NEGATIVE QUASIHARMONIC FUNCTIONS*

Leo Sario and Cecilia Wang

(Received November 21, 1972)

1. The radial quasiharmonic function

$$
s(r)=-\sum_{i=0}^{\infty} b_{i} r^{2 i+2}
$$

defined by $\Delta s=1$, plays a crucial role in the problem of the existence of bounded quasiharmonic functions on the Poincaré ball $B_{\alpha}=\{r<1, d s=$ $\left.\left(1-r^{2}\right)^{\alpha}|d x|\right\}$ (see [18]). In the present paper we shall show that s has the striking property

$$
s<0 \text { on } B_{\alpha} \text { for every } \alpha
$$

This will lead us to the introduction of the class $Q N$ of negative quasiharmonic functions.

We shall carry out our reasoning for dimension $M=3$. This is the essential case, as for $M=2$ the harmonicity and the Dirichlet integral are independent of α. We conjecture that the reasoning developed in this paper will allow a generalization to an arbitrary M.
2. We start by stating our main result:

Theorem 1. The radial quasiharmonic function $s(r)=-\sum b_{i} r^{2 i+2}$ belongs to QN.

The proof will be given in Nos. 3-12.
3. First we determine the coefficients b_{i}.

Lemma 1. The function

$$
\begin{equation*}
s(r)=-\sum_{i=0}^{\infty} b_{i} r^{2 i+2} \tag{1}
\end{equation*}
$$

with $\Delta s=1$ on B_{α} has

$$
\begin{equation*}
b_{0}=\frac{1}{6} \tag{2}
\end{equation*}
$$

and the other coefficients are determined by the recursion formula

$$
\begin{equation*}
b_{i}=p_{i} b_{i-1}+q_{i} \tag{3}
\end{equation*}
$$

[^0]Here
(4)

$$
p_{i}=\frac{2 i(2 i+1+2 \alpha)}{(2 i+2)(2 i+3)}
$$

and

$$
\begin{equation*}
q_{i}=\left(\prod_{j=1}^{i} \frac{j-2 \alpha-2}{j}\right) /(2 i+2)(2 i+3) . \tag{5}
\end{equation*}
$$

Proof. On B_{α}, the metric tensor is

$$
g_{i j}=\left(\begin{array}{ccc}
\lambda^{2} & 0 & 0 \\
0 & \lambda^{2} r^{2} & 0 \\
0 & 0 & \lambda^{2} r^{2} \sin ^{2} \psi
\end{array}\right) \text {, }
$$

the determinant is $g=\lambda^{6} r^{4} \sin ^{2} \psi$, and the Laplacian reduces to

$$
\begin{aligned}
\Delta s(r) & =-\frac{1}{\sqrt{g}} \frac{\partial}{\partial r}\left(\sqrt{g} g^{r r} s^{\prime}(r)\right) \\
& =-\lambda^{-2}\left[s^{\prime \prime}(r)+\left(\frac{2}{r}-\frac{2 \alpha r}{1-r^{2}}\right) s^{\prime}(r)\right]
\end{aligned}
$$

The equation $\Delta s=1$ takes the form
(6) $\quad-r^{2}\left(1-r^{2}\right) s^{\prime \prime}(r)-r\left[2\left(1-r^{2}\right)-2 \alpha r^{2}\right] s^{\prime}(r)-r^{2}\left(1-r^{2}\right)^{2 \alpha+1}=1$.

On substituting $s(r)$ from (1) we obtain

$$
\begin{aligned}
& r^{2}\left(1-r^{2}\right) \sum_{i=0}^{\infty}(2 i+2)(2 i+1) b_{i} r^{2 i}+r\left[2-2(1+\alpha) r^{2}\right] \sum_{i=0}^{\infty}(2 i+2) b_{i} r^{2 i+1} \\
& \quad-r^{2}-r^{2} \sum_{i=1}^{\infty}\left(\prod_{j=1}^{i} \frac{j-2 \alpha-2}{j}\right) r^{2 i}=0,
\end{aligned}
$$

that is,

$$
\begin{aligned}
& \sum_{i=0}^{\infty}[(2 i+2)(2 i+1)+2(2 i+2)] b_{i} r^{2 i+2} \\
& \quad-\left[\sum_{i=0}^{\infty}(2 i+2)(2 i+1)+2(1+\alpha)(2 i+2)\right] b_{i} r^{2 i+4} \\
& \quad-r^{2}-\sum_{i=1}^{\infty}\left(\prod_{j=1}^{i} \frac{j-2 \alpha-2}{j}\right) r^{2 i+2}=0 .
\end{aligned}
$$

This is equivalent to the following final form of our equation:

$$
\begin{align*}
& \sum_{i=0}^{\infty}(2 i+2)(2 i+3) b_{i} r^{2 i+2}-\sum_{i=1}^{\infty} 2 i(2 i+1+2 \alpha) b_{i-1} r^{2 i+2} \tag{7}\\
& \quad-r^{2}-\sum_{i=1}^{\infty}\left(\prod_{j=1}^{i} \frac{j-2 \alpha-2}{j}\right) r^{2 i+2}=0 .
\end{align*}
$$

To determine the constants b_{i}, we first equate to zero the coefficient of r^{2} and obtain $6 b_{0}-1=0$, that is, (2). The coefficient of $r^{2 i+2}$ for $i>0$ gives

$$
(2 i+2)(2 i+3) b_{i}=2 i(2 i+1+2 \alpha) b_{i-1}+\prod_{j=1}^{i} \frac{j-2 \alpha-2}{j}
$$

hence (3)-(5).
4. The following consequence of Lemma 1 is immediate:

Lemma 2. The coefficients b_{i} are

$$
\begin{equation*}
b_{i}=b_{0} \prod_{j=1}^{i} p_{j}+\sum_{j=1}^{i-1} q_{j} \prod_{k=j+1}^{i} p_{k}+q_{i} \tag{8}
\end{equation*}
$$

with $b_{0}=1 / 6$.
We shall also use the notation

$$
\begin{equation*}
b_{i}=\sum_{j=0}^{i} \beta_{i j} \tag{9}
\end{equation*}
$$

with

$$
\left\{\begin{array}{l}
\beta_{i 0}=b_{0} \prod_{j=1}^{i} p_{j}, \quad \beta_{i i}=q_{i} \tag{10}\\
\beta_{i j}=q_{j} \prod_{k=j+1}^{i} p_{k}
\end{array} \quad \text { for } \quad 1 \leqq j \leqq i-1 .\right.
$$

An inspection of (8) shows readily:
Lemma 3. For a fixed i_{0} and all $i>i_{0}$,

$$
b_{i}=b_{i_{0}} \prod_{j=i_{0}+1}^{i} p_{j}+\sum_{j=i_{0}+1}^{i} \beta_{i j}
$$

5. The signs of p_{i} and q_{i} will be instrumental. For a given $\alpha \in \boldsymbol{R}$ we set

$$
\left\{\begin{array}{l}
i_{p}=\max \left\{i \left\lvert\, i<-\alpha-\frac{1}{2}\right.\right\} \tag{11}\\
i_{q}=\max \{i \mid i<2 \alpha+2\}
\end{array}\right.
$$

The following immediate observations are compiled here for easy reference:
Lemma 4. If $\alpha>-3 / 2$, then all $p_{i}>0$. If $\alpha=-3 / 2$, then $p_{1}=0$ and $p_{i}>0$ for $i>1$. If $\alpha<-3 / 2$, then $p_{i}<0$ for $i \leqq i_{p}$, and $p_{i} \geqq 0$ for $i>i_{p}$, with equality at most for $i=i_{p}+1$.

Lemma 5. If $\alpha<-1 / 2$, then all $q_{i}>0$. If $\alpha=-1 / 2$, then all $q_{i}=0$.

If $\alpha>-1 / 2$ and $i \leqq i_{q}$, then $q_{i}>0$ for i even and $q_{i}<0$ for i odd. If $\alpha>-1 / 2$ and $i>i_{q}$, then $q_{i} \geqq 0$ for i_{q} even, and $q_{i} \leqq 0$ for i_{q} odd.

These rules motivate the division of our discussion in the sequel into the cases $\alpha<-3 / 2 ;-3 / 2 \leqq \alpha \leqq-1 / 2$; and $\alpha \geqq 1$. If $\alpha \in(-1,1)$, there exist functions $u \in Q B$ (Sario-Wang [16]), and

$$
u-\sup _{B_{\alpha}} u \in Q N,
$$

that is, $B_{\alpha} \notin O_{Q N}$. Thus it will suffice to discuss the above three cases.
We shall first show, in Nos. 6-10, that the $b_{i}>0$ for all sufficiently large i, and then in Nos. 11-12 that the series $s=-\sum_{0}^{\infty} b_{i} r^{2 i+2}$ converges, hence $s-c \in Q N$ for some constant c.
6. Case $\alpha<-3 / 2$. By Lemma 3, we have for $i>i_{p}$,

$$
\begin{equation*}
b_{i}=b_{i_{p}} \prod_{j=i_{p}+1}^{i} p_{j}+\sum_{j=i_{p}+1}^{i} \beta_{i j} \tag{12}
\end{equation*}
$$

where

$$
b_{i_{p}}=\sum_{j=0}^{i_{p}} \beta_{i_{p} j}
$$

Lemma 6. For $\alpha<-3 / 2, \quad b_{i_{p}}>0$.
Proof. Set

$$
\delta_{i_{p} j}=\frac{\beta_{i_{p} j}}{\beta_{i_{p}, j-1}}, \quad 2 \leqq j \leqq i_{p}
$$

with

$$
\beta_{i_{p} j}=q_{j} \prod_{k=j+1}^{i_{p}} p_{k}
$$

We have

$$
\begin{equation*}
\delta_{i_{p^{j}}}=\frac{q_{j}}{q_{j-1} p_{j}}<0 \tag{13}
\end{equation*}
$$

and

$$
\begin{aligned}
\left|\delta_{i_{p} j}\right| & =1+\frac{4 j^{2}-2(\alpha+1)(j+1)}{-j(2 j+1+2 \alpha)} \\
& >1+\frac{4 j^{2}+j+1}{-j(2 j+1+2 \alpha)}
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left|\delta_{i_{p} j}\right|>1 \text { for } 2 \leqq j \leqq i_{p} \tag{14}
\end{equation*}
$$

Suppose first i_{p} even. Then

$$
\begin{equation*}
b_{i_{p}}=\beta_{i_{p} 0}+\sum_{j=1}^{(1 / 2) i_{p}}\left(\beta_{i_{p}, 2 j-1}+\beta_{i_{p}, 2 j}\right) \tag{15}
\end{equation*}
$$

Since $\beta_{i_{p} i_{p}}=q_{i_{p}}>0$, we see by (13) and (14) that each sum in parentheses is >0. The same is true of $\beta_{i_{p} 0}=b_{0} \prod_{j=1}^{i p} p_{j}$, as each $p_{j}<0$, and we conclude that $b_{i_{p}}>0$.

If i_{p} is odd, we first observe that

$$
\delta_{i_{p^{1}}}=\frac{\beta_{i_{p} 1}}{\beta_{i_{p} 0}}=\frac{q_{1}}{b_{0} p_{1}}=3 \cdot \frac{-1-2 \alpha}{3+2 \alpha}<0
$$

for $\alpha<-3 / 2$, and

$$
\left|\delta_{i_{p^{1}}}\right|=3\left(1+\frac{2}{-3-2 \alpha}\right)>3
$$

Since $\beta_{i_{p^{0}}}<0$ and $\beta_{i_{p^{1}}}>0$,

$$
\beta_{i_{p} 0}+\beta_{i_{p^{1}}}>0
$$

and by (14)

$$
\beta_{i_{p}{ }^{2 j}}+\beta_{i_{p}, 2 j+1}>0
$$

for $1 \leqq j \leqq(1 / 2)\left(i_{p}-1\right)$. Therefore

$$
b_{i_{p}}=\sum_{j=0}^{(1 / 2)\left(i_{p}-1\right)}\left(\beta_{i_{p}{ }^{2 j}}+\beta_{i_{p}, 2 j+1}\right)>0 .
$$

7. We can now go further than Lemma 6:

Lemma 7. For $\alpha<-3 / 2$,

$$
\begin{equation*}
b_{i}>0, \quad i \geqq i_{p} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=0}^{\infty} b_{i}=\infty \tag{17}
\end{equation*}
$$

Proof. Inequality (16) is a direct consequence of (12). To prove (17) set $s=s_{1}+s_{2}$ with

$$
s_{1}=-\sum_{i=0}^{i_{p}-1} b_{i} r^{2 i+2}, \quad s_{2}=-\sum_{i=i_{p}}^{\infty} b_{i} r^{2 i+2}
$$

Here $s_{1} \in Q B$ and $\left|s_{2}\right|<\sum_{i_{p}}^{\infty} b_{i}$. If this sum converges, we have $s_{2} \in Q B$, hence $s \in Q B$, a contradiction since $\alpha \notin(-1,1)$. This proves the lemma.

Note that the condition on α in Lemma 7 cannot be suppressed, as e.g. $\alpha=0$ gives $b_{i}=0$ for $i \geqq 1$.
8. Case $-3 / 2 \leqq \alpha \leqq-1 / 2$. For $\alpha=-3 / 2, p_{1}=0, p_{i}>0$ for $i>1$. For $-3 / 2<\alpha \leqq-1 / 2$, all $p_{i}>0$. For $\alpha=-1 / 2$, all $q_{i}=0$. For $-3 / 2 \leqq$
$\alpha<-1 / 2$, all $q_{i}>0$. For $-3 / 2 \leqq \alpha \leqq-1 / 2$ we therefore have $\beta_{i 0} \geqq 0$, $\beta_{i j} \geqq 0, j>1$.

Lemma 8. If $-3 / 2 \leqq \alpha \leqq-1 / 2$,

$$
\begin{equation*}
b_{i}>0 \text { for all } i \tag{18}
\end{equation*}
$$

9. Case $\alpha \geqq 1$. Now we cannot specify an i beyond which all $b_{i}>0$. However:

Lemma 9. For $\alpha \geqq 1$, there exists an $i_{0} \geqq i_{q}$ such that

$$
\begin{equation*}
b_{i_{0}}>0 \tag{19}
\end{equation*}
$$

Proof. All b_{i} cannot vanish, since $\Delta s=1$. Suppose there exists an i_{0} such that $b_{i} \leqq 0$ for $i>i_{0}$. If s is bounded, we have $B_{\alpha} \notin O_{Q B}$, a contradiction since $\alpha \notin(-1,1)$. Thus s is unbounded and

$$
-s+\sup _{B_{\alpha}}\left|\sum_{i=0}^{i_{0}} b_{i} r^{2 i+2}\right| \in Q P,
$$

again a contradiction. We conclude that there exist infinitely many $b_{i}>0$. In particular, there is some $i_{0} \geqq i_{q}$ such that $b_{i_{0}}>0$.
10. We can sharpen Lemma 9:

Lemma 10. For $\alpha \geqq 1$, and i_{0} of Lemma 9,

$$
\begin{equation*}
b_{i}>0 \quad \text { for } i \geqq i_{0} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=0}^{\infty} b_{i}=\infty \tag{21}
\end{equation*}
$$

Proof. For $i>i_{0}$,

$$
\begin{equation*}
b_{i}=b_{i_{0}} \prod_{j=i_{0}+1}^{i} p_{j}+\sum_{j=i_{0}+1}^{i} \beta_{i j} \tag{22}
\end{equation*}
$$

Each $p_{j}>0$, hence the first term on the right is >0. If i_{q} is even, then $q_{i} \geqq 0$ for $i>i_{q}$, and $\beta_{i j} \geqq 0$ for $i>i_{q}$. Therefore $b_{i}>0$ for $i>i_{0}$. If i_{q} is odd, then $q_{i} \leqq 0$ for $i>i_{q}$. Suppose $b_{i_{1}} \leqq 0$ for some $i_{1} \geqq i_{q}$. Then

$$
\begin{equation*}
b_{i_{1}+1}=p_{i_{1}+1} b_{i_{1}}+q_{i_{1}+1} \leqq 0 \tag{23}
\end{equation*}
$$

and by induction we infer that $b_{i} \leqq 0$ for $i \geqq i_{1}$, a contradiction. Consequently $b_{i}>0$ for $i \geqq i_{q}$.

The proof of (21) is the same as in that of Lemma 7.
Note that Lemma 10 cannot be sharpened to $b_{i}>0$ for all $i \geqq 0$, since e.g. $b_{1}=-\alpha / 15$.

We have established that, in all cases, $b_{i}>0$ for all but a finite number of i. It remains to show that the series $\sum b_{i} r^{2 i+2}$ converges.
11. Convergence when $\alpha \leqq-1$. We claim:

Lemma 11. For $\alpha \leqq-1$,

$$
\begin{equation*}
\sum_{i=0}^{\infty} b_{i} r^{2 i+2}<\infty . \tag{24}
\end{equation*}
$$

Proof. The ratio of subsequent terms being $b_{i+1} r^{2} / b_{i}$, it suffices to show that $b_{i+1} / b_{i} \rightarrow 1$. In view of (3) we have

$$
\begin{equation*}
\frac{b_{i+1}}{b_{i}}=p_{i+1}+\frac{q_{i+1}}{b_{i}}, \tag{25}
\end{equation*}
$$

where $p_{i+1} \rightarrow 1$ by (4). We shall show that $q_{i+1} / b_{i} \rightarrow 0$, that is, for any positive integer n, fixed henceforth, there exists an i_{n} such that $b_{i} / q_{i+1}>n$ for $i \geqq i_{n}$. For $i>i_{p}$,

$$
\begin{equation*}
\frac{b_{i}}{q_{i+1}}=\frac{b_{i_{p}}}{q_{i+1}} \prod_{j=i_{p+1}}^{i} p_{j}+\sum_{j=i_{p}+1}^{i-1} \frac{q_{j}}{q_{i+1}} \prod_{k=j+1}^{i} p_{k}+\frac{q_{i}}{q_{i+1}}, \tag{26}
\end{equation*}
$$

where $b_{i_{p}}>0$. Note that the case $-3 / 2 \leqq \alpha \leqq-1$ is included, for then $b_{i_{p}}=b_{0}=1 / 6$. Since $p_{j} \geqq 0$ for $j>i_{p}$, with equality at most for $j=i_{p}+1$, and since $q_{j}>0$ for all j, we obtain for $\alpha \leqq-1$ and $i \geqq i_{n}^{\prime}=i_{p}+n+1$,

$$
\begin{equation*}
\frac{b_{i}}{q_{i+1}} \geqq f(i)=\sum_{j=i-n}^{i-1} \frac{q_{j}}{q_{i+1}} \prod_{k j+1}^{i} p_{k}+\frac{q_{i}}{q_{i+1}} . \tag{27}
\end{equation*}
$$

It suffices to show that the function $f(i)$ introduced herewith dominates n for all sufficiently large i.

Since $f(i)$ and hence $f^{\prime}(i)$ are rational in i, there exists an $i_{n}^{\prime \prime}$ such that $f^{\prime}(i)$ is of constant sign and $f(i)$ is monotone for $i \geqq i_{n}^{\prime \prime}$. In (27),

$$
\frac{q_{i}}{q_{i+1}}=\frac{i+1}{i-1-2 \alpha} \cdot \frac{(2 i+4)(2 i+5)}{(2 i+2)(2 i+3)} \rightarrow 1
$$

as $i \rightarrow \infty$, and so does each q_{j} / q_{i+1} for $i-n \leqq j \leqq i-1$. Since also each $p_{k} \rightarrow 1$, we have $f(i) \rightarrow n+1$, the convergence being monotone for $i \geqq i_{n}^{\prime \prime}$. We conclude that there exists an $i_{n} \geqq \max \left(i_{n}^{\prime}, i_{n}^{\prime \prime}\right)$ such that

$$
f(i)>n \quad \text { for } \quad i \geqq i_{n} .
$$

This completes the proof of Lemma 11.
12. Convergence when $\alpha \geqq 1$. We proceed to show:

Lemma 12. For $\alpha \geqq 1$,

$$
\begin{equation*}
\sum_{i=0}^{\infty} b_{i} r^{2 i+2}<\infty . \tag{28}
\end{equation*}
$$

Proof. If i_{q} is even, then $q_{i} \geqq 0$ for $i>i_{q}$. Since each $p_{i}>0$, the proof of Lemma 11 continues to be valid in the present case, with i_{p} replaced by i_{0} of Lemma 9 .

If i_{q} is odd, then $q_{i} \leqq 0$ for $i>i_{q}$. Again each $p_{i}>0$, and since by Lemma 10, $b_{i}>0$ for $i \geqq i_{0}$ we have by (25)

$$
0<\frac{b_{i+1}}{b_{i}} \leqq p_{i+1} \rightarrow 1
$$

The proof of Theorem 1 is herewith complete.
13. Let O_{G} be the class of parabolic Riemannian manifolds, and $O_{Q X}$ the class of Riemannian manifolds which carry no functions in a given class $Q X$, with $X=N, P, B$, or D, the class of negative, positive, bounded, or Dirichlet finite functions, respectively. In [16] we showed that

$$
\begin{aligned}
& B_{\alpha} \notin O_{G} \Leftrightarrow \alpha<1, \\
& B_{\alpha} \notin O_{Q P} \Leftrightarrow \alpha \in(-1,1), \\
& B_{\alpha} \notin O_{Q B} \Leftrightarrow \alpha \in(-1,1), \\
& B_{\alpha} \notin O_{Q D} \Leftrightarrow \alpha \in\left(-\frac{3}{5}, 1\right) .
\end{aligned}
$$

From Theorem 1 we have the following consequences, which also can be established directly:

ThEOREM 2. There exist both parabolic and hyperbolic 3-manifolds which carry $Q N$-functions but no $Q P$-functions.

Explicitly, if we denote by \widetilde{O} the complement of an O-class, then

$$
\begin{align*}
& B_{\alpha} \in \widetilde{O}_{G} \cap \widetilde{O}_{Q N} \cap O_{Q P} \Leftrightarrow \alpha \leqq-1 \tag{29}\\
& B_{\alpha} \in O_{G} \cap \widetilde{O}_{Q N} \cap O_{Q P} \Leftrightarrow \alpha \geqq 1 \tag{30}
\end{align*}
$$

Theorem 3. There exist Riemannian 3-manifolds which carry $Q N$ and $Q P$-functions but no $Q D$-functions.

Explicitly,

$$
\begin{equation*}
B_{\alpha} \in \widetilde{O}_{Q N} \cap \widetilde{O}_{Q P} \cap O_{Q D} \Leftrightarrow-1<\alpha \leqq-\frac{3}{5} \tag{31}
\end{equation*}
$$

We conjecture that Theorems 1-3 hold for manifolds of any dimension.

Bibliography

[1] Y. K. Kwon, L. Sario and B. Walsh, Behavior of biharmonic functions on Wiener's and Royden's compactifications, Ann. Inst. Fourier (Grenoble), 21 (1971), 217-226.
[2] M. NaKaI, Dirichlet finite biharmonic functions on the plane with distorted metrics, (to appear).
[3] M. Nakai and L. Sario, Biharmonic classification of Riemannian manifolds, Bull. Amer. Math. Soc., 77 (1971), 432-436.
[4] M. Nakai and L. Sario, Quasiharmonic classification of Riemannian manifolds, Proc. Amer. Math. Soc., 31 (1972), 165-169.
[5] M. Nakai and L. Sario, Dirichlet finite biharmonic functions with Dirichlet finite Laplacians, Math. Z., 122 (1971), 203-216.
[6] M. Nakai and L. Sario, A property of biharmonic functions with Dirichlet finite Laplacians, Math. Scand., 29 (1971), 307-316.
[7] M. Nakai and L. Sario, Existence of Dirichlet finite biharmonic funtions, Ann. Acad. Sci. Fenn., A. I., 532 (1973), 1-33.
[8] M. Nakai and L. Sario, Existence of bounded biharmonic functions, J. Reine Angew. Math., 259 (1973), 147-156.
[9] M. Nakai and L. Sario, Existence of bounded Dirichlet finite biharmonic functions, Ann. Acad. Sci. Fenn., A. I., 505 (1972), 1-12.
[10] M. Nakai and L. Sario, Biharmonic functions on Riemannian manifolds, Continuum Mechanics and Related Problems of Analysis, Nauka, Moscow, (1972), 329-335.
[11] H. O'Malla, Dirichlet finite biharmonic functions on the unit disk with distorted metrics, Proc. Amer. Math. Soc., 32 (1972), 521-524.
[12] L. Sario, Biharmonic and quasiharmonic functions on Riemannian manifolds, Duplicated lecture notes 1969-70, University of California, Los Angeles.
[13] L. Sario and C. Wang, The class of (p, q)-biharmonic functions, Pacific J. Math., 41 (1972), 799-808.
[14] L. Sario and C. Wang, Counterexamples in the biharmonic classification of Riemannian 2-manifolds, Pacific J. Math., (to appear).
[15] L. Sario and C. Wang, Generators of the space of bounded biharmonic functions, Math. Z., 127 (1972), 273-280.
[16] L. Sario and C. Wang, Quasiharmonic functions on the Poincaré N-ball, Rend. Mat., (to appear).
[17] L. Sario and C. Wang, Existence of Dirichlet finite biharmonic functions on the Poincaré 3-ball, Pacific J. Math., (to appear).
[18] L. Sario and C. Wang, Radial quasiharmonic functions, Pacific J. Math., 46 (1973), 515-522.
[19] L. Sario, C. Wang and M. Range, Biharmonic projection and decomposition, Ann. Acad. Sci. Fenn., A. I., 494 (1971), 1-14.
[20] C. Wang and L. Sario, Polyharmonic classification of Riemannian manifolds, J. Math. Kyoto Univ., 12 (1972), 129-140.
Department of Mathematics
University of California
Los Angeles 24, California

[^0]: * The work was sponsored by the U. S. Army Research Office-Durham, Grant DA-ARO-D-31-124-71-G181, University of California, Los Angeles.

