\beta^{q}}{0}$.
In this case, \tilde{f} is generally written as

$$
\tilde{f}:(z, w) \rightarrow\left(a z+b w^{q}, d w\right)
$$

where $a d \neq 0$ and b is arbitrary. We note that

$$
C_{u}=\left\{\left.\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right) \right\rvert\, a d \neq 0\right\} .
$$

We introduce a group operation in the set $C_{u} \times C$ as follows:

$$
\left(v^{\prime}, b^{\prime}\right)(v, b)=\left(v^{\prime} v, a^{\prime} b+b^{\prime} d^{q}\right)
$$

where $v=\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right)$ and $v^{\prime}=\left(\begin{array}{cc}a^{\prime} & 0 \\ 0 & d^{\prime}\end{array}\right)$. By this group operation, $C_{u} \times \boldsymbol{C}$ becomes a complex Lie group. C_{u} is then isomorphic to the complex Lie subgroup $C_{u} \times 0$ of $C_{u} \times C$. The group $C_{u} \times \boldsymbol{C}$ is isomorphic to the group of automorphisms \tilde{f} of W such that $\tilde{f} u=u \tilde{f}$. The isomorphism is given by

$$
\left(\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right), b\right) \rightarrow \tilde{f}
$$

where

$$
\tilde{f}:(z, w) \rightarrow\left(a z+b w^{q}, d w\right)
$$

Hence there is a surjective homomorphism

$$
g_{u}: C_{u} \times C \rightarrow \operatorname{Aut}\left(V_{u}\right) .
$$

We show that $\operatorname{ker}\left(g_{u}\right)$ is equal to $G_{u} \times 0$. First, for an integer $n, u^{n} \times$ 0 corresponds to the automorphism

$$
\tilde{f}=u^{n}:(z, w) \rightarrow\left(\alpha^{n} z, \beta^{n} w\right)
$$

of W which corresponds to the identity map of V_{u}. Next, let

$$
\tilde{f}:(z, w) \rightarrow\left(a z+b w^{q}, d w\right), \quad a d \neq 0
$$

be an automorphism of W which corresponds to the identity map of V_{u}. Then, for each $x=(z, w) \in W$, there is an integer $k(x)$ such that

$$
\begin{aligned}
a z+b w^{q} & =\alpha^{k(x)} z \\
d w & =\beta^{k(x)} w
\end{aligned}
$$

In particular, let $x \in W^{\prime}$ where

$$
W^{\prime}=\{(z, w) \in W \mid z \neq 0 \text { and } w \neq 0\}
$$

Then, by the second equation, $d=\beta^{k(x)}$. Hence $k(x)=k$ is constant for $x \in W^{\prime}$. By the first equation, $a=\alpha^{k}$ and $b=0$. Hence $\operatorname{ker}\left(g_{u}\right)$ is equal to $G_{u} \times 0$. Thus

$$
\operatorname{Aut}\left(V_{u}\right) \cong \frac{C_{u} \times C}{G_{u} \times 0}, \quad \operatorname{dim}\left(\frac{C_{u} \times \boldsymbol{C}}{G_{u} \times 0}\right)=3
$$

for all $u=\binom{\beta^{q}}{0}, q \geqq 2$. We note that the center of the group $C_{u} \times C$ is

$$
\left\{\left.\left(\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right), b\right) \in C_{u} \times \boldsymbol{C} \right\rvert\, a=d^{q} \text { and } b=0\right\}
$$

Hence $G_{u} \times 0$ is contained in the center.
Case 3-B. $\quad \alpha^{p}=\beta$ for some $p \geqq 2 ; u=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \alpha^{p}\end{array}\right)$.
In this case, \tilde{f} is generally written as

$$
\tilde{f}:(z, w) \rightarrow\left(a z, d w+b z^{p}\right)
$$

where $a d \neq 0$ and b is arbitrary. We note that

$$
C_{u}=\left\{\left.\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right) \right\rvert\, a d \neq 0\right\}
$$

We introduce a group operation in the set $C_{u} \times \boldsymbol{C}$ as follows:

$$
\left(v^{\prime}, b^{\prime}\right)(v, b)=\left(v^{\prime} v, d^{\prime} b+b^{\prime} a^{p}\right)
$$

where $v=\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right)$ and $v^{\prime}=\left(\begin{array}{ll}a^{\prime} & 0 \\ 0 & d^{\prime}\end{array}\right)$. By this group operation, $C_{u} \times C$ becomes a complex Lie group. C_{u} is then isomorphic to the complex Lie subgroup $C_{u} \times 0$ of $C_{u} \times C$. By a similar argument to Case 3-A, we have

$$
\operatorname{Aut}\left(V_{u}\right) \cong \frac{C_{u} \times \boldsymbol{C}}{G_{u} \times 0}, \quad \operatorname{dim}\left(\frac{C_{u} \times \boldsymbol{C}}{G_{u} \times 0}\right)=3
$$

for all $u=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \alpha^{p}\end{array}\right), p \geqq 2$. We note that the center of the group $C_{u} \times C$ is

$$
\left\{\left.\left(\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right), b\right) \in C_{u} \times C \right\rvert\, d=a^{p} \text { and } b=0\right\}
$$

Hence $G_{u} \times 0$ is contained in the center.
Case 3-C. $\quad u=\left(\begin{array}{ll}\alpha & 0 \\ 0 & \beta\end{array}\right), \beta^{q} \neq \alpha$ for any positive integer q and $\alpha^{p} \neq \beta$ for any positive integer p.

In this case, \tilde{f} is generally written as

$$
\tilde{f}:(z, w) \rightarrow(a z, d w)
$$

where $a d \neq 0$. We note that

$$
C_{u}=\left\{\left.\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right) \right\rvert\, a d \neq 0\right\} .
$$

Thus

$$
\operatorname{Aut}\left(V_{u}\right) \cong \frac{C_{u}}{G_{u}}, \quad \operatorname{dim} \frac{C_{u}}{G_{u}}=2
$$

for all $u=\left(\begin{array}{ll}\alpha & 0 \\ 0 & \beta\end{array}\right)$ such that $\beta^{q} \neq \alpha$ for any positive integer q and $\alpha^{p} \neq \beta$ for any positive integer p.

Case 4. $\alpha \neq \beta$ and $t \neq 0, u=\left(\begin{array}{ll}\alpha & t \\ 0 & \beta\end{array}\right)$.
Let $\tilde{u}=\left(\begin{array}{ll}\alpha & 0 \\ 0 & \beta\end{array}\right)$ and $y=\left(\begin{array}{cc}1 & t /(\alpha-\beta) \\ 0 & 1\end{array}\right)$. Then $y^{-1}=\left(\begin{array}{cc}1-t /(\alpha-\beta) \\ 0 & 1\end{array}\right)$ and $\tilde{u}=y u y^{-1}$. Thus y induces a holomorphic isomorphism

$$
\hat{y}: V_{u} \rightarrow V_{\widetilde{u}}
$$

defined by

$$
\hat{y}: p_{u}(z, w) \rightarrow p_{\tilde{u}}(y(z, w))=p_{\widetilde{u}}\left(z+\frac{t}{\alpha-\beta} w, w\right)
$$

where $p_{u}: W \rightarrow V_{u}$ and $p_{\tilde{u}}: W \rightarrow V_{\widetilde{u}}$ are canonical projections. Hence

$$
\operatorname{Aut}\left(V_{u}\right) \cong \operatorname{Aut}\left(V_{\tilde{u}}\right)
$$

by the correspondence

$$
f \in \operatorname{Aut}\left(V_{u}\right) \rightarrow \widehat{y} f \hat{y}^{-1} \in \operatorname{Aut}\left(V_{\widehat{u}}\right) .
$$

Thus Case 4 reduces to Case 3. We note that, in Case 4,

$$
C_{u}=\left\{\left.\left(\begin{array}{ll}
a & e \\
0 & d
\end{array}\right) \right\rvert\, a d \neq 0, e=\frac{a-d}{\alpha-\beta} t\right\}
$$

Case 4-A. $\beta^{q}=\alpha$ for some $q \geqq 2$ and $t \neq 0$.

$$
\operatorname{Aut}\left(V_{u}\right) \cong \frac{C_{u} \times C}{G_{u} \times 0}, \quad \operatorname{dim}\left(\frac{C_{u} \times C}{G_{u} \times 0}\right)=3
$$

where the group operation in $C_{u} \times C$ is defined as in Case 3-A:

$$
\left(v^{\prime}, b^{\prime}\right)(v, b)=\left(v^{\prime} v, a^{\prime} b+b^{\prime} d^{q}\right)
$$

where $v=\left(\begin{array}{ll}a & e \\ 0 & d\end{array}\right), e=((a-d) /(\alpha-\beta)) t$ and $v^{\prime}=\left(\begin{array}{cc}a^{\prime} & e^{\prime} \\ 0 & d^{\prime}\end{array}\right), e^{\prime}=\left(\left(a^{\prime}-d^{\prime}\right) /(\alpha-\beta)\right) t$.
Case 4-B. $\quad \alpha^{p}=\beta$ for some $p \geqq 2$ and $t \neq 0$.

$$
\operatorname{Aut}\left(V_{u}\right) \cong \frac{C_{u} \times \boldsymbol{C}}{G_{u} \times 0}, \quad \operatorname{dim}\left(\frac{C_{u} \times \boldsymbol{C}}{G_{u} \times 0}\right)=3
$$

where the group operation in $C_{u} \times \boldsymbol{C}$ is defined as in Case 3-B:

$$
\left(v^{\prime}, b^{\prime}\right)(v, b)=\left(v^{\prime} v, d^{\prime} b+b^{\prime} a^{p}\right)
$$

where $v=\left(\begin{array}{ll}a & e \\ 0 & d\end{array}\right), e=((a-d) /(\alpha-\beta)) t$ and $v^{\prime}=\left(\begin{array}{ll}a^{\prime} & e^{\prime} \\ 0 & d^{\prime}\end{array}\right), e^{\prime}=\left(\left(a^{\prime} .-d^{\prime}\right) /(\alpha-\beta)\right) t$.
Case 4-C. $\quad u=\left(\begin{array}{ll}\alpha & t \\ 0 & \beta\end{array}\right), t \neq 0, \beta^{q} \neq \alpha$ for any positive integer q and $\alpha^{p} \neq$ β for any positive integer p.

$$
\operatorname{Aut}\left(V_{u}\right) \cong \frac{C_{u}}{G_{u}}, \quad \operatorname{dim}\left(\frac{C_{u}}{G_{u}}\right)=2
$$

3. Proof of Theorem. In §2, we have shown that $\operatorname{Aut}\left(V_{u}\right)$ is isomorphic to $C_{u} \times C / G_{u} \times 0$ if u is in one of Case 3-A, Case 3-B, Case $4-\mathrm{A}$ and Case 4 -B, and is isomorphic to C_{u} / G_{u} if u is in one of other cases. We introduce an analytic space structure in the disjoint union of these quotient groups. If this is done, an analytic space structure in $\amalg_{u \in M} \operatorname{Aut}\left(V_{u}\right)$ is induced by it.

We consider closed subvarieties

$$
Z_{0}, X_{2}, X_{3}, \cdots, Y_{2}, Y_{3}, \cdots
$$

of $M \times G L(2, C) \times C$ defined by

$$
Z_{0}=\{(u, v, b) \in M \times G L(2, C) \times C \mid u v=v u, b=0\},
$$

$$
X_{k}=\left\{(u, v, b) \in M \times G L(2, \boldsymbol{C}) \times \boldsymbol{C} \mid u v=v u, \beta^{k}=\alpha\right\}
$$

for $k=2,3, \cdots$, where $u=\left(\begin{array}{cc}\alpha & t \\ 0 & \beta\end{array}\right)$, and

$$
Y_{k}=\left\{(u, v, b) \in M \times G L(2, \boldsymbol{C}) \times \boldsymbol{C} \mid u v=v u, \alpha^{k}=\beta\right\}
$$

for $k=2,3, \cdots$, where $u=\left(\begin{array}{ll}\alpha & t \\ 0 & \beta\end{array}\right)$. It is clear that $X_{2}, X_{3}, \cdots, Y_{2}, Y_{3}, \cdots$ are mutually disjoint, while each of them intersects Z_{0}. Let Z be the union of these subvarieties:

$$
Z=Z_{0} \cup\left(\bigcup_{k \geq 2} X_{k}\right) \cup\left(\bigcup_{k \geq 2} Y_{k}\right)
$$

Lemma 4. Z is a closed subvariety of $M \times G L(2, C) \times C$.
Proof. First, we show that Z is closed in $M \times G L(2, C) \times C$. Let $\left\{\left(u_{\nu}, v_{\nu}, b_{\nu}\right)\right\}_{\nu=1,2, \ldots}$ be a sequence of points in Z converging to a point $(u, v, b) \in M \times G L(2, C) \times C$. Since $u_{\nu} v_{\nu}=v_{\nu} u_{\nu}, \nu=1,2, \cdots$, we have $u v=$ $v u$. We put $u=\left(\begin{array}{ll}\alpha & t \\ 0 & \beta\end{array}\right)$. We assume that

$$
(u, v, b) \notin\left(\bigcup_{k \geq 2} X_{k}\right) \cup\left(\bigcup_{k \geq 2} Y_{k}\right),
$$

i.e., $\alpha^{k} \neq \beta, \beta^{k} \neq \alpha$ for any $k \geqq 2$. Since α^{k} and β^{k} converge to 0 as $k \rightarrow+\infty$, there is a positive number ε such that

$$
\begin{equation*}
\left|\alpha^{k}-\beta\right|>\varepsilon \quad \text { and } \quad\left|\beta^{k}-\alpha\right|>\varepsilon \tag{1}
\end{equation*}
$$

for all $k \geqq 2$. We may assume that

$$
\begin{equation*}
\varepsilon<3(1-|\alpha|) \quad \text { and } \quad \varepsilon<3(1-|\beta|) \tag{2}
\end{equation*}
$$

We put $u_{\nu}=\left(\begin{array}{ll}\alpha_{\nu} & t_{\nu} \\ 0 & \beta_{\nu}\end{array}\right), \nu=1,2, \cdots$ Then $\alpha_{\nu} \rightarrow \alpha, \beta_{\nu} \rightarrow \beta$ and $t_{\nu} \rightarrow t$ as $\nu \rightarrow+\infty$. Hence there is an integer N_{0} such that

$$
\begin{equation*}
\left|\alpha-\alpha_{\nu}\right|<\frac{\varepsilon}{3} \quad \text { and } \quad\left|\beta-\beta_{\nu}\right|<\frac{\varepsilon}{3} \tag{3}
\end{equation*}
$$

for all $\nu \geqq N_{0}$. Now we show that there is an integer $N, N \geqq N_{0}$, such that

$$
\begin{equation*}
\left|\alpha^{k}-\alpha_{\nu}^{k}\right|<\frac{\varepsilon}{3} \quad \text { and } \quad\left|\beta^{k}-\beta_{\nu}^{k}\right|<\frac{\varepsilon}{3} \tag{4}
\end{equation*}
$$

for all $k \geqq 2$ and for all $\nu \geqq N$. We show the first half of (4). The second half is shown in a similar way. We assume the converse. Then there are a sequence $N_{0} \leqq \nu_{1}<\nu_{2}<\cdots$ of integers and a sequence k_{1}, k_{2}, \cdots of integers each of which is greater than 1 such that

$$
\left|\alpha^{k_{n}}-\alpha_{\nu_{n}}^{k_{n}}\right| \geqq \frac{\varepsilon}{3}
$$

for $n=1,2, \cdots$. If $\left\{k_{1}, k_{2}, \cdots\right\}$ is bounded, then there is a subsequence $k_{n_{1}}, k_{n_{2}}, \cdots$ such that

$$
k_{n_{1}}=k_{n_{2}}=\cdots=k, \quad \text { a constant } .
$$

Then

$$
\left|\alpha^{k}-\alpha_{\nu_{n_{m}}}^{k}\right| \geqq \frac{\varepsilon}{3}
$$

for $m=1,2, \cdots$. On the other hand, $\alpha_{\nu_{n_{m}}}^{k} \rightarrow \alpha^{k}$ as $m \rightarrow+\infty$, a contradiction. Hence we may assume that

$$
k_{1}<k_{2}<\cdots
$$

Then

$$
\frac{\varepsilon}{3} \leqq\left|\alpha^{k_{n}}-\alpha_{\nu_{n}}^{k_{n}}\right| \leqq|\alpha|^{k_{n}}+\left|\alpha_{\nu_{n}}\right|^{k_{n}} \leqq|\alpha|^{k_{n}}+\left(|\alpha|+\frac{\varepsilon}{3}\right)^{k_{n}}
$$

(by (3)). The right hand side converges to 0 as $n \rightarrow+\infty$ by (2), a contradiction. This shows (4). By (1), (3) and (4),

$$
\left|\beta_{\nu}^{k}-\alpha_{\nu}\right|>\frac{\varepsilon}{3} \quad \text { and } \quad\left|\alpha_{\nu}^{k}-\beta_{\nu}\right|>\frac{\varepsilon}{3}
$$

for all $k \geqq 2$ and for all $\nu \geqq N$. This proves that

$$
\left(u_{\nu}, v_{\nu}, b_{\nu}\right) \notin\left(\bigcup_{k \leq 2} X_{k}\right) \cup\left(\bigcup_{k \geq 2} Y_{k}\right)
$$

for any $\nu \geqq N$. Hence $\left(u_{\nu}, v_{\nu}, b_{\nu}\right) \in Z_{0}$ for all $\nu \geqq N$. Hence $b_{\nu}=0$ for all $\nu \geqq N$ so that $b=0$, i.e., $(u, v, b)=(u, v, 0) \in Z_{0}$. Hence Z is closed.

Next, let $(u, v, b) \in X_{k}$. We put $u=\left(\begin{array}{ll}\alpha & t \\ 0 & \beta\end{array}\right)$. Then $\beta^{k}=\alpha$. We show that there is a positive number ε such that

$$
\begin{equation*}
Z \cap \mu^{-1}(N(u, \varepsilon))=\left(X_{k} \cup Z_{0}\right) \cap \mu^{-1}(N(u, \varepsilon)) \tag{5}
\end{equation*}
$$

where $\mu: M \times G L(2, C) \times C \rightarrow M$ is the canonical projection and

$$
N(u, \varepsilon)=\left\{\left.\left(\begin{array}{l}
\alpha^{\prime} t^{\prime} \\
0
\end{array} \beta^{\prime}\right) \in M| | \alpha-\alpha^{\prime} \right\rvert\,<\varepsilon \text { and }\left|\beta-\beta^{\prime}\right|<\varepsilon\right\} .
$$

It is enough to claim that there is a positive number ε such that

$$
\begin{equation*}
\left(\beta+\beta^{\prime}\right)^{k^{\prime}} \neq \alpha+\alpha^{\prime} \quad \text { and } \quad\left(\alpha+\alpha^{\prime}\right)^{k^{\prime \prime}} \neq \beta+\beta^{\prime} \tag{6}
\end{equation*}
$$

for any $k^{\prime} \neq k, k^{\prime} \geqq 1$, for any $k^{\prime \prime} \geqq 1$ and for any β^{\prime} and α^{\prime} with $\left|\beta^{\prime}\right|<\varepsilon$ and $\left|\alpha^{\prime}\right|<\varepsilon$. (It is enough to prove (6) for any $k^{\prime} \neq k, k^{\prime} \geqq 2$ and for
any $k^{\prime \prime} \geqq 2$ for our present purpose. But we use the case $k^{\prime}=k^{\prime \prime}=1$ afterwards.) We show the first half of (6). The second half is shown in a similar way. We assume the converse. Then there are sequences $\left\{\alpha_{\nu}^{\prime}\right\}_{\nu=1,2, \ldots,},\left\{\beta_{\nu}^{\prime}\right\}_{\nu=1,2}, \ldots$ such that

$$
\left|\alpha_{\nu}^{\prime}\right|<\frac{1}{\nu} \quad \text { and } \quad\left|\beta_{\nu}^{\prime}\right|<\frac{1}{\nu}
$$

for $\nu=1,2, \cdots$, and a sequence k_{1}, k_{2}, \cdots of positive integers each of which is different from k such that

$$
\begin{equation*}
\left(\beta+\beta_{\nu}^{\prime}\right)^{k_{\nu}}=\alpha+\alpha_{\nu}^{\prime} \tag{7}
\end{equation*}
$$

for $\nu=1,2, \cdots$. If $\left\{k_{1}, k_{2}, \cdots\right\}$ is bounded, then there is a subsequence $k_{n_{1}}, k_{n_{2}}, \cdots$ such that

$$
k_{n_{1}}=k_{n_{2}}=\cdots=k^{\prime}(\neq k), \quad \text { a constant } .
$$

Then

$$
\left(\beta+\beta_{\nu_{n_{m}}}^{\prime}\right)^{k^{\prime}}=\alpha+\alpha_{\nu_{n_{m}}}^{\prime}
$$

for $m=1,2, \cdots$. The left hand side converges to $\beta^{k^{\prime}}$ as $m \rightarrow+\infty$, while the right hand side converges to α. Hence $\beta^{k^{\prime}}=\alpha$, a contradiction. Hence we may assume that

$$
k_{1}<k_{2}<\cdots
$$

Then

$$
\left|\beta+\beta_{\nu}^{\prime}\right|^{k_{\nu}} \leqq\left(|\beta|+\mid \beta_{\nu}^{\prime}\right)^{k_{\nu}} \leqq\left(|\beta|+\frac{1}{\nu}\right)^{k_{\nu}}
$$

$\rightarrow 0$ as $\nu \rightarrow+\infty$. Hence the left hand side of (7) converges to 0 as $\nu \rightarrow$ $+\infty$, while the right hand side of (7) converges to α, a contradiction. Hence (5) is proved. Let $(u, v, b) \in Z_{0} \cap X_{k}$. Then (5) shows that Z coincides with $Z_{0} \cup X_{k}$ in a neighbourhood of (u, v, b). Let $(u, v, b) \in X_{k}-$ Z_{0}. Then $b \neq 0$. The open subset

$$
N=\left\{\left(u^{\prime}, v^{\prime}, b^{\prime}\right) \in \mu^{-1}(N(u, \varepsilon)) \mid b^{\prime} \neq 0\right\}
$$

of $\mu^{-1}(N(u, \varepsilon))$ does not intersect Z_{0}, and

$$
Z \cap N=X_{k} \cap N
$$

Thus Z coincides with X_{k} in a neighbourhood of (u, v, b). In a similar way to (5), we can show that, for every point $(u, v, b) \in Y_{k}$, there is a positive number ε such that

$$
\begin{equation*}
Z \cap \mu^{-1}(N(u, \varepsilon))=\left(Y_{k} \cup Z_{0}\right) \cap \mu^{-1}(N(u, \varepsilon)) . \tag{9}
\end{equation*}
$$

Let $(u, v, b) \in Z_{0} \cap Y_{k}$. Then (9) shows that Z coincides with $Z_{0} \cup Y_{k}$ in a neighbourhood of (u, v, b). Let $(u, v, b) \in Y_{k}-Z_{0}$. Then $b \neq 0$ and

$$
\begin{equation*}
Z \cap N=Y_{k} \cap N \tag{10}
\end{equation*}
$$

where N is the open subset of $\mu^{-1}(N(u, \varepsilon))$ defined above. Hence Z coincides with Y_{k} in a neighbourhood of (u, v, b). Finally, let $(u, v, b) \in Z_{0}-$ $\left(\bigcup_{k \geq 2} X_{k}\right) \cup\left(\bigcup_{k \geq 2} Y_{k}\right)$. Then $b=0$ and $u v=v u$. A similar proof to the proof of (5) shows that there is a positive number ε such that

$$
\begin{equation*}
Z \cap \mu^{-1}(N(u, \varepsilon))=Z_{0} \cap \mu^{-1}(N(u, \varepsilon)) \tag{11}
\end{equation*}
$$

This means that Z coincides with Z_{0} in a neighbourhood of ($u, v, 0$). This completes the proof of Lemma 4.

Let

$$
\zeta: Z \rightarrow Z
$$

be an automorphism defined by

$$
\begin{gathered}
(u, v, 0) \in Z_{0} \rightarrow(u, u v, 0) \in Z_{0} \\
(u, v, b) \in X_{k} \rightarrow(u, u v, \alpha b) \in X_{k} \\
(u, v, b) \in Y_{k} \rightarrow(u, u v, \beta b) \in Y_{k}
\end{gathered}
$$

where $u v$ is the product of matrices u and v and $u=\left(\begin{array}{cc}\alpha & t \\ 0 & \beta\end{array}\right)$. We note that $\zeta: Z_{0} \rightarrow Z_{0}$ and $\zeta: X_{k} \rightarrow X_{k}$ (resp. $\zeta: Z_{0} \rightarrow Z_{0}$ and $\zeta: Y_{k} \rightarrow Y_{k}$) coincide on $Z_{0} \cap X_{k}$ (resp. $Z_{0} \cap Y_{k}$). The inverse

$$
\zeta^{-1}: Z \rightarrow Z
$$

is given by

$$
\begin{gathered}
(u, v, 0) \in Z_{0} \rightarrow\left(u, u^{-1} v, 0\right) \in Z_{0} \\
(u, v, b) \in X_{k} \rightarrow\left(u, u^{-1} v, \frac{b}{\alpha}\right) \in X_{k} \\
(u, v, b) \in Y_{k} \rightarrow\left(u, u^{-1} v, \frac{b}{\beta}\right) \in Y_{k}
\end{gathered}
$$

We put

$$
H=\left\{\zeta^{n} \mid n \in \boldsymbol{Z}\right\}
$$

Lemma 5. H is a properly discontinuous group of automorphisms without fixed point of Z.

Proof. Let $(u, v, b) \in Z$. We assume that $\zeta^{n}(u, v, b)=(u, v, b)$ for an integer n. Then $u^{n} v=v$. Hence $u^{n}=1$ so that $n=0$. Next, we
show that, for any compact set K in Z,

$$
\left\{n \in \boldsymbol{Z} \mid \zeta^{n}(K) \cap K \neq \varnothing\right\}
$$

is a finite set. Let ρ and R be positive numbers such that

$$
|\operatorname{det} u| \leqq \rho<1 \quad \text { and } \quad \frac{1}{R} \leqq|\operatorname{det} v| \leqq R
$$

for all $(u, v, b) \in K$, where det u is the determinant of u. Then there is a positive integer n_{0} such that

$$
\rho^{n_{0}}<\frac{1}{R^{2}}
$$

Then, for any positive integer $n \geqq n_{0}$,

$$
\left|\operatorname{det} u^{n} v\right|=|\operatorname{det} u|^{n}|\operatorname{det} v| \leqq \rho^{n} R<\frac{1}{R}
$$

and

$$
\left|\operatorname{det} u^{-n} v\right|=|\operatorname{det} u|^{-n}|\operatorname{det} v| \geqq \rho^{-n} \frac{1}{R}>R
$$

Hence

$$
\left\{n \in \boldsymbol{Z} \mid \zeta^{n}(K) \cap K \neq \varnothing\right\}
$$

is contained in

$$
\left\{n \in \boldsymbol{Z} \mid-n_{0}<n<n_{0}\right\} .
$$

By Lemma 5, the quotient space

$$
A=Z / H
$$

is an analytic space such that the canonical projection

$$
q: Z \rightarrow A
$$

is a covering map. Let

$$
\tilde{\lambda}: Z \rightarrow M
$$

be the restriction to Z of the projection map

$$
\mu: M \times G L(2, C) \times C \rightarrow M
$$

Then $\tilde{\lambda} \zeta=\tilde{\lambda}$. Hence there is a holomorphic map

$$
\lambda: A \rightarrow M
$$

such that the diagram

is commutative. Since $(u, 1,0) \in Z_{0} \subset Z$, where 1 is the identity matrix of $G L(2, C), \tilde{\lambda}$ is surjective, so that λ is surjective. By the construction above, each fiber $\lambda^{-1}(u)$ is naturally isomorphic to

$$
C_{u} \times C / G_{u} \times 0
$$

if u is in one of Case $3-\mathrm{A}$, Case 3-B, Case $4-\mathrm{A}$ and Case $4-\mathrm{B}$, and is isomorphic to

$$
C_{u} / G_{u}
$$

if u is in one of other cases.
Now, we prove 1)-4) of the theorem. 1) is already done. Next, we show 2). We define a holomorphic map

$$
r: Z \underset{M}{\times}(M \times W) \rightarrow A \underset{M}{\times} X
$$

by

$$
((u, v, b),(u, x)) \rightarrow(q(u, v, b), p(u, x))
$$

where $p: M \times W \rightarrow X$ is the canonical projection. Then r is a covering map. Let $((u, v, b),(u, x)) \in Z \underset{M}{\times}(M \times W)$. Let \tilde{f} be the automorphism of W corresponding to (u, v, b), see § 2 . Let f be the automorphism of V_{u} corresponding to $q(u, v, b)$. Since the diagram

where $P=p(u, x)$, is commutative, and since r and p are covering maps, it is enough to show that $\widetilde{f}(x)$ depends holomorphically on (u, v, b, x). Since the problem is local, it is enough to show that $\widetilde{f}(x)$ depends holomorphically on (u, v, b, x) in a neighbourhood of any point ($u_{0}, v_{0}, b_{0}, x_{0}$).

Case A. $\left(u_{0}, v_{0}, b_{0}\right) \in Z_{0}-\left(\bigcup_{k \geq 2} X_{k}\right) \cup\left(\bigcup_{k \geq 2} Y_{k}\right)$.
In this case, by (11) in the proof of Lemma 4, there is a positive number ε such that

$$
Z \cap \mu^{-1}\left(N\left(u_{0}, \varepsilon\right)\right)=Z_{0} \cap \mu^{-1}\left(N\left(u_{0}, \varepsilon\right)\right)
$$

Let $(u, v, 0) \in Z \cap \mu^{-1}\left(N\left(u_{0}, \varepsilon\right)\right)=Z_{0} \cap \mu^{-1}\left(N\left(u_{0}, \varepsilon\right)\right)$. Let \tilde{f} be the automor-
phism of W corresponding to ($u, v, 0$). Then

$$
\widetilde{f}(x)=v(x)
$$

for all $x \in W$, as the argument in § 2 shows. $\quad v(x)$ depends holomorphically on (v, x).

Case B. $\quad\left(u_{0}, v_{0}, b_{0}\right) \in X_{k}-Z_{0}$.
In this case, by (8) in the proof of Lemma 4,

$$
Z \cap N=X_{k} \cap N
$$

where $N=\left\{(u, v, b) \in \mu^{-1}\left(N\left(u_{0}, \varepsilon\right)\right) \mid b \neq 0\right\}$. Let $(u, v, b) \in Z \cap N=X_{k} \cap N$. Then $b \neq 0$ and $\beta^{k}=\alpha$ where $u=\left(\begin{array}{cc}\alpha & t \\ 0 & \beta\end{array}\right)$. Let \tilde{f} be the automorphism of W corresponding to (u, v, b). Let $x=(z, w) \in W$. Then $\tilde{f}(x)$ is written as

$$
\tilde{f}(x)=\left(a z+\frac{a-d}{\alpha-\beta} t w+b w^{k}, d w\right)
$$

where $u=\left(\begin{array}{ll}\alpha & t \\ 0 & \beta\end{array}\right)$ and $v=\left(\begin{array}{ll}a & e \\ 0 & d\end{array}\right), e=((\alpha-d) /(\alpha-\beta)) t$. In fact, $\widetilde{f}=y^{-1} \widetilde{g} y$ where $y=\left(\begin{array}{l}1 \\ 0\end{array} \frac{1}{1}-\beta\right)$ and $\widetilde{g}(z, w)=\left(a z+b w^{k}, d w\right)$, (see Case 4-A in $\S 2$). Hence $\tilde{f}(x)$ depends holomorphically on $(u, v, b, x) \in(Z \cap N) \times W$.

Case C. $\quad\left(u_{0}, v_{0}, b_{0}\right) \in X_{k} \cap Z_{0}$.
In this case, by (5) in the proof of Lemma 4,

$$
Z \cap \mu^{-1}\left(N\left(u_{0}, \varepsilon\right)\right)=\left(X_{k} \cup Z_{0}\right) \cap \mu^{-1}\left(N\left(u_{0}, \varepsilon\right)\right)
$$

Let

$$
(u, v, b) \in Z \cap \mu^{-1}\left(N\left(u_{0}, \varepsilon\right)\right)=\left(X_{k} \cup Z_{0}\right) \cap \mu^{-1}\left(N\left(u_{0}, \varepsilon\right)\right) .
$$

Let \tilde{f} be the automorphism of W corresponding to (u, v, b). Let $x=$ $(z, w) \in W$. Then it is easy to see that $\widetilde{f}(x)$ is written as

$$
\widetilde{f}(x)=\left(a z+\frac{a-d}{\alpha-\beta} t w+b w^{k}, d w\right)
$$

for all $(u, v, b, x) \in\left(Z \cap \mu^{-1}\left(N\left(u_{0}, \varepsilon\right)\right)\right) \times W$, where $u=\left(\begin{array}{ll}\alpha & t \\ 0 & \beta\end{array}\right)$ and $v=\left(\begin{array}{ll}a & e \\ 0 & d\end{array}\right)$, $e=((\alpha-d) /(\alpha-\beta)) t$. (We note that $\alpha \neq \beta$ in $Z \cap \mu^{-1}\left(N\left(u_{0}, \varepsilon\right)\right)=\left(X_{k} \cup Z_{0}\right) \cap$ $\mu^{-1}\left(N\left(u_{0}, \varepsilon\right)\right)$ by (6) of the proof of Lemma 4.) This shows that $\widetilde{f}(x)$ depends holomorphically on (u, v, b, x).

Case D. $\left(u_{0}, v_{0}, b_{0}\right) \in Y_{k}-Z_{0}$.
In this case, by (10) in the proof of Lemma 4,

$$
Z \cap N=Y_{k} \cap N
$$

where $N=\left\{(u, v, b) \in \mu^{-1}\left(N\left(u_{0}, \varepsilon\right)\right) \mid b \neq 0\right\}$. Let $(u, v, b) \in Z \cap N=Y_{k} \cap N$. Then $b \neq 0$ and $\alpha^{k}=\beta$ where $u=\left(\begin{array}{ll}\alpha & t \\ 0 & \beta\end{array}\right)$. Let \tilde{f} be the automorphism of W corresponding to (u, v, b). Let $x=(z, w) \in W$. Then $\widetilde{f}(x)$ is written as

$$
\begin{aligned}
\tilde{f}(x)= & \left(a z+\frac{a-d}{\alpha-\beta} t w-\frac{b t}{\alpha-\beta}\left(z+\frac{t}{\alpha-\beta} w\right)^{k}\right. \\
& \left.b\left(z+\frac{t}{\alpha-\beta} w\right)^{k}+d w\right)
\end{aligned}
$$

where $u=\left(\begin{array}{ll}\alpha & t \\ 0 & \beta\end{array}\right)$ and $v=\left(\begin{array}{ll}a & e \\ 0 & d\end{array}\right), \quad e=((a-d) /(\alpha-\beta)) t$. In fact, $\tilde{f}=y^{-1} \widetilde{g} y$ where $y=\left(\begin{array}{l}1 \\ 0\end{array} \frac{1}{t /(\alpha-\beta)}\right.$) and $\widetilde{g}(z, w)=\left(a z, d w+b z^{k}\right)$, (see Case 4-B in $\S 2$). Hence $\tilde{f}(x)$ depends holomorphically on $(u, v, b, x) \in(Z \cap N) \times W$.

Case E. $\quad\left(u_{0}, v_{0}, b_{0}\right) \in Y_{k} \cap Z_{0}$.
In this case, by (9) in the proof of Lemma 4,

$$
Z \cap \mu^{-1}\left(N\left(u_{0}, \varepsilon\right)\right)=\left(Y_{k} \cup Z_{0}\right) \cap \mu^{-1}\left(N\left(u_{0}, \varepsilon\right)\right)
$$

Let \tilde{f} be the automorphism of W corresponding to (u, v, b). Let $x=$ $(z, w) \in W$. Then

$$
\begin{aligned}
\tilde{f}(x)= & \left(a z+\frac{a-d}{\alpha-\beta} t w-\frac{b t}{\alpha-\beta}\left(z+\frac{t}{\alpha-\beta} w\right)^{k}\right. \\
& \left.b\left(z+\frac{t}{\alpha-\beta} w\right)^{k}+d w\right)
\end{aligned}
$$

for all $(u, v, b, x) \in\left(Z \cap \mu^{-1}\left(N\left(u_{0}, \varepsilon\right)\right)\right) \times W$, where $u=\left(\begin{array}{ll}\alpha & t \\ 0 & \beta\end{array}\right)$ and $v=\left(\begin{array}{ll}a & e \\ 0 & d\end{array}\right)$, $e=((a-d) /(\alpha-\beta)) t$. Hence $\widetilde{f}(x)$ depends holomorphically on (u, v, b, x).

This completes the proof of 2) of the theorem.
Next, we prove 3) of the theorem. Let 1 be the (2×2)-identity matrix. Then the map

$$
u \in M \rightarrow(u, 1,0) \in Z_{0} \subset Z
$$

is holomorphic. Hence the map

$$
u \in M \rightarrow q(u, 1,0) \in A
$$

is holomorphic. It is clear that $q(u, 1,0)$ corresponds to the identity map of V_{u}.

Finally we show 4) of the theorem. We define a holomorphic map

$$
s: Z \underset{M}{\times} Z \rightarrow A \underset{M}{\times} A
$$

by

$$
\left((u, v, b),\left(u, v^{\prime}, b^{\prime}\right)\right) \rightarrow\left(q(u, v, b), q\left(u, v^{\prime}, b^{\prime}\right)\right)
$$

Then s is a covering map. Let $\left((u, v, b),\left(u, v^{\prime}, b^{\prime}\right)\right) \in \underset{M}{\underset{~}{X}} Z$. We define a product

$$
\left(u, v^{\prime}, b^{\prime}\right)(u, v, b) \in Z
$$

by

$$
\begin{equation*}
\left(u, v^{\prime}, b^{\prime}\right)(u, v, b)=\left(u, v^{\prime} v, a^{\prime} b+b^{\prime} d^{q}\right), \tag{1}
\end{equation*}
$$

if u is in Case $3-\mathrm{A}$ or 4 -A of $\S 2$, where $u=\left(\begin{array}{cc}\alpha & t \\ 0 & \beta\end{array}\right), v=\left(\begin{array}{ll}a & e \\ 0 & d\end{array}\right), \quad e=$ $((\alpha-d) /(\alpha-\beta)) t$ and $v^{\prime}=\left(\begin{array}{cc}a^{\prime} & e^{\prime} \\ 0 & d^{\prime}\end{array}\right), e^{\prime}=\left(\left(a^{\prime}-d^{\prime}\right) /(\alpha-\beta)\right) t$,

$$
\begin{equation*}
\left(u, v^{\prime}, b^{\prime}\right)(u, v, b)=\left(u, v^{\prime} v, d^{\prime} b+b^{\prime} a^{p}\right) \tag{2}
\end{equation*}
$$

if u is in Case 3 -B or 4 -B of $\S 2$, where $u=\left(\begin{array}{ll}\alpha & t \\ 0 & \beta\end{array}\right), v=\left(\begin{array}{ll}a & e \\ 0 & d\end{array}\right), \quad e=$ $((\alpha-d) /(\alpha-\beta)) t$ and $v^{\prime}=\left(\begin{array}{ll}a^{\prime} & e^{\prime} \\ 0 & d^{\prime}\end{array}\right), e^{\prime}=\left(\left(a^{\prime}-d^{\prime}\right) /(\alpha-\beta)\right) t$,

$$
\begin{equation*}
\left(u, v^{\prime}, 0\right)(u, v, 0)=\left(u, v^{\prime} v, 0\right), \tag{3}
\end{equation*}
$$

if u is in one of other cases. Then, as in the proof of 2) of the theorem, by diving in various cases, we can easily see that the map

$$
\left((u, v, b),\left(u, v^{\prime}, b^{\prime}\right)\right) \in Z \underset{M}{X} Z \rightarrow\left(u, v^{\prime}, b^{\prime}\right)(u, v, b) \in Z
$$

is holomorphic. We define a product

$$
q\left(u, v^{\prime}, b^{\prime}\right) q(u, v, b) \in A
$$

by

$$
q\left(u, v^{\prime}, b^{\prime}\right) q(u, v, b)=q\left(\left(u, v^{\prime}, b^{\prime}\right)(u, v, b)\right) .
$$

This is well defined, as is easily shown by dividing in various cases. Since the map s defined above and the map q are covering maps, the map

$$
\left(q(u, v, b), q\left(u, v^{\prime}, b^{\prime}\right)\right) \in A \underset{M}{\times} A \rightarrow q\left(u, v^{\prime}, b^{\prime}\right) q(u, v, b) \in A
$$

is holomorphic. It is clear that $q\left(u, v^{\prime}, b^{\prime}\right) q(u, v, b)$ corresponds to the composition $g f$ of automorphisms g and f of V_{u} corresponding to $q\left(u, v^{\prime}, b^{\prime}\right)$ and $q(u, v, b)$ respectively.

Now, we define a holomorphic map

$$
\tilde{\theta}: Z \rightarrow Z
$$

by

$$
\begin{aligned}
& \tilde{\theta}:(u, v, 0) \in Z_{0} \rightarrow\left(u, v^{-1}, 0\right) \in Z_{0} \\
& \tilde{\theta}:(u, v, b) \in X_{k} \rightarrow\left(u, v^{-1},-\frac{b}{a d^{k}}\right) \in X_{k}, \\
& \tilde{\theta}:(u, v, b) \in Y_{k} \rightarrow\left(u, v^{-1},-\frac{b}{a^{k} d}\right) \in Y_{k}
\end{aligned}
$$

where $u=\left(\begin{array}{ll}\alpha & t \\ 0 & \beta\end{array}\right)$ and $v=\left(\begin{array}{ll}a & e \\ 0 & d\end{array}\right), e=((a-d) /(\alpha-\beta)) t$. We note that $\tilde{\theta}: Z_{0} \rightarrow$ Z_{0} and $\tilde{\theta}: X_{k} \rightarrow X_{k}$ (resp. $\tilde{\theta}: Z_{0} \rightarrow Z_{0}$ and $\tilde{\theta}: Y_{k} \rightarrow Y_{k}$) coincide on $Z_{0} \cap X_{k}$ (resp. $Z_{0} \cap Y_{k}$). It is easy to see that $\tilde{\theta} \zeta=\zeta \tilde{\theta}$. Hence we can define a map

$$
\theta: A \rightarrow A
$$

by

$$
\theta(q(u, v, b))=q(\tilde{\theta}(u, v, b))
$$

Since q is a covering map, θ is holomorphic. It is clear that $\theta(q(u, v, b))$ corresponds to the inverse f^{-1} of the automorphism f of V_{u} corresponding to $q(u, v, b)$. This completes the proof of 4$)$ of the theorem.

Reference

[1] K. Kodaira and D. C. Spencer, On deformations of complex analytic structures I and II, Ann. of Math., 67 (1958), 328-460.
mathematical Institute
Tôhoru University
Sendai, Japan

