## AUTOMORPHISM GROUPS OF HOPF SURFACES

## Макото Namba

## (Received April 27, 1973)

Introduction. Let GL(2, C) be the group of non-singular  $(2 \times 2)$ -matrices. An element  $u = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$  of GL(2, C) operates on  $C^2$  as follows:

 $(z, w) \rightarrow (az + bw, cz + dw)$ .

Let M be a subset of GL(2, C) defined by

$$M = \left\{ egin{pmatrix} lpha & t \ 0 \ eta \end{pmatrix} \Big| lpha, \ eta, \ t \in C, \ 0 < | \ lpha | < 1, \ 0 < | \ eta | < 1 
ight\} \ .$$

Then M is a complex manifold. Let 0 be the origin of  $C^2$ . We put  $W = C^2 - 0$ . Let  $u \in M$ . Then u defines a properly discontinuous group

$$G_u = \{u^n \mid n \in \mathbf{Z}\}$$

of automorphisms (holomorphic isomorphisms) without fixed point of W. Hence we have a complex manifold

$$V_u = W/G_u$$
.

 $V_{u}$  is easily seen to be compact. It is called a Hopf surface. It can be shown that the collection

 $\{V_u\}_{u \in M}$ 

forms a complex analytic family  $(X, \pi, M)$ . We denote by Aut $(V_u)$  the group of automorphisms of  $V_u$ .

The purpose of this note is prove the following theorem.

THEOREM. The disjoint union

$$A = \prod_{u \in M} \operatorname{Aut}(V_u)$$

admits a (reduced) analytic space structure such that

1)  $\lambda: A \to M$  is a surjective holomorphic map, where  $\lambda$  is the canonical projection,

2) the map

$$A \underset{M}{\times} X \to X$$

defined by

 $(f, P) \rightarrow f(P)$ ,

is holomorphic, where

$$A \underset{M}{\times} X = \{(f, P) \in A \times X \mid \lambda(f) = \pi(P)\},\$$

the fiber product of A and X over M,

3) the map  $M \rightarrow A$  defined by

$$u \rightarrow 1_u$$

is holomorphic, where  $1_u$  is the identity map of  $V_u$ , 4) the map

$$A \underset{M}{\times} A \to A$$

defined by

$$(f, g) \rightarrow g^{-1}f$$
 ,

is holomorphic, where

$$A lpha_{\scriptscriptstyle M} A = \{(f, g) \in A imes A \mid \lambda(f) = \lambda(g)\}$$
 ,

the fiber product of A and A over M.

1. The complex analytic family of Hopf surfaces. By a complex analytic family of compact complex manifolds, we mean a triple  $(X, \pi, M)$  of complex manifolds X and M and a proper holomorphic map of X onto M which is of maximal rank at every point of X, i.e.,

$$\operatorname{rank} J(f)_P = \dim M$$

for all  $P \in X$ , where  $J(f)_P$  is the Jacobian matrix of f at P. In this case, each fiber  $\pi^{-1}(u)$ ,  $u \in M$ , is a compact complex manifold. M is called the parameter space of the family  $(X, \pi, M)$ .

Now, let

$$M=\left\{egin{pmatrix}lpha \ t\ 0\ eta
ight)\in GL(2,\ C)\,|\,lpha,\,eta,\,t\in C,\ 0<|\,lpha\,|<1,\ 0<|\,eta\,|<1
ight\}$$

and

$$W=C^2-0.$$

We define a holomorphic map

$$\eta: M \times W \rightarrow M \times W$$

by

$$\eta(u, x) = (u, ux) .$$

Then  $\eta$  is an automorphism, for  $\eta^{-1}$  is given by

$$(u, x) \rightarrow (u, u^{-1}x)$$

We put  $G = \{\eta^n \mid n \in \mathbb{Z}\}.$ 

LEMMA 1. G is a properly discontinuous group of automorphisms without fixed point of  $M \times W$ .

PROOF. We assume that  $(u, u^n x) = (u, x)$  for an integer  $n \neq 0$ . Then  $u^n x = x$ . We write

$$u = egin{pmatrix} lpha \ b \ eta \end{pmatrix}, \hspace{0.2cm} 0 < | \, lpha \, | < 1 \ , \hspace{0.2cm} 0 < | \, eta \, | < 1$$

and x = (z, w). Then

$$u^n x = \left( lpha^n z + rac{lpha^n - eta^n}{lpha - eta} tw, \, eta^n w 
ight), \qquad ext{if} \quad lpha 
eq eta \ , \ = \left( lpha^n z + n lpha^{n-1} tw, \, lpha^n w 
ight), \qquad ext{if} \quad lpha = eta \ .$$

Since  $0 < |\alpha| < 1$  and  $0 < |\beta| < 1$ ,  $u^n x = x$  implies that w = 0, so that z = 0, a contradiction. Hence G has no fixed point. In order to show that G is a properly discontinuous group, it is enough to show that, for a compact subset  $K_1$  of M and a compact subset  $K_2$  of W,

$$\{n\in oldsymbol{Z}\,|\, \eta^n(K_{\scriptscriptstyle 1}\, imes\,K_{\scriptscriptstyle 2})\,\cap\,(K_{\scriptscriptstyle 1}\, imes\,K_{\scriptscriptstyle 2})\,
eq \oslash\}$$

is a finite set. There are positive constants c and d such that

$$|\alpha|, |\beta| \leq c < 1$$
 and  $|t| \leq d$ 

for all  $\begin{pmatrix} \alpha & t \\ 0 & \beta \end{pmatrix} \in K_1$ . We define a norm | | in  $C^2$  by

$$|(z, w)| = |z| + |w|$$
.

Then there are positive constants a and b such that

$$a \leq |x| \leq b$$

for all  $x \in K_2$ . Now

$$|u^nx| = |lpha^nz + \gamma_ntw| + |eta^nw|$$

where  $u = \begin{pmatrix} \alpha & t \\ 0 & \beta \end{pmatrix} \in K_1$ ,  $x = (z, w) \in K_2$  and

$$egin{array}{ll} \gamma_n = rac{lpha^n - eta^n}{lpha - eta}\,, & ext{if} & lpha 
eq eta\,, \ = n lpha^{n-1}\,, & ext{if} & lpha = eta\,. \end{array}$$

Hence, for a positive integer n,

$$|u^n x| \leq |\alpha|^n |z| + |\gamma_n| |t| |w| + |\beta|^n |w|$$
$$\leq c^n b + nc^{n-1} db + c^n b \to 0$$

as  $n \to +\infty$ . Thus there is a positive integer N such that

 $|u^n x| < a$ 

for all  $n \ge N$ . Next, we show that there is a positive integer N' such that

 $|u^{-n}x| > b$ 

for all  $n \ge N'$  and for all  $(u, x) \in K_1 \times K_2$ . We assume the converse. Then there are a sequence of points  $\{(u_{\nu}, x_{\nu})\}_{\nu=1,2,\dots}$  of  $K_1 \times K_2$  and a sequence of integers

$$n_1 < n_2 < \cdots$$

such that

We put  $y_{\nu} = u_{\nu}^{-n_{\nu}} x_{\nu}, \nu = 1, 2, \cdots$ . Then  $x_{\nu} = u_{\nu}^{n_{\nu}} y_{\nu}, \nu = 1, 2, \cdots$ . We put

$$y_{
u}=(z'_{
u},\,w'_{
u}) \quad ext{and} \quad u_{
u}=\left(egin{matrix} lpha_{
u}\,t_{
u}\ 0\,eta_{
u}\ \end{pmatrix}, \qquad 
u=1,\,2,\,\cdots\,.$$

Then

$$x_{
u} = u_{
u}^{n_{
u}}y_{
u} = (lpha_{
u}^{n_{
u}}z'_{
u} + \gamma_{
u}t_{
u}w'_{
u}, \, eta_{
u}^{n_{
u}}w'_{
u}) \,, \qquad 
u = 1, \, 2, \, \cdots \,,$$

where

$$egin{array}{ll} \gamma_{
u} = rac{lpha_{
u}^{n_{
u}} - eta_{
u}^{n_{
u}}}{lpha_{
u} - eta_{
u}}\,, & ext{ if } & lpha_{
u} 
eq eta_{
u}\,, \ & = n_{
u} lpha_{
u}^{n_{
u}-1}\,, & ext{ if } & lpha_{
u} = eta_{
u}\,. \end{array}$$

Hence

$$|x_
u| \leq (c^{n_
u} + n_
u c^{n_
u-1}d + c^{n_
u})b 
ightarrow 0$$

as  $\nu \rightarrow +\infty$ . This contradicts to

$$\{x_
u\}_{
u=1,2,\dots} \subset K_2$$
 .

Now

$$\{n\in oldsymbol{Z}\,|\, \eta^n(K_{\scriptscriptstyle 1}\, imes\,K_{\scriptscriptstyle 2})\,\cap\,(K_{\scriptscriptstyle 1}\, imes\,K_{\scriptscriptstyle 2})\,
ot=\,\oslash\}$$

is contained in

$$\{n \in Z \mid -N' < n < N\}$$
. q.e.d.

By Lemma 1, the quotient space

$$X = (M \times W)/G$$

is a complex manifold. Let  $\tilde{\pi}: M \times W \to M$  be the canonical projection. Then  $\tilde{\pi}\eta = \tilde{\pi}$ . Hence there is a holomorphic map

$$\pi: X \to M$$

such that the diagram



is commutative, where p is the canonical projection. Since p is a covering map,  $\pi$  is a surjective holomorphic map of maximal rank at every point of X.

LEMMA 2. 
$$\pi$$
 is a proper map.

PROOF. Let K be a compact subset of M. We show that  $\pi^{-1}(K)$  is compact. Let  $\{P_{\nu}\}_{\nu=1,2,\dots}$  be a sequence of points in  $\pi^{-1}(K)$ . We want to choose a subsequence of  $\{P_{\nu}\}_{\nu=1,2,\dots}$  converging to a point of  $\pi^{-1}(K)$ . We may assume that  $\{\pi(P_{\nu})\}_{\nu=1,2,\dots}$  converges to a point  $u \in K$ . We put  $u_{\nu} = \pi(P_{\nu}), \nu = 1, 2, \cdots$ . We put

$$u_{
u}=egin{pmatrix}lpha_{
u}\,t_{
u}\ 0\,eta_{
u}\end{pmatrix}$$
 ,  $u=1,\,2,\,\cdots$ 

and

$$u = \begin{pmatrix} \alpha & t \\ 0 & \beta \end{pmatrix}.$$

Then  $\alpha_{\nu} \to \alpha$ ,  $\beta_{\nu} \to \beta$  and  $t_{\nu} \to t$  as  $\nu \to +\infty$ . We may assume that there are positive constants  $c_1$ ,  $c_2$  and d such that

$$c_{\scriptscriptstyle 1} \leq |lpha_{\scriptscriptstyle 
u}| \leq c_{\scriptscriptstyle 2} < 1$$
 ,  $\ c_{\scriptscriptstyle 1} \leq |eta_{\scriptscriptstyle 
u}| \leq c_{\scriptscriptstyle 2} < 1$  and  $|t_{\scriptscriptstyle 
u}| \leq d$ 

for all  $\nu$ . Let  $x_{\nu}, \nu = 1, 2, \cdots$ , be points of W such that

$$p(u_{\scriptscriptstyle 
u}, x_{\scriptscriptstyle 
u}) = P_{\scriptscriptstyle 
u}$$
 ,  $u = 1, 2, \cdots$  .

We put

 $x_{\nu} = (z_{\nu}, w_{\nu}), \qquad \nu = 1, 2, \cdots.$ 

We define a norm | | in  $C^2$  by

$$|(z, w)| = |z| + |w|$$
.

First, we assume that there is a subsequence

 $u_1 < v_2 < \cdots$ 

such that

 $w_{\nu_k} = 0$ ,  $k = 1, 2, \cdots$ .

Then  $z_{\nu_k} \neq 0$ ,  $k = 1, 2, \cdots$ . Thus there are integers  $n_k, k = 1, 2, \cdots$ , such that

$$c_1 \leq |lpha_{
u_k}| \leq |lpha_{
u_k}^{n_k} z_{
u_k}| \leq 1$$
 .

We put  $z'_{\nu_k} = \alpha^{n_k}_{\nu_k} z_{\nu_k}$ ,  $k = 1, 2, \cdots$ . We put  $x'_{\nu_k} = (z'_{\nu_k}, 0)$ ,  $k = 1, 2, \cdots$ . Then  $x'_{\nu_k} = u^{n_k}_{\nu_k} x_{\nu_k}$ ,  $k = 1, 2, \cdots$ . Hence

$$P_{{}_{\nu_k}}=p(u_{{}_{\nu_k}},\,x_{{}_{\nu_k}})=p(u_{{}_{\nu_k}},\,x'_{{}_{\nu_k}})\ ,\qquad k=1,\,2,\,\cdots\ .$$

Since  $c_1 \leq |x'_{\nu_k}| \leq 1, k = 1, 2, \cdots$ , we may assume that  $\{x'_{\nu_k}\}_{k=1,2,\cdots}$  converges to a point  $x \in W$ . Then  $\{P_{\nu_k}\}_{k=1,2,\cdots}$  converges to p(u, x).

Now, we may assume that  $w_{\nu} \neq 0, \nu = 1, 2, \cdots$ . Since there are integers  $n_{\nu}, \nu = 1, 2, \cdots$ , such that

$$|c_1 \leq |eta_
u| \leq |eta_
u^{n_
u} w_
u| \leq 1$$
,  $u = 1, 2, \cdots$ ,

we may assume that

$$c_{\scriptscriptstyle 1} \leq \mid w_{\scriptscriptstyle 
u} \mid \leq 1$$
 ,  $\qquad 
u = 1, \, 2, \, \cdots$  .

(We use  $u_{\nu}^{*} x_{\nu}$  instead of  $x_{\nu}$ .) Hence we may assume that  $\{w_{\nu}\}_{\nu=1,2,...}$  converges to a point  $w \in C$ ,  $c_1 \leq |w| \leq 1$ . Since the Riemann sphere  $\hat{C}$  is compact, we may assume that  $\{z_{\nu}\}_{\nu=1,2,...}$  converges to a point z of  $\hat{C}$ . If  $z \neq \infty$ , then x = (z, w) is a point of W and  $\{P_{\nu}\}_{\nu=1,2,...}$  converges to p(u, x). If  $z = \infty$ , we may assume that

$$1 < |z_1| < |z_2| < \cdots \rightarrow +\infty$$

Then there is a sequence of positive integers  $\{n_{\nu}\}_{\nu=1,2,\dots}$  such that

$$c_1 \leq |lpha_
u| \leq |lpha_
u^{n_
u} z_
u| \leq 1$$
,  $u = 1, 2, \cdots$ .

Let N be a positive integer such that

$$|nc_2^{n-1}d| \leq rac{c_1}{2}$$

for all  $n \ge N$ . We may assume that  $|z_1|$  is so large that

$$c_{_{1}}^{_{-N}} < |z_{_{1}}|$$
 .

Then

$$|lpha_{
u}|^{-N} \leq c_{\scriptscriptstyle 1}^{-N} < |z_{\scriptscriptstyle 1}| \leq |z_{\scriptscriptstyle 
u}|$$
,  $u = 1, 2, \cdots$ .

Hence

 $|lpha_{
u}^{\scriptscriptstyle N} z_{
u}| > 1$  ,  $u = 1, 2, \cdots$  .

This shows that

$$n_{
u}>N$$
 ,  $u=1,\,2,\,\cdots$  .

Hence

$$|n_{
u}c_{2}^{n_{
u}-1}d| \leq rac{c_{1}}{2}$$
  $u = 1, 2, \cdots$ 

We put

$$z_{
u}'=lpha_{
u}^{n_{
u}}z_{
u}+\gamma_{
u}t_{
u}w_{
u}$$
,  $u=1, 2, \cdots$ ,

where

$$egin{aligned} &\gamma_{
u} = rac{lpha_{
u}^{n_{
u}} - eta_{
u}^{n_{
u}}}{lpha_{
u} - eta_{
u}}\,, & ext{ if } & lpha_{
u} 
eq eta_{
u}\,\,, \ & = n_{
u} lpha_{
u}^{n_{
u}-1}\,, & ext{ if } & lpha_{
u} = eta_{
u}\,\,. \end{aligned}$$

Then

$$egin{aligned} rac{c_1}{2} &= c_1 - rac{c_1}{2} \leq |lpha_
u^
u z_
u| - |\gamma_
u t_
u w_
u| \leq |z'_
u| \ &\leq |lpha_
u^
u z_
u| + |\gamma_
u t_
u w_
u| \leq 1 + rac{c_1}{2}\,, \qquad 
u = 1, \, 2, \, \cdots \,. \end{aligned}$$

Hence we may assume that  $\{z'_{\nu}\}_{\nu=1,2,\dots}$  converges to a point  $z' \in C$ ,  $c_1/2 \leq |z'| \leq 1 + c_1/2$ . Since  $|w_{\nu}| \leq 1, \nu = 1, 2, \dots$ ,

$$|eta_{\scriptscriptstyle 
u}^{\scriptscriptstyle n_{\scriptscriptstyle 
u}} w_{\scriptscriptstyle 
u}| \leq |eta_{\scriptscriptstyle 
u} w_{\scriptscriptstyle 
u}| \leq |eta_{\scriptscriptstyle 
u}| \leq c_{\scriptscriptstyle 2} \ , \qquad 
u=1,\,2,\,\cdots$$

We may assume that  $\{\beta_{\nu}^{n_{\nu}}w_{\nu}\}_{\nu=1,2,\dots}$  converges to  $w' \in C$ . We put  $x = (z', w') \in W$ . Then  $\{P_{\nu}\}_{\nu=1,2,\dots}$  converges to p(u, x). q.e.d.

Lemma 2 shows that  $(X, \pi, M)$  is a complex analytic family of compact complex manifolds. Each fiber  $\pi^{-1}(u)$ ,  $u \in M$ , is called a Hopf surface. Each fiber can be written as

$$\pi^{-1}(u) = u \times V_u$$

where

$$V_u = W/G_u$$

and

$$G_u = \{u^n \mid n \in \mathbb{Z}\}$$
.

A similar but simpler argument to the proof of Lemma 1 shows that  $G_u$  is a properly discontinuous group of automorphisms without fixed point

of W. Henceforth, we identify  $\pi^{-1}(u)$  with  $V_u$ .

2. Automorphism groups of Hopf surfaces. Let  $u \in M$ . Let  $V_u$  be the corresponding Hopf surface. Let Aut  $(V_u)$  be the group of automorphisms of  $V_u$ . Let

$$C_u = \{v \in GL(2, C) \mid uv = vu\}$$

Then  $C_u$  is a complex Lie subgroup of GL(2, C). We define a homomorphism

$$h_u: C_u \to \operatorname{Aut}(V_u)$$

by

 $v \to \widetilde{v}$ 

where  $\tilde{v}$  is an automorphism of  $V_u$  defined by

$$\widetilde{v}: p(x) \to p(vx)$$

for all  $x \in W$ , where  $p: W \to V_u$  is the canonical projection. Since uv = vu,  $\tilde{v}$  is well defined.

LEMMA 3. ker  $(h_u) = G_u$ .

**PROOF.** Let  $u^n \in G_u$ . Then

$$\widetilde{u}_n: p(x) \to p(u^n x) = p(x)$$
.

Hence  $G_u \subset \ker(h_u)$ . Conversely, let  $v \in \ker(h_u)$ . Then

$$p(vx) = p(x)$$

for all  $x \in W$ . Hence, for each  $x \in W$ , there is an integer k(x) such that

$$vx = u^{k(x)}x .$$

We show that

$$k(cx) = k(x)$$

if  $c \in C$  and  $c \neq 0$ . In fact

$$u^{k(cx)}cx = v(cx) = cvx = cu^{k(x)}x = u^{k(x)}cx$$

so that

 $u^{k(cx)-k(x)}cx = cx.$ 

Since  $G_u$  operates on W without fixed point,

$$k(cx) = k(x) \; .$$

Thus we may consider k to be a Z-valued function on  $P^{1}(C)$ , the 1-di-

mensional projective space. Since the cardinal number of the set  $P^{1}(C)$  is greater than that of Z, there are distinct points  $L_{1}$  and  $L_{2}$  in  $P^{1}(C)$  such that  $k(L_{1}) = k(L_{2})$ . We put  $k = k(L_{1}) = k(L_{2})$ . Let  $x_{1}$  and  $x_{2}$  be points in W such that  $x_{1} \in L_{1}$  and  $x_{2} \in L_{2}$ . Then, for any point  $x \in W$ , there are complex numbers a and b such that

$$x = ax_1 + bx_2$$

Here we regard x,  $x_1$  and  $x_2$  as vectors 0x,  $0x_1$ , and  $0x_2$  respectively. Then

$$vx = v(ax_1 + bx_2) = avx_1 + bvx_2 = au^kx_1 + bu^kx_2 = u^kx$$
.

Hence  $v = u^k$ .

Now, we determine  $Aut(V_u)$  following the argument in [1]. Let

$$f: V_u \to V_u$$

be an automorphism. Since W is the universal covering space of  $V_u$ , there is an automorphism

$$\widetilde{f} \colon W \to W$$

such that the diagram

$$\begin{array}{ccc} W & \stackrel{f}{\longrightarrow} & W \\ & \downarrow^{p} & \qquad \downarrow^{p} \\ V_{u} & \stackrel{f}{\longrightarrow} & V_{u} \end{array}$$

is commutative where p is the canonical projection. Moreover  $\widetilde{f}$  satisfies

$$\widetilde{f}(ux) = u^g \widetilde{f}(x)$$

for all  $x \in W$ , where  $u^g$  is a generator of  $G_u$ ,  $(u^g = u \text{ or } u^{-1})$ . We show  $u^g = u$ . By Hartogs's theorem,  $\tilde{f}$  is extended to an automorphism

$$\widetilde{f}: \mathbb{C}^2 \to \mathbb{C}^2$$

which maps 0 to 0. If

$$\widetilde{f}(ux) = u^{-1}\widetilde{f}(x)$$

for all  $x \in W$ , then

 $u^n \widetilde{f}(u^n x) = \widetilde{f}(x)$ 

for  $n = 1, 2, \cdots$  and for all  $x \in W$ . We fix  $x = (z, w) \in W$ . We put  $u = \begin{pmatrix} \alpha & t \\ 0 & \beta \end{pmatrix}$ . Then

$$u^n x = (\alpha^n z + \gamma_n t w, \beta^n w)$$

where

q.e.d.

$$\gamma_n = rac{lpha^n - eta^n}{lpha - eta}, \quad ext{if} \quad lpha \neq eta \,, \ = n lpha^{n-1}, \quad ext{if} \quad lpha = eta \,.$$

Hence

$$|u^{n}x| \leq |\alpha|^{n}|z| + |\gamma_{n}||t||w| + |\beta|^{n}|w| \rightarrow 0$$

as  $n \rightarrow +\infty$ . Hence

$$\widetilde{f}(u^n x) \to 0$$

as  $n \to +\infty$ , for the extended map  $\tilde{f}$  maps 0 to 0. On the other hand, there is an integer N such that

$$|u^{n}\widetilde{f}(u^{n}x)| < |\widetilde{f}(u^{n}x)|$$

for all  $n \ge N$ . In fact, it is enough to take N such that

$$|eta^{\scriptscriptstyle N}|+|\gamma_{\scriptscriptstyle N}||t|<1$$
 .

Hence

 $|u^n \widetilde{f}(u^n x)| \to 0$ 

as  $n \rightarrow +\infty$ . This contradicts to

$$u^n\widetilde{f}(u^nx) = \widetilde{f}(x)$$
,  $n = 1, 2, \cdots$ 

Hence

$$\widetilde{f}(ux) = u\widetilde{f}(x)$$

for all  $x \in W$ . We write the extended automorphism  $\tilde{f}: \mathbb{C}^2 \to \mathbb{C}^2$  as

 $\widetilde{f}(z, w) = (g(z, w), h(z, w))$ .

Then the above condition is written as

$$g(\alpha z + tw, \beta w) = \alpha g(z, w) + th(z, w),$$
  
 $h(\alpha z + tw, \beta w) = \beta h(z, w).$ 

We expand g and h in the power series of z and w at the origin:

$$g(z, w) = \sum_{p+q>0} c_{pq} z^p w^q$$
,  
 $h(z, w) = \sum_{p+q>0} d_{pq} z^p w^q$ .

Case 1.  $\beta = \alpha$  and t = 0;  $u = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix}$ .

In this case, above equations reduce to

$$\sum\limits_{p+q>0}lpha^{p+q}c_{pq}z^pw^q=\sum\limits_{p+q>0}lpha c_{pq}z^pw^q$$
 ,

$$\sum_{p+q>0} \alpha^{p+q} d_{pq} z^p w^q = \sum_{p+q>0} \alpha d_{pq} z^p w^q .$$

Since  $0 < |\alpha| < 1$ , we get

$$c_{pq}=d_{pq}=0,$$

if p + q > 1. Hence

$$g(z, w) = c_{10}z + c_{01}w$$
 ,  
 $h(z, w) = d_{10}z + d_{01}w$  .

Since  $\widetilde{f}$  is an automorphism, the matrix  $\begin{pmatrix} c_{10} & c_{01} \\ d_{10} & d_{01} \end{pmatrix}$  is non-singular. Thus

$$\operatorname{Aut}(V_u) \cong \frac{GL(2, C)}{G_u} = \frac{C_u}{G_u}, \quad \dim \frac{C_u}{G_u} = 4,$$

for all  $u = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix}$ .

Case 2.  $\beta = \alpha$  and  $t \neq 0$ ;  $u = \begin{pmatrix} \alpha & t \\ 0 & \alpha \end{pmatrix}$ .

In this case, above equations reduce to

$$\sum_{p+q>0} c_{pq}(lpha z + tw)^p (lpha w)^q = \sum_{p+q>0} (lpha c_{pq} + td_{pq}) z^p w^q ,$$
  
 $\sum_{p+q>0} d_{pq}(lpha z + tw)^p (lpha w)^q = \sum_{p+q>0} lpha d_{pq} z^p w^q .$ 

From the last equation, we have

Hence

 $h(z, w) = d_{01}w .$ 

Hence, from the first equation, we have

Thus

$$g(z, w) = c_{10}z + c_{01}w$$
,  
 $h(z, w) = c_{10}w$ .

Since  $\begin{pmatrix} c_{10} & c_{01} \\ 0 & c_{10} \end{pmatrix} \in C_u$ , we have

$$\operatorname{Aut}(V_u) \cong \frac{C_u}{G_u}, \quad \dim \frac{C_u}{G_u} = 2,$$

for all  $u = \begin{pmatrix} \alpha & t \\ 0 & \alpha \end{pmatrix}$ ,  $t \neq 0$ .

Case 3.  $\beta \neq \alpha$  and t = 0;  $u = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ .

In this case, above equations reduce to

$$\sum_{p+q>0} c_{pq} lpha^p eta^q z^p w^q = \sum_{p+q>0} lpha c_{pq} z^p w^q$$
, $\sum_{p+q>0} d_{pq} lpha^p eta^q z^p w^q = \sum_{p+q>0} eta d_{pq} z^p w^q$ .

Hence, if p > 0 and q > 0, then

$$c_{pq}=0$$
 and  $d_{pq}=0$ .

If p = 0, then

$$egin{aligned} c_{ ext{oq}}(eta^{ ext{q}}-lpha)&=0\ ext{,}\ d_{ ext{oq}}(eta^{ ext{q}}-eta)&=0\ ext{.} \end{aligned}$$

Hence  $c_{01} = 0$  and  $d_{0q} = 0$ , if q > 1. If q = 0, then

$$c_{{}_{p0}}(lpha^p-lpha)=0$$
 , $d_{{}_{p0}}(lpha^p-eta)=0$  .

Hence  $d_{10} = 0$  and  $c_{p0} = 0$ , if p > 1. Case 3 is thus divided as follows.

Case 3-A.  $\beta^q = \alpha$  for some  $q \geq 2$ ;  $u = \begin{pmatrix} \beta^q & 0 \\ 0 & \beta \end{pmatrix}$ .

In this case,  $\tilde{f}$  is generally written as

$$\widetilde{f}$$
:  $(z, w) \rightarrow (az + bw^{q}, dw)$ 

where  $ad \neq 0$  and b is arbitrary. We note that

$$C_u = \left\{ inom{a \ 0}{0 \ d} 
ight| ad 
eq 0 
ight\} \, .$$

We introduce a group operation in the set  $C_u \times C$  as follows:

$$(v', b')(v, b) = (v'v, a'b + b'd^{q})$$

where  $v = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$  and  $v' = \begin{pmatrix} a' & 0 \\ 0 & d' \end{pmatrix}$ . By this group operation,  $C_u \times C$  becomes a complex Lie group.  $C_u$  is then isomorphic to the complex Lie subgroup  $C_u \times 0$  of  $C_u \times C$ . The group  $C_u \times C$  is isomorphic to the group of automorphisms  $\tilde{f}$  of W such that  $\tilde{f}u = u\tilde{f}$ . The isomorphism is given by

$$\left( \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}, b \right) \rightarrow \widetilde{f}$$

where

$$\widetilde{f}$$
:  $(z, w) \rightarrow (az + bw^{q}, dw)$ 

Hence there is a surjective homomorphism

$$g_u: C_u \times C \rightarrow \operatorname{Aut}(V_u)$$
.

We show that ker  $(g_u)$  is equal to  $G_u \times 0$ . First, for an integer  $n, u^n \times 0$  corresponds to the automorphism

$$\widetilde{f} = u^n$$
:  $(z, w) \rightarrow (\alpha^n z, \beta^n w)$ 

of W which corresponds to the identity map of  $V_u$ . Next, let

$$\widetilde{f}$$
:  $(z, w) \rightarrow (az + bw^q, dw)$ ,  $ad \neq 0$ ,

be an automorphism of W which corresponds to the identity map of  $V_u$ . Then, for each  $x = (z, w) \in W$ , there is an integer k(x) such that

$$az+bw^q=lpha^{k(x)}z$$
 , $dw=eta^{k(x)}w$  .

In particular, let  $x \in W'$  where

$$W' = \{(z, w) \in W | z \neq 0 \text{ and } w \neq 0\}$$
.

Then, by the second equation,  $d = \beta^{k(x)}$ . Hence k(x) = k is constant for  $x \in W'$ . By the first equation,  $a = \alpha^k$  and b = 0. Hence ker  $(g_u)$  is equal to  $G_u \times 0$ . Thus

$$\operatorname{Aut}(V_u) \cong rac{C_u \times C}{G_u \times 0}, \qquad \dim\left(rac{C_u \times C}{G_u \times 0}
ight) = 3,$$

for all  $u = \begin{pmatrix} \beta^{q} & 0 \\ 0 & \beta \end{pmatrix}$ ,  $q \ge 2$ . We note that the center of the group  $C_u \times C$  is

$$\left\{ \left( egin{pmatrix} a & 0 \ 0 & d \end{smallmatrix} 
ight), b 
ight) \in C_u \, imes \, C \, | \, a = d^q \; ext{ and } \; b = 0 
ight\} \, .$$

Hence  $G_u \times 0$  is contained in the center.

Case 3-B.  $\alpha^p = \beta$  for some  $p \ge 2$ ;  $u = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha^p \end{pmatrix}$ .

In this case,  $\tilde{f}$  is generally written as

$$\widetilde{f}$$
:  $(z, w) \rightarrow (az, dw + bz^p)$ 

where  $ad \neq 0$  and b is arbitrary. We note that

$$C_u = \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \middle| ad 
eq 0 
ight\} \,.$$

We introduce a group operation in the set  $C_u \times C$  as follows:

$$(v', b')(v, b) = (v'v, d'b + b'a^{p})$$

where  $v = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$  and  $v' = \begin{pmatrix} a' & 0 \\ 0 & d' \end{pmatrix}$ . By this group operation,  $C_u \times C$  becomes a complex Lie group.  $C_u$  is then isomorphic to the complex Lie subgroup  $C_u \times 0$  of  $C_u \times C$ . By a similar argument to Case 3-A, we have

$$\operatorname{Aut}(V_u) \cong rac{C_u \times C}{G_u \times 0}, \quad \dim\left(rac{C_u \times C}{G_u \times 0}
ight) = 3,$$

for all  $u = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha^p \end{pmatrix}$ ,  $p \ge 2$ . We note that the center of the group  $C_u \times C$  is

$$\left\{\left(\begin{pmatrix}a&0\\0&d\end{pmatrix},b
ight)\in C_u\times C\,|\,d=a^p\,\, ext{and}\,\,b=0
ight\}\,.$$

Hence  $G_u \times 0$  is contained in the center.

Case 3-C.  $u = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}, \beta^q \neq \alpha$  for any positive integer q and  $\alpha^p \neq \beta$  for any positive integer p.

In this case,  $\widetilde{f}$  is generally written as

$$\widetilde{f}$$
:  $(z, w) \rightarrow (az, dw)$ 

where  $ad \neq 0$ . We note that

$$C_u = \left\{ inom{a \ 0}{0 \ d} 
ight| a d 
eq 0 
ight\} \, .$$

Thus

$$\operatorname{Aut}\left(V_{u}
ight)\congrac{C_{u}}{G_{u}}\,,\qquad \dimrac{C_{u}}{G_{u}}=2$$
 ,

for all  $u = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$  such that  $\beta^q \neq \alpha$  for any positive integer q and  $\alpha^p \neq \beta$  for any positive integer p.

Case 4. 
$$\alpha \neq \beta$$
 and  $t \neq 0$ ,  $u = \begin{pmatrix} \alpha & t \\ 0 & \beta \end{pmatrix}$ .

Let  $\tilde{u} = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$  and  $y = \begin{pmatrix} 1 & t/(\alpha - \beta) \\ 0 & 1 \end{pmatrix}$ . Then  $y^{-1} = \begin{pmatrix} 1 & -t/(\alpha - \beta) \\ 0 & 1 \end{pmatrix}$ and  $\tilde{u} = yuy^{-1}$ . Thus y induces a holomorphic isomorphism

$$\hat{y} \colon V_u \to V_{\tilde{u}}$$

defined by

$$\hat{y}: p_u(z, w) \rightarrow p_{\widetilde{u}}(y(z, w)) = p_{\widetilde{u}}\left(z + \frac{t}{\alpha - \beta}w, w\right)$$

where  $p_u: W \to V_u$  and  $p_{\widetilde{u}}: W \to V_{\widetilde{u}}$  are canonical projections. Hence Aut  $(V_u) \cong$  Aut  $(V_{\widetilde{u}})$  by the correspondence

$$f \in \operatorname{Aut}(V_u) \longrightarrow \widehat{y}f\widehat{y}^{-1} \in \operatorname{Aut}(V_{\widetilde{u}})$$
.

Thus Case 4 reduces to Case 3. We note that, in Case 4,

$$C_u = \left\{ inom{a}{0} d 
ight| ad 
eq 0, \ e = rac{a-d}{lpha-eta} t 
ight\}$$

Case 4-A.  $\beta^q = \alpha$  for some  $q \ge 2$  and  $t \ne 0$ .

$$\operatorname{Aut}\left(V_{u}
ight)\congrac{C_{u} imes C}{G_{u} imes 0}\,,\qquad \dim\left(rac{C_{u} imes C}{G_{u} imes 0}
ight)=3$$
 ,

where the group operation in  $C_u \times C$  is defined as in Case 3-A:

$$(v', b')(v, b) = (v'v, a'b + b'd^{q})$$

where  $v = \begin{pmatrix} a & e \\ 0 & d \end{pmatrix}$ ,  $e = ((a-d)/(\alpha-\beta))t$  and  $v' = \begin{pmatrix} a' & e' \\ 0 & d' \end{pmatrix}$ ,  $e' = ((a'-d')/(\alpha-\beta))t$ . Case 4-B.  $\alpha^p = \beta$  for some  $p \ge 2$  and  $t \ne 0$ .

$$\operatorname{Aut}\left(V_{u}
ight)\congrac{C_{u} imes oldsymbol{C}}{G_{u} imes oldsymbol{0}}$$
 ,  $\operatorname{dim}\left(rac{C_{u} imes oldsymbol{C}}{G_{u} imes oldsymbol{0}}
ight)=3$  ,

where the group operation in  $C_u \times C$  is defined as in Case 3-B:

$$(v', b')(v, b) = (v'v, d'b + b'a^{p})$$

where  $v = \begin{pmatrix} a & e \\ 0 & d \end{pmatrix}$ ,  $e = ((a - d)/(\alpha - \beta))t$  and  $v' = \begin{pmatrix} a' & e' \\ 0 & d' \end{pmatrix}$ ,  $e' = ((a' - d')/(\alpha - \beta))t$ .

Case 4-C.  $u = \begin{pmatrix} \alpha & t \\ 0 & \beta \end{pmatrix}, t \neq 0, \beta^q \neq \alpha$  for any positive integer q and  $\alpha^p \neq \beta$  for any positive integer p.

$$\operatorname{Aut}(V_u) \cong rac{C_u}{G_u}, \quad \dim\left(rac{C_u}{G_u}
ight) = 2.$$

3. Proof of Theorem. In §2, we have shown that  $\operatorname{Aut}(V_u)$  is isomorphic to  $C_u \times C/G_u \times 0$  if u is in one of Case 3-A, Case 3-B, Case 4-A and Case 4-B, and is isomorphic to  $C_u/G_u$  if u is in one of other cases. We introduce an analytic space structure in the disjoint union of these quotient groups. If this is done, an analytic space structure in  $\prod_{u \in M} \operatorname{Aut}(V_u)$  is induced by it.

We consider closed subvarieties

$$Z_0, X_2, X_3, \cdots, Y_2, Y_3, \cdots$$

of  $M \times GL(2, C) \times C$  defined by

$$Z_{0} = \{(u, v, b) \in M imes GL(2, C) imes C \,|\, uv = vu, \, b = 0\}$$
,

$$X_k = \{(u, v, b) \in M imes GL(2, C) imes C \mid uv = vu, \ eta^k = lpha \}$$

for  $k = 2, 3, \cdots$ , where  $u = \begin{pmatrix} \alpha & t \\ 0 & \beta \end{pmatrix}$ , and

$$Y_k = \{(u, v, b) \in M \times GL(2, C) \times C \mid uv = vu, \alpha^k = \beta\}$$

for  $k = 2, 3, \dots$ , where  $u = \begin{pmatrix} \alpha & t \\ 0 & \beta \end{pmatrix}$ . It is clear that  $X_2, X_3, \dots, Y_2, Y_3, \dots$  are mutually disjoint, while each of them intersects  $Z_0$ . Let Z be the union of these subvarieties:

$$Z = Z_{\scriptscriptstyle 0} \cup \left(igcup_{k \geqq 2} X_k
ight) \cup \left(igcup_{k \geqq 2} Y_k
ight).$$

LEMMA 4. Z is a closed subvariety of  $M \times GL(2, \mathbb{C}) \times \mathbb{C}$ .

PROOF. First, we show that Z is closed in  $M \times GL(2, \mathbb{C}) \times \mathbb{C}$ . Let  $\{(u_{\nu}, v_{\nu}, b_{\nu})\}_{\nu=1,2,\dots}$  be a sequence of points in Z converging to a point  $(u, v, b) \in M \times GL(2, \mathbb{C}) \times \mathbb{C}$ . Since  $u_{\nu}v_{\nu} = v_{\nu}u_{\nu}, \nu = 1, 2, \dots$ , we have uv = vu. We put  $u = \begin{pmatrix} \alpha & t \\ 0 & \beta \end{pmatrix}$ . We assume that

$$(u, v, b) \notin \left(\bigcup_{k\geq 2} X_k\right) \cup \left(\bigcup_{k\geq 2} Y_k\right),$$

i.e.,  $\alpha^k \neq \beta$ ,  $\beta^k \neq \alpha$  for any  $k \ge 2$ . Since  $\alpha^k$  and  $\beta^k$  converge to 0 as  $k \rightarrow +\infty$ , there is a positive number  $\varepsilon$  such that

(1) 
$$|\alpha^k - \beta| > \varepsilon$$
 and  $|\beta^k - \alpha| > \varepsilon$ 

for all  $k \ge 2$ . We may assume that

(2) 
$$\varepsilon < 3(1 - |\alpha|)$$
 and  $\varepsilon < 3(1 - |\beta|)$ .

We put  $u_{\nu} = \begin{pmatrix} \alpha_{\nu} t_{\nu} \\ 0 \beta_{\nu} \end{pmatrix}$ ,  $\nu = 1, 2, \cdots$ . Then  $\alpha_{\nu} \to \alpha$ ,  $\beta_{\nu} \to \beta$  and  $t_{\nu} \to t$  as  $\nu \to +\infty$ . Hence there is an integer  $N_0$  such that

$$(3) \qquad |\alpha - \alpha_{\nu}| < \frac{\varepsilon}{3} \quad \text{and} \quad |\beta - \beta_{\nu}| < \frac{\varepsilon}{3}$$

for all  $\nu \ge N_0$ . Now we show that there is an integer  $N, N \ge N_0$ , such that

$$(4) \qquad \qquad |\alpha^k - \alpha^k_\nu| < \frac{\varepsilon}{3} \quad \text{and} \quad |\beta^k - \beta^k_\nu| < \frac{\varepsilon}{3}$$

for all  $k \ge 2$  and for all  $\nu \ge N$ . We show the first half of (4). The second half is shown in a similar way. We assume the converse. Then there are a sequence  $N_0 \le \nu_1 < \nu_2 < \cdots$  of integers and a sequence  $k_1$ ,  $k_2$ ,  $\cdots$  of integers each of which is greater than 1 such that

$$|lpha^{k_n}-lpha^{k_n}_{
u_n}| \geqq rac{arepsilon}{3}$$

for  $n = 1, 2, \cdots$ . If  $\{k_1, k_2, \cdots\}$  is bounded, then there is a subsequence  $k_{n_1}, k_{n_2}, \cdots$  such that

$$k_{n_1}=k_{n_2}=\cdots=k$$
 , a constant .

Then

$$|lpha^k-lpha^k_{{}^{
u}{}_{n_m}}|\geqqrac{arepsilon}{3}$$

for  $m = 1, 2, \cdots$ . On the other hand,  $\alpha^k_{\nu_{n_m}} \rightarrow \alpha^k$  as  $m \rightarrow +\infty$ , a contradiction. Hence we may assume that

$$k_1 < k_2 < \cdots$$
.

Then

$$rac{arepsilon}{3} \leq |lpha^{k_n} - lpha^{k_n}_{
u_n}| \leq |lpha|^{k_n} + |lpha_{
u_n}|^{k_n} \leq |lpha|^{k_n} + \left(|lpha| + rac{arepsilon}{3}
ight)^{k_n}$$

(by (3)). The right hand side converges to 0 as  $n \rightarrow +\infty$  by (2), a con-This shows (4). By (1), (3) and (4), tradiction.

$$|eta^k_
u-lpha_
u|>rac{arepsilon}{3} ext{ and } |lpha^k_
u-eta_
u|>rac{arepsilon}{3}$$

for all  $k \ge 2$  and for all  $\nu \ge N$ . This proves that

$$(u_{
u}, v_{
u}, b_{
u}) \notin \left(igcup_{k \geq 2} X_k
ight) \cup \left(igcup_{k \geq 2} Y_k
ight)$$

for any  $\nu \ge N$ . Hence  $(u_{\nu}, v_{\nu}, b_{\nu}) \in Z_0$  for all  $\nu \ge N$ . Hence  $b_{\nu} = 0$  for all

 $\nu \ge N$  so that b = 0, i.e.,  $(u, v, b) = (u, v, 0) \in Z_0$ . Hence Z is closed. Next, let  $(u, v, b) \in X_k$ . We put  $u = \begin{pmatrix} \alpha & t \\ 0 & \beta \end{pmatrix}$ . Then  $\beta^k = \alpha$ . We show that there is a positive number  $\varepsilon$  such that

$$(5) Z \cap \mu^{-1}(N(u, \varepsilon)) = (X_k \cup Z_0) \cap \mu^{-1}(N(u, \varepsilon))$$

where  $\mu: M \times GL(2, \mathbb{C}) \times \mathbb{C} \to M$  is the canonical projection and

$$N(u, \varepsilon) = \left\{ egin{pmatrix} lpha' t' \ 0 \ eta' \end{pmatrix} \in M \, | \, | \, lpha - lpha' \, | < arepsilon \, \, ext{and} \, \, | \, eta - eta' \, | < arepsilon 
ight\} \, .$$

It is enough to claim that there is a positive number  $\varepsilon$  such that

(6) 
$$(\beta + \beta')^{k'} \neq \alpha + \alpha' \text{ and } (\alpha + \alpha')^{k''} \neq \beta + \beta'$$

for any  $k' \neq k$ ,  $k' \geq 1$ , for any  $k'' \geq 1$  and for any  $\beta'$  and  $\alpha'$  with  $|\beta'| < \varepsilon$ and  $|\alpha'| < \varepsilon$ . (It is enough to prove (6) for any  $k' \neq k$ ,  $k' \geq 2$  and for any  $k'' \ge 2$  for our present purpose. But we use the case k' = k'' = 1 afterwards.) We show the first half of (6). The second half is shown in a similar way. We assume the converse. Then there are sequences  $\{\alpha'_{\nu}\}_{\nu=1,2,...}, \{\beta'_{\nu}\}_{\nu=1,2,...}$  such that

$$|lpha_{
u}'| < rac{1}{
u} \quad ext{and} \quad |eta_{
u}'| < rac{1}{
u}$$

for  $\nu = 1, 2, \dots$ , and a sequence  $k_1, k_2, \dots$  of positive integers each of which is different from k such that

(7) 
$$(\beta + \beta'_{\nu})^{k_{\nu}} = \alpha + \alpha'_{\nu}$$

for  $\nu = 1, 2, \cdots$ . If  $\{k_1, k_2, \cdots\}$  is bounded, then there is a subsequence  $k_{n_1}, k_{n_2}, \cdots$  such that

$$k_{n_1}=k_{n_2}=\cdots=k'(
eq k)$$
 , a constant .

Then

$$(\beta + \beta'_{\nu_{n_m}})^{k'} = \alpha + \alpha'_{\nu_{n_m}}$$

for  $m = 1, 2, \cdots$ . The left hand side converges to  $\beta^{k'}$  as  $m \to +\infty$ , while the right hand side converges to  $\alpha$ . Hence  $\beta^{k'} = \alpha$ , a contradiction. Hence we may assume that

 $k_1 < k_2 < \cdots$ 

Then

$$|\beta + \beta'_{\nu}|^{k_{\nu}} \leq (|\beta| + |\beta'_{\nu}|)^{k_{\nu}} \leq (|\beta| + \frac{1}{\nu})^{k_{\nu}}$$

 $\rightarrow 0$  as  $\nu \rightarrow +\infty$ . Hence the left hand side of (7) converges to 0 as  $\nu \rightarrow +\infty$ , while the right hand side of (7) converges to  $\alpha$ , a contradiction. Hence (5) is proved. Let  $(u, v, b) \in Z_0 \cap X_k$ . Then (5) shows that Z coincides with  $Z_0 \cup X_k$  in a neighbourhood of (u, v, b). Let  $(u, v, b) \in X_k - Z_0$ . Then  $b \neq 0$ . The open subset

$$N = \{(u', v', b') \in \mu^{-1}(N(u, \varepsilon)) \mid b' \neq 0\}$$

of  $\mu^{-1}(N(u, \varepsilon))$  does not intersect  $Z_0$ , and

$$(8) Z \cap N = X_k \cap N.$$

Thus Z coincides with  $X_k$  in a neighbourhood of (u, v, b). In a similar way to (5), we can show that, for every point  $(u, v, b) \in Y_k$ , there is a positive number  $\varepsilon$  such that

$$(9) Z \cap \mu^{-1}(N(u, \varepsilon)) = (Y_k \cup Z_0) \cap \mu^{-1}(N(u, \varepsilon)).$$

Let  $(u, v, b) \in Z_0 \cap Y_k$ . Then (9) shows that Z coincides with  $Z_0 \cup Y_k$  in a neighbourhood of (u, v, b). Let  $(u, v, b) \in Y_k - Z_0$ . Then  $b \neq 0$  and

$$(10) Z \cap N = Y_k \cap N$$

where N is the open subset of  $\mu^{-1}(N(u, \varepsilon))$  defined above. Hence Z coincides with  $Y_k$  in a neighbourhood of (u, v, b). Finally, let  $(u, v, b) \in Z_0 - (\bigcup_{k \ge 2} X_k) \cup (\bigcup_{k \ge 2} Y_k)$ . Then b = 0 and uv = vu. A similar proof to the proof of (5) shows that there is a positive number  $\varepsilon$  such that

(11) 
$$Z \cap \mu^{-1}(N(u, \varepsilon)) = Z_0 \cap \mu^{-1}(N(u, \varepsilon)) .$$

This means that Z coincides with  $Z_0$  in a neighbourhood of (u, v, 0). This completes the proof of Lemma 4. q.e.d.

Let

$$\zeta\colon Z\to Z$$

be an automorphism defined by

$$(u, v, 0) \in Z_0 \rightarrow (u, uv, 0) \in Z_0$$
,  
 $(u, v, b) \in X_k \rightarrow (u, uv, \alpha b) \in X_k$ ,  
 $(u, v, b) \in Y_k \rightarrow (u, uv, \beta b) \in Y_k$ ,

where uv is the product of matrices u and v and  $u = \begin{pmatrix} \alpha & t \\ 0 & \beta \end{pmatrix}$ . We note that  $\zeta: Z_0 \to Z_0$  and  $\zeta: X_k \to X_k$  (resp.  $\zeta: Z_0 \to Z_0$  and  $\zeta: Y_k \to Y_k$ ) coincide on  $Z_0 \cap X_k$  (resp.  $Z_0 \cap Y_k$ ). The inverse

 $\zeta^{-1}: Z \to Z$ 

is given by

$$(u, v, 0) \in Z_0 
ightarrow (u, u^{-1}v, 0) \in Z_0$$
,  
 $(u, v, b) \in X_k 
ightarrow \left(u, u^{-1}v, \frac{b}{lpha}
ight) \in X_k$ ,  
 $(u, v, b) \in Y_k 
ightarrow \left(u, u^{-1}v, \frac{b}{eta}
ight) \in Y_k$ .

We put

$$H = \{ \zeta^n \mid n \in Z \}$$
 .

LEMMA 5. H is a properly discontinuous group of automorphisms without fixed point of Z.

PROOF. Let  $(u, v, b) \in Z$ . We assume that  $\zeta^n(u, v, b) = (u, v, b)$  for an integer *n*. Then  $u^n v = v$ . Hence  $u^n = 1$  so that n = 0. Next, we show that, for any compact set K in Z,

$$\{n \in \mathbb{Z} \,|\, \zeta^n(K) \cap K \neq \varnothing\}$$

is a finite set. Let  $\rho$  and R be positive numbers such that

$$|\det u| \leq 
ho < 1$$
 and  $\frac{1}{R} \leq |\det v| \leq R$ 

for all  $(u, v, b) \in K$ , where det u is the determinant of u. Then there is a positive integer  $n_0$  such that

$$ho^{n_0} < rac{1}{R^2}$$
 .

Then, for any positive integer  $n \ge n_0$ ,

$$|\det u^n v| = |\det u|^n |\det v| \leq 
ho^n R < rac{1}{R}$$

and

$$|\det u^{-n}v| = |\det u|^{-n} |\det v| \ge 
ho^{-n} rac{1}{R} > R \; .$$

Hence

$$\{n \in \mathbb{Z} \mid \zeta^n(K) \cap K \neq \emptyset\}$$

is contained in

$$\{n \in Z \mid -n_0 < n < n_0\}$$
. q.e.d.

By Lemma 5, the quotient space

$$A = Z/H$$

is an analytic space such that the canonical projection

$$q: Z \to A$$

is a covering map. Let

$$\widetilde{\lambda}: Z \to M$$

be the restriction to Z of the projection map

$$\mu: M \times GL(2, \mathbb{C}) \times \mathbb{C} \to M$$
.

Then  $\tilde{\lambda}\zeta = \tilde{\lambda}$ . Hence there is a holomorphic map

$$\lambda \colon A \to M$$

such that the diagram



is commutative. Since  $(u, 1, 0) \in Z_0 \subset Z$ , where 1 is the identity matrix of GL(2, C),  $\tilde{\lambda}$  is surjective, so that  $\lambda$  is surjective. By the construction above, each fiber  $\lambda^{-1}(u)$  is naturally isomorphic to

 $C_u \times C/G_u \times 0$ 

if u is in one of Case 3-A, Case 3-B, Case 4-A and Case 4-B, and is isomorphic to

 $C_u/G_u$ 

if u is in one of other cases.

Now, we prove 1)-4) of the theorem. 1) is already done. Next, we show 2). We define a holomorphic map

$$r: Z \underset{M}{\times} (M \times W) \to A \underset{M}{\times} X$$

by

$$((u, v, b), (u, x)) \rightarrow (q(u, v, b), p(u, x))$$

where  $p: M \times W \to X$  is the canonical projection. Then r is a covering map. Let  $((u, v, b), (u, x)) \in Z \times (M \times W)$ . Let  $\tilde{f}$  be the automorphism of W corresponding to (u, v, b), see §2. Let f be the automorphism of  $V_u$  corresponding to q(u, v, b). Since the diagram

$$(\widetilde{f}, (u, x)) \in Z \underset{M}{\times} (M \times W) \xrightarrow{r} (f, P) \in A \underset{M}{\times} X \ igcup_{M} (u, \widetilde{f}(x)) \in M \times W \xrightarrow{p} f(P) \in X,$$

where P = p(u, x), is commutative, and since r and p are covering maps, it is enough to show that  $\tilde{f}(x)$  depends holomorphically on (u, v, b, x). Since the problem is local, it is enough to show that  $\tilde{f}(x)$  depends holomorphically on (u, v, b, x) in a neighbourhood of any point  $(u_0, v_0, b_0, x_0)$ .

Case A.  $(u_0, v_0, b_0) \in Z_0 - (\bigcup_{k \ge 2} X_k) \cup (\bigcup_{k \ge 2} Y_k).$ 

In this case, by (11) in the proof of Lemma 4, there is a positive number  $\varepsilon$  such that

$$Z\cap \mu^{-1}(N(u_{\scriptscriptstyle 0},\,arepsilon))=Z_{\scriptscriptstyle 0}\cap \mu^{-1}(N(u_{\scriptscriptstyle 0},\,arepsilon))\;.$$

Let  $(u, v, 0) \in Z \cap \mu^{-1}(N(u_0, \varepsilon)) = Z_0 \cap \mu^{-1}(N(u_0, \varepsilon))$ . Let  $\widetilde{f}$  be the automor-

phism of W corresponding to (u, v, 0). Then

 $\widetilde{f}(x) = v(x)$ 

for all  $x \in W$ , as the argument in §2 shows. v(x) depends holomorphically on (v, x).

Case B.  $(u_0, v_0, b_0) \in X_k - Z_0$ .

In this case, by (8) in the proof of Lemma 4,

$$Z\cap N=X_{k}\cap N$$
 ,

where  $N = \{(u, v, b) \in \mu^{-1}(N(u_0, \varepsilon)) \mid b \neq 0\}$ . Let  $(u, v, b) \in Z \cap N = X_k \cap N$ . Then  $b \neq 0$  and  $\beta^k = \alpha$  where  $u = \begin{pmatrix} \alpha & t \\ 0 & \beta \end{pmatrix}$ . Let  $\tilde{f}$  be the automorphism of W corresponding to (u, v, b). Let  $x = (z, w) \in W$ . Then  $\tilde{f}(x)$  is written as

$$\widetilde{f}(x) = \left(az + \frac{a-d}{\alpha-\beta}tw + bw^k, dw\right)$$

where  $u = \begin{pmatrix} \alpha & t \\ 0 & \beta \end{pmatrix}$  and  $v = \begin{pmatrix} a & e \\ 0 & d \end{pmatrix}$ ,  $e = ((a - d)/(\alpha - \beta))t$ . In fact,  $\tilde{f} = y^{-1}\tilde{g}y$ where  $y = \begin{pmatrix} 1 & t/(\alpha - \beta) \\ 0 & 1 \end{pmatrix}$  and  $\tilde{g}(z, w) = (az + bw^k, dw)$ , (see Case 4-A in §2). Hence  $\tilde{f}(x)$  depends holomorphically on  $(u, v, b, x) \in (Z \cap N) \times W$ .

Case C.  $(u_0, v_0, b_0) \in X_k \cap Z_0$ .

In this case, by (5) in the proof of Lemma 4,

$$Z\cap \mu^{-1}(N(u_{\scriptscriptstyle 0},\,arepsilon))=(X_{\scriptscriptstyle k}\cup Z_{\scriptscriptstyle 0})\cap \mu^{-1}(N(u_{\scriptscriptstyle 0},\,arepsilon))\;.$$

Let

$$(u, v, b) \in Z \cap \mu^{-1}(N(u_0, \varepsilon)) = (X_k \cup Z_0) \cap \mu^{-1}(N(u_0, \varepsilon)) \;.$$

Let  $\tilde{f}$  be the automorphism of W corresponding to (u, v, b). Let  $x = (z, w) \in W$ . Then it is easy to see that  $\tilde{f}(x)$  is written as

$$\widetilde{f}(x) = \left(az + rac{a-d}{lpha - eta}tw + bw^*, \, dw
ight)$$

for all  $(u, v, b, x) \in (Z \cap \mu^{-1}(N(u_0, \varepsilon))) \times W$ , where  $u = \begin{pmatrix} \alpha & t \\ 0 & \beta \end{pmatrix}$  and  $v = \begin{pmatrix} a & e \\ 0 & d \end{pmatrix}$ ,  $e = ((a - d)/(\alpha - \beta))t$ . (We note that  $\alpha \neq \beta$  in  $Z \cap \mu^{-1}(N(u_0, \varepsilon)) = (X_k \cup Z_0) \cap \mu^{-1}(N(u_0, \varepsilon))$  by (6) of the proof of Lemma 4.) This shows that  $\tilde{f}(x)$  depends holomorphically on (u, v, b, x).

Case D.  $(u_0, v_0, b_0) \in Y_k - Z_0$ .

In this case, by (10) in the proof of Lemma 4,

 $Z\cap N=Y_k\cap N$ ,

where  $N = \{(u, v, b) \in \mu^{-1}(N(u_0, \varepsilon)) \mid b \neq 0\}$ . Let  $(u, v, b) \in Z \cap N = Y_k \cap N$ . Then  $b \neq 0$  and  $\alpha^k = \beta$  where  $u = \begin{pmatrix} \alpha & t \\ 0 & \beta \end{pmatrix}$ . Let  $\tilde{f}$  be the automorphism of W corresponding to (u, v, b). Let  $x = (z, w) \in W$ . Then  $\tilde{f}(x)$  is written as

$$\widetilde{f}(x) = \left(az + rac{a-d}{lpha-eta}tw - rac{bt}{lpha-eta}\left(z + rac{t}{lpha-eta}w
ight)^k, \ b \left(z + rac{t}{lpha-eta}w
ight)^k + dw
ight)$$

where  $u = \begin{pmatrix} \alpha & t \\ 0 & \beta \end{pmatrix}$  and  $v = \begin{pmatrix} a & e \\ 0 & d \end{pmatrix}$ ,  $e = ((a - d)/(\alpha - \beta))t$ . In fact,  $\tilde{f} = y^{-1}\tilde{g}y$ where  $y = \begin{pmatrix} 1 & t/(\alpha - \beta) \\ 0 & 1 \end{pmatrix}$  and  $\tilde{g}(z, w) = (az, dw + bz^k)$ , (see Case 4-B in §2). Hence  $\tilde{f}(x)$  depends holomorphically on  $(u, v, b, x) \in (Z \cap N) \times W$ .

Case E.  $(u_0, v_0, b_0) \in Y_k \cap Z_0$ .

In this case, by (9) in the proof of Lemma 4,

$$Z\cap \mu^{-1}(N(u_{\scriptscriptstyle 0},\varepsilon))=(\,Y_k\cup Z_{\scriptscriptstyle 0})\cap \mu^{-1}(N(u_{\scriptscriptstyle 0},\varepsilon))\,\,.$$

Let  $\tilde{f}$  be the automorphism of W corresponding to (u, v, b). Let  $x = (z, w) \in W$ . Then

$$\widetilde{f}(x) = \left(az + rac{a-d}{lpha-eta}tw - rac{bt}{lpha-eta}\left(z + rac{t}{lpha-eta}w
ight)^k,
ight.$$
 $b\left(z + rac{t}{lpha-eta}w
ight)^k + dw
ight)$ 

for all  $(u, v, b, x) \in (Z \cap \mu^{-1}(N(u_v, \varepsilon))) \times W$ , where  $u = \begin{pmatrix} \alpha & t \\ 0 & \beta \end{pmatrix}$  and  $v = \begin{pmatrix} a & e \\ 0 & d \end{pmatrix}$ ,  $e = ((a - d)/(\alpha - \beta))t$ . Hence  $\tilde{f}(x)$  depends holomorphically on (u, v, b, x). This completes the proof of 2) of the theorem.

Next, we prove 3) of the theorem. Let 1 be the  $(2 \times 2)$ -identity matrix. Then the map

$$u \in M \rightarrow (u, 1, 0) \in Z_0 \subset Z$$

is holomorphic. Hence the map

$$u \in M 
ightarrow q(u, \ 1, \ 0) \in A$$

is holomorphic. It is clear that q(u, 1, 0) corresponds to the identity map of  $V_u$ .

Finally we show 4) of the theorem. We define a holomorphic map

$$s: Z \underset{M}{\times} Z \to A \underset{M}{\times} A$$

by

156

 $((u, v, b), (u, v', b')) \rightarrow (q(u, v, b), q(u, v', b')) \ .$ 

Then s is a covering map. Let  $((u, v, b), (u, v', b')) \in Z \underset{M}{\times} Z$ . We define a product

 $(u, v', b')(u, v, b) \in Z$ 

by

(1) 
$$(u, v', b')(u, v, b) = (u, v'v, a'b + b'd^{q}),$$

if u is in Case 3-A or 4-A of §2, where  $u = \begin{pmatrix} \alpha & t \\ 0 & \beta \end{pmatrix}$ ,  $v = \begin{pmatrix} a & e \\ 0 & d \end{pmatrix}$ ,  $e = ((a - d)/(\alpha - \beta))t$  and  $v' = \begin{pmatrix} a' & e' \\ 0 & d' \end{pmatrix}$ ,  $e' = ((a' - d')/(\alpha - \beta))t$ ,

$$(2) (u, v', b')(u, v, b) = (u, v'v, d'b + b'a^{p})$$

if *u* is in Case 3-B or 4-B of §2, where  $u = \begin{pmatrix} \alpha & t \\ 0 & \beta \end{pmatrix}$ ,  $v = \begin{pmatrix} a & e \\ 0 & d \end{pmatrix}$ ,  $e = ((a - d)/(\alpha - \beta))t$  and  $v' = \begin{pmatrix} a' & e' \\ 0 & d' \end{pmatrix}$ ,  $e' = ((a' - d')/(\alpha - \beta))t$ , (3) (u, v', 0)(u, v, 0) = (u, v'v, 0),

if u is in one of other cases. Then, as in the proof of 2) of the theorem, by diving in various cases, we can easily see that the map

$$((u, v, b), (u, v', b')) \in Z \times Z \to (u, v', b')(u, v, b) \in Z$$

is holomorphic. We define a product

$$q(u, v', b')q(u, v, b) \in A$$

by

$$q(u, v', b')q(u, v, b) = q((u, v', b')(u, v, b))$$

This is well defined, as is easily shown by dividing in various cases. Since the map s defined above and the map q are covering maps, the map

$$(q(u, v, b), q(u, v', b')) \in A \underset{\scriptscriptstyle M}{\times} A \longrightarrow q(u, v', b')q(u, v, b) \in A$$

is holomorphic. It is clear that q(u, v', b')q(u, v, b) corresponds to the composition gf of automorphisms g and f of  $V_u$  corresponding to q(u, v', b') and q(u, v, b) respectively.

Now, we define a holomorphic map

 $\tilde{\theta} \colon Z \to Z$ 

by

$$egin{aligned} &\widetilde{ heta}\colon (u,\,v,\,0)\in Z_{\scriptscriptstyle 0} o (u,\,v^{-1},\,0)\in Z_{\scriptscriptstyle 0} \ , \ &\widetilde{ heta}\colon (u,\,v,\,b)\in X_k o \left(u,\,v^{-1},\,-rac{b}{ad^k}
ight)\in X_k \ , \ &\widetilde{ heta}\colon (u,\,v,\,b)\in Y_k o \left(u,\,v^{-1},\,-rac{b}{a^kd}
ight)\in Y_k \ , \end{aligned}$$

where  $u = \begin{pmatrix} \alpha & t \\ 0 & \beta \end{pmatrix}$  and  $v = \begin{pmatrix} a & e \\ 0 & d \end{pmatrix}$ ,  $e = ((a - d)/(\alpha - \beta))t$ . We note that  $\tilde{\theta} \colon Z_0 \to Z_0$  and  $\tilde{\theta} \colon X_k \to X_k$  (resp.  $\tilde{\theta} \colon Z_0 \to Z_0$  and  $\tilde{\theta} \colon Y_k \to Y_k$ ) coincide on  $Z_0 \cap X_k$  (resp.  $Z_0 \cap Y_k$ ). It is easy to see that  $\tilde{\theta} \zeta = \zeta \tilde{\theta}$ . Hence we can define a map

 $\theta \colon A \to A$ 

by

$$\theta(q(u, v, b)) = q(\theta(u, v, b)) .$$

Since q is a covering map,  $\theta$  is holomorphic. It is clear that  $\theta(q(u, v, b))$  corresponds to the inverse  $f^{-1}$  of the automorphism f of  $V_u$  corresponding to q(u, v, b). This completes the proof of 4) of the theorem.

## Reference

 K. KODAIRA AND D. C. SPENCER, On deformations of complex analytic structures I and II, Ann. of Math., 67 (1958), 328-460.

MATHEMATICAL INSTITUTE Tôhoku University Sendai, Japan