NEGATIVE QUASIHARMONIC FUNCTIONS*

LEO SARIO AND CECILIA WANG

(Received November 21, 1972)

1. The radial quasiharmonic function

$$s(r) = -\sum_{i=0}^{\infty} b_i r^{2i+2}$$
 ,

defined by $\Delta s = 1$, plays a crucial role in the problem of the existence of bounded quasiharmonic functions on the Poincaré ball $B_{\alpha} = \{r < 1, ds = (1 - r^2)^{\alpha} | dx |\}$ (see [18]). In the present paper we shall show that s has the striking property

s < 0 on B_{α} for every α .

This will lead us to the introduction of the class QN of negative quasi-harmonic functions.

We shall carry out our reasoning for dimension M = 3. This is the essential case, as for M = 2 the harmonicity and the Dirichlet integral are independent of α . We conjecture that the reasoning developed in this paper will allow a generalization to an arbitrary M.

2. We start by stating our main result:

THEOREM 1. The radial quasiharmonic function $s(r) = -\sum b_i r^{2i+2}$ belongs to QN.

The proof will be given in Nos. 3-12.

3. First we determine the coefficients b_i .

LEMMA 1. The function

(1)
$$s(r) = -\sum_{i=0}^{\infty} b_i r^{2i+2}$$

with $\Delta s = 1$ on B_{α} has

$$b_0 = \frac{1}{6}$$

and the other coefficients are determined by the recursion formula

$$(3) b_i = p_i b_{i-1} + q_i .$$

^{*} The work was sponsored by the U. S. Army Research Office-Durham, Grant DA-ARO-D-31-124-71-G181, University of California, Los Angeles.

Here

(4)
$$p_i = rac{2i(2i+1+2\alpha)}{(2i+2)(2i+3)}$$

and

(5)
$$q_i = \left(\prod_{j=1}^i \frac{j-2\alpha-2}{j}\right) / (2i+2)(2i+3)$$
.

PROOF. On B_{α} , the metric tensor is

$$g_{ij} = egin{pmatrix} \lambda^2 & 0 & 0 \ 0 & \lambda^2 r^2 & 0 \ 0 & 0 & \lambda^2 r^2 \sin^2 \psi \end{pmatrix},$$

the determinant is $g = \lambda^6 r^4 \sin^2 \psi$, and the Laplacian reduces to

$$egin{aligned} arDelta s(r) &= \ -rac{1}{\sqrt{g}} \, rac{\partial}{\partial r} (\sqrt{g} \, g^{rr} s'(r)) \ &= \ -\lambda^{-2} \! \left[s''(r) + \Big(rac{2}{r} - rac{2lpha r}{1 - r^2} \Big) s'(r) \Big] \,. \end{aligned}$$

The equation $\Delta s = 1$ takes the form

(6) $-r^2(1-r^2)s''(r) - r[2(1-r^2) - 2\alpha r^2]s'(r) - r^2(1-r^2)^{2\alpha+1} = 1$. On substituting s(r) from (1) we obtain

$$egin{aligned} r^2(1-r^2)\sum\limits_{i=0}^\infty{(2i+2)(2i+1)b_ir^{2i}}+r[2-2(1+lpha)r^2]\sum\limits_{i=0}^\infty{(2i+2)b_ir^{2i+1}}\ -r^2-r^2\sum\limits_{i=1}^\infty{inom{i}{j=1}rac{j-2lpha-2}{j}}r^{2i}&=0 \ , \end{aligned}$$

that is,

$$\sum_{i=0}^\infty \left[(2i+2)(2i+1) + 2(2i+2)
ight] b_i r^{2i+2}
onumber \ - \left[\sum_{i=0}^\infty (2i+2)(2i+1) + 2(1+lpha)(2i+2)
ight] b_i r^{2i+4}
onumber \ - r^2 - \ \sum_{i=1}^\infty \left(\prod_{j=1}^i rac{j-2lpha-2}{j}
ight) r^{2i+2} = 0 \; .$$

This is equivalent to the following final form of our equation:

$$(\,7\,) \qquad \sum_{i=0}^{\infty} (2i+2)(2i+3)b_i r^{2i+2} - \sum_{i=1}^{\infty} 2i(2i+1+2lpha)b_{i-1} r^{2i+2} \ -r^2 - \sum_{i=1}^{\infty} \Bigl(\prod_{j=1}^i rac{j-2lpha-2}{j}\Bigr) r^{2i+2} = 0 \;.$$

86

To determine the constants b_i , we first equate to zero the coefficient of r^2 and obtain $6b_0 - 1 = 0$, that is, (2). The coefficient of r^{2i+2} for i > 0gives

$$(2i+2)(2i+3)b_i=2i(2i+1+2lpha)b_{i-1}+\prod_{j=1}^irac{j-2lpha-2}{j}\;,$$

hence (3)-(5).

4. The following consequence of Lemma 1 is immediate:

LEMMA 2. The coefficients b_i are

(8)
$$b_i = b_0 \prod_{j=1}^i p_j + \sum_{j=1}^{i-1} q_j \prod_{k=j+1}^i p_k + q_i$$

with $b_0 = 1/6$.

We shall also use the notation

$$(9) b_i = \sum_{j=0}^i \beta_{ij}$$

with

(10)
$$\begin{cases} \beta_{i0} = b_0 \prod_{j=1}^{i} p_j , \quad \beta_{ii} = q_i , \\ \beta_{ij} = q_j \prod_{k=j+1}^{i} p_k \quad \text{for} \quad 1 \leq j \leq i-1 \end{cases}$$

An inspection of (8) shows readily:

LEMMA 3. For a fixed i_0 and all $i > i_0$,

$$b_i = b_{i_0} \prod_{j=i_0+1}^i p_j + \sum_{j=i_0+1}^i eta_{ij} \;.$$

5. The signs of p_i and q_i will be instrumental. For a given $\alpha \in \mathbf{R}$ we set

(11)
$$\begin{cases} i_p = \max \left\{ i \mid i < -\alpha - \frac{1}{2} \right\} \\ i_q = \max \left\{ i \mid i < 2\alpha + 2 \right\}. \end{cases}$$

The following immediate observations are compiled here for easy reference:

LEMMA 4. If $\alpha > -3/2$, then all $p_i > 0$. If $\alpha = -3/2$, then $p_1 = 0$ and $p_i > 0$ for i > 1. If $\alpha < -3/2$, then $p_i < 0$ for $i \le i_p$, and $p_i \ge 0$ for $i > i_p$, with equality at most for $i = i_p + 1$.

LEMMA 5. If $\alpha < -1/2$, then all $q_i > 0$. If $\alpha = -1/2$, then all $q_i = 0$.

If $\alpha > -1/2$ and $i \leq i_q$, then $q_i > 0$ for i even and $q_i < 0$ for i odd. If $\alpha > -1/2$ and $i > i_q$, then $q_i \geq 0$ for i_q even, and $q_i \leq 0$ for i_q odd.

These rules motivate the division of our discussion in the sequel into the cases $\alpha < -3/2; -3/2 \leq \alpha \leq -1/2;$ and $\alpha \geq 1$. If $\alpha \in (-1, 1)$, there exist functions $u \in QB$ (Sario-Wang [16]), and

$$u-\sup_{B_{lpha}}u\in QN$$
,

that is, $B_{\alpha} \notin O_{QN}$. Thus it will suffice to discuss the above three cases.

We shall first show, in Nos. 6-10, that the $b_i > 0$ for all sufficiently large *i*, and then in Nos. 11-12 that the series $s = -\sum_{i=0}^{\infty} b_i r^{2i+2}$ converges, hence $s - c \in QN$ for some constant *c*.

6. Case $\alpha < -3/2$. By Lemma 3, we have for $i > i_p$,

(12)
$$b_i = b_{i_p} \prod_{j=i_p+1}^i p_j + \sum_{j=i_p+1}^i \beta_{ij}$$

where

$$b_{i_p} = \sum\limits_{j=0}^{i_p} eta_{i_p j}$$
 .

LEMMA 6. For lpha < -3/2, $b_{i_p} > 0$. Proof. Set

$$\delta_{i_p j} = rac{eta_{i_p j}}{eta_{i_p, j-1}} \ , \qquad 2 \leq j \leq i_p \ ,$$

with

$$eta_{i_p j} = q_j \prod\limits_{k=j+1}^{i_p} p_k$$
 .

We have

$$\delta_{i_p j} = \frac{q_j}{q_{j-1} p_j} < 0$$

and

$$egin{aligned} &|\,\delta_{i_p j}\,| = 1 + rac{4j^2 - 2(lpha+1)(j+1)}{-j(2j+1+2lpha)} \ &> 1 + rac{4j^2 + j + 1}{-j(2j+1+2lpha)} \,. \end{aligned}$$

Therefore

(14)
$$|\delta_{i_p j}| > 1 \text{ for } 2 \leq j \leq i_p.$$

Suppose first i_p even. Then

(15)
$$b_{i_p} = \beta_{i_p0} + \sum_{j=1}^{(1/2)i_p} (\beta_{i_p,2j-1} + \beta_{i_p,2j})$$

Since $\beta_{i_p i_p} = q_{i_p} > 0$, we see by (13) and (14) that each sum in parentheses is > 0. The same is true of $\beta_{i_{p^0}} = b_0 \prod_{j=1}^{i_p} p_j$, as each $p_j < 0$, and we conclude that $b_{i_p} > 0$.

If i_{p} is odd, we first observe that

$$\delta_{i_{p^1}} = rac{eta_{i_{p^1}}}{eta_{i_{p^0}}} = rac{q_{_1}}{b_{_0}p_{_1}} = 3 \cdot rac{-1-2lpha}{3+2lpha} < 0$$

for $\alpha < -3/2$, and

$$|\delta_{i_{p^1}}| = 3 \Big(1 + rac{2}{-3 - 2lpha} \Big) > 3 \; .$$

Since $\beta_{i_{p^0}} < 0$ and $\beta_{i_{p^1}} > 0$,

$$\beta_{i_{p^0}} + \beta_{i_{p^1}} > 0$$

and by (14)

$$eta_{i_p2j}+eta_{i_p,2j+1}>0$$

for $1 \leq j \leq (1/2)(i_p - 1)$. Therefore $b_{i_p} = \sum_{j=0}^{(1/2)(i_p-1)} (\beta_{i_p2j} + \beta_{i_p,2j+1}) > 0$.

7. We can now go further than Lemma 6:

LEMMA 7. For $\alpha < -3/2$,

 $(16) b_i > 0 , i \ge i_p$

and

(17)
$$\sum_{i=0}^{\infty} b_i = \infty .$$

PROOF. Inequality (16) is a direct consequence of (12). To prove (17) set $s = s_1 + s_2$ with

$$s_1 = -\sum_{i=0}^{i_p-1} b_i r^{2i+2}$$
, $s_2 = -\sum_{i=i_p}^{\infty} b_i r^{2i+2}$

Here $s_1 \in QB$ and $|s_2| < \sum_{i_p}^{\infty} b_i$. If this sum converges, we have $s_2 \in QB$, hence $s \in QB$, a contradiction since $\alpha \notin (-1, 1)$. This proves the lemma.

Note that the condition on α in Lemma 7 cannot be suppressed, as e.g. $\alpha = 0$ gives $b_i = 0$ for $i \ge 1$.

8. Case $-3/2 \leq \alpha \leq -1/2$. For $\alpha = -3/2$, $p_1 = 0$, $p_i > 0$ for i > 1. For $-3/2 < \alpha \leq -1/2$, all $p_i > 0$. For $\alpha = -1/2$, all $q_i = 0$. For $-3/2 \leq -1/2$. lpha < -1/2, all $q_i > 0$. For $-3/2 \leq lpha \leq -1/2$ we therefore have $\beta_{i0} \geq 0$, $\beta_{ij} \geq 0, j > 1$.

Lemma 8. If $-3/2 \leq \alpha \leq -1/2$,

$$(18) b_i > 0 \quad for \ all \quad i \ .$$

9. Case $\alpha \ge 1$. Now we cannot specify an *i* beyond which all $b_i > 0$. However:

LEMMA 9. For $\alpha \ge 1$, there exists an $i_0 \ge i_q$ such that

(19)
$$b_{i_0} > 0$$
 .

PROOF. All b_i cannot vanish, since $\Delta s = 1$. Suppose there exists an i_0 such that $b_i \leq 0$ for $i > i_0$. If s is bounded, we have $B_{\alpha} \notin O_{QB}$, a contradiction since $\alpha \notin (-1, 1)$. Thus s is unbounded and

$$-s+\sup_{B_{lpha}}\left|\sum\limits_{i=0}^{i_{0}}b_{i}r^{2i+2}
ight|\in QP$$
 ,

again a contradiction. We conclude that there exist infinitely many $b_i > 0$. In particular, there is some $i_0 \ge i_q$ such that $b_{i_0} > 0$.

10. We can sharpen Lemma 9:

LEMMA 10. For $\alpha \ge 1$, and i_0 of Lemma 9,

 $(20) b_i > 0 for i \ge i_0$

and

(21)
$$\sum_{i=0}^{\infty} b_i = \infty$$

PROOF. For $i > i_0$,

(22)
$$b_i = b_{i_0} \prod_{j=i_0+1}^i p_j + \sum_{j=i_0+1}^i \beta_{ij}$$

Each $p_j > 0$, hence the first term on the right is > 0. If i_q is even, then $q_i \ge 0$ for $i > i_q$, and $\beta_{ij} \ge 0$ for $i > i_q$. Therefore $b_i > 0$ for $i > i_0$. If i_q is odd, then $q_i \le 0$ for $i > i_q$. Suppose $b_{i_1} \le 0$ for some $i_1 \ge i_q$. Then

$$(23) b_{i_1+1} = p_{i_1+1}b_{i_1} + q_{i_1+1} \leq 0$$

and by induction we infer that $b_i \leq 0$ for $i \geq i_i$, a contradiction. Consequently $b_i > 0$ for $i \geq i_q$.

The proof of (21) is the same as in that of Lemma 7.

Note that Lemma 10 cannot be sharpened to $b_i > 0$ for all $i \ge 0$, since e.g. $b_1 = -\alpha/15$.

90

We have established that, in all cases, $b_i > 0$ for all but a finite number of *i*. It remains to show that the series $\sum b_i r^{2i+2}$ converges.

11. Convergence when $\alpha \leq -1$. We claim:

LEMMA 11. For $\alpha \leq -1$,

(24)
$$\sum_{i=0}^{\infty} b_i r^{2i+2} < \infty$$
.

PROOF. The ratio of subsequent terms being $b_{i+1}r^2/b_i$, it suffices to show that $b_{i+1}/b_i \rightarrow 1$. In view of (3) we have

(25)
$$\frac{b_{i+1}}{b_i} = p_{i+1} + \frac{q_{i+1}}{b_i},$$

where $p_{i+1} \to 1$ by (4). We shall show that $q_{i+1}/b_i \to 0$, that is, for any positive integer *n*, fixed henceforth, there exists an i_n such that $b_i/q_{i+1} > n$ for $i \ge i_n$. For $i > i_p$,

(26)
$$\frac{b_i}{q_{i+1}} = \frac{b_{i_p}}{q_{i+1}} \prod_{j=i_p+1}^i p_j + \sum_{j=i_p+1}^{i-1} \frac{q_j}{q_{i+1}} \prod_{k=j+1}^i p_k + \frac{q_i}{q_{i+1}}$$

where $b_{i_p} > 0$. Note that the case $-3/2 \le \alpha \le -1$ is included, for then $b_{i_p} = b_0 = 1/6$. Since $p_j \ge 0$ for $j > i_p$, with equality at most for $j = i_p + 1$, and since $q_j > 0$ for all j, we obtain for $\alpha \le -1$ and $i \ge i'_n = i_p + n + 1$,

(27)
$$\frac{b_i}{q_{i+1}} \ge f(i) = \sum_{j=i-n}^{i-1} \frac{q_j}{q_{i+1}} \prod_{k=j+1}^i p_k + \frac{q_i}{q_{i+1}}$$

It suffices to show that the function f(i) introduced herewith dominates n for all sufficiently large i.

Since f(i) and hence f'(i) are rational in *i*, there exists an i''_n such that f'(i) is of constant sign and f(i) is monotone for $i \ge i''_n$. In (27),

$$\frac{q_i}{q_{i+1}} = \frac{i+1}{i-1-2\alpha} \cdot \frac{(2i+4)(2i+5)}{(2i+2)(2i+3)} \to 1$$

as $i \to \infty$, and so does each q_j/q_{i+1} for $i - n \leq j \leq i-1$. Since also each $p_k \to 1$, we have $f(i) \to n + 1$, the convergence being monotone for $i \geq i''_n$. We conclude that there exists an $i_n \geq \max(i'_n, i''_n)$ such that

$$f(i) > n$$
 for $i \ge i_n$.

This completes the proof of Lemma 11.

12. Convergence when $\alpha \geq 1$. We proceed to show:

LEMMA 12. For $\alpha \geq 1$,

$$(28) \qquad \qquad \sum_{i=0}^{\infty} b_i r^{2i+2} < \infty$$

PROOF. If i_q is even, then $q_i \ge 0$ for $i > i_q$. Since each $p_i > 0$, the proof of Lemma 11 continues to be valid in the present case, with i_p replaced by i_0 of Lemma 9.

If i_q is odd, then $q_i \leq 0$ for $i > i_q$. Again each $p_i > 0$, and since by Lemma 10, $b_i > 0$ for $i \geq i_0$ we have by (25)

$$0 < \frac{b_{i+1}}{b_i} \leq p_{i+1} \rightarrow 1$$
.

The proof of Theorem 1 is herewith complete.

13. Let O_a be the class of parabolic Riemannian manifolds, and O_{qx} the class of Riemannian manifolds which carry no functions in a given class QX, with X = N, P, B, or D, the class of negative, positive, bounded, or Dirichlet finite functions, respectively. In [16] we showed that

$$egin{array}{lll} B_lpha
otin O_G & \Leftrightarrow lpha < 1 \;, \ B_lpha
otin O_{QP} & \Leftrightarrow lpha \in (-1, 1) \;, \ B_lpha
otin O_{QB} & \Leftrightarrow lpha \in (-1, 1) \;, \ B_lpha
otin O_{QD} & \Leftrightarrow lpha \in \left(-rac{3}{5}, 1
ight). \end{array}$$

From Theorem 1 we have the following consequences, which also can be established directly:

THEOREM 2. There exist both parabolic and hyperbolic 3-manifolds which carry QN-functions but no QP-functions.

Explicitly, if we denote by \tilde{O} the complement of an O-class, then

$$(29) B_{\alpha} \in \widetilde{O}_{G} \cap \widetilde{O}_{QN} \cap O_{QP} \Leftrightarrow \alpha \leq -1,$$

$$(30) B_{\alpha} \in O_{G} \cap \widetilde{O}_{QN} \cap O_{QP} \Leftrightarrow \alpha \geq 1.$$

THEOREM 3. There exist Riemannian 3-manifolds which carry QNand QP-functions but no QD-functions.

Explicitly,

$$(31) B_{\alpha} \in \widetilde{O}_{QN} \cap \widetilde{O}_{QP} \cap O_{QD} \Leftrightarrow -1 < \alpha \leq -\frac{3}{5}.$$

We conjecture that Theorems 1-3 hold for manifolds of any dimension.

BIBLIOGRAPHY

 Y. K. KWON, L. SARIO AND B. WALSH, Behavior of biharmonic functions on Wiener's and Royden's compactifications, Ann. Inst. Fourier (Grenoble), 21 (1971), 217-226.

92

- [2] M. NAKAI, Dirichlet finite biharmonic functions on the plane with distorted metrics, (to appear).
- [3] M. NAKAI AND L. SARIO, Biharmonic classification of Riemannian manifolds, Bull. Amer. Math. Soc., 77 (1971), 432-436.
- [4] M. NAKAI AND L. SARIO, Quasiharmonic classification of Riemannian manifolds, Proc. Amer. Math. Soc., 31 (1972), 165-169.
- [5] M. NAKAI AND L. SARIO, Dirichlet finite biharmonic functions with Dirichlet finite Laplacians, Math. Z., 122 (1971), 203-216.
- [6] M. NAKAI AND L. SARIO, A property of biharmonic functions with Dirichlet finite Laplacians, Math. Scand., 29 (1971), 307-316.
- [7] M. NAKAI AND L. SARIO, Existence of Dirichlet finite biharmonic funtions, Ann. Acad. Sci. Fenn., A. I., 532 (1973), 1-33.
- [8] M. NAKAI AND L. SARIO, Existence of bounded biharmonic functions, J. Reine Angew. Math., 259 (1973), 147-156.
- [9] M. NAKAI AND L. SARIO, Existence of bounded Dirichlet finite biharmonic functions, Ann. Acad. Sci. Fenn., A. I., 505 (1972), 1-12.
- [10] M. NAKAI AND L. SARIO, Biharmonic functions on Riemannian manifolds, Continuum Mechanics and Related Problems of Analysis, Nauka, Moscow, (1972), 329-335.
- [11] H. O'MALLA, Dirichlet finite biharmonic functions on the unit disk with distorted metrics, Proc. Amer. Math. Soc., 32 (1972), 521-524.
- [12] L. SARIO, Biharmonic and quasiharmonic functions on Riemannian manifolds, Duplicated lecture notes 1969-70, University of California, Los Angeles.
- [13] L. SARIO AND C. WANG, The class of (p, q)-biharmonic functions, Pacific J. Math., 41 (1972), 799-808.
- [14] L. SARIO AND C. WANG, Counterexamples in the biharmonic classification of Riemannian 2-manifolds, Pacific J. Math., (to appear).
- [15] L. SARIO AND C. WANG, Generators of the space of bounded biharmonic functions, Math. Z., 127 (1972), 273-280.
- [16] L. SARIO AND C. WANG, Quasiharmonic functions on the Poincaré N-ball, Rend. Mat., (to appear).
- [17] L. SARIO AND C. WANG, Existence of Dirichlet finite biharmonic functions on the Poincaré 3-ball, Pacific J. Math., (to appear).
- [18] L. SARIO AND C. WANG, Radial quasiharmonic functions, Pacific J. Math., 46 (1973), 515-522.
- [19] L. SARIO, C. WANG AND M. RANGE, Biharmonic projection and decomposition, Ann. Acad. Sci. Fenn., A. I., 494 (1971), 1-14.
- [20] C. WANG AND L. SARIO, Polyharmonic classification of Riemannian manifolds, J. Math. Kyoto Univ., 12 (1972), 129-140.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA LOS ANGELES 24, CALIFORNIA