SOME QUASI-HAUSDORFF TRANSFORMATIONS

B. Kuttiner

(Received December 5, 1972)

1. Let $\left\{\nu_{n}\right\}$ be any given sequence of complex numbers. The quasiHausdorff transformation (H^{*}, ν_{n}) is defined by

$$
\begin{equation*}
t_{n}=\sum_{k=n}^{\infty}\binom{k}{n}\left(\Delta^{k-n} \nu_{n}\right) s_{k} \tag{1}
\end{equation*}
$$

whenever this series converges. We will use $\left(H^{*}, \nu_{n}\right)$ also to denote the matrix of the transformation (1), and write s, t for the sequences $\left\{s_{k}\right\},\left\{t_{n}\right\}$; thus (1) may be written

$$
t=\left(H^{*}, \nu_{n}\right) s
$$

We say that the $\left(H^{*}, \nu_{n}\right)$ method is applicable to s if (1) converges for all n, so that t is defined; we say that s is summable (H^{*}, ν_{n}) to l if, further $t_{n} \rightarrow l$ as $n \rightarrow \infty$. We use a similar terminology for other transformations.

The matrix $\left(H^{*}, \nu_{n}\right)$ is the transpose of the matrix of the Hausdorff transformation ${ }^{\dagger}\left(H, \nu_{n}\right)$. It is familiar that, given two sequences $\left\{\boldsymbol{\nu}_{n}\right\},\left\{\omega_{n}\right\}$ (say), we have

$$
\left(H, \nu_{n}\right)\left(H, \omega_{n}\right)=\left(H, \nu_{n} \omega_{n}\right)
$$

Taking the transpose of this result (with ν, ω interchanged) we have, as is familiar

$$
\begin{equation*}
\left(H^{*}, \nu_{n}\right)\left(H^{*}, \omega_{n}\right)=\left(H^{*}, \nu_{n} \omega_{n}\right) \tag{2}
\end{equation*}
$$

But the matrices considered are not, in general, row finite, so that their multiplication is not necessarily associative; thus we cannot assert that

$$
\begin{equation*}
\left(H^{*}, \nu_{n}\right)\left[\left(H^{*}, \omega_{n}\right) s\right]=\left[\left(H^{*}, \nu_{n}\right)\left(H^{*}, \omega_{n}\right)\right] s \tag{3}
\end{equation*}
$$

Thus the situation differs from that which applies for the corresponding Hausdorff transformations in that, notwithstanding (2), we cannot assert that the result of applying first the $\left(H^{*}, \omega_{n}\right)$ and then the $\left(H^{*}, \nu_{n}\right)$ transformation is the same as that of applying the ($H^{*}, \nu_{n} \omega_{n}$) transformation.

It has been shown by Ramanujan [4] that there is a close connection between Hausdorff summability (H, μ_{n}) and quasi-Hausdorff summability

[^0]$\left(H^{*}, \mu_{n+1}\right)$; in particular, whenever $\left(H, \mu_{n}\right)$ is regular then so is $\left(H^{*}, \mu_{n+1}\right)$. When
\[

$$
\begin{equation*}
\mu_{n}=\frac{1}{\binom{n+r}{n}} \tag{4}
\end{equation*}
$$

\]

$\left(H, \mu_{n}\right)$ reduces to the Cesàro transformation (C, r); thus it is natural to describe the quasi-Hausdorff transformation (H^{*}, μ_{n+1}) with μ_{n} given by (4) as the quasi-Cesàro transformation $\left(C^{*}, r\right)$. The properties of $\left(C^{*}, r\right)$ have been investigated by me [2], [3]; a more general transformation was investigated independently by A. J. White [5].

When

$$
\begin{equation*}
\omega_{n}=\frac{1}{(n+1)^{r}} \tag{5}
\end{equation*}
$$

$\left(H, \omega_{n}\right)$ reduces to the Hölder transformation (H, r); we will therefore describe the $\left(H^{*}, \omega_{n+1}\right)$ transformation with ω_{n} given by (5) as the quasiHölder transformation (H^{*}, r).

It is known (e.g. [1]) that Cesàro and Hölder summabilities $(C, r),(H, r)$ are equivalent. Thus if for a given r, μ_{n}, ω_{n} are given by (4), (5) we have $\mu_{n}=\nu_{n} \omega_{n}$ where $\left(H, \nu_{n}\right)$ is regular. Hence, by what has already been said

$$
\left(H^{*}, \mu_{n+1}\right)=\left(H^{*}, \nu_{n+1}\right)\left(H^{*}, \omega_{n+1}\right),
$$

and $\left(H^{*}, \nu_{n+1}\right)$ is regular. But, since we cannot assert (3), we cannot deduce from this that summability $\left(C^{*}, r\right)$ is implied by summability $\left(H^{*}, r\right)$. Similar remarks apply with the roles of $\left(C^{*}, r\right),\left(H^{*}, r\right)$ interchanged.

When r is an integer, the Holder transformation (H, r) is the same as the transformation obtained by r iterations of the $(C, 1)$ transformation; and we can deduce that

$$
\begin{equation*}
\left(H^{*}, r\right)=\left[\left(C^{*}, 1\right)\right]^{r} . \tag{6}
\end{equation*}
$$

But although (6) holds as a relation between matrices, we cannot deduce that the result of r iterations of the $\left(C^{*}, 1\right)$ transformation is the same as (H^{*}, r).

We will restrict consideration to integer values of r; accordingly, it will be assumed throughout from now on that r is a positive integer. On this understanding, we investigate the relations between $\left(C^{*}, r\right),\left(C^{*}, 1\right)^{r}$, $\left(H^{*}, r\right)$. Here $\left(C^{*}, 1\right)^{r}$ is used to denote the result of r iterations of the $\left(C^{*}, 1\right)$ transformation.

The results to be proved are as follows.

Theorem 1. $\left(C^{*}, r\right)$ and $\left(C^{*}, 1\right)^{r}$ are equivalent.
THEOREM 2. If s is summable $\left(H^{*}, r\right)$ to l, then it is summable $\left(C^{*}, r\right)$ to l. If s is summable $\left(C^{*}, r\right)$ to l, and if $\left(H^{*}, r\right)$ is applicable, then s is summable $\left(H^{*}, r\right)$ to l. However, except in the trivial case $r=1$, the applicability of $\left(H^{*}, r\right)$ is not implied by $\left(C^{*}, r\right)$ summability.

Let now $r_{1}>r$ (where r_{1} is also an integer). It is known [3, Theorem 1 ; 5 , Theorems 2,3] that, if s is summable $\left(C^{*}, r\right)$ to l then it is summable $\left(C^{*}, r_{1}\right)$ to l. It therefore follows at once from Theorem 2 that, if s is summable $\left(H^{*}, r\right)$ to l and if $\left(H^{*}, r_{1}\right)$ is applicable, then s is summable $\left(H^{*}, r_{1}\right)$ to l. However, the hypothesis that $\left(H^{*}, r_{1}\right)$ is applicable cannot in general be omitted.

TheOREM 3. Let $r_{1}>r\left(r_{1}\right.$ an integer $)$. Let s be summable $\left(H^{*}, r\right)$ to l. If $r=1$, then $\left(H^{*}, r_{1}\right)$ is applicable. This result becomes false if $r>1$.

It follows at once from Theorem 3 and the remarks made above that summability $\left(H^{*}, r\right)$ implies summability $\left(H^{*}, r_{1}\right)$ without any supplementary "applicability condition" when $r=1$, but not when $r>1$.
2. We require some lemmas.

Lemma 1. Let

$$
\begin{aligned}
& F(k, x)=\sum_{\rho=0}^{r}(-1)^{\rho} P_{\rho}(k) x^{\rho} \\
& G(k, x)=\sum_{\rho=0}^{r}(-1)^{\rho} P_{\rho}(k-\rho) x^{\rho}
\end{aligned}
$$

where, for each $\rho, P_{\rho}(k)$ is a polynomial in k of degree not exceeding r. Suppose that $F(k, x)$ has the property that, when expressed as a polynomial in k, the coefficient of k^{q} is divisible by $(1-x)^{q}(q=1,2, \cdots, r)$. Then $G(k, x)$ also has this property.

Write

$$
\begin{equation*}
F(k, x)=\sum_{q=0}^{r} \phi_{q}(x) k^{q} \tag{7}
\end{equation*}
$$

It is enough to consider the contribution to $G(k, x)$ of one term in the sum (7), since the general result can then be obtained by addition. Taking, then, q as fixed, let a_{ρ} be the coefficient of k^{q} in $(-1)^{\rho} P_{\rho}(k)$; thus

$$
\phi_{q}(x)=\sum_{\rho=0}^{r} a_{\rho} x^{\rho}
$$

The contribution of this term to $G(k, x)$ is

$$
\begin{equation*}
\sum_{\rho=0}^{r} a_{\rho}(k-\rho)^{q} x^{\rho} . \tag{8}
\end{equation*}
$$

We can write (8) as $L^{q} \phi_{q}(x)$, where the operator L is defined by

$$
L f(x)=k f(x)-x f^{\prime}(x) .
$$

Since $\phi_{q}(x)$ is divisible by $(1-x)^{q}$, it follows by induction on t that $L^{t} \phi_{q}(x)$ is a polynomial in k of degree t, the coefficient of k^{o} being divisible by $(1-x)^{q+\sigma-t}$. Applying this result with $t=q$, the lemma follows.

Lemma 2. Suppose that

$$
\psi(x)=\sum_{\rho=0}^{r}(-1)^{\rho} a_{\rho} x^{\rho}
$$

is divisible by $(1-x)^{q}$. Let $Q(x)$ be a polynomial in x of degree ν. Then

$$
\begin{equation*}
\sum_{\rho=0}^{r}(-1)^{\rho} a_{\rho} Q(k-\rho) \tag{9}
\end{equation*}
$$

is a polynomial in k of degree at most $\nu-q$. In the case $q=\nu$, the conclusion is to be interpreted as meaning that (9) is constant; in the case $q>\nu$, it is to be interpreted as meaning that (9) is identically zero.

It is slightly more convenient to prove a similar result, but with (9) replaced by

$$
\begin{equation*}
\sum_{\rho=0}^{r}(-1)^{\rho} a_{\rho} Q(k+\rho) ; \tag{10}
\end{equation*}
$$

this will give the conclusion, for we can apply this result with $Q(x)$ replaced by $Q(-x)$ and with k replaced by $-k$.

Write

$$
\psi(x)=(1-x)^{q} \psi_{1}(x),
$$

and write E for the "shift operator" defined by $E Q(k)=Q(k+1)$. Then we can write (10) as

$$
\left(\sum_{\rho=0}^{r}(-1)^{\rho} a_{\rho} E^{\rho}\right) Q(k)=\left((1-E)^{q} \psi_{1}(E)\right) Q(k)=\Delta^{q}\left(\psi_{1}(E) Q(k)\right) .
$$

The operator $\psi_{1}(E)$ operating on a polynomial cannot increase its degree; the operator Δ^{q} decreases its degree by q (with the same conventions as in the statement of the lemma). Hence the conclusion.

Lemma 3. Let $F(k, x), P_{\rho}(k)$ satisfy the conditions of Lemma 1. Let $Q(k, n)$ be a polynomial in k, n of degree ν. Then

$$
\begin{equation*}
\sum_{\rho=0}^{r}(-1)^{\rho} Q(k-\rho, n) P_{\rho}(k-\rho) \tag{11}
\end{equation*}
$$

is a polynomial in k, n of degree at most ν.
Write

$$
Q(k, n)=\sum_{\mu=0}^{\nu} n^{\mu} Q_{\mu}(k) ;
$$

thus, for each $\mu, Q_{\mu}(k)$ is a polynomial of degree at most $\nu-\mu$. By Lemma 1, we can write

$$
P_{\rho}(k-\rho)=\sum_{q=0}^{r} a_{q, \rho} k^{q}
$$

where, for each q,

$$
\sum_{\rho=0}^{r}(-1)^{\rho} a_{q, \rho} x^{\rho}
$$

is divisible by $(1-x)^{q}$. Hence, by Lemma 2

$$
\sum_{\rho=0}^{r}(-1)^{\rho} a_{q, \rho} Q_{\mu}(k-\rho)
$$

is a polynomial in k of degree at most $\nu-\mu-q$. Multiplying by $k^{q} n^{\mu}$ and summing with respect to q, μ, we obtain the conclusion.

Lemma 4. Suppose that the $\left(C^{*}, 1\right)^{r}$ transformation is applicable to s; let the $\left(C^{*}, 1\right)^{r}$ transform be denoted by $\left\{t_{n}^{(r)}\right\}$. Then

$$
\begin{equation*}
s_{k}=\sum_{\rho=0}^{r}(-1)^{\rho} P_{\rho}^{(r)}(k) t_{k+\rho}^{(r)} \tag{12}
\end{equation*}
$$

where, for each $\rho, P_{\rho}^{(r)}(k)$ is a polynomial in k of degree r, and where
(i) For $\rho=1,2, \cdots r, P_{\rho}^{(r)}(k)$ is divisible by

$$
(k+1)(k+2) \cdots(k+\rho)
$$

(ii) The coefficient of k^{q} in

$$
f^{(r)}(k, x)=\sum_{\rho=0}^{r}(-1)^{\rho} P_{\rho}^{(r)}(k) x^{\rho}
$$

is divisible by $(1-x)^{q}$.
Since the $\left(C^{*}, 1\right)$ transformation is defined by

$$
\begin{equation*}
t_{n}^{(1)}=(n+1) \sum_{k=n}^{\infty} \frac{s_{k}}{(k+1)(k+2)} \tag{13}
\end{equation*}
$$

it is clear that, whenever (13) converges,

$$
\begin{equation*}
s_{k}=(k+2) t_{k}^{(1)}-(k+1) t_{k+1}^{(1)} \tag{14}
\end{equation*}
$$

thus the conclusion of the lemma holds when $r=1$. Assume now that the result is true for $r-1$ (where $r \geqq 2$). Since

$$
t_{k+\rho}^{(r-1)}=(k+\rho+2) t_{k+\rho}^{(r)}-(k+\rho+1) t_{k+\rho+1}^{(r)}
$$

it follows that

$$
\begin{aligned}
s_{k} & =\sum_{\rho=0}^{r-1}(-1)^{\rho} P_{\rho}^{(r-1)}(k)\left[(k+\rho+2) t_{k+\rho}^{(r)}-(k+\rho+1) t_{k+\rho+1}^{(r)}\right] \\
& =\sum_{\rho=0}^{r}(-1)^{\rho} P_{\rho}^{(r)}(k) t_{k+\rho}^{(r)},
\end{aligned}
$$

where

$$
\begin{equation*}
P_{\rho}^{(r)}(k)=(k+\rho+2) P_{\rho}^{(r-1)}(k)+(k+\rho) P_{\rho-1}^{(r-1)}(k) . \tag{15}
\end{equation*}
$$

Here we adopt the convention that $P_{r}^{(r-1)}(k), P_{-1}^{(r-1)}(k)$ are taken to mean 0 . It follows at once from (15) and the induction hypothesis that $P^{(r)}(k)$ is a polynomial of degree r, and that (i) holds. To prove (ii), we deduce from (15) that

$$
f^{(r)}(k, x)=x(1-x) \frac{d}{d x} f^{(r-1)}(k, x)+k(1-x) f^{(r-1)}(k, x)+(2-x) f^{(r-1)}(k, x)
$$

and (ii) now follows from the induction hypothesis.
It may be remarked that the transformation (14), giving s in terms of $\left\{t_{k}^{(1)}\right\}$, is the $\left(H^{*}, n+2\right)$ transformation. The transformation (12) is obtained by r iterations of this and thus (since we are now considering row finite matrices) it is the ($\left.H^{*},(n+2)^{r}\right)$ transformation. Hence

$$
P_{\rho}^{(r)}(k)=(-1)^{\rho}\binom{k+\rho}{k} \Delta^{\rho}(k+2)^{r}
$$

But this result does not appear to be of any help in proving (ii).
We now define $S_{n}^{(r)}$ inductively by

$$
S_{n}^{(0)}=s_{n} ; \quad S_{n}^{(r)}=S_{0}^{(r-1)}+S_{1}^{(r-1)}+\cdots+S_{n}^{(r-1)}(r \geqq 1) .
$$

As is familiar, this is equivalent to the definition

$$
S_{n}^{(r)}=\sum_{k=0}^{n}\binom{n-k+r-1}{n-k} s_{k}
$$

Lemma 5. If $\lambda>0$, and if

$$
\sum^{\infty} \frac{s_{n}}{n^{2}}
$$

converges, then

$$
\sum^{\infty} \frac{S_{n}^{(1)}}{n^{1+\lambda}}
$$

converges.

We take the hypothesis and conclusion in the equivalent forms that

$$
\sum_{0}^{\infty} \frac{s_{n}}{\binom{n+\lambda}{n}}, \quad \sum_{0}^{\infty} \frac{S_{n}^{(1)}}{\binom{n+\lambda+1}{n}}
$$

converge respectively. Write

$$
T_{n}=\sum_{\nu=n}^{\infty} \frac{s_{\nu}}{\binom{\nu+\lambda}{\nu}}
$$

so that $T_{n} \rightarrow 0$ as $n \rightarrow \infty$. Then

$$
\begin{aligned}
& \sum_{n=0}^{N} \frac{S_{n}^{(1)}}{\binom{n+\lambda+1}{n}} \\
= & \left.\sum_{n=0}^{N} \frac{1}{n+\lambda+1} \begin{array}{c}
n \\
n
\end{array}\right)\binom{\nu+\lambda}{\nu}\left(T_{\nu}-T_{\nu+1}\right) \\
= & \sum_{\nu=0}^{N}\binom{\nu+\lambda}{\nu}\left(T_{\nu}-T_{\nu+1}\right) \sum_{n=\nu}^{N} \frac{1}{\binom{n+\lambda+1}{n}} \\
= & \frac{\lambda+1}{\lambda}\left\{\sum_{\nu=0}^{N}\left(T_{\nu}-T_{\nu+1}\right)-\frac{1}{\binom{N+\lambda+1}{N+1}} \sum_{\nu=0}^{N}\binom{\nu+\lambda}{\nu}\left(T_{\nu}-T_{\nu+1}\right)\right\} .
\end{aligned}
$$

Applying a straightforward partial summation to the second sum inside the curly brackets, we can now easily prove that this expression tends to a limit as $N \rightarrow \infty$.

Corollary. If ρ is a positive integer, and if

$$
\begin{equation*}
\sum^{\infty} \frac{s_{n}}{n^{2}} \tag{16}
\end{equation*}
$$

converges, then

$$
\sum^{\infty} \frac{S_{n}^{(\rho)}}{n^{2+\rho}}
$$

converges.
3. We can now prove Theorem 1. Suppose first that s is summable $\left(C^{*}, 1\right)^{r}$; there is no loss of generality in supposing that it is summable
to 0 , so that, with the notation of Lemma $4, t_{n}^{(r)}=o(1)$. It will be enough to prove that s is summable (C, r) to 0 ; in other words, that

$$
\begin{equation*}
S_{n}^{(r)}=o\left(n^{r}\right) \tag{17}
\end{equation*}
$$

For the applicability of $\left(C^{*}, 1\right)^{r}$, and thus, a fortiori, the $\left(C^{*}, 1\right)^{r}$ summability of s requires, in particular, that $t_{n}^{(1)}$ should be defined; and this is equivalent to the convergence of (16). But it follows from [3, Theorem 3] or [5, Theorem 4] that, if s is summable (C, r), and if (16) converges, then s is summable (C^{*}, r).

Now, by Lemma 4, and with the notation used there,

$$
\begin{align*}
S_{n}^{(r)} & =\sum_{\nu=0}^{n}\binom{n-\nu+r-1}{n-\nu} s_{\nu} \tag{18}\\
& =\sum_{\nu=0}^{n}\binom{n-\nu+r-1}{n-\nu} \sum_{\rho=0}^{r}(-1)^{\rho} P_{\rho}^{(r)}(\nu) t_{\nu+\rho}^{(r)} \\
& =\sum_{\rho=0}^{r}(-1)^{\rho} \sum_{\nu=0}^{n}\binom{n-\nu+r-1}{n-\nu} P_{\rho}^{(r)}(\nu) t_{\nu+\rho}^{(r)} \\
& =\sum_{\rho=0}^{r}(-1)^{\rho} \sum_{k=\rho}^{n+\rho}\binom{n-k+\rho+r-1}{n-k+\rho} P_{\rho}^{(r)}(k-\rho) t_{k}^{(r)} .
\end{align*}
$$

We may replace the lower limit of summation in the inner sum in (18) by $k=0$, since, by Lemma 4 (i) $P_{\rho}^{(r)}(k-\rho)$ vanishes for the extra terms. Similarly, since the polynomial

$$
\binom{n-k+\rho+r-1}{n-k+\rho}
$$

vanishes for $k=n+\rho+1, \cdots, n+r-1$, we may, except in the case $\rho=r$, replace the upper limit of summation in the inner sum by $n+r-1$. If we then invert the order of summation, we obtain

$$
\begin{aligned}
S_{n}^{(r)}= & \sum_{k=0}^{n+r-1} t_{k}^{(r)} \sum_{\rho=0}^{r}(-1)^{\rho}\binom{n-k+\rho+r-1}{n-k+\rho} P_{\rho}^{(r)}(k-\rho) \\
& +(-1)^{r} P_{r}^{(r)}(n) t_{n+r}^{(r)}=\sum_{k=0}^{n+r} \alpha_{n k}^{(r)} t_{k}^{(r)}
\end{aligned}
$$

say. But since $\binom{n-k+r-1}{n-k}$ is a polynomial in n, k of degree $r-1$, it follows from Lemmas 3, 4(ii) that, for $0 \leqq k \leqq n+r-1, \alpha_{n k}^{(r)}$ is a polynomial in n, k of degree not exceeding $r-1$. Further, $\alpha_{n, n+r}^{(r)}$ is a polynomial in n of degree r; and, since $t_{k}^{(r)}=o(1)$, (17) now follows, as required.

We now consider the converse implication. Suppose, then, that s is summable (C^{*}, r); we may again suppose that it is summable to 0 . It follows that (16) converges; also, by [3, Theorem 4] or [5, Theorem 5], s is summable (C, r), so that (17) holds. Now let $R^{(\nu)}(n)$ denote a rational function of n (possibly different at each occurrence), the degree of the denominator exceeding that of the numerator by ν, and the denominator being a product of factors of the form $(n+p)$, with p a positive integer (repetitions being allowed). With this notation, we will prove that, for $\rho=1,2, \cdots r, t_{n}^{(\rho)}$ exists, and that

$$
\begin{equation*}
t_{n}^{(\rho)}=\sum_{\nu=\rho}^{r-1} S_{n-\rho}^{(\nu)} R^{(\nu)}(n)+o(1) . \tag{19}
\end{equation*}
$$

When $\rho=r$, the sum in (19) is empty, so that (19) reduces to $t_{n}^{(r)}=o(1)$. Thus, once (19) has been proved, the proof of the theorem will be completed. We prove (19) by an induction argument. Consider first the case $\rho=1$. It follows by partial summation from the convergence of (16) that

$$
S_{n}^{(1)}=o\left(n^{2}\right) .
$$

Hence, for $\nu \geqq 1$,

$$
\begin{equation*}
S_{n}^{(\nu)}=o\left(n^{\nu+1}\right) . \tag{20}
\end{equation*}
$$

Using (20), we deduce from (13), by repeated partial summations, that

$$
\begin{aligned}
t_{n}^{(1)}= & (n+1)\left\{-\frac{S_{n-1}^{(1)}}{(n+1)(n+2)}+2 \sum_{k=n}^{\infty} \frac{S_{k}^{(1)}}{(k+1)(k+2)(k+3)}\right\} \\
= & (n+1)\left\{-\sum_{\nu=1}^{r} \frac{\nu!S_{n-1}^{(\nu)}}{(n+1)(n+2) \cdots(n+\nu+1)}\right. \\
& \left.+(r+1)!\sum_{k=r}^{\infty} \frac{S_{k}^{(r)}}{(k+1)(k+2) \cdots(k+r+2)}\right\} \\
= & -\sum_{\nu=1}^{r-1} \frac{\nu!S_{n-1}^{(\nu)}}{(n+2) \cdots(n+\nu+1)}+o(1),
\end{aligned}
$$

since, when $\nu=r$, we can replace (20) by the stronger result (17). Hence (19) holds when $\rho=1$.

We now assume that (19) holds for ρ, where $1 \leqq \rho<r$, and prove that it holds for $\rho+1$. By definition, $\left\{t_{n}^{(\rho+1)}\right\}$ is the $\left(C^{*}, 1\right)$ transform of $\left\{t_{n}^{(\rho)}\right\}$. The $\left(C^{*}, 1\right)$ transform of the term $o(1)$ in (19) exists and is $o(1)$, by the regularity of $\left(C^{*}, 1\right)$. It is therefore enough to consider the $\left(C^{*}, 1\right)$ transform of a typical term in the sum (19); that is to say, to consider

$$
\begin{equation*}
(n+1) \sum_{k=n}^{\infty} \frac{S_{k-\rho}^{(\nu)} R^{(\nu)}(k)}{(k+1)(k+2)} \tag{21}
\end{equation*}
$$

where $\rho \leqq \nu<r$. This series converges, by Lemma 5, Corollary. Also, by repeated partial summation, again using (20), the expression (21) is equal to

$$
\begin{aligned}
& (n+1)\left\{-\sum_{\mu=\nu+1}^{r} S_{n-\rho-1}^{(\mu)} \Delta^{\mu-\nu-1}\left(\frac{R^{(\nu)}(n)}{(n+1)(n+2)}\right)+\sum_{k=n}^{\infty} S_{k \rightarrow \rho}^{(r)} \Delta^{r-\nu}\left(\frac{R^{(\nu)}(k)}{(k+1)(k+2)}\right)\right\} \\
& =\sum_{\mu=\nu+1}^{r-1} S_{n \rightarrow \rho-1}^{(\mu)} R^{(\mu)}(n)+o(1) .
\end{aligned}
$$

Here, again, we use (17) to deal with the second sum, and the term $\mu=r$ of the first sum, inside the curly brackets. Thus (19), if true for ρ, is true for $\rho+1$, and the proof of the theorem is completed.
4. In order to prove the remaining theorems, we require some further lemmas.

Lemma 6. Let r be a positive integer. Then
(i) For $k \geqq n$,

$$
\begin{equation*}
\Delta^{k-n}\left(\frac{1}{(n+2)^{r}}\right)=\frac{(k-n)!(n+1)!}{(k+2)!} K_{r}(n, k) \tag{22}
\end{equation*}
$$

where $K_{r}(n, k)$ is defined by induction (on r) by

$$
\begin{align*}
& K_{1}(n, k)=1 \\
& K_{r}(n, k)=\sum_{\nu=n}^{k} \frac{K_{r-1}(\nu, k)}{\nu+2} \quad(r \geqq 2) \tag{23}
\end{align*}
$$

Alternatively, (23) may be replaced by

$$
\begin{equation*}
K_{r}(n, k)=\sum_{\nu=n}^{k} \frac{K_{r-1}(n, \nu)}{\nu+2} \quad(r \geqq 2) \tag{24}
\end{equation*}
$$

(ii) For fixed n,

$$
\begin{equation*}
K_{r}(n, k)=\frac{(\log k)^{r-1}}{(r-1)!}+O\left((\log k)^{r-2}\right) \tag{25}
\end{equation*}
$$

as $k \rightarrow \infty$. Further,

$$
(\log k)^{-(r-1)} K_{r}(n, k)
$$

is of bounded variation in $k \geqq n$.
The result that (22) holds is familiar, and easily verified, when $r=1$. Assume the result true for $r-1$, where $r \geqq 2$. Applying the familiar formula

$$
\begin{equation*}
\Delta^{q}\left(a_{n} b_{n}\right)=\sum_{\nu=0}^{q}\binom{q}{\nu} \Delta^{\nu} a_{n} \Delta^{q-\nu} b_{n+\nu} \tag{26}
\end{equation*}
$$

with

$$
a_{n}=\frac{1}{(n+2)}, \quad b_{n}=\frac{1}{(n+2)^{r-1}}, \quad q=k-n
$$

we obtain

$$
\begin{align*}
\Delta^{k-n}\left(\frac{1}{(n+2)^{r}}\right)= & \sum_{\nu=0}^{k-n}\binom{k-n}{\nu} \frac{\nu!}{(n+2)(n+3) \cdots(n+\nu+2)} \tag{27}\\
& \times \frac{(k-n-\nu)!}{(n+\nu+2) \cdots(k+2)} K_{r-1}(n+\nu, k) \\
= & \frac{(k-n)!(n+1)!}{(k+2)!} \sum_{\nu=0}^{k-n} \frac{K_{r-1}(n+\nu, k)}{n+\nu+2} .
\end{align*}
$$

On changing the notation by replacing $(n+\nu)$ by ν in the sum in (27), we see that (22) holds for r, with $K_{r}(n, k)$ given by (23).

If we had applied (26) with

$$
a_{n}=\frac{1}{(n+2)^{r-1}}, \quad b_{n}=\frac{1}{n+2},
$$

a similar argument would have yielded (24). We remark that it may be verified directly that the two induction definitions are equivalent; for either gives, for $r \geqq 2$,

$$
K_{r}(n, k)=\Sigma \frac{1}{\left(\nu_{1}+2\right)\left(\nu_{2}+2\right) \cdots\left(\nu_{r-1}+2\right)},
$$

the sum being taken over all $\nu_{1}, \nu_{2} \cdots, \nu_{r-1}$ for which

$$
n \leqq \nu_{1} \leqq \nu_{2} \leqq \cdots \leqq \nu_{r-1} \leqq k
$$

Once (i) has been proved, (25) follows at once by induction on r (using (24)). Further, again using (24), we have, for $r \geqq 2$

$$
\begin{aligned}
& \Delta\left\{(\log k)^{-(r-1)} K_{r}(n, k)\right\} \\
= & (\log (k+1))^{-(r-1)} \Delta_{k} K_{r}(n, k)+K_{r}(n, k) \Delta\left((\log k)^{-(r-1)}\right) \\
= & -(\log (k+1))^{-(r-1)} \frac{K_{r-1}(n, k+1)}{k+3}+\frac{(r-1)}{k} K_{r}(n, k)(\log k)^{-r}\left(1+O\left(\frac{1}{k}\right)\right) \\
= & O\left(\frac{1}{k \log ^{2} k}\right),
\end{aligned}
$$

by (25). The result follows.
Lemma 7. For fixed $n>0$,

$$
\frac{K_{r}(n, k)}{K_{r}(0, k)}
$$

is a non-decreasing function of k for $k \geqq n$.
The proof is by induction. The result is trivial when $r=1$. Assume the result true for $r-1$, where $r \geqq 2$. Then, by (24),

$$
\frac{K_{r}(n, k)}{K_{r}(0, k)}-\frac{K_{r}(n, k+1)}{K_{r}(0, k+1)}=\frac{L_{r}(n, k)}{K_{r}(0, k) K_{r}(0, k+1)}
$$

where

$$
\begin{aligned}
& L_{r}(n, k) \\
= & \sum_{\nu=0}^{k+1} \frac{K_{r-1}(0, \nu)}{\nu+2} \sum_{\nu=n}^{k} \frac{K_{r-1}(n, \nu)}{\nu+2}-\sum_{\nu=0}^{k} \frac{K_{r-1}(0, \nu)}{\nu+2} \sum_{\nu=n}^{k+1} \frac{K_{r-1}(n, \nu)}{\nu+2} \\
= & \frac{1}{k+3}\left\{K_{r-1}(0, k+1) \sum_{\nu=n}^{k} \frac{K_{r-1}(n, \nu)}{\nu+2}-K_{r-1}(n, k+1) \sum_{\nu=0}^{k} \frac{K_{r-1}(0, \nu)}{\nu+2}\right\} .
\end{aligned}
$$

But, by the induction hypothesis, we have

$$
K_{r-1}(0, k+1) K_{r-1}(n, \nu) \leqq K_{r-1}(n, k+1) K_{r-1}(0, \nu)
$$

for $n \leqq \nu \leqq k$. Hence

$$
\begin{aligned}
K_{r-1}(0, k+1) \sum_{\nu=n}^{k} \frac{K_{r-1}(n, \nu)}{\nu+2} & \leqq K_{r-1}(n, k+1) \sum_{\nu=n}^{k} \frac{K_{r-1}(0, \nu)}{\nu+2} \\
& <K_{r-1}(n, k+1) \sum_{\nu=0}^{k} \frac{K_{r-1}(0, \nu)}{\nu+2}
\end{aligned}
$$

Thus $L_{r}(n, k)<0$, which gives the conclusion.
We now note that, if the $\left(H^{*}, r\right)$ transform of s is denoted by $\left\{h_{n}^{(r)}\right\}$, then it follows from (22) that $h_{n}^{(r)}$ is defined by

$$
\begin{equation*}
h_{n}^{(r)}=(n+1) \sum_{k=n}^{\infty} \frac{K_{r}(n, k)}{(k+1)(k+2)} s_{k} \tag{28}
\end{equation*}
$$

whenever this series converges. Further, it follows from Lemma 6 (ii) that, if (28) converges for one value of n, then it converges for all n, and that a necessary and sufficient condition for this to happen is that

$$
\begin{equation*}
\sum^{\infty} \frac{(\log k)^{r-1}}{k^{2}} s_{k} \tag{29}
\end{equation*}
$$

should converge.
Lemma 8. If the $\left(H^{*}, r\right)$ transformation is applicable to s, then the $\left(C^{*}, 1\right)^{r}$ transformation is also applicable to s, and the $\left(C^{*}, 1\right)^{r}$ transform is equal to the $\left(H^{*}, r\right)$ transform.

We again prove the result by induction. The result is trivial when $r=1$, since, in this case, the definitions of $\left(H^{*}, r\right),\left(C^{*}, 1\right)^{r}$ are the same.

Suppose, then, the result true for $r-1$, where $r \geqq 2$. Suppose the (H^{*}, r) transformation is applicable. Then (29) converges; and hence the corresponding series with r replaced by $r-1$ also converges, so that ($H^{*}, r-1$) is also applicable. By (23) and (28),

$$
\begin{align*}
h_{n}^{(r-1)} & =(n+1) \sum_{k=n}^{\infty} \frac{K_{r-1}(n, k)}{(k+1)(k+2)} s_{k} \tag{30}\\
& =(n+1)(n+2) \sum_{k=n}^{\infty} \frac{\left[K_{r}(n, k)-K_{r}(n+1, k)\right]}{(k+1)(k+2)} s_{k} \\
& =(n+2) h_{n}^{(r)}-(n+1) h_{n+1}^{(r)} .
\end{align*}
$$

But, in view of Lemma 7, it follows easily from the convergence of (28) with $n=0$ that

$$
h_{n}^{(r)}=o(n)
$$

We therefore deduce from (30) that

$$
\begin{equation*}
h_{n}^{(r)}=(n+1) \sum_{k=n}^{\infty} \frac{h_{k}^{(r-1)}}{(k+1)(k+2)} . \tag{31}
\end{equation*}
$$

By the induction hypothesis, and with the notation used in the proof of Theorem 1, $t_{k}^{(r-1)}$ exists and equals $h_{k}^{(r-1)}$. Hence, by (31) and the definition of $t_{k}^{(r)}, t_{n}^{(r)}$ exists and equals $h_{n}^{(r)}$.
5. The positive part of Theorem 2 follows at once from Theorem 1 and Lemma 8. In order to prove the negative part of Theorem 2, and also of Theorem 3, we consider the example

$$
s_{k}=\left\{\begin{array}{cl}
t^{-\lambda} 2^{2 t} & \left(k=2^{t}, t=1,2, \cdots\right) ; \\
-t^{-2} 2^{2 t} & \left(k=2^{t}+1, t=1,2, \cdots\right) ; \\
0 & (\text { otherwise })
\end{array}\right.
$$

where $\lambda>0$. Then

$$
S_{k}^{(1)}= \begin{cases}t^{-2} 2^{2 t} & \left(k=2^{t}, t=1,2, \cdots\right) \\ 0 & \text { (otherwise) }\end{cases}
$$

Since

$$
\sum_{t=1}^{T} t^{-\lambda} 2^{2 t}=O\left(T^{-\lambda} 2^{2 T}\right)
$$

we see that $S_{k}^{(2)}=o\left(k^{2}\right)$, so that s is summable ($C, 2$) to 0 . The series (29) diverges if $r \geqq \lambda+1$, since the general term does not tend to 0 ; and it is easily proved that it converges if $r<\lambda+1$. In particular, (29) converges when $r=1$; in other words, (16) converges, so that $\left(C^{*}, r\right)$ is
applicable (for any r). Thus, by [3, Theorem 3] or [5, Theorem 4], s is summable (C^{*}, r) for $r \geqq 2$. But, if $r \geqq 2$ and we choose $\lambda \leqq r-1$, $\left(H^{*}, r\right)$ is not applicable. Further, if $2 \leqq r<r_{1}$, we may choose λ so that $r-1<\lambda \leqq$ $r_{1}-1$. Then (H^{*}, r) is applicable, so that, since s is summable ($\left.C^{*}, r\right)$, it is summable also (H^{*}, r); but (H^{*}, r_{1}) is not applicable.

It remains only to consider the case $r=1$ of Theorem 3. Summability ($H^{*}, 1$) is the same as $\left(C^{*}, 1\right)$, and this is known to be equivalent to $(C, 1)$. It follows, a fortiori that if s is summable $\left(H^{*}, 1\right)$ then the $(C, 1)$ means are bounded; that is to say

$$
\begin{equation*}
S_{k}^{(1)}=O(k) . \tag{32}
\end{equation*}
$$

The convergence of (29) (with replaced by r_{1}) follows at once by partial summation; indeed, a weaker result that (32) would suffice for this. This gives the conclusion.

References

[1] G. H. Hardy, Divergent series, Oxford, 1949.
[2] B. Kuttner, Some remarks on quasi-Hausdorff transformations, Quart. J. Math. Oxford (2), 8 (1957), 272-278.
[3] B. Kuttner, On 'quasi-Cesàro' summability, J. Indian Math. Soc., 24 (1960), 319-341.
[4] M. S. Ramanujan, On Hausdorff and quasi-Hausdorff methods of summability, Quart. J. Math. Oxford (2), 8 (1957), 197-213.
[5] A. J. White, On quasi-Cesàro summability, Quart. J. Math. Oxford (2), 12 (1961), 81-99.

The University

Birmingham, B15 2TT
England

[^0]: \dagger For those properties of Hausdorff transformations to which reference is made, see, e.g. [1, Chapter XI].

