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1. Let {vn} be any given sequence of complex numbers. The quasi-
Hausdorff transformation (H*, vn) is defined by

(1) t n = ±

whenever this series converges. We will use (H*, vn) also to denote the
matrix of the transformation (1), and write s, t for the sequences {sk}, {tn};
thus (1) may be written

t = (#*, vn)s .

We say that the (H*, vn) method is applicable to s if (1) converges for all
n, so that t is defined; we say that s is summable (iϊ*, vn) to I if, further
tn —> I as n —> oo. We use a similar terminology for other transformations.

The matrix (iί*, vn) is the transpose of the matrix of the Hausdorff
transformation1 (H, vn). It is familiar that, given two sequences {vn}, {ωn}
(say), we have

(H, vn)(H, ωn) = (H, vnωn) .

Taking the transpose of this result (with v, ω interchanged) we have, as
is familiar

(2) (H*,

But the matrices considered are not, in general, row finite, so that their
multiplication is not necessarily associative; thus we cannot assert that

(3) (H*, vn)[{H\ ωn)s] = [(H*, vn){H*, ωn)]s .

Thus the situation differs from that which applies for the corresponding
Hausdorff transformations in that, notwithstanding (2), we cannot assert
that the result of applying first the (H*, ωn) and then the (H*, vn) trans-
formation is the same as that of applying the (H*9 vnωn) transformation.

It has been shown by Ramanujan [4] that there is a close connection
between Hausdorff summability (H, μn) and quasi-Hausdorff summability

t For those properties of Hausdorff transformations to which reference is made, see,
e.g. [1, Chapter XI].
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(if*, μn+ι); in particular, whenever {H, μn) is regular then so is (if*, μn+d
When

( 4 ) ;«.
n + r

n
(H, μn) reduces to the Cesaro transformation (C, r); thus it is natural to
describe the quasi-Hausdorff transformation (if*, μn+1) with μn given by
(4) as the quasi-Cesaro transformation (C*, r). The properties of (C*, r)
have been investigated by me [2], [3]; a more general transformation was
investigated independently by A. J. White [5]

When

(H, ωn) reduces to the Holder transformation (H, r); we will therefore
describe the (iϊ*, ωn+1) transformation with ωn given by (5) as the quasi-
Holder transformation (£Γ*, r).

It is known (e.g. [1]) that Cesaro and Holder summabilities (C, r), (H, r)
are equivalent. Thus if for a given r, μn, ωn are given by (4), (5) we
have μn = vnωn where (H, vn) is regular. Hence, by what has already
been said

( # * , μn+ί) - (H*y vn+1)(H*, ωn+1) ,

and (ίί*, vn+ί) is regular. But, since we cannot assert (3), we cannot
deduce from this that summability (C*, r) is implied by summability (iϊ*, r).
Similar remarks apply with the roles of (C*, r), (if*, r) interchanged.

When r is an integer, the Holder transformation (H, r) is the same
as the transformation obtained by r iterations of the (C, 1) transforma-
tion; and we can deduce that

(6) (H*,r) = [(C*,l)]'.

But although (6) holds as a relation between matrices, we cannot deduce
that the result of r iterations of the (C*, 1) transformation is the same
as (if*, r).

We will restrict consideration to integer values of r; accordingly, it
will be assumed throughout from now on that r is a positive integer. On
this understanding, we investigate the relations between (C*, r), (C*, l) r,
(H*9 r). Here (C*, l) r is used to denote the result of r iterations of the
(C*, 1) transformation.

The results to be proved are as follows.
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THEOREM 1. (C*, r) and (C*, l) r are equivalent.

THEOREM 2. If s is summable (H*9 r) to I, then it is summable
(C*, r) to I. If s is summable (C*, r) to I, and if (H*, r) is applicable,
then s is summable (H*9 r) to I. However, except in the trivial case
r = 1, the applicability of (H*, r) is not implied by (C*, r) summability.

Let now rL > r (where rγ is also an integer). It is known [3, Theorem
1; 5, Theorems 2,3] that, if s is summable (C*, r) to I then it is summable
(C*, rx) to I. It therefore follows at once from Theorem 2 that, if s is
summable (H*, r) to I and if (iϊ*, r,) is applicable, then s is summable
(H*9 rt) to I. However, the hypothesis that (H*, rx) is applicable cannot
in general be omitted.

THEOREM 3. Let rx > r (r1 an integer). Let s be summable (H*, r)
to I. If r = 1, then (if*, rx) is applicable. This result becomes false if
r>l.

It follows at once from Theorem 3 and the remarks made above that
summability (if*, r) implies summability (iϊ*, rx) without any supplementa-
ry "applicability condition" when r = 1, but not when r > 1.

2. We require some lemmas.

LEMMA 1. Let

F(k, x) = ± ( - i y
0

G(k, x) = ± ( - l ) 'P,( fc - p)x» ,

where, for each p, PP(k) is a polynomial in k of degree not exceeding r.
Suppose that F(k, x) has the property that, when expressed as a polynomial
in k, the coefficient of kq is divisible by (1 — x)q (q = 1, 2, , r). Then
G(k, x) also has this property.

Write

( 7 ) (, g(
q=Q

It is enough to consider the contribution to G{k, x) of one term in the
sum (7), since the general result can then be obtained by addition. Taking,
then, q as fixed, let ap be the coefficient of kq in (—l)pPp(k); thus

r

Φq{%) = Σ <lptoP

P=0

The contribution of this term to G(k, x) is
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(8) Σi aP(k -
p = 0

We can write (8) as Lqφq(x), where the operator L is defined by

Lf(x) = kf(x) - xf'(x) .

Since ψq(x) is divisible by (1 — x)\ it follows by induction on t that Uφ^x)
is a polynomial in k of degree t, the coefficient of kσ being divisible by
(1 — x)q+0~t. Applying this result with t = q, the lemma follows.

LEMMA 2. Suppose that

Ψ() ( W
P=o

is divisible by (1 — x)9. Let Q(x) be a polynomial in x of degree v. Then

(9) Σ ( - l ) ' α , Q ( f c - 0
p=0

is a polynomial in k of degree at most v — q. In the case q — v, the
conclusion is to be interpreted as meaning that (9) is constant; in the
case q > v, it is to be interpreted as meaning that (9) is identically zero.

It is slightly more convenient to prove a similar result, but with (9)
replaced by

(10) ± (-l)'aPQ(k + p)
p = 0

this will give the conclusion, for we can apply this result with Q(x)
replaced by Q(—x) and with k replaced by — k.

Write

and write E for the "shift operator" defined by EQ{k) = Q(k + 1). Then
we can write (10) as

i (-iYapE»)Q(k) = ((1
=o /

The operator ψ^E) operating on a polynomial cannot increase its degree;
the operator Δq decreases its degree by q (with the same conventions as
in the statement of the lemma). Hence the conclusion.

LEMMA 3. Let F(k, x), PP(k) satisfy the conditions of Lemma 1. Let
Q{k, n) be a polynomial in k, n of degree v. Then

(11) ± (-l)pQ(k - p, n)PP(k - p)
0
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is a polynomial in k, n of degree at most v.

Write

Q(k, n) = Σi nμQμ(k)

thus, for each μ, Qμ(k) is a polynomial of degree at most v — μ. By-
Lemma 1, we can write

PP(k - 0 = Σ *<Λq

where, for each q,

Σ (-i)'α,.,*'
/O=0

is divisible by (1 — x)q. Hence, by Lemma 2

± (-iYaq,pQμ(k - p)
p=0

is a polynomial in k of degree at most v — μ — q. Multiplying by kqnμ

and summing with respect to q, μ, we obtain the conclusion.

LEMMA 4. Suppose that the (C*, l ) r transformation is applicable to
s; let the (C*, l ) r transform be denoted by {W}. Then

(12) sk = ± (- l ) 'P

where, for each p, Ppr)(k) is a polynomial in k of degree r, and where

( i ) For p = 1, 2, r, Pp

{r){k) is divisible by

(k + l)(k + 2) (fc + |O)

(ii) ΓΛe coefficient of kq in

p=Q

is divisible by (1 — x)q.

Since the (C*, 1) transformation is defined by

*-« (& + l)(fc + 2)

it is clear that, whenever (13) converges,

(14) sk = (k + 2)W -{k + l ) C i ί

thus the conclusion of the lemma holds when r = 1. Assume now that
the result is true for r — 1 (where r ^ 2). Since
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ίfc-," = (k + p + 2)t\Up -(k + P

it follows that

s* = Σ (-iyPΓ

where

(15) Pjr\k) = (fc + P + 2)PΓ1)(k) + (fc

Here we adopt the convention that Pf~l)(k), Pirrυ(fc) are taken to mean
0. It follows at once from (15) and the induction hypothesis that P{r)(k)
is a polynomial of degree r, and that (i) holds. To prove (ii), we deduce
from (15) that

fr)(k, x) = α?(l - χ)4-Pr~ι\K χ) + &0- - x)Γr~ι)(K x) + (2 - xψ'-vφ, x),

and (ii) now follows from the induction hypothesis.
It may be remarked that the transformation (14), giving s in terms

of {ίĵ }, is the (H*9 n + 2) transformation. The transformation (12) is
obtained by r iterations of this and thus (since we are now considering
row finite matrices) it is the (if*, (n + 2)r) transformation. Hence

But this result does not appear to be of any help in proving (ii).
We now define S? inductively by

S™ = sn; S(

n

r) = Sf-v + Si r-υ + + S{;-1) (r ^ 1) .
As is familiar, this is equivalent to the definition

(n - k + r - ΐ\

n — k

LEMMA 5. If λ > 0, and if

converges, then
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We take the hypothesis and conclusion in the equivalent forms that

o In + λ\ o / w + λ + 1

\ n I \ n

converge respectively. Write

•=» / v + λ

so t h a t Γw —> 0 as w —» oo. T h e n

*=o fn + λ + 1

n

I JL Iv + λ

ι + λ + 1 \ ~ V v

= ΣΓ+λta-r.+ι)Σo \ v I •">=» In + λ + 1

λ

iV+1 J

Applying a straightforward partial summation to the second sum inside
the curly brackets, we can now easily prove that this expression tends
to a limit as N—• oo.

COROLLARY. If p is a positive integer, and if

(16) Σ ^
n

converges, then
oo Qf(P)

3. We can now prove Theorem 1. Suppose first that s is summable
(C*, l) r; there is no loss of generality in supposing that it is summable



18 B. KUTTNER

to 0, so that, with the notation of Lemma 4, t^ = o(l). It will be
enough to prove that s is summable (C, r) to 0; in other words, that

(17) S? = o(nr) .

For the applicability of (C*, l) r, and thus, a fortiori, the (C*, l) r sum-
mability of s requires, in particular, that ί£υ should be defined; and this is
equivalent to the convergence of (16). But it follows from [3, Theorem 3]
or [5, Theorem 4] that, if s is summable (C, r), and if (16) converges,
then s is summable (C*, r).

Now, by Lemma 4, and with the notation used there,

n /γι — y _j_ γ —

(18) Si," = Σ

- y + r - l Λ ^

n — v ] ρ=o

r n/n — v + r — 1

P=O v=o \ n — v

n — k + p

We may replace the lower limit of summation in the inner sum in (18)
by k = 0, since, by Lemma 4(i) P£r)(k — p) vanishes for the extra terms.
Similarly, since the polynomial

n — k + p

vanishes for k = n + p + 1, , n + r — 1, we may, except in the case
p = r, replace the upper limit of summation in the inner sum by n + r — 1.
If we then invert the order of summation, we obtain

n+r—l r ίfl — k + P + T — 1
Cf(r) _ Y f(r) Y / Λ\pl »

fc=o >̂=o \ n — k + p
n+r

say. But since ι ~~ ~ £ ~~ ) i s a polynomial in t̂ , fc of degree r — 1,

it follows from Lemmas 3, 4(ii) that, for 0<Lk<^n + r — 1, α β is a
polynomial in w, fc of degree not exceeding r — 1. Further, αi^+r is a
polynomial in w of degree r; and, since ίir) = o(l), (17) now follows, as
required.
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We now consider the converse implication. Suppose, then, that s is
summable (C*, r); we may again suppose that it is summable to 0. It
follows that (16) converges; also, by [3, Theorem 4] or [5, Theorem 5], s
is summable (C, r), so that (17) holds. Now let RM(n) denote a rational
function of n (possibly different at each occurrence), the degree of the
denominator exceeding that of the numerator by v, and the denominator
being a product of factors of the form (n + p), with p a positive integer
(repetitions being allowed). With this notation, we will prove that, for
p = 1, 2, r, t(

n

p) exists, and that

When p = r, the sum in (19) is empty, so that (19) reduces to t(j] — o(l).
Thus, once (19) has been proved, the proof of the theorem will be com-
pleted. We prove (19) by an induction argument. Consider first the case
p = 1. It follows by partial summation from the convergence of (16) that

Si υ = o(n2) .

Hence, for v ^ 1,

(20) Si» = o(n^) .

Using (20), we deduce from (13), by repeated partial summations, that

Ofd) )

i« =(n + 1) ^ ^ + 2 Σ
I. (ΎI + V)(u + 2) fc=w (k + ί)(k + 2)(k + 3)'

= (» + i)f-Σ vU%U
l ί=l(Λ + l)(» + 2 ) . . (n + y + l)

+ (r + 1)!
=r (fc + l)(jfc + 2) (fc + r + 2)

ί=i (n + 2) (π + j ; + 1)

since, when v = r, we can replace (20) by the stronger result (17). Hence
(19) holds when p = 1.

We now assume that (19) holds for p, where 1 <: p < r, and prove
that it holds for <o + 1. By definition, {̂ +1)} is the (C*, 1) transform of
{ίH T h e (C*, 1) transform of the term o(l) in (19) exists and is o(l),
by the regularity of (C*, 1). It is therefore enough to consider the (C*, 1)
transform of a typical term in the sum (19); that is to say, to consider

(21) ( n + 1)Σ ^ * w ( * ) ,
V '& (k + l)(Jk + 2) '
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where p <^v < r. This series converges, by Lemma 5, Corollary. Also,
by repeated partial summation, again using (20), the expression (21) is
equal to

•r) Jr-J RM(k) \\

"* \(k + ΐ)(k + 2)/J2)/ ί t i ~ - " \(fc + l)(jfc + 2)

= Σ
Here, again, we use (17) to deal with the second sum, and the term
μ = r of the first sum, inside the curly brackets. Thus (19), if true for
p, is true for p + 1, and the proof of the theorem is completed.

4. In order to prove the remaining theorems, we require some further
lemmas.

LEMMA 6. Let r be a positive integer. Then
( i ) For k^n,

(22) W 1 ) = (fc-*)»(* +1)1 g r ( n k) ,
V ' \(n + 2yJ (Jfc + 2) !
wλere i£r(w, fc) is defined by induction (on r) by

*i(n, fc) = 1

(23) iΓr(rc, fc) = Σ Kr~ι{\k) (r ^ 2) .

Alternatively, (23) mα?/ 6β replaced by

(24) Xr(n, fc) = Σ g y - l ( n > p ) (r ^ 2) .
v=n V + 2

( i i ) i^or yέa eώ ^ ,

(25) JSΓr(n, fc) = ( l Q g fcf7 + O((log fc)-2)
(r - 1)!

as fc —> CXD . Further,

(log fc)-^-1^^, fc)

is o/ bounded variation in k^ n.

The result that (22) holds is familiar, and easily verified, when r = 1.
Assume the result true for r — 1, where r ^ 2. Applying the familiar
formula

(26) Λ (αA) = Σ
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with

a* = < \ o\ ' b* = t—, 1o\r-i > q = k - n ,

(n + 2) (n + 2)r x

we obtain

(27) W L_) = g /* " *L
2)(n 4- 3) (n + y + 2)

x < * - " - ? ' wJT^(n + y, *)
(n + y + 2) (fc + 2)

= (fe - n)l (n 4- 1)! ψ Kr^(n + χ;, fe)
(k + 2)1 -o ^ + j ; + 2

On changing the notation by replacing {n + v) by J; in the sum in
(27), we see that (22) holds for r, with Kr(n, k) given by (23).

If we had applied (26) with

1 1
an = (n + 2γ~ι ' bn = n + 2 '

a similar argument would have yielded (24). We remark that it may be
verified directly that the two induction definitions are equivalent; for
either gives, for r ;> 2,

I

the sum being taken over all vί9 v2 , vr^ for which

n ^ vγ ^ v2 ̂  ^ vr_! ̂  fe .

Once (i) has been proved, (25) follows at once by induction on r
(using (24)). Further, again using (24), we have, for r :> 2

J{(\ogk)-^Kr(n,k)}

= (log (k + l))-(r~ι)Λί:r(tt, *) + JBΓr(w,

= -(log (ft + l))~(r~υ r " 1 p ι o

+ ' +
ft + 3

= ° ( 1 > ) '
by (25). The result follows.

LEMMA 7. For fixed n > 0,

Γr(O, fc)
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is a non-decreasing function of k for k^ n.

The proof is by induction. The result is trivial when r = 1. Assume
the result true for r — 1, where r :> 2. Then, by (24),

Kr(n, k) Kr(n, k + 1) , Lr(n, k)

Kr(0, k) Kr(0, k + 1) Kr(0, k)Kr(0, k + 1)'

where

Lr(n, k)

= ψψ K^jO, v)
j ; + 2 «<=» v + 2 *=o v + 2 *=» y + 2

^4¥^ x> Σ^ 0 . *k + 3 I v=n v + 2

But, by the induction hypothesis, we have

1^(0, fc + l)KUn, v) £ KUn, k + 1)^(0, v)

for n ^ v ^ k. Hence

KUO, k + l) Σ ^ V ^ ^ ^ - ^ - f c + !) Σ κ*-f
v + 2 y +

< *_,(», fe + l) Σ ^-f'μ) .
v=o j ; + 2

Thus Lr(n, k) < 0, which gives the conclusion.
We now note that, if the (iί*, r) transform of s is denoted by {ΛίΓ}},

then it follows from (22) that h^ is defined by

(28) ΛίΓ> = (n + 1) Σ 77Γ^τSrZ-9ί β *
fc=n (A; + l)(k + 2)

whenever this series converges. Further, it follows from Lemma 6 (ii) that,
if (28) converges for one value of n, then it converges for all n, and
that a necessary and sufficient condition for this to happen is that

(29)

should converge.

LEMMA 8. // the (iϊ*, r) transformation is applicable to s, then the
(C*, l) r transformation is also applicable to s, and the (C*, l) r transform
is equal to the (H*, r) transform.

We again prove the result by induction. The result is trivial when
r = 1, since, in this case, the definitions of (if*, r), (C*, l) r are the same.
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Suppose, then, the result true for r — 1, where r ^ 2. Suppose the (H*, r)
transformation is applicable. Then (29) converges; and hence the cor-
responding series with r replaced by r — 1 also converges, so that (H*, r — 1)
is also applicable. By (23) and (28),

(30) ΛJr13 = (n + 1) Σ /Ί

K*-ί(n>k) «-

= (n + 1X» + 2)
(k + l)(fe + 2)

But, in view of Lemma 7, it follows easily from the convergence of (28)
with n = 0 that

ΛίΓ> - o(n) .

We therefore deduce from (30) that

(31) »f_(. + l , £ _i__.

By the induction hypothesis, and with the notation used in the proof of
Theorem 1, ίir~υ exists and equals h(

k~
ί}. Hence, by (31) and the defini-

tion of tk

r\ t%] exists and equals h^K

5. The positive part of Theorem 2 follows at once from Theorem 1
and Lemma 8. In order to prove the negative part of Theorem 2, and
also of Theorem 3, we consider the example

-t~λ22t (fc = 2* + 1, ί = 1, 2, . . .)

0 (otherwise) .

where λ > 0. Then

Δ \K = Δ , t = 1, Z, •; ,

Since

S{1) =
(0 (otherwise) .

Σrt2i = o(ry),
t = l

we see that S{

k

2) = o{k% so that s is summable (C, 2) to 0. The series (29)
diverges if r Ξ> λ + 1, since the general term does not tend to 0; and it
is easily proved that it converges if r < λ + 1. In particular, (29) con-
verges when r = 1; in other words, (16) converges, so that (C*, r) is
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applicable (for any r). Thus, by [3, Theorem 3] or [5, Theorem 4], s is
summable (C*, r) for r ^ 2. But, if r ;> 2 and we choose λ <̂  r — 1, (if*, r) is
not applicable. Further, if 2 ^ r < rx, we may choose λ so that r — 1 < λ ^
τ\ — 1. Then (if*, r) is applicable, so that, since s is summable (C*, r),
it is summable also (H*, r); but (if*, rx) is not applicable.

It remains only to consider the case r = 1 of Theorem 3. Summability
(if*, 1) is the same as (C*, 1), and this is known to be equivalent to (C, 1).
It follows, a fortiori that if s is summable (H*, 1) then the (C, 1) means
are bounded; that is to say

(32) Si1} = O(k) .

The convergence of (29) (with r replaced by rx) follows at once by partial
summation; indeed, a weaker result that (32) would suffice for this.
This gives the conclusion.
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