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1. Introduction.

1.1. We prove that: To every positive integer n there exist positive
integers \(ri) and X2(n) such that every Lie algebra all of whose Xjji)-
generator subalgebras are n-step subideals is nilpotent of class ^ X^ri).

This result is the Lie theoretic analogue of that by Roseblade [4].
We leave unanswered the question of whether or not we can replace
λ2(w) by n. However we give an example which shows that if X2(n) is
replaced by n — 2, then the result is false.

1.2. Notation. All Lie algebras considered in this paper (unless
otherwise specified) will have finite or infinite dimension over a fixed (but
arbitrary) field k.

We employ the notation of [3] and [5].
Let L be a Lie algebra and H a subspace of L. By H <; L, H <\ L,

H si L, H <\m L we shall mean (respectively) that if is a subalgebra, an
ideal, subideal (in the sense of Hartley [3] p. 257), and m-step subideal
of L.

Square brackets [, ] will denote Lie multiplication and triangular
brackets <, > will denote the subalgebra generated by their contents. If
A, B are subsets of L, then [A, B] is the subspace spanned by all [α, b] with
aeA,beB; and inductively, [A, 0B] = A and [A, nB] = [[A, n_,B], B](n > 0).
We let (AB} be the smallest subalgebra of L containing A and invariant
under Lie multiplication by the elements of B. If A, B are subspaces
we define A<>B = <[A, B]c), where C = (A, B); and inductively A<>XB =
AoB, Aon+1B = (AonB)oB; and A + B is the vector space spanned by A
and B.

L{n), Ln, Zn(L) denote respectively the n-th terms of the derived series,
lower central series and upper central series of L. Inductively we define
U* = L, LM=[L<"*\ L<-1)], U = L, L + ^ I L , L], Z0(L) = 0, Zn(L)/Zn

Z(L/Zn^(L))(n > 0) where Z(L) = centre of L = {x e L \ [x, L] = 0}.
If H ^ L, then the ideal closure series of H in L,

. ^ < flU 0 < Ho = L ,
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is defined inductively by Ho = L, Hi+1 = (H*^. Evidently H <\n L if
and only if H = Hn.

By a class X of Lie algebras (over A:) we shall mean a class (in the
usual sense) whose elements are Lie algebras and such that (0) e X, and if
H~K with KeX, then HeX. (0) is the 0-dimensional Lie algebra.
A closure operation A assigns to each class X another class AX in such
a way that A(0) = (0), X ^ AX, A(AX) = AX, and if X ^ Y then AX ^
A Y (here (0) is the class consisting only of the 0-dimensional Lie algebra; ^
denotes inclusion of classes). If X, Y are classes then XY is the class
of all L with an X-ideal H such that L/He Y. We define the product
of n classes by Xx Xn = {Xx Xn^)Xn; and if each X4 = X we write
Xn. If X is a class and A a closure operation we say X is A-closed if
X= AX.

We shall need the following classes.

F, Fm G, Gr, A, N, Nΰ

will denote the classes of finite dimensional, finite dimensional of dimen-
sion <S m, finitely generated, finitely generated by ^ r elements, abelian,
nilpotent, nilpotent of class ^ c, Lie algebras respectively. We also let

D = {L I every subalgebra of L is a subideal} ,

Dn = {L IH ^ L — i ϊ < ΛL} ,

/>Λ,r = { L | # ^ L and H e Gr — i ϊ <*L} ,

XΛ* = { L | i ϊ ^ L and HeGn=~ (HLY ^ if} ,

JB = {L I x e L — <α> si L} .

Evidently

(1) Dn^D^B,

X:^B.

The closure operations we need are S, /, Q, J&, L defined as follows;
LeSX<=>L is isomorphic to a subalgebra of an X-algebra; LelX<=>L is
isomorphic to an ideal of an X-algebra; LeQX<=> L is isomorphic to a
quotient of an X-algebra; LeEX<=>LeXn for some n; LeLX<=> every
finite subset of L is contained in an X-subalgebra of L. We call LX is
the class of locally X-algebras.

Thus EA is the class of soluble Lie algebras, Ad is the class of Lie
algebras soluble of derived length <; d, and LJV is the class of locally
nilpotent Lie algebras.

(2) Clearly every class in (1) is Q-closed and S-closed .
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We call B the class of Baer algebras (this extends the definition of
Hartley [3]); we will show that

B^LN.

2. The class B. The main result of this section is

THEOREM 2.1. B ^ LN.

COROLLARY 2.11. The classes D, Dn, Dn,r and X* are all contained in
the class LN of locally nilpotent Lie algebras.

The inequality in 2.1 is strict as is well known. The special case of
the result in characteristic zero follows from the fact that B is the class
of Baer algebras in the sense of Hartley [3] We remark also that in
characteristic p > 0, a Lie algebra generated by 1-dimensional subideals
need not be locally nilpotent (see Amayo [2]); but by Hartley [3], in
characteristic zero, it is locally nilpotent.

What makes 2.1 possible is the following result.

THEOREM 2.2. (The Derived Join Theorem) In any Lie algebra, the
join of finitely many soluble subideals is soluble.

PROOF. See Amayo [1].

We need two more results.

LEMMA 2.3. Suppose that LeA\xeL and [L\ nx] = 0. Then
(xLy e Nn.

PROOF. Let B = L2, so that B2 = 0 and B <\ L. Evidently (xL} ^
<#> + B. A simple induction on r yields

«α> + B)^ = [B, rx] .

In particular

«α;> + B)n+ί - [B, nx] = 0.

If in 2.3, [L, nx] = 0, then it is easy to show that (xL} e Nm, where
m = max {1, n - 1}. Clearly if X = (x) <|n L, then [L, nx] = 0 or else
x e ZΛ Thus we have

COROLLARY 2.31. If LeA\xeL and (x} <\n L, then

(xLy e Nn .

THEOREM 2.4. (Stewart [5]) Let L be a Lie algebra and H<\L such
that HeNc and L/H2eNd. Then

L e Nμi{Cfd) ,
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where μ^c, d) = cd + (c — l)(d — 1).

PROOF OF THEOREM 2.1. Let L e B and X = (xl9 , xn) ^ L. Then
by (2), XeB. Each <^> si L and so X is the join of n abelian subideals.
By the Derived Join Theorem (2.2) XeAd for some d. So

XeGΠAdΓ)B.

We use induction on d to show that XeN. If d <̂  2, then by 2.31
(Xi*} e N for each i. Thus X = <#ix> + + (xn

x), a sum of finitely
many nilpotent ideals and so (by Hartley [3] p. 261) X is nilpotent.

Let d > 2 and assume inductively that

G Π A''1 ΠB^N.

Since by (2) B is Q-closed, we have X\X^~γ) e G Π A*"1 Π # ^ £? Π iV, by
induction. Now by Lemma 3.3.5 of Stewart [5], we know that G Π N ^
FΠN. Thus if B = Xd~2) and A = Xd~ι) then B2 = A, A2 = 0 and JSΓ/A e
GΠ N^ FΓ\ N. Hence B/AeF. So we can find ylf "-,yreB such that

B= <yί9 -- ,2/r> + A .

But each <^>si5 (for X e β implies that BeB) and -BeA2 and so by
2.31, <ViByeN. Thus

a sum of finitely many nilpotent ideals, so B is nilpotent. But X/A is
nilpotent and B2 = A and B <\ X and so by 2.4, X is nilpotent.

This completes our induction on d and with it the proof of Theorem 2.1.
From Stewart [5] we have

LEMMA 2.5. Gr Π Nc ^ F^ ( c, r ),

w&ere /or r > 1, μ2(c, r) = (r^1 — l)/(r — 1) .

And from Hartley [3] and Stewart [5],

LEMMA 2.6. If Le LN and Mis a minimal ideal of L thenM^ ZX(L),
the centre of L. In particular if Le LN and Y is an Fh-ideal of L
then Y^Zh(L).

3. The main theorem. We will prove

THEOREM 3.1. To every positive integer n there correspond positive
integers \(n) and X2(ri), depending only on n, such that

It is not very hard to show that if A, B ^ L, then
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A°B = \J{HoK\H,KeG and H ̂  A, K < B} .

Inductively it follows that

AonB= \J{H°nK\H, KeG and H^ A, K g B} .

From this and (1) we deduce that

Dn = Π Dn,r .
r=l

So we have

COROLLARY 3.11. Dn ^ Λil(»).

This corollary has been obtained by Stewart [5].

THEOREM 3.2. For every positive integer n > 0,
i) If LeX% and xeL, then {xL} e JV» and,

ii) X* ^ Nμsln), where μs(n) = μ2(n\ n) + n - 1.

PROOF, i) By the definition of X*, <α?L>% ̂  (x). Since <a?L>Λ < L, we
must have <#> <] L or else <#L>W = 0. Hence (xLy e iVm, m — max {1, ^ — 1}.

(ii). Let LeX%. Then by (i) or 2.11, LeLN. Clearly

Ln = «[»!, , α;Λ]
L> I for all xlf . . . , ajn e L> .

Let a?i, •••,»» be fixed but arbitrary elements of L and put X = <α?lf , T̂O>
and Γ = <XL>. By (i) each (XiL}eNn and since Γ = Σ?=i<**L>> we have
TeNn2. By the definition of X*, Tn ^ Xe Nn2 Π (?». Thus if Γ =
Φ i , •••,&•]*>» then F ^ Γ% and so by 2.5, Γ e f t , where h = μ2(n\n).
But Γ < L and LeLiVand so by 2.6, Y<^Zh(L). Since the α?/s were
arbitrarily chosen and Lw = <<[̂ i, , xn]

L} I all xt

9s in L> we have
Ln ^ Z,(L) and so L = ̂ . ^ ( L ) .

LEMMA 3.3. i^or α î/ positive integer n > 0,
i) Xί ^ ft,

PROOF. ( i ) . Trivial.
(ii) Let L e Dn,n Π ^l2 and H be a (?n-subalgebra of L. Let ΐZ; = <iϊL>

and A = fl; Π L2. Then A2 = 0, A <| L and fli = fl" + A. A simple in-
duction on r gives

( # + A) '= fl^ + [A, M f f ]

and in particular H? = (H + A)n = Hn + [A, n^H] ^ H, since Jϊ <|Λ L,
implies that [fl;, ̂ ^ J ^ H and so [A, n^H] ^ iϊ.

THEOREM 3.4. To every pair n, m of positive integers there cor-
responds an integer μ4(n, m) such that



6 R. K. AMAYO

Dn>n f)Am^ Nn{n, m)

where for m > 1, μ4(n, m) = μ^μ^n, m — 1), μt(n)).

PROOF OF 3.4. If m <̂  2, this follows by 3.3(ii) and 3 2(ii). Let m > 1,
and assume that the result is true for m — 1 in place of m. Let
L e Z)Λ,Λ Π ̂ 4m. Then as Dn,n is Q-closed and S-closed,

and

by 3.2(ii) and 3.3(ii). Therefore by 2.4 the result follows.

We need one more purely technical result before proving Theorem 3.1.

LEMMA 3.5. Let s, t be positive integers with 1 ^ t < s. Suppose
that L e Dny8 and H is a Gt-subalgebra of L. If Hjy 0 ^ j <̂  n, denotes
the j-tla term of the ideal closure series of H in L, then for each
j, 0 < j < n,

PROOF. Suppose that 0 < j < n, and Y/Hί+ι is a 6r(8_ίΓsubalgebra of
. Then it is sufficient to show that Y <\{n~j) Hj.

Evidently there exists a 6r(,-t, subalgebra X of Hό such that Y —
X + Hj+ι. Let K = <X, iί> so that Ke G8 and so i ί < Λ L. If iΓ, is the
i-th term of the ideal closure series of K in L, then by simple induction
we have

Hi = H+ LoJI ^K+ Lo,K = K, ^ Hj + LoiHύ .

Thus we have K3 = Hs, since Hά <\5 L. But

and F = K + J3y+1, and so the result follows.

PROOF OF THEOREM 3.1. We want to prove that: to every posivive
integer n there correspond positive integers \{n) and \(n) depending
only on n, such that

We use induction on n. For n = 1, take \ = λ2 = 1; for Duι = A — iVΊ

Let % > 1 and assume that for each r, 1 <^ r <L n — 1, we have determined

λx(r) and λ2(r) such that

(3) Dr,h{r) ^ Nh(r) .

Define
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(4) μδ(n) = 1 + μt(n, (n - l) \(n - 1)) ,

and

(5) \(n) = Mn-l) + fh(n).

We will show that

so by 3.2(ii) we may take

(6) \(n) = ft(ftW)

Let L e Z>«,jl(») and H be a G>6(Λ)-subalgebra of L. From (4) and (5),
1 <J μβ(w) < X2(n) and so ff<ΛL. If H, is the j-th term of the ideal
closure series of H in L, then by 3.5 for each j, 0 < j < n,

(for any positive r, /) r, fc <̂  />r+i,» for all Λ). Thus by the inductive
hypothesis (3),

Hence

Let k = (n — l)λi(^ — 1). Then we have from above,

(7) Hik)^Hn = H.

Now by definition, n <; λ2(w) and so Dn,x2(n) ^ />W,Λ. Since also Dn,n is
Q-closed and S-closed we have

by 3 4. From this and (7) we have

But μδ(n) = 1 + /£4(π, &), fli = <HL>, and if was an arbitrary 6r^(Λ)-subal-
gebra of L. Thus

and the proof is complete.

4. A counterexample. We remarked earlier on that the question of
whether Dn,n ^ NMn) for a suitable X(n) is still unsettled. The next result
seems to point to an answer in the negative.

THEOREM 4.1. (Π^i Dn+2,n) Γ) A2 S N.
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PROOF. Let Λ be a field of characteristic 2, and B an abelian Lie
algebra over k with basis {bl9 62, •}. Define U = U{B) to be the universal
algebra of B; then U has {bh bim | 0 ^ m, \ <: <^im} and is a poly-
nomial ring in the δi's Now let V be the sυbspace of U with basis

ί^i ' *' &*« I m > l j a n ( * ^ o r s o m e •?> ^y = δ*y+J
Now Z7 is a 2?-module under the usual action and evidently so is V.

Let A = U/V9 so that A is a B-module. Consider A as an abelian Lie
algebra and form the split extension,

L = A + B, A2 = 0, A < L and A Π £ = 0 .

Clearly L(2) = 0 and L $ N.
For any x,yeB and α e A w e have

( 8 ) axy = α̂ /α; .

Suppose that α? = Σ ί A (Zi ̂  fc) Then considering x as an element of U and
since U is commutative and & has characteristic 2, we have

and so

( 9) αα2 = αa α; = 0 .

Thus if xl9 , xn 6 B and X = A + (xl9 , αjw>, then X <\L and it fol-
lows easily by induction that

Xr+ί = Σ AxT1 %Zn .

If r = w + 1, then in any particular term Ax?1 xZn some m* > 1, and
so by (8) and (9), each such term is zero. Hence XeNn+ί. Now pick
any au , an e A and let H = <αL + xl9 , an + xn}. Then H ^ X and
so H <\n+1 X <\ L. Clearly any 6?%-subalgebra of L is of the same form
as H and hence is a (n + 2)-step subideal of L. So L e Dn+2,n for each
n > 0, and the proof is complete.

The example above can be extended to give: in any field of charac-
teristic p > 0, (Π"=i D»(p-i)+2,») Π A2 ^ iV. However it can be proved that
in any field of characteristic zero, DnΛ 0 Ad ^ Nμin,d) for some μ{n, d)
depending only on n and d; the result will hold for fields of characteristic
p provided n S P

Let B* = {L I x 6 L => <αL> e iVJ then by 4.1 Bf £ N. But it can be
proved that Dn,n ^ N, provided Dn,n Π B* ^ N for all c.

REMARK: It will be shown in a forthcoming paper that there exists
for which Dn+Un ^ Nλ{n) (over any field)
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