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1. This paper is a continuation of our former work [6]. The purpose
of this note is to study the essential ranges of bounded functions in
abstract Hardy spaces in the sense of H. Kδnig. Let (X, Σ, m) be a
probability measure space and H a weak* closed subalgebra of the sup-
norm algebra L°° of the bounded m-measurable functions, satisfying 1 e H

and I uvdm = I udm I vdm for any u, veH. The main result we want to

show is the following: For every non-constant ueHthere exists a unique
Caratheodory domain A such that m{x; u(x) eA} = l and m{x; \ u(x) — b | <
e} > 0 for any ε > 0 and any b e dA. We shall show it in the following form:
The polynomial convex hull K of the value carrier of a non-constant u e H
coincides with the polynomial convex hull of the closure A of a component
A of the interior of K and it holds further m{x; u(x) e A} = 1 (Theorem
A in Section 3). "Caratheodory domain" and "value carrier" are defined
in Section 3. In Section 2 we shall give several lemmas. The main
lemma is Lemma 2. The key tools we shall use frequently are some well-
known theorems on polynomial approximation, such as Mergelyan's theorem
etc. All properties we shall show follow essentially from the multiplica-
tivity of the integration on H.

A prototype of our space H is the classical H°°(T): Let T = {\ z \ = 1}
and consider the normalized Lebesgue measure L on T. Let H°°(U) be
the set of all bounded holomorphic functions in the open unit disc U =
{\z\ < 1}. As is well-known, every / e H°°(U) defines a radial limit func-
t i o n / ^ ) : f(eiθ) = limr_n f(τeiθ) a.e.. We denote the set of all such limit-
ing functions by H°°(T). Then it is well-known that H°°(T) is weak*
closed and satisfies all conditions for our space H. The author would like
to acknowledge several helpful conversations with Professor Heinz Konig.

2. We shall start with some definitions:

DEFINITION 1. Let K be a compact set in the complex plane C. The
algebra C(K) consists of the continuous functions on K, endowed with
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the supremum norm. The algebra P(K) consists of the functions in C(K)
which can be approximated uniformly on K by polynomials in z. The
algebra R{K) consists of the functions in C{K) which can be approximated
uniformly on K by rational functions with poles off K. For a set A c C
we denote by \\f\\A the supremum norm of an feC(A).

We shall give a lemma on integrals I udm of ueH.

LEMMA 1. Let K c C be a compact set and K its polynomial convex

hull. Then for any ueH with m{x; u(x) eK} = 1 we have 1 udmeK.

If u is in particular not constant, we have I udm e K°: the interior

of K.

PROOF. Since the integration is multiplicative on H, we have

\P(u)dm = P[\udm\ for any polynomial P(z). Hence we get[\

([ udm) I ̂  \I P{u) \dm ̂  sup | P{z) \ .

Therefore we have I udm e K. Suppose next that u is not constant and
\ udm e dίt. Set a = I udm. Since K is polynomially convex, Kc is con-
nected. Hence by Gonchar's criterion for peak points for R{K) every
boundary point of K is a peak point for R(K). Hence there exists a
function f(z) e R{K) such that /(α) = 1 and^ \f(z) | < 1 for z e K\{a}. By
Mergelyan's theorem we have R{K) — P{K). Therefore there is a se-
quence of polynomials Pn(z) converging to f(z) uniformly on K. Since
Pn(u) 6 H and they converge to f(u) in the sup-topology, we have f(u) e H
and

1 = f(a) = f( I udm j — lim pj \udm) = lim \ Pn(u)dm = \f(u)dm .

Hence we have f(u) = 1 a.e., that is, u = a a.e., which is a contradiction.
This completes the proof.

As a consequence we have a sufficient condition for a ueH to be
constant.

COROLLARY 1. Let KaC be a compact set such that K has no in-
terior point and Kc is connected. Then every ueH with m{x; u(x) e K) =
1 is constant.

Now using Lemma 1 we can show the following fundamental lemma.

LEMMA 2. Let K be a compact set in C with connected complement.
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Let ueH be non-constant and m{x; u(x) eK) = 1. Then there is a unique

component A of the interior K° of K with I udm e A and for this com-

ponent it holds m{x; u{x) e A} = 1. This component is naturally a simply

connected domain.

In order to prove this lemma we need two lemmas.

LEMMA 3. Let u, K be the same as in Lemma 2. Then the number

\ udm belongs to a unique component A of K° and it holds m{x; u(x) e

dK U A} = 1.

LEMMA 4. Let K be a compact set in C with connected complement
and A be a component of K°. Then there exist polynomials Pn(z) with
|| Pn \\κ ^ 1 such that Pn(z) -• 0 for all z e dK\A and Pn(z) -> 1 for all zeA.

PROOF OF LEMMA 3. Since u is not constant, by Lemma 1 the interior

K° of K is not empty and it holds \udmeK°. Hence there exists a

unique component A of K° with I udm e A. Let f(z) = 1 on A and = 0

on K°\A, so that f(z) is bounded and holomorphic on K°. Since Kc is
connected, by a version of Farrell-Rubel-Shields theorem (Gamelin [1], p.
154) there is a sequence of polynomials Pn(z) with \\Pn \\κ ^ | |/ | |χo = 1
such that Pn(z) ~>/(z) for all z e K°. We consider the set {PΛ(^)}Γ=i. Since
\\Pn(u) I loo ̂  1 and H is weak* closed, there exist a veH with \\v |U ^ 1
and a subsequence {Pn.(u)} of {Pn{v)} such that Pnj(u) —• v in the weak*

topology. Since \ PΛu)dm — PJ \ udm) and \ udm e A, we get I Pn(u)dm —>
J \J / r J J

1 by the choice of Pn. Hence we have \vdm — 1. Since |M|«> ^ 1, by
Lemma 1 we have v = 1. As \\Pn(u) IL ^ 1> we have Re( l — Pn(u)) ^ 0
and using Kolmogorov's inequality we have for any 0 < p < 1

cos pπβ[ I Pn{u) - i Im (A Pn(u)dm\ * dm ^ ([ Re (1 - Pn(u))dmY .

Since Pnj(u) —> 1 in the weak* topology, we obtain I (1 — Pn.(u))dm —>0

and so I Re (1 - Pn.{u))dm —> 0 and Im ([Pn.(u)dm\ —>0 as j —> oo. Hence

there exists a subsequence of {Pnj}, which we write as {Qn}, such that
Qn{u) —> 1 a.e. on X. Since Qn(z) -+0 for z e K°\A, we get m{x; u(x) e
K°\A} = 0 and hence m{x; u(x) e dK (J A} = 1. This completes the proof
of Lemma 3.

PROOF OF LEMMA 4. Since Kc is connected, we have A{K) = P(ίΓ) =
by Mergelyan's theorem and hence R{K) is dirichlet on dK. Hence
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every homomorphism φ: R(K) —• C has a unique representing measure on
dK. For any aeA we denote by ma the unique representing measure
for the evaluation homomorphism at a. As is known, ma and mb are
mutually boundedly absolutely continuous for any a, be A, i.e., there is
a constant c = c(a, b) such that c~~xma ^ mb ^ cma. Now let us fix a point
aoeA and let E = 3K\A. Then E is an F σ set, i.e., a union of an in-
creasing sequence of closed sets in C. Further we have maQ(E) = 0, since
maQ is supported on dA. Hence by Forelli's lemma (Gamelin [1], p. 43)
there are fn e R(K) such that ||/» |U ^ 1, fn(z) ->0 for all zeE and fn —
1 mαo-a.e. on dA. Since ma is absolutely continuous with respect to maQ

for any aeA, we have /»—>1 mα-a.e. on dA and so Λ(α) = \/wcZmα—>1
for all aeA. As 12(10 = P(K), it is easily seen that there are polyno-
mials Pn(z) with | | P n | U ^ l such that Pn(z)-*0 for all zedK\A and
Pn(z) —> 1 for all 2 G i . That completes the proof of Lemma 4.

PROOF OF LEMMA 2. Using Lemma 3 and Lemma 4 we apply the
argument in the proof of Lemma 3 and obtain the desired conclusion.

As immediate consequences of Lemma 2 we have the following corol-
laries, whose proofs we omit.

COROLLARY 2. Let A, B be two compact sets in C such that {A (J B)c

is connected and A Γ\ B consists of only one point or is empty. Then
for every ue H with m{x; u(x) e A u B) = 1 it holds either m{x; u(x) eA} =
1 or m{x; u(x) e B] = 1.

COROLLARY 3 ([6] Theorem 4). Let A, B be two disjoint compact
sets in C such that (A U B)c is connected. Let J be a Jordan arc joining
a boundary point of A with a boundary point of B such that the set
J Π (A U B) consists of the end points of J. Then for every ueH with
m{x; u{x) eA[jB[jJ} — 1 it holds m{x; u(x) eA} = l or m{x; u(x) e B] = 1
or u is constant.

Now a bounded domain in C is said to be a Jordan domain if its
boundary is a Jordan curve.

COROLLARY 4. Let D19 D2 be Jordan domains with D^^Ό^Φ^*
For any non-constant ueH with m{x; u(x) eDό} = 1 (j = 1, 2) there exists
a Jordan domain D c A ί l A with m{x; u(x) e D) = 1.

PROOF. The set K = Dι Π A = A Π A is compact and the interior
of K is A Π A Further Kc is clearly connected. By a theorem of
Kerekjartό every component of A Π A is also a Jordan domain. Hence
by Lemma 2 we have the desired conclusion.
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3. We shall next define "value carrier" and state our main result
once more and prove it.

DEFINITION 2. The value carrier ω(h) of a measurable function h
on X is defined to be the set of all complex numbers aeC such that
m{x; I h(x) — a | < ε} > 0 for all ε > 0. Thus ω(h) is closed and not empty.

DEFINITION 3. Let G be a bounded simply connected domain, and
let Goo be the component of (G)c containing the point at infinity. Then G
is said to be a Caratheodory domain if G and G^ have the same boundary.

THEOREM A. Let ueH be not constant. Then the polynomial convex

hull ω(iίj of ω(u) coincides with the polynomial convex hull of the closure A

of a component A of (o)(u))° containing I udm and it holds m{x; u(x) eA} =

1. In particular A is a bounded simply connected domain and it holds

dω(u) = dA, and hence A is a Caratheodory domain.

PROOF. Let K — ω(u). Then one can see easily that m{x; u{x) e K) =
1 and (*) for any ε > 0 and any a e dK it holds m{x; \ u(x) — a | < ε} > 0.
Kc is connected, since K is polynomially convex. Now let A be the com-
ponent of K° with I udm e A. Then by Lemma 2 we have m{x; u(x) e A) = 1.
Hence the property (*) of K implies dKczA. Since K is polynomially

convex, we have K = dKczA and so K = A. The last assertion is then
clear. We have thus proved the theorem.

REMARK. For every he L°° the set ω(K) is the unique compact set K
such that (i) Kc is connected, (ii) m{x; h{x) e K] — 1, and (iii) m{x;
I h(x) — a I < ε} > 0 for any ε > 0 and any a e dK. In fact, let K19 K2 be
two compact sets in C satisfying (i), (ii) and (iii). Then by (ii) for Kλ

and (iii) for K2 we have dK2 c Kγ. Hence by (i) for Kιy K2 we have K2 =
dK2 c ΛLΊ. Similarly we have Kx c K2 and hence ϋ^ = K2.

Using this remark we see that Theorem A is equivalent to the
following Theorem B.

THEOREM B. For every non-constant ueH there exists a unique com-
pact set K satisfying the following conditions', (i) Kc is connected, (ii)
m{x; u(x) e K} = 1. (iii) m{x; \ u(x) — a | < ε} > 0 for any ε > 0 and any
a e dK. Further there exists a unique component A of the interior of K
containing I udm. This component is simply connected and we have K =

A, dK = dA and m{x; u(x) e A} = 1. In particular K is connected.

Now using Corollary 4 to Lemma 2 one can represent the set K in
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Theorem B as follows.

K. YABUTA

COROLLARY 5. Let u, K be the same as in Theorem B. Then we
have

κ= n
DeΩ

where Ω is the set of all Jordan domains D with m{x; u(x) e D) = 1.

PROOF. Ω is clearly not empty. Set L = ΓΪDBΩ D. Then by Corollary
4, L is not empty and compact. Lc is clearly connected. Since every D
is closed, L satisfies the condition (ii) in Theorem B. It is also easily
seen that L satisfies the condition (iii) in Theorem B. Hence by Theorem
B we have L = K. This completes the proof.

REMARKS. 1. In Corollary 5 one can not replace D by D, which is
shown by the following example: Let us consider the classical H°°(T).
Let u(eiθ) = eiθ and Ca = {\ z + eia \ < 2} (0 ^ a < 2π). Then we have
L{eiθ; u(eiθ) e Ca} = 1 and Ca are Jordan domains. Since Πo^«<2̂  Ca = U =
{| z I < 1}, we have L{eiθ; u(eiθ) e Γ\DBΩ D} = 0.

2. In Theorem B one can not expect in general that K° is a Jordan
domain or a simply connected domain. In fact, let D be the "cornucopia"
(Figure 1), which is a ribbon winding the outside of the circle T =
{\z\ = 1} and accumulating on that circle. Let f(z) be a conformal map
from Z7 onto D. Then we have f(eiθ) e H°°(T) and L{eiθ;f(eiθ)edD} = 1.
K in Theorem B is then D{J U and the interior of K is D U U, which is
disconnected. And A in Theorem B is D. This shows that the simply
connected domain A in Theorem B is in general not a Jordan domain.

FIGURE 1. The cornucopia.
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4. As topics related to the preceding section we shall show the
following results.

PROPOSITION 1. Let D be the cornucopia in Remark 2 in Section 3.
If ueH and m{x; u(x) eD) = 1, then it holds m{x; u(x) eD\T} — 1 or
m{x; u{x) e T) = 1.

PROOF. Let w = f(z) be a conformal mapping from D onto | w | < 1.
Then the boundary element {\z\ = 1} corresponds by Caratheodory's theo-
rem to a point on the unit circle {\w\ = 1}. We may assume that this
point is w = 1. One sees in this case that f(z) is continuous on D. Let
g(z) = f(z) for zeD, =1 for ze U = {\z | < 1}. Then g(z) is continuous
on 5 U U and holomorphic on D U ί7. Since (5 (J ί^)c is clearly connected,
by Mergelyan's theorem there exists a sequence of polynomials converging
to g(z) uniformly on D U U. Hence as before we have g(u) e H and
|gr(%)| ^ 1 a.e.. By our generalization of Lδwner's lemma ([6]) we have
0 = m{x; g{u(x)) = 1} = m{x; \ u(x) 1 = 1} or g(u(x)) = 1 a.e.. The latter
implies m{x; u(x) e T) = 1. This completes the proof.

PROPOSITION 2. Let D be the simply connected domain bounded by
the arcs

0 < x ^ 2/3τr , y = sin x~ι + a?

a? - 2/3τr, - 1 ^τ/^2/3π - 1
7:

2/3π ^ α? > 0 , 2/ = sin x"1

x = 0 , - l ^ y ^ 1

z = x + iy. If ueHand m{x; u(x) £D) = 1, ί/^eπ ΐ ί ΛoWs m{α;; i6(α;) e

5\ί[ — 1, 1]} = 1 or u is constant.

PROOF. In a similar way to the proof of Proposition 1 we see that
m{x; u(x) e D\i[ — 1,1]} = 1 or m{x; u(x)ei[ — l, 1]} = 1. In the latter case
u is constant by Corollary 1.

Combining Proposition 2 with Lemma 2 we have the following result.

PROPOSITION 3. Let D be as in Proposition 2 and Ώf — {z = x + iy;
— x + iye D}. If ue H is not constant and m{x; u(x) e ΰ U D'} = 1, then
it holds m{x; u(x)eD\i[-l, 1]} = 1 or m{x; u(x)eD'\ί[-l, 1]} = 1.

As an application we have the following: Let D be as in Proposition
2 and K = D. Let m be the unique representing measure on dK for the
homomorphism from P{K) to C:/-^/(α), where a is a point in D. Then
we have m{i[ — 1, 1]} = 0.

5. Final remark: All our results hold for any ueL°° such that
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Iu n dm = (\ udmj {n = 0,1, 2, •••)• We have only to take the weak*

closure of the set of all finite linear combinations of {un}n=0.
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