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NEGATIVE QUASIHARMONIC FUNCTIONS*
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1. The radial quasiharmonic function

s(r)= - Σ & ^ 2 ί + 2 ,

defined by As = 1, plays a crucial role in the problem of the existence
of bounded quasiharmonic functions on the Poincare ball Ba = {r < 1, ds =
(1 — r2)a I dx |} (see [18]). In the present paper we shall show that s has
the striking property

s < 0 on Ba for every a .

This will lead us to the introduction of the class QN of negative quasi-
harmonic functions.

We shall carry out our reasoning for dimension M = 3. This is the
essential case, as for M = 2 the harmonicity and the Dirichlet integral
are independent of a. We conjecture that the reasoning developed in
this paper will allow a generalization to an arbitrary M.

2. We start by stating our main result:

THEOREM 1. The radial quasiharmonic function s(r) = ~ X
belongs to QN.

The proof will be given in Nos. 3-12.

3. First we determine the coefficients 6*.

LEMMA 1. The function

(1) s(r)= -thr^*
i=0

with As = 1 on Ba has

( 2 ) &° = i Γ '
b

and the other coefficients are determined by the recursion formula

( 3) bi = p Λ - i + Qi
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Here

+ 1 + 2a)

and

( 5 ) qt = (Π ° ~2a~2)/(2i + 2)(2i + 3) .

Vί=i J It

PROOF. On Ba, the metric tensor is

IX2 0 0

gi3- = J 0 λ V 0

\0 0 λV2sin2,

the determinant is g = λV sin2 ψ, and the Laplacian reduces to

The equation z/s = 1 takes the form

( 6 ) - r 2 ( l - r*)s"(r) - r[2(l - r2) - 2αr2]s'(r) - r2(l - rja+1 = 1 .

On substituting s(r) from (1) we obtain

r2(l - r2) Σ (2ί + 2)(2i + l)6{r
2i + r[2 - 2(1 + cήr*] Σ (2i + 2)6ίr

2

-r2 - r2 Σ (Π J ' ~ 2 α ~ 2 V = 0 ,

that is,

i + 2)(2i + 1) + 2(2i + 2)]6<r2ί+ί

0

- Γ Σ (2ί + 2)(2i + 1) + 2(1 + α)(2ί + 2)Ίδir
2ί+4

Li=0 J

This is equivalent to the following final form of our equation:

( 7) Σ (2ί + 2)(2i + 3)6,r2ί+2 - Σ 2i(2i + 1
ί=0 i=i
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To determine the constants biy we first equate to zero the coefficient
of r2 and obtain 6δ0 - 1 = 0, that is, (2). The coefficient of r2 ί + 2 for i > 0
gives

(2i + 2)(2ί + 3)&« = 2i(2i + 1 + 2α)6«_1 + Π j ~ 2 a " 2 ,
i=l J

hence (3)-(5).

4. The following consequence of Lemma 1 is immediate:

LEMMA 2. The coefficients bι are

( 8 ) δ< = b0 Π PJ + Σ ί i Π P* + ? o
ii i i fti+i

ίfe 60 = 1/6.

We shall also use the notation

( 9 ) δ* = Σ#,
3=0

with

f/3i0 = δ0 Π Pi , βu = ^ ,

(10)
βa = Qi Π Pk for 1 ^ i ^ i - 1 .

V k=j+i

An inspection of (8) shows readily:

LEMMA 3. For a fixed ί0 and all i > i0,

hi = &ί0 Π Pi + Σ Ai
i=»0+l 3 = io+l

5. The signs of pt and ^ will be instrumental. For a given aeR
we set

(11)

Uff = m a x { i \ ί <2a + 2} .

The following immediate observations are compiled here for easy reference:

LEMMA 4. // a > -3/2, then all pi > 0. If a = -3/2, £/z,ew px = 0
Pi > 0 /or i > 1. If a < —3/2, ίΛe^ p< < 0 /or i ^ ip, α^d p4 ̂  0

for i > ip, with equality at most for i = ip + 1.

LEMMA 5. // a < -1/2, then all q{ > 0. If a = —1/2, ίfeew all q{ - 0.
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If a> — 1/2 and i ^ ίq, then & > 0 for i even and q{ < 0 for ί odd. If
a> —1/2 and ί > iq, then q{ ^> 0 for iq even, and & ^ 0 for iq odd.

These rules motivate the division of our discussion in the sequel into
the cases a < -3/2; -3/2 ^ a ^-1/2; and a ^ 1. If α e ( - l , 1), there
exist functions ueQB (Sario-Wang [16]), and

u — sup u e QN,
BBa

that is, Ba £ 0QN. Thus it will suffice to discuss the above three cases.
We shall first show, in Nos. 6-10, that the b{ > 0 for all sufficiently

large i, and then in Nos. 11-12 that the series s = — ΣΓ&i^2ί+2 converges,
hence s — ce QN for some constant c.

6. Case a < —3/2. By Lemma 3, we have for ί > ip,

(12) bt = b< ]l+ιpi+ ±+ifiiS

where

LEMMA 6. For a < -3/2, bip > 0.

PROOF. Set

with

0 V = ϊi Π A.

We have

(13) S v = —Qi— < 0

and

> 1 +

-j(2j + 1 + 2α)
Therefore

(14) | δ v | > l for 2 ^ i ^ i p .
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Suppose first ip even. Then
(1/2) ip

l p %p° i = i %P'23~ι V2'

Since βipip - qip > 0, we see by (13) and (14) that each sum in parentheses
is > 0. The same is true of βip0 = b0 Πy=i Pj> as each pd < 0, and we
conclude that bip > 0.

If ip is odd, we first observe that

for a < -3/2, and

- 3 - 2

Since βipQ < 0 and βipί > 0,

βi 0 + βi 1 > 0

and by (14)

for 1 ^ j ^ (l/2)(ip - 1). Therefore

= Σ (/V + A.,i+I) > 0 .

7. We can now go further than Lemma 6:

LEMMA 7. For a < —3/2,

(16) h > 0 , i ^ ip

(17) Σ bi = oo .
0

PROOF. Inequality (16) is a direct consequence of (12). To prove (17)
set 8 = s1 + s2 with

Here βx e QJ5 and | s2 \ < Σ ζ δi. If this sum converges, we have s2 e QB,
hence seQB, a contradiction since a$( — 1,1). This proves the lemma.

Note that the condition on a in Lemma 7 cannot be suppressed, as
e.g. a = 0 gives 6* = 0 for i ^ 1.

8. Case -3/2 <L a ^ -1/2. For α = -3/2, ft = 0, p< > 0 for i > 1.
For -3/2 < α ^ -1/2, all p4 > 0. For a = -1/2, all qi = 0. For -3/2 ^
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a < -1/2, all q{ > 0. For -3/2 ^ a ^ -1/2 we therefore have ft0 ^ 0,
ft, ^ 0, i > 1.

LEMMA 8. / / -3/2 ^ α ^ -1/2,

(18) 6ί > 0 /or αίi i .

9. Case a Ξ> 1. Now we cannot specify an i beyond which all
hi > 0. However:

LEMMA 9. For a ^ 1, ί/̂ ere exists an i0 ^ iff such that

(19) δί0 > 0 .

PROOF. All b{ cannot vanish, since As = 1. Suppose there exists
an i0 such that bi ^ 0 for i > i0. If s is bounded, we have Ba & OQB, a
contradiction since α g ( —1, 1). Thus s is unbounded and

— s + sup
*0

again a contradiction. We conclude that there exist infinitely many
bi > 0. In particular, there is some i0 ^ iff such that bio > 0.

10. We can sharpen Lemma 9:

LEMMA 10. For a ^ 1, αwd i0 o/ Lemma 9,

(20) 6, > 0 /or i ^ i0

(21) £ ^ = -

PROOF. For i > ί0,

(22) 6, - 6ί0 Π Pi + Σ Ai

Each py > 0, hence the first term on the right is > 0. If iq is even,
then qt ^ 0 for ί > iqf and fty ^ 0 for i > iq. Therefore b{ > 0 for i > i0.
If iq is odd, then q{ ^ 0 for i > iq. Suppose 6ix ^ 0 for some i ^ iq.
Then

(23) bh+ι = ph+1bh + qh+ί ^ 0

and by induction we infer that b{ ^ 0 for i ^ i19 a contradiction. Con-
sequently bi > 0 for i^iq.

The proof of (21) is the same as in that of Lemma 7.
Note that Lemma 10 cannot be sharpened to bi > 0 for all i ^ 0,

since e.g. δi = — α/15.
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We have established that, in all cases, δ* > 0 for all but a finite
number of i. It remains to show that the series Σ hr2i+2 converges.

11. Convergence when a ^ — 1 . We claim:

LEMMA 11. For a ^ — 1,

(24) Σ hr2i+2 < oo .

PROOF. The ratio of subsequent terms being bi+ίr
2/bif it suffices to

show that bi+1fbi —* 1. In view of (3) we have

(25) ^L = Pi+1 + li±L,

where pi+1-+l by (4). We shall show that qi+1/bi~+O, that is, for any
positive integer n, fixed henceforth, there exists an in such that bi/qi+1 > n
for i ^ in. For i > ip9

(26) A.= K ή pj+ g _^ ή ^

where b{ > 0. Note that the case — 3/2 ^ α ^ — 1 is included, for then
bip = b0 = 1/6. Since p, ^ 0 for j > ipf with equality at most for j = ip + 1,
and since qs > 0 for all j , we obtain for a ^ — 1 and i*zi'n = ip + n + l9

(27) Â /(i)= Σ ί 1

It suffices to show that the function f(i) introduced herewith dominates
n for all sufficiently large i.

Since f(i) and hence f'(i) are rational in i, there exists an i" such
that /'(i) is of constant sign and f(i) is monotone for i^i". In (27),

+ 5) ^
qi+1 i - 1 - 2a (2i + 2)(2i + 3)

as i —> oo, and so does each qάlqi+ι for i — n 5g j" ̂  i — 1. Since also each
pk —• 1, we have f{i) -+n + 1, the convergence being monotone for i^i".
We conclude that there exists an ίn ^ max (i'n, iZ) such that

f(i) > tι for i ^ in

This completes the proof of Lemma 11.

12. Convergence when a ^ 1. We proceed to show:

LEMMA 12. For a ^ 1,

(28) Σ bir2i+2 < oo .
<=0
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PROOF. If iq is even, then qt i> 0 for i > iq. Since each p4 > 0, the
proof of Lemma 11 continues to be valid in the present case, with ip

replaced by % of Lemma 9.
If % is odd, then q{ ^ 0 for i > iq. Again each p{ > 0, and since by-

Lemma 10, bi > 0 for i ^ i0 we have by (25)

The proof of Theorem 1 is herewith complete.

13. Let OG be the class of parabolic Riemannian manifolds, and OQX

the class of Riemannian manifolds which carry no functions in a given
class QX, with X = N, P, B, or D, the class of negative, positive, bounded,
or Dirichlet finite functions, respectively. In [16] we showed that

Ba <£ OG « a < 1 ,

From Theorem 1 we have the following consequences, which also can be
established directly:

THEOREM 2. There exist both parabolic and hyperbolic Z-manifolds
which carry QN-functions but no QP-functions.

Explicitly, if we denote by 0 the complement of an O-class, then

(29) Ba e OG Π OQN n OQP <=> a ^ - 1 ,

(30) Bae0GnδQNΠ0QP<=>a^l.

THEOREM 3. There exist Riemannian Z-manifolds which carry QN-
and QP-functions but no QD-functions.

Explicitly,

(31) BaedQNndQPf)OQD~-l<a^ —f- .
5

We conjecture that Theorems 1-3 hold for manifolds of any di-
mension.
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