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1. Introduction. The existence of almost periodic solutions in almost
periodic systems has been studied by many authors. Generally, the ex-
istence of a bounded solution does not imply the existence of almost
periodic solutions [6], and hence we need some additional conditions to
obtain almost periodic solutions. In linear systems, one of conditions is
Favard's separation condition [2], and for general systems, there are
Amerio's separation condition [1] and stability conditions ([5], [7]).

Seifert [7] has shown that the existence of a bounded solution with
some global stability implies Amerio's separation condition. In this paper,
we shall discuss relationships between separation conditions and local
stability conditions. In Section 2, we shall consider a linear system and
show that the uniform stability implies Favard's separation condition.
In Section 3, Amerio's separation condition will be characterized in terms
of conditional stability, and we shall also show that the existence of a
bounded solution with uniformly asymptotic stability implies some kind
of separation condition.

We denote by R* the real Euclidean %-space and set Rl = R and
R+ = [0, oo). For xeR*, let x\ be the Euclidean norm of x. If A and
B are topological spaces, C(Am, B) denotes the set of continuous functions
on A into B.

2. Favard's separation condition and uniform stability. Consider
the linear systems

(2.1) x' = A(t)x (' = d/dt)

and

(2.2) x' = A(t)x + f(t) ,

where the n x n matrix A(t) and the ^-vector f(t) are continuous and
almost periodic in t. To show the existence of an almost periodic solu-
tion, Favard [2] has assumed the condition below. We shall discuss a
relationship between Favard's condition and the uniform stability of
solutions.
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DEFINITION 2.1. The system (2.1) is said to satisfy FavarcΓs separa-
tion condition if for each B e H(A), where H(A) is the hull of A(t), the
system

(2.3) x' = B(t)x

has no nontrivial bounded solution x(t) defined on R which satisfies

inf I x(t) | = 0 .
teR

THEOREM 2.1. If the zero solution of the system (2.1) is uniformly
stable, then the system (2.1) satisfies Favard's separation condition.

PROOF. For each BeH(A), consider the system (2.3). Let x^t), •••,
%m(t), m ^ n, be a basis of the space of bounded solutions on R of (2.3).
Since B(t) is almost periodic, there is a sequence {tk} such that

(2.4) tk — > — oo as fc — > oo

and B(t + tk)—+B(t) uniformly on R as k— > oo. Since {xά(t + iA)}r=i(l ̂
j ^ m) is uniformly bounded and equicontinuous, it follows from Ascoli
-Arzela's theorem that there exists a subsequence of {tk}, which will be
denoted by {tk} again, and functions y3>(t) such that

uniformly on any compact interval in R for all j,l^j^m, as fc
Since &χt + £Λ) is a solution of the system

x =

clearly τ/Xί) is a bounded solution of (2.3).
We shall show that y^t), , ym(t) are linearly independent. Suppose

that ΣJU Cjy3 (Q) — 0 for some constants clf , cw and set z(t) = Xf=1 CjXj(t).
Then z(ί) is a solution of (2.3) and clearly

(2.5) z(tk) -> 0 as k-+oo .

Since the zero solution of (2.3) is also uniformly stable, (2.4) and (2.5)
imply that

z(t) - 0 .

Therefore

βi = = cm = 0

by the linear independence of xt(t)9 •• ,#m(£) This shows that y^t), •••,
ym(t) are linearly independent.

Now let x(t) be any nontrivial bounded solution on R of (2.3). Then
there correspond constants λlf , λm such that
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3 = 1

Since x(0) Φ 0, we have

for sufficiently large &0 and for some ε > 0. Since the zero solution of
(2.3) is uniformly stable, there exists a positive constant d such that

3=1

f or ί

Therefore, for each t e R

I x(t) I = lim th) >d

by (2.4). This shows that the system (2.1) satisfies FavarcΓs separation
condition.

The following result follows immediately from Theorem 2.1 and
Favard's result [2, p. 64].

COROLLARY 2.1. If the zero solution of (2.1) is uniformly stable and
the system (2.2) has a bounded solution on R+, then the system (2.2) has
an almost periodic solution whose module is contained in the module of

Clearly the converse of Theorem 2.1 is not necessarily true. One of
counter examples is the case where the zero solution of the system (2.1)
is not uniformly stable and the system has an exponential dichotomy
which is a special case of Favard's separation condition. Now we shall
prove that the converse of Theorem 2.1 holds under some supplementary
conditions.

THEOREM 2.2. Assume that the zero solution of the system (2.1) is
positively and negatively stable. If the system satisfies Favard's separa-
tion condition, then the zero solution is uniformly stable.

PROOF. Let X(t) be a fundamental matrix of (2.1). By the first
assumption, X(t) is bounded on R. Now we shall show that

(2.6) inf {| X(t)xQ |; t e R, x, e Rn, \ x, \ = 1} Φ 0 .

Suppose not. Then there exists sequences {tk} c R, {xk} c Rn (\xk \ = 1) such
that

lim I X(tk)xh \ = 0 .
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Clearly {xh} can be assumed to converge to an #«, 6 Rn (\ x^ = 1), and we
have

I X(tk)xt - X(tk)x. I ̂  I X(th) I x I xk - x^ I ,

where | X \ is the operator norm of the matrix X. Since X(t) is bounded
on R, we have

lim I X(tt)x^ | = 0 .
fc-+oo

This contradicts Favard's separation condition.
Since we have (2.6), there exists a positive constant c such that

\X(t)x ^c\x\ for teR, xeRn.

This implies

X(t)x ^ c'\ X(s)x I for t,seR, xe Rn ,

where c' = supίeί; \X(f) \/c, which shows the uniform stability of the zero
solution of (2.1).

REMARK 2.1. As will be seen from the example below (for the details,
see [3, p.300]), we cannot drop Favard's separation condition in Theorem
2.2 without any other supplementary condition.

Consider a scalar almost periodic equation

xf = — a(t)x ,

where a(t) = ΣΓ=ιC f csinλ f c£ (λfc > 0, ck > 0, ΣΓ=ιβ* < oo, Σ?=ι<WλΛ = °°)

and λfc are linearly independent. Since exp ί — \ α(s)ds j can be easily

verified to be bounded on R, the zero solution is positively and negatively
stable. But it is not uniformly stable. Suppose that it is uniformly
stable. Noting that \k are linearly independent, we can see a(t)e H(—a),
and hence, the equation

x' = a(t)x

has a bounded nontrivial solution on R+. On the other hand, we can show

that exp ί \ a(s)dsj is unbounded on R+. Thus there arises a contradiction.

REMARK 2.2. As was stated before, Favard's separation condition is
not equivalent to the uniform stability. However, the zero solution of
(2.1) is uniformly stable with respect to bounded solutions on R if and
only if Favard's separation condition is satisfied, where the zero solution
of (2.1) is said to be uniformly stable with respect to bounded solutions
on R if for any ε > 0, there exists a <5(ε) > 0 such that
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I x(t) I < ε for t ^ ί0 ,

whenever x(t) is a bounded solution on R of (2.1) and | x(t0) \ < d(e) for
some ί0 e R. This can be proved by the same argument as in the proofs
of Theorem 2.1 and 2.2.

3. Amerio's separation condition and stability properties. Consider
the systems

(3.1) x' =f(t,x)

and

(3.2) x' = g(t, x) ,

where f(t, x)e C(R x Rn\ Rn) and f(t, x) is almost periodic in t uniformly
for xeRn and geH(f).

Throughout this section, let K be a compact subset of Rn. For each
g e H(f), we denote by A(g, K) the set of solutions x(t) of the system
(3.2) such that x(t) e K for all t ^ t0, and for each x e A(g, K), t(x) denotes
the infimum of *„, where t(x) may be — oo. Let B(g, K) = {xe A(g, K);
t(χ) — — oo }. Clearly, if the system (3.1) has a solution in A(f, K), then
B(g, K) is not empty for each geH(f). In the following definitions, we
shall consider the case where B(g, K) is not empty for each geH(f).

DEFINITION 3.1. The system (3.1) is said to satisfy Amerio's separa-
tion condition in K if there exists a positive constant λ — λ(#) for each
g e H(f) such that any distinct solutions x, y in B(g, K) satisfy

inf I x(t) - y(t) | ̂  λ .
teR

REMARK 3.1. Under Amerio's separation condition, the constant λ can
be chosen independently of geH(f). Hence we assume that λ does not
depend on ge H(f).

DEFINITION 3.2. xe B(f, K) is said to be conditionally uniformly
stable in K, if for any ε > 0 there exists a <5(ε) > 0 such that
I &(*) - V(t) l ^ e for t ^ ί0, whenever y e A(f, K) and | x(t0) - y(t0) \ < δ(e)
for some ί0 ̂  t(y). xe B(f, K) is said to be conditionally uniformly asymp-
totically stable in K, if x is conditionally uniformly stable in K and if
there exists a δϋ > 0 and for any ε > 0 there exists a Γ(ε) > 0 such that
I x(t) - y(t) I < ε f or ί ^ ί0 + Γ(ε), whenever T/ e A(f, K) and | a?(ί0) - y(t*) \ <
δ0 for some t0 ̂

DEFINITION 3.3. The system (3.1) is said to be conditionally uniformly
asymptotically stable in K if every x e B(f, K) is conditionally uniformly
asymptotically stable in K.
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Now we shall show that Amerio's separation condition will be char-
acterized in terms of conditionally uniformly asymptotic stability of the
system.

THEOREM 3.1. The system (3.1) satisfies Amerio's separation condition
in K if and only if for each g e H ( f ) , the system (3.2) is conditionally
uniformly asymptotically stable in K with a common triple (<50, <5( ), T( ))

PROOF. Assume that for each geH(f) the system (3.2) is condition-
ally uniformly asymptotically stable in K with a common triple (<50, <5( ),
T( )) First of all, we shall see that any distinct solutions x, y in B(g, K),
g e H(f), satisfy

(3.3) lim I x(t) - y(t) \^δ0.
t-+—00

Suppose not. Then for some g e H(f), there exists two distinct solutions
x, y in B(g, K) which satisfy

(3.4) K m | α ? ( t ) - ϊ / ( ί ) | < δ 0 .

Since x(t) Φ y(t), we have | x(tQ) — y(tQ) | = e at some tQ and for some ε >
0. Then there is a tγ such that tl<tQ— T(ε/2) and

since we have (3.4). The conditionally uniformly asymptotic stability of
x(t) implies

e/2 ,

which contradicts \x(tQ) — y(tQ) \ — ε. Thus we have (3.3).
Since K is a compact set, there are a finite number of coverings

which consist of m0 balls with diameter <50/4. We shall show that the
number of solutions in B(g, K) is at most ra0. Suppose not. Then there
are m0 + 1 solutions in K, Xj(t), j = 1,2, , m0 + 1, and a t2 such that

(3.5) I αj4(ίO - αXg I ̂  dJ2 for i Φ j ,

because we have (3.3). However some two of these solutions, say x^
Xj(t) (i Φ j), are in one ball at time t2, and hence

which contradicts (3.5). Therefore the number of solutions in B(g, K) is
m ̂  m0. Thus

(3.6) B(g, K) = {Xί(t), x2(t), ..-,«.(«)}

and
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(3.7) lim I x{(t) -

Consider a sequence {τk} such that τk — » — oo as k — *> oo and g(t + τk, x) — >
g(t, x) uniformly on R x K as Λ; — > oo . Since {̂ -(ί + ^)}~=i (1 ̂  J ^ m) *s

uniformly bounded and equicontinuous, there exists a subsequence of {τk},
which will be denoted by {τk} again, and functions ys(t) such that

xj(t + τk) -* yy(t)

uniformly on any compact interval in R for j, 1 <£ j" ̂  m, as & — > oo .
Clearly 2/Λ£) is a solution in #(#, iΓ). Since we have

Vt(t) ~ ϊfc(ί) I - lim I xt(t + τk) - Xj(t + τk) \
fc-»oo

for teR, it follows from (3.7) that

(3.8) I y,(t) - 7/XO I ̂  δ0 for all teR and i ^ j .

Since the number of solutions in B(g, K) is m, .5(0, ίΓ ) consists of y±(t\ ,
?/m(£) and we have (3.8), which shows that the system (3.1) satisfies
Amerio's separation condition in K.

Now we assume that the system (3.1) satisfies Amerio's separation
condition in K. First of all, we shall see that for any ε > 0, there exists
a <5(ε) > 0 such that for any g e H(f) and any x e B(g, K), \ x(t) - y(t) \ ^
ε for all ί ^ ί0, whenever y e A(g, K), \ x(t0) — y(t0) \ ̂  δ(ε) for some ί0 ̂
£(τ/). Suppose not. Then there exists an ε > 0 and sequences gkeH(f),
xk e B(gk, K), yk e A(gk, K), tk and τk, τk > tk, such that

(3.9) I χk(tk) - yk(tk) \< l/k , tk^ t(yk) ,

(3.10) \xk(τk)-yk(τk)\=e,

where we can assume that ε <Ξ λ/2 for the constant λ in Def. 3.1.
If we set uk(t) = xk(t + τk) and vk(t) = yk(t + τk), then uk(t) and vk(t)

are solutions of

(3.11) xf = gk(t + τk, x)

such that uk(0) = xk(τk) and ^(0) = yk(τk). Clearly

uk(t) e K for all t e R

and

vk(t) eK for t^tk-τk (tk - τk < 0) .

Since gk(t + τk, x) e H(f) and H(f) is compact by the uniform norm on
R x ίΓ, {#*.(£ + TA, a?)} has a subsequence, which we shall denote by [gk(t +
τk, x)} again, such that
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ffk(t + τfc, x) — » Λ(ί, a) uniformly on .β x K as ft — * °o ,

where he H(f). We can also assume that tk — τk tends to a r(< 0) as
ft— > oo, where τ may be — oo.

Since (vk(t)} is uniformly bounded and equicontinuous on any compact
interval in (τ, oo), vk(t) can be assumed to tend to a function rj(t) defined
on (τ, oo ) uniformly on any compact interval of (τ, oo) as ft— > : oo. Since
VΛ(£) is a solution of (3.11), j?(ί) e A(h, K) and J?(ί) 6 K f or ί > τ. By the
same argument, there exists a function f (ί) such that uk(t) tends to f (ί)
uniformly on any compact interval in Λ as ft — -> oo and f (t) e B(h, K). If
τ > — oo, ^(ί) e £" for £ ̂  τ and lim^ vfc(ίfc — rfc) = -η(τ). Therefore

- lim a?t(ίt - ι/fc(Q = 0 .

Thus we have a solution )?* e -B(λ, K), where

η(t) for ί > τ
ί?*(*) = ~7 ; £(ί) for ί < τ .

If r = — oo, we set 77* (ί) = η(t)εB(h, K). Thus we have two solutions
77* (ί), f(t) in B(Λ, ίΓ). But

η*(0) - ί(0) 1 - I ?(0) - f (0) I - lim I vh(Q) - uk(0) \
fc->oo

= lim I xk(τk) - yk(τk) | = e > 0 ,
fc-»oo

which shows that η*(t) and ξ(t) are distinct solutions in B(h, K). There-
fore I η*(t) - ξ(t) \^\ for all t e R. However 1 37* (0) - f (0) | = e < λ/2.
Thus there arises a contradiction.

Now let <50 be a positive constant such that δ0 < δ(λ/2). For this δ0,
we shall show that for any ε > 0, there is a T(ε) > 0 such that every
solution x e B(g, K) satisfies

I a(ί) ~ y(t) I < ε for all t ^ t0 + Γ(ε) ,

whenever y e A(0r, ίΓ) and | x(t0) — y(t0) \ < §0 for some ί0 ̂  ί(τ/).
Suppose not. Then there exists an ε > 0 and sequences gk e H(f),

xk e B(gk, K), yk e A(gk, K), tk ^ t(yk), and τk, τk > tk + ft, such that

(3.12) I xt(tk) - yk(tk) \<δϋ« δ(λ/2))

and

(3.13) I ^(r*) - yk(τk) | ̂  ε .

Since (3.12) implies | xk(t) - 2/fc(ί) | < λ/2 for all t ^ ίfc, we have
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(3.14) e

by (3.13). If we set uk(t) = xk(t + τk) and vk(t) = yk(t + τk), then uk(t) and
vk(t) are solutions of

uk(t) e K for all ί e # and vfc(ί) e jRΓ f or ί ^ —ft. Thus we can assume that
there exists an h e H(f), ξ e B(h, K) and η e B(h, K) such that

0k(t + τk, x) -» λ(ί, &)

uniformly on R x if as ft — > °o and

uniformly on any compact interval in R as ft — » oo .
On the other hand, we have

I ξ (0) - 37(0) I - lim I uk(0) - vk(0) \ = lim | &4(r4) - yt(τt) | ,
fc-*oo fc->oo

which implies that, by (3.14)

(3.15) ε ̂  I f (0) - η(Q) | ̂  λ/2 .

Since ζeB(h,K) and ηeB(h,K), (3.15) contradicts the separation condi-
tion. This shows that for any geH(f), the system (3.2) is conditionally
uniformly asymptotically stable in K with a common triple (<?0, <5( ), Γ( ))
The proof is completed.

We shall show a relationship between usual stability and separation
condition. When φ(t) is a solution in A(f, K), H(f; φ) denotes the set of
the pair (g, x(t)) such that for some sequence {ίfc}, tk-+ °° as ft— > oo,
/(ί + ί*, a?) — * flr(ί, ίc) as ft — ̂  oo uniformly on .β x S for each compact subset
S of ί!*1 and 9>(ί + tk) — * a?(ί) as ft — » co uniformly on any compact interval
in R. Clearly H(f, φ) is not empty.

DEFINITION 3.4. H(f, φ) is said to satisfy a separation condition if
there exists a positive constant λ = \(g) for each g e H(f) such that any
two distinct elements (g, x), (g, y) in H(f, φ) satisfy

inf I x(t) - y(t) I ̂  λ .
teR

REMARK 3.2. The constant λ can be chosen independently of ge H(f)
by the same argument as in Amerio's proof.

Clearly the separation condition on H(ff φ) is a generalization of
Amerio's condition. In the proof of Amerio's theorem for the existence
of almost periodic solutions, Amerio has used essentially the separation
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condition on H(f, φ), and hence, Amerio's existence theorem can be proved,
replacing his separation condition by the condition on H(f, φ). This ex-
istence theorem follows also from Fink's result [4, Theorem 3]. For the
existence of almost periodic solutions, Fink has considered more general
separation condition than Amerio's condition, and our separation condition
on H(f, φ) is a special case of it.

THEOREM 3.2. For the system (3.1), assume that there exists a solu-
tion φ(t) in A ( f , K ) and that for any (g, x) e H(f, φ), x is uniformly
asymptotically stable with a common triple (<50, <5( ), T( )). Then H(f, φ)
satisfies the separation condition.

The proof is similar to the proof of sufficiency in Theorem 3.1.
Replace B(g, K) by G(g), where

G(g) = {x; (g, x) e H(f, φ)} for each ge H(f) .

REMARK 3.3. Theorem 3.2 shows that the stability on φ is a sufficient
condition for the existence of almost periodic solutions. This is already
known by Kato [5].
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