APPROXIMATION OPERATORS ON BANACH SPACES OF DISTRIBUTIONS

R. GOPALAN ${ }^{\dagger}$

(Received April 9, 1973)

Abstract

An approximation process $\left\{\Gamma_{n}\right\}_{n \in P}$ on a Banach subspace X of \mathscr{A}^{\prime} [Zemanian A. H. [36]], satisfying either a Jackson type inequality or a Bernstein type inequality of order $\rho(n)$ on X with respect to Y of X, is being related to a class of Banach subspaces $\left\{X_{\lambda}\right\}_{\lambda \in J}$ of \mathscr{A}^{\prime}, on each of which, $\left\{\Gamma_{n}\right\}_{n \in P}$ defines a sequence of multiplier type operators, satisfying the same inequality with same order. Sufficient conditions for $X_{\lambda} \subset \mathscr{A}^{\prime}$, $\lambda \in J$ are given. Results are illustrated by examples.

1. Introduction. For a Banach space X, a sequence $\left\{\Gamma_{n}\right\}_{n \in P}$ of bounded linear operators $\Gamma_{n}: X \rightarrow X$, with $P=\{1,2,3, \cdots\}$ is called an approximation process on X, if $\Gamma_{n} f \rightarrow f$ in $X \quad \forall f \in X$. For suitable subspaces Y, Λ of $X(\Lambda$ being fixed, $\operatorname{dim}(\Lambda)<\infty)$ and function $\rho(n) \geqq 0, \rho(n) \searrow 0$ on P, an approximation process $\left\{\Gamma_{n}\right\}$ on X is said to,
(I) satisfy a Jackson-type inequality of order $\rho(n)$ on X with respect to Y, if $\forall f \in Y,\left\|\Gamma_{n} f-f\right\|_{X} \leqq C \rho(n)\|f\|_{Y}$;
(II) satisfy a Bernstein type inequality of order $\rho(n)$ on X with respect to Y, if $\bigcup_{n \in P} \Gamma_{n}(X) \subset Y$ and $\forall f \in X,\left\|\Gamma_{n} f\right\|_{Y} \leqq C_{1}(\rho(n))^{-1}\|f\|_{X} . \quad\left(C, C_{1}\right.$ constants independent of n);
(III) be saturated with order $\rho(n)$ on X with saturation class Y,
if for $f \in X,\left\|\Gamma_{n} f-f\right\|_{X}=\left\{\begin{array}{l}(\rho(\rho(n)) \Leftrightarrow f \in \Lambda \\ O(\rho(n)) \Leftrightarrow f \in Y, Y-\Lambda \neq \varnothing\end{array}\right.$
For such $\left\{\Gamma_{n}\right\}$ as in (III) above, the inverse problem is the characterization of elements of the sets
$\left\{f \in X \mid\left\|\Gamma_{n} f-f\right\|_{x}=O(\eta(n))\right\}$ with some $\eta(n) \geqq 0, \eta(n) \searrow 0, \frac{\rho(n)}{\eta(n)} \rightarrow 0$ as $n \rightarrow \infty$.
Given a Banach subspace X of a certain space \mathscr{A}^{\prime} of generalized functions, each $f \in \mathscr{A}^{\prime}$ having Fourier expansion with respect to an orthonormal system $\left\{\psi_{n}\right\}_{n \in N}(N=0,1,2,3, \cdots)$ and given an approximation process $\left\{\Gamma_{n}\right\}_{n \in P}$ related to $\left\{\psi_{n}\right\}_{n \in N}$ on X, satisfying (J) Jackson-type inequality or (B) Bernstein-type inequality or for X, having (S) saturation and inverse theorems, the aim of this paper is to determine a family of related
[^0]Banach subspaces of \mathscr{A}^{\prime}, on each of which $\left\{\Gamma_{n}\right\}_{n \in P}$ satisfy the above (i.e (J) or (B) or (S)).

Let I be an open interval of \boldsymbol{R}. Let \mathscr{U} be a self-adjoint differential operator of the form $\mathscr{C}=\theta_{0} D^{n_{1}} \theta_{1} D^{n_{2}} \cdots D^{n_{\nu}} \theta_{\nu}=\bar{\theta}_{\nu}(-D)^{n_{\nu}} \cdots \bar{\theta}_{1}(-D)^{n_{1}} \bar{\theta}_{0}$ $\theta_{i} \in C^{\infty}(I), n_{i} \in P, 1 \leqq i \leqq \nu$, with discrete spectrum, with $\left\{\psi_{n}\right\}_{n \in N}$ a sequence of orthonormal C^{∞}-functions on I, as eigenfunctions, corresponding to eigenvalues $\left\{\lambda_{n}\right\}_{n=0}^{\infty}$. Let $\left|\lambda_{n}\right| \uparrow \infty$ as $n \rightarrow \infty$. Let \mathscr{A} be the space of test functions, $\mathscr{A}^{\prime}=$ dual of \mathscr{A}, be as constructed by Zemanian [[36], [37], Chap. IX]. $\forall f \in \mathscr{A}^{\prime}, f$ has Fourier expansion $f \sim \sum_{k=0}^{\infty}\left\langle f, \psi_{k}\right\rangle \psi_{k}$ such that $\sum_{k=0}^{n}\left\langle f, \psi_{k}\right\rangle \psi_{k} \rightarrow f$ in \mathscr{A}^{\prime} as $n \rightarrow \infty$. There exists only finite number of $i_{k} \in N, 0 \leqq k \leqq l$ such that $\lambda_{i_{k}}=0,0 \leqq k \leqq l$. Let $\Lambda=$ span of $\left\{\psi_{i_{k}} \mid 0 \leqq k \leqq l\right\}$. Let us call Λ the trivial class. Let $\left[\left\{\psi_{n}\right\}\right]=\operatorname{span}$ of $\left\{\psi_{n}\right\}_{n \in N}$.

The main results are presented as follows: Given a Banach subspace X of \mathscr{A}^{\prime}, with X^{*} denoting the dual of X, a family of related Banach subspaces $\left\{X_{\lambda}\right\}_{\lambda \in J}, J$ being a parameter set, is constructed so that (i) every multiplier type operator related to $\left\{\psi_{n}\right\}$ on X, defines a similar operator on each $X_{\lambda}, \lambda \in J$; (ii) every approximation process on X satisfying Jackson-type inequality or Bernstein type inequality with certain order on X with respect to a subspace Y of X, also satisfies the same inequalities with the same order on each X_{λ}, with respect to suitable subspace Y_{λ} of $X_{\lambda}, \lambda \in J$. Sufficient conditions for each X_{λ} to be subspace of $\mathscr{A}^{\prime}, \lambda \in J$ are given in terms of estimates of $\psi_{n},\left(\frac{d}{d x}\right)^{k} \psi_{n}, n, k \in N$ in the norm of $X \cap X^{*}$. Using these results and those of Butzer-Scherer [17, 18], Trebels [30] both saturation and inverse problems are studied for various approximation processes related to $\left\{\psi_{n}\right\}_{n \in N}$ on each $X_{\lambda}, \lambda \in J$. Finally, these results are illustrated by means of classical orthonormal systems, like Hermite, Laguerre or Jacobi functions.

As an illustration we cite the following example. Let $I=(-\infty, \infty)$. Let $\mathscr{U}=-e^{x^{2} / 2} D e^{-x^{2}} D e^{x^{2} / 2}, D=\frac{d}{d x}, \psi_{n}(x)=\frac{e^{-x^{2} / 2} H_{n}(x)}{\left[2^{n} n!\pi^{1 / 2}\right]^{1 / 2}}$, where $H_{n}(x)$ are Hermite polynomials. Let $X=L^{p}(-\infty, \infty)$ for some $p \in(1, \infty)$. Here, $\lambda_{n}=2 n, \lambda_{0}=0, \Lambda=\left\{d e^{-x^{2} / 2} \mid d \in R\right\} . \mathscr{A}=\mathscr{S}, \mathscr{A}^{\prime}=\mathscr{S}^{\prime}$ [37]. Let $\forall n \in P$, $\left\{\gamma_{n, k}\right\}_{n \in P}$ be real sequence with $\gamma_{n, k}=O\left(k^{q_{n}}\right)$ for some $q_{n} \in P$. For $f \in \mathscr{S}^{\prime}(R)$, let $\Gamma_{n} f=\sum_{k=0}^{\infty} \gamma_{n, k}\left\langle f, \psi_{k}\right\rangle \psi_{k}(n \in P)$. Then $\Gamma_{n} f \in \mathscr{S}^{\prime}$ for all $n \in P$. For $\beta>0$:
(1) If $\left\{\Gamma_{n}\right\}_{n \in P} \subset\left[L^{p}\right]$, then $\left\{\Gamma_{n}\right\}_{n \in P} \subset[Z]$.
(2) If $\left\{\Gamma_{n}\right\}_{n \in P} \subset\left[L^{p}\right]$ and $\forall f \in L_{\beta}^{p}=\left\{f \in L^{p} \mid g \sim \sum_{k=0}^{\infty} k^{\beta}\left\langle f, \psi_{k}\right\rangle \psi_{k} \in L^{p}\right\}$, $\left\|\Gamma_{n} f-f\right\|_{L^{p}}=O\left(n^{-\beta}\right), \quad$ then $\quad \forall f \in Z_{\beta}=\left\{f \in Z \mid g \sim \sum_{k=0}^{\infty} k^{\beta}\left\langle f, \psi_{k}\right\rangle \psi_{k} \in Z\right\}$, $\left\|\Gamma_{n} f-f\right\|_{z}=O\left(n^{-\beta}\right) ;$
(3) If $\left\{\Gamma_{n}\right\} \subset\left[L^{p}\right], \bigcup_{n \in P} \Gamma_{n}\left(L^{p}\right) \subset L_{\beta}^{p}$ and $\left\|\Gamma_{n} f\right\|_{L_{\beta}^{p}} \leqq c n^{\beta}\|f\|_{L^{p}} \forall f \in L^{p}$, then $\bigcup_{n \in P} \Gamma_{n}(Z) \subset Z_{\beta}$ and $\left\|\Gamma_{n}^{n \in f}\right\|_{z_{\beta}} \leqq C_{1} n^{\beta}\|f\|_{z} \quad \forall f \in Z$, where Z denotes any one $\begin{aligned} & n \in P \\ & \text { of } \\ & \text { the following spaces: }\end{aligned} H^{q, m}(\boldsymbol{R}), H^{q,-m}(\boldsymbol{R}),\left(H^{q,-m}(\boldsymbol{R}), H^{q, m}(\boldsymbol{R})\right)_{\theta, q_{1}}, 0<\theta<1$, $1 \leqq q \leqq \infty, p \leqq q \leqq p^{\prime}, m \in P$. For definition of these spaces, the reader is referred to [31, Chapter 31] [13, p. 167]. The intermediate spaces constructed by the K-method of J. Peetre [13, p. 167] are defined as follows: Let X, Y be Banach subspaces of $\mathscr{D}^{\prime}(I)$-the space of Schwartz distributions on I. Let $X+Y=\left\{f_{1}+f_{2} \mid f_{1} \in X, f_{2} \in Y\right\}$ with norm $\|f\|_{X+Y}=\inf \left\{\left\|f_{1}\right\|_{X}+\right.$ $\left.\left\|f_{2}\right\|_{Y} \mid f_{1} \in X, f_{2} \in Y, f=f_{1}+f_{2}\right\}(f \in X+Y)$. For $f \in X+Y, 0<t<\infty$, let $K(t, f, X, Y)=\inf \left\{\left\|f_{1}\right\|_{X}+t\left\|f_{2}\right\|_{Y} \mid f=f_{1}+f_{2}, f_{1} \in X, f_{2} \in Y\right\}$,

$$
(X, Y)_{\theta, q}=\left\{\begin{array}{r}
\left\{f \in X+Y \left\lvert\,\|f\|_{\theta, q}=\left[\int_{0}^{\infty}\left[t^{-\theta} K(t, f, X, Y)\right]^{q} \frac{d t}{t}\right]^{1 / q}<\infty\right.\right\} \\
\text { if } 1 \leqq q<\infty, 0<\theta<1 \\
\left\{f \in X+Y \mid\|f\|_{\theta, \infty}=\left[\sup _{0<t<\infty} t^{-\theta} K(t, f, X, Y)\right]<\infty\right\} \\
\text { if } q=\infty, 0 \leqq \theta \leqq 1
\end{array}\right.
$$

The spaces of Bessel potentials $H^{p, m}$, and its dual $H^{p^{\prime,-m}}(\boldsymbol{R})$ are special cases of the following spaces defined as follows. For $m \in P$, and for a Banach subspace X of $\mathscr{D}^{\prime}(I)$, let

$$
W^{-m}(X)=\left\{f \in \mathscr{S}^{\prime}(I) \mid f=\sum_{\alpha=0}^{m} D^{\alpha} f_{\alpha} ; f_{0}, f_{1}, \cdots, f_{m} \in X\right\}
$$

with

$$
\|f\|_{W^{-m}(X)}=\inf \left\{\sum_{\alpha=0}^{m}\left\|f_{\alpha}\right\|_{X} \mid f=\sum_{\alpha} D^{\alpha} f_{\alpha}, f_{\alpha} \in X, 0 \leqq \alpha \leqq m\right\}\left(f \in W^{-m}(X)\right)
$$

Here $D^{\alpha} f$ denotes the distributional derivative of f of order $\alpha, \alpha \in P$. Let $W^{m}(X)=\left\{f \in X \mid D^{\alpha} f \in X, 0 \leqq \alpha \leqq m\right\}$. For $f \in W^{m}(X),\|f\|_{W^{m}(X)}=\sum_{\alpha=0}^{m}\left\|D^{\alpha} f\right\|_{X}$. $W^{m, 0}(X)=$ closure of $\mathscr{D}(I)$ in $W^{m}(X)$, where $\mathscr{D}(I)=\left\{f \in C^{\infty}(I) \mid\right.$ supp f is compact $\}$. [$W^{m, 0}\left(L^{p}\left(\boldsymbol{R}^{n}\right)\right) \cong H^{p, m}\left(\boldsymbol{R}^{n}\right) \cong W^{m}\left(L^{p}\left(\boldsymbol{R}^{n}\right)\right) ; W^{-m}\left(L^{p^{\prime}}\left(\boldsymbol{R}^{n}\right)\right) \cong H^{p^{\prime},-m} \cong$ dual of $H^{p, m}\left(\boldsymbol{R}^{n}\right)$].

In a series of papers by Favard [[19],. [20]], Sunouchi and Watari [28], Aljancic [[1], [2], [3]], and Buchwalter [10], saturation behaviour of various approximation processes related to Trigonometric polynomials on $C(-\pi, \pi)$, $L^{p}(-\pi, \pi) 1 \leqq p<\infty$ had been studied. Buchwalter [9] studied the same problem on a normed linear space for various approximation processes related to a biorthogonal system. Bavinck [6] studied both saturation and inverse problems of various approximation processes on $L^{p}(\mu) 1 \leqq p<\infty$, $C(-1,1)$, where $d \mu(x)=(1-x)^{\alpha}(1+x)^{\beta} d x, x \in(-1,1), \alpha>-1, \beta>-1$, related to Jacobi polynomials using the convolution structre for Jacobi
series, introduced by Askey and Waigner [5]. Recently in a series of papers by P. L. Butzer and his colleagues [[16], [21]], both saturation and inverse problems related to classical orthogonal polynomials were investigated on $L^{p}(\mu) 1 \leqq p<\infty$ where $d \mu(x)=w(x) d x, w(x) \geqq 0, x \in(a, b)$, $-\infty \leqq a<b \leqq \infty$.
2. Definitions and Notations. In order to present the main results of this paper, we need to define certain spaces as follows. For Banach subspaces X, Y of \mathscr{A}^{\prime}, let $[X, Y]=$ the space of bounded linear operators from X to Y. For $X \subset Y$, let $\operatorname{Cl}(X, Y)$ denote the closure of X in the topology of Y. Let $M(X, Y)$ denote the space of all real sequences $\left\{\gamma_{k}\right\}$ such that for some $\Gamma \in[X, Y], \Gamma f \sim \sum_{k=0}^{\infty} \gamma_{k}\left\langle f, \psi_{k}\right\rangle \psi_{k}$, $(f \in X)$ with a norm $\left\|\left\{\gamma_{k}\right\}\right\|_{M(X, Y)}=\|\Gamma\|_{[X, Y]}$.

$$
U M(X, Y)=\left\{\begin{array}{l|l}
\left\{\gamma_{\tau, k}\right\}_{k \in N, \tau \in \Omega} & \begin{array}{l}
\Omega \text { a parameter set and } \\
\forall \tau \in \Omega,\left\{\gamma_{\tau, k}\right\}_{k \in N} \in M(X, Y) \text { defining } \\
\Gamma_{\tau} \in[X, Y] \text { with } \sup _{\tau \in \Omega}\left\|\Gamma_{\tau}\right\|<\infty
\end{array}
\end{array}\right\} .
$$

For $f \in \mathscr{A}^{\prime}, \forall \delta>0$, an element $\mathscr{U}^{\delta} f$ of \mathscr{A}^{\prime} can be defined as follows: $\left\langle\mathscr{U}^{j} f, \psi_{k}\right\rangle=\lambda_{k}^{j}\left\langle f, \psi_{k}\right\rangle(k \in N)$. $\mathscr{U}^{\delta} f$ is well defined by completeness of $\left\{\psi_{n}\right\}$ on \mathscr{A}^{\prime} and by Theorems 9.5.2, 9.6.1 of [[37], p. 260-261]. For a Banach subspace X of \mathscr{A}^{\prime} and for $\delta>0, X_{\delta}=\left\{f \in X \mid \mathscr{U}^{j} f \in X\right\}$ with norm $\|f\|_{X_{\delta}}=\|f\|_{X}+\left\|\mathscr{U}^{\delta} f\right\|_{X}\left(f \in X_{\delta}\right) ; X_{-\delta}=\left\{f \in \mathscr{A}^{\prime} \mid f=f_{0}+\mathscr{U}^{\delta} f_{1} ; f_{0}, f_{1} \in X\right\}$. For $f \in X_{-\delta},\|f\|_{X_{-\delta}^{\delta}}=\inf \left\{\left\|f_{0}\right\|_{X}+\left\|f_{1}\right\|_{x} \mid f=f_{0}+\mathscr{C}^{\delta} f_{1} ; f_{0}, f_{1} \in X\right\}$. For $\delta>0$ let $\nu_{k, \delta}=\left\{\begin{array}{ll}\lambda_{k}^{-\bar{c}} & \text { if } \lambda_{k} \neq 0, k \in N \\ 0 & \text { if } \lambda_{k}=0, k \in \boldsymbol{N}\end{array}\right\}$. For each $f \in \mathscr{A}^{\prime}$, an element $G_{\delta} f$ of \mathscr{A}^{\prime} can be defined as $\left\langle G_{\delta} f, \psi_{k}\right\rangle=\nu_{k, \delta}\left\langle f, \psi_{k}\right\rangle(k \in N) . \quad \forall \phi \in \mathscr{A}, \forall \delta>0$, $\mathscr{U}^{\delta} \phi \in \mathscr{A}, G_{\delta} \phi \in \mathscr{A}$ [Ref. Lemma 9.3.3, Theorem 9.6.1, [37]].
3. Main Results. First, we need to choose suitably, Banach subspace X of \mathscr{A}^{\prime}, from which, we like to extend Jackson or Bernstein type inequalities satisfied by approximation processes, to various other related Banach subspaces of \mathscr{A}^{\prime}. For this we need the notion of families $\mathscr{F}(m)$, $\mathscr{F}(m, \delta)$ of Banach spaces. Let $m \in P, m$ be fixed throughout the rest of the paper.

Definition 3.1. A Banach space $Z \in \mathscr{F}(m)$ if (1) $\mathrm{Cl}(\mathscr{D}(I), Z)=Z \subset \mathscr{A}^{\prime}$, (2) $\mathscr{A} \subset W^{m, 0}(Z) \cap Z^{*}$, (3) $W^{-m}\left(Z+Z^{*}\right) \subset \mathscr{A}^{\prime}$, (4) $\forall \delta>0\left\{\nu_{k, 8}\right\}_{k \in N} \in M(Z)$ defining $G_{\delta} \in[Z]$.

Definition 3.2. For $\delta>0$, a space $Z \in \mathscr{F}(m, \delta)$ if (1) $Z \in \mathscr{F}(m)$, (2) $\mathrm{Cl}\left(\mathscr{D}(I), Z^{*}\right)=Z^{*}, \forall f \in Z_{-\delta}^{*}+Z_{-\delta}, D^{k} f \in \mathscr{A}^{\prime} 0 \leqq k \leqq m$.

The families of related Banach subspaces of \mathscr{A}^{\prime} can be given as follows:

Definition 3.3. Let $\delta>0, X \in \mathscr{F}(m, \delta)$ be reflexive. Then $Y(m, \delta, X)$ be the family consisting of the following spaces:

$$
\begin{aligned}
Y= & \left(\text { any one of } X, X^{*},\left(X, X^{*}\right)_{\theta_{1}, q_{1}} 0<\theta_{1}<1,1<q_{1}<\infty\right), Y_{-\delta}, \\
& W^{-m}(Y), W^{m, 0}(Y),\left(W^{-m}(Y), W^{m, 0}(Y)\right)_{\theta, q}
\end{aligned} 0<\theta<1 .
$$

Definition 3.4. A space $X \in Q(m)$, if $X \in \mathscr{F}(m)$ and there exists $X^{\prime} \in \mathscr{F}(m)$ with $X \subset\left(X^{\prime}\right)^{*}, X^{\prime} \subset X^{*}$, on $X\left\|\left\|_{X}=\right\|\right\|_{\left(X^{\prime}\right)^{*}} ;$ on $X^{\prime}\| \|_{X^{\prime}}=\| \|_{X^{*}}$. For $\delta>0, X \in Q(m)$, let $Q(m, \delta, X)$ be the family consisting of the following spaces: $E_{1}\left(=\right.$ any one of $\left.X, X^{\prime},\left(X, X^{\prime}\right)_{\theta, q}, 0<\theta<1,1 \leqq q<\infty\right)$, $W^{-m}\left(E_{1}\right),\left(W^{-m}\left(E_{1}\right), E_{1}\right)_{\theta, q}, 0<\theta<1,1 \leqq q \leqq \infty ; E_{2}\left(=\right.$ any one of $X_{-\dot{\partial}}^{*},\left(X^{\prime}\right)_{-\dot{\delta}}^{*}$, $\left.\left(X_{-\delta}^{*},\left(X^{\prime}\right)_{-\delta}^{*}\right)_{\theta, q}, 0<\theta<1,1 \leqq q \leqq \infty\right) ; E_{3}\left(=\right.$ any one of $X^{*},\left(X^{\prime}\right)^{*},\left(X^{*},\left(X^{\prime}\right)^{*}\right)_{\theta, q}$, $0<\theta<1,1 \leqq q \leqq \infty) ; E_{4}\left(=\right.$ any one of $\left.\left(X, X^{*}\right)_{\theta, q}, 0<\theta<1,1 \leqq q \leqq \infty\right)$.

Theorem 3.1. (1) Let $\beta>0$ and $X \in \mathscr{F}(m, \beta)$ be reflexive. Then $M(X) \subset M(Z), \quad U M(X) \subset U M(Z), \forall Z \in Y(m, \beta, X)$.
(2) Let $\beta>0, \quad X \in Q(m)$. Then $M(X) \subset M(Z), \quad U M(X) \subset U M(Z)$, $\forall Z \in Q(m, \beta, X)$.

Assertion (1) implies that every multiplier type operator on X defines a multiplier type operator on members of $Y(m, \beta, X)$ or $Q(m, \beta, X)$. Assertion (2) and Banach Steinhaus Theorem imply that every approximation process related to $\left\{\psi_{n}\right\}_{n \in N}$ on X, defines an approximation process related to $\left\{\psi_{n}\right\}$ on every $Z \in Y(m, \beta, X)$ or $Q(m, \beta, X)$ with $\mathrm{Cl}(\mathscr{A}, Z)=Z$.

Given a Banach subspace Z of $\mathscr{A}^{\prime}, \delta>0$, we need the notion of the space $\widetilde{Z}_{\delta}=$ relative completion of Z_{δ} in Z, for describing the saturation classes in the theorem given below. For origin of definition of such spaces and for their properties see [14, p. 373], [16], [8]]. $\widetilde{Z}_{\delta}=\left\{f \in Z \mid \quad\right.$ There exists $\left\{f_{n}\right\} \subset Z_{\delta}, \sup _{n \in P}\left\|f_{n}\right\|_{z_{\delta}} \leqq \rho, f_{n} \rightarrow f$ in $\left.Z\right\}$. For $f \in \widetilde{Z}_{\dot{\delta}},\|f\|_{\tilde{z}_{\delta}}=\inf \left\{\rho>0 \mid\left\{f_{n}\right\} \subset Z_{\dot{\delta}}, \sup _{n \in P}^{n \in P}\left\|f_{n}\right\|_{z_{\delta}} \leqq \rho, f_{n} \rightarrow f\right.$ in $\left.Z\right\}$.

Remark. $Z_{\delta} \subset \widetilde{Z}_{\delta}$, on $Z_{\delta}\| \|_{z_{\delta}} \geqq\| \|_{\tilde{z}_{\delta}}$ and $\widetilde{Z}_{\dot{\delta}}=Z_{\delta}$ if Z is reflexive.
Theorem 3.2. Suppose $\rho(\tau) \searrow 0, \tau \rightarrow \tau_{0}$ and $\delta>0, \beta>0$. Suppose $X \in \mathscr{F}(m, \beta)$ be reflexive (resp. $X \in Q(m)$) and $\forall \tau,\left\{\gamma_{\tau, k}\right\}_{k \in N} \in M(X)$ defining $\Gamma_{\tau} \in[X]$. Then we have the following:
(a) If $\forall f \in X_{\partial},\left\|\Gamma_{\tau} f-f\right\|_{X} \leqq C_{1} \rho(\tau)\|f\|_{x_{j}}$, then $\forall Z \in Y(m, \beta, X)$ (resp. $\forall Z \in Q(m, \beta, X))$ we have: $\forall f \in \widetilde{Z}_{\delta},\left\|\Gamma_{\tau} f-f\right\|_{z} \leqq C_{1} \rho(\tau)\|f\|_{\tilde{z}_{\delta}}$.
(b) If $\forall f \in X, \Gamma_{\tau} f \in X_{\dot{\delta}}$ and $\left\|\Gamma_{\tau} f\right\|_{X_{\delta}} \leqq C_{2}(\rho(\tau))^{-1}\|f\|_{X}$, then $\forall Z \in Y(m, \beta, X) \quad$ (resp. $Q(m, \beta, X)$), we have: $\forall f \in Z, \quad \Gamma_{\tau} f \in Z_{\dot{o}}$, and $\left\|\Gamma_{\tau} f\right\|_{z_{j}} \leqq C_{2}(\rho(\tau))^{-1}\|f\|_{Z}$.
(c) If, $\quad \sup _{n}\left\|\sum_{k=0}^{n}(1-k /(n+1))\left\langle f, \psi_{k}\right\rangle \psi_{k}\right\|_{X}<\infty \quad \forall f \in X ; \quad \forall f \in X_{s}$,
$\left\|\Gamma_{\tau} f-f\right\|_{X} \leqq C_{1} \rho(\tau)\|f\|_{X_{\dot{\delta}}}$ and for some $c \neq 0, \frac{1-\gamma_{\tau, k}}{\rho(\tau)} \rightarrow c \lambda_{k}^{\beta}$ as $\tau \rightarrow \tau_{0}$, \forall fixed $k \in N$, then $\forall Z \in Y(m, \beta, X)($ resp.$Q(m, \beta, X))$, we have, for $f \in Z$, $\left\|\Gamma_{\tau} f-f\right\|_{z}=\left\{\begin{array}{l}o(\rho(\tau)) \Leftrightarrow f \in \Lambda \\ O(\rho(\tau)) \Leftrightarrow f \in \widetilde{Z}_{\dot{\sigma}}\end{array}\right.$.

In the following theorem, some sufficient conditions for members of $Y(m, \delta, X), Q(m, \delta, X)$ to be subspaces of \mathscr{A}^{\prime}, are given.

Theorem 3.3. Let X, Y be Banach subspaces of Lebesgue measurable, real or complex valued functions on I such that $X \subset Y^{*}, Y \subset X^{*}$, $\mathrm{Cl}(\mathscr{D}(I), X)=X, \operatorname{Cl}(\mathscr{D}(I), Y)=Y . \quad$ Let $D=\frac{d}{d x}$.
(a) Suppose $\left\|\mathscr{U}^{k} D \psi_{n}\right\|_{L^{2}(I)}=O\left(\left|\lambda_{n}\right|^{s+k}\right)(n, k \in N, s \in P$ independent of n, k). Then $D: \mathscr{A}^{\prime} \rightarrow \mathscr{A}^{\prime}$ is continuous linear operator of \mathscr{A}^{\prime} into \mathscr{A}^{\prime} and hence the spaces under consideration are subspaces of \mathscr{A}^{\prime}.
(b) Suppose $\forall k \in N, 0 \leqq k \leqq m$, $\left\|D^{k} \psi_{n}\right\|_{X \cap X^{*}}=O\left(\left|\lambda_{n}\right|^{s k}\right)\left(s_{k} \in P\right.$, depending only on k). Then $\forall k \in N, 0 \leqq k \leqq m, D^{k}: X+X^{*} \rightarrow \mathscr{A}^{\prime}$ is continuous, $\left\langle D^{k} f, \psi\right\rangle=(-1)^{k}\left\langle f, D^{k} \psi\right\rangle,\left(f \in X+X^{*}, \psi \in \mathscr{A}\right)$.
(c) Suppose $\left\|\psi_{n}\right\|_{X \cap Y}=O\left(\left|\lambda_{n}\right|^{s}\right)(s \in P$, independent of $n \in N)$ and $\forall n \in N$, there exists $n_{n_{1}} \in P,\left\{n_{q}\right\}_{q=1}^{n_{1} n_{1}}$ in N, a finite sequence $\left\{C_{q}^{n}\right\}_{q=0}^{n_{1}}$ of constants with $D \psi_{n}=\sum_{q=0}^{n_{1}} C_{q}^{n} \psi_{n_{q}}$, and $\sum_{q=0}^{n_{1}}\left|C_{q}^{n}\right| \leqq C_{1}\left|\lambda_{n}\right|^{q_{1}}, \sup _{0 \leq q \leq n_{1}}\left|\lambda_{n_{q}}\right| \leqq C_{2}\left|\lambda_{n}\right|^{q_{2}} \quad\left(q_{1}, q_{2} \in P\right.$, $C_{1}>0, C_{2}>0 ; q_{1}, q_{2}, C_{1}, C_{2}$ all independent of $\left.n \in N\right\}$. Then we have (i) $\mathscr{A} \subset X \cap X^{*} ; X, X^{*}, W^{-m}\left(X+X^{*}\right), W^{-m}\left(X_{-\beta}+X_{-\beta}^{*}\right) \beta>0$, are all subspaces of \mathscr{A}^{\prime}. (ii) $\mathrm{Cl}\left(\left\{\psi_{n}\right\}, W^{m, 0}(X)\right)=W^{m, 0}(X)$ and hence $\mathrm{Cl}\left(\mathscr{A}, W^{m, 0}(X)\right)=W^{m, 0}(X)$.
(d) Let $k_{0} \in P\left(k_{0}\right.$ fixed). Suppose $\forall k \in P, 0 \leqq k \leqq m\left\|\mathscr{U}^{k_{0}} D^{k} \psi_{n}\right\|_{X \cap X^{*}}=$ $O\left(\left|\lambda_{n}\right|^{s_{k}, k_{0}}\right)\left(s_{k, k_{0}} \in P\right.$, depending only on $\left.k, k_{0}\right)$. Then $\forall k \in P, 0 \leqq k \leqq m$, $D^{k} \mathscr{U}^{k_{0}}: X+X^{*} \rightarrow \mathscr{A}^{\prime}$ is continuous. Hence $W^{-m}\left(X_{-k_{0}}+X_{-k_{0}}^{*}\right) \subset \mathscr{A}^{\prime}$.
4. In this section, we state and prove certain lemmas needed in the proof of main results of $\S 3$.

Lemma 4.1. Let X be a Banach subspace of $\mathscr{D}^{\prime}(I)$ and $\mathrm{Cl}(\mathscr{D}(I), X)=X$. Then (a) $\left(W^{m, 0}(X)\right)^{*}=W^{-m}\left(X^{*}\right)$ with equivalent norms, (b) If X is reflexive then $W^{m, 0}(X)$ is reflexive.

Proof. (a) Proof of (a) is analogous to that of Prop. 31.3, p. 325 Treves [31];
(b) Let X be reflexive. $W^{m, 0}(X)$ is reflexive since $W^{m, 0}(X)$ can be embedded as a closed linear subspace of the reflexive space $E=X \times X \cdots \times X$ under the norm $\|f\|_{E}=\sum_{i=0}^{m}\left\|f_{i}\right\|_{X}$ with $f=\left(f_{0}, f_{1}, \cdots, f_{m}\right) \in E$.

Lemma 4.2. Let X, Y be Banach subspaces of $\mathscr{D}^{\prime}(I)$. Then there exists an extension of $T \in[X, Y], \bar{T}, \bar{T} \in\left[W^{-m}(X), W^{-m}(Y)\right]$ such that $\|\bar{T}\| \leqq\|T\|$ and when $\mathrm{Cl}(\mathscr{D}(I), X)=X ; \bar{T}$ is uniquely determined.

Proof. On $f \in W^{-m}(X)$, define \bar{T} by $\bar{T} f=T\left(\sum_{j=0}^{m} D^{j} f_{j}\right)=\sum_{j=0}^{m} D^{j} T f_{j}$. This definition is independent of the representation of f, since $f=$ $\sum_{j=0}^{m} D^{j} f_{j}=\sum_{j=0}^{m} D^{j} g_{j}$ implies $0=\bar{T} 0=\bar{T}\left(\sum_{j=0}^{m} D^{j}\left(f_{j}-g_{j}\right)\right)=\sum_{j=0}^{m} D^{j} T f_{j}-\sum_{j=0}^{m} D^{j} T g_{j}$. Also, for $f=\sum_{j=0}^{m} D^{j} f_{j}, f_{j} \in X, 0 \leqq j \leqq m,\|\bar{T} f\|_{W^{-m(Y)}} \leqq \sum_{j=0}^{m}\left\|T f_{j}\right\|_{Y} \leqq\|T\| \sum_{j=0}^{m}\left\|f_{j}\right\|_{X}$. Hence $\|\bar{T}\| \stackrel{j=0}{\leqq}\|T\|$. Uniqueness of \bar{T} follows from $\mathrm{Cl}(\mathscr{D}(I), X) \stackrel{ }{=} X$.

Lemma 4.3. Let $Z \in \mathscr{F}(m)$ and $\delta>0$ then (a) $\mathrm{Cl}\left(\mathscr{A}, Z_{\dot{\delta}}\right)=Z_{\dot{\delta}} \subset Z, Z_{\dot{\delta}}$ is Banach space. (b) $\left(Z_{\delta}\right)^{*}=\left(Z^{*}\right)_{-\delta} Z^{*} \subset\left(Z^{*}\right)_{-\delta}$. (c) $\mathrm{Cl}\left(\mathscr{A}, Z^{*}\right)=Z^{*}$ implies $\mathrm{Cl}\left(\mathscr{A},\left(Z^{*}\right)_{-\delta}\right)=\left(Z^{*}\right)_{-\delta}$. (d) For $0<\alpha<\delta$, we have $Z_{\delta} \subset Z_{\alpha}, Z_{-\alpha}^{*} \subset Z_{-\delta}^{*}$. (e) If Z is reflexive, so is Z_{δ}. (f) $M(Z) \subset M\left(W^{-m}(Z)\right)$. (g) $W^{-m}\left(Z_{\delta}\right)=\left(W^{-m}(Z)\right)_{\delta}$. (h) $Z^{*} \in \mathscr{F}(m)$ and Z reflexive imply $\left(W^{-m}\left(Z_{\dot{\delta}}\right)\right)^{*}=\left(W^{m, 0}\left(Z^{*}\right)\right)_{-\delta}(\mathrm{i})\left(Z_{-\dot{\delta}}^{*}\right)_{\delta}=Z^{*}$; $\left(Z_{\delta}\right)_{-\delta}=Z$. Here $Z_{-\dot{\delta}}^{*}$ denotes $\left(Z^{*}\right)_{-\dot{\delta}}$.

Proof. For $\hbar_{i} \in Z$, let $\phi_{h}=\sum_{k=0}^{l}\left\langle\hbar, \psi_{i_{k}}\right\rangle \psi_{i_{k}}$. Then $\phi_{\hbar} \in \Lambda$ and $\left\|\phi_{h}\right\|_{Z} \leqq$ $C\|\hbar\|_{Z}$, with $C=\sum_{k=0}^{l}\left\|\psi_{i_{k}}\right\|_{Z^{*}}\left\|\psi_{i_{k}}\right\|_{Z}$. (a) Clearly $\mathscr{A} \subset Z_{\bar{\delta}} \subset Z$. For $f \in Z_{\dot{\delta}}$, $\mathscr{U}^{\delta} f \in Z$ and since $\operatorname{Cl}(\mathscr{A}, Z)=Z$, for $\rho>0$ there exists $\phi \in \mathscr{A}$ for which $\left\|\mathscr{U}^{\delta} f-\phi\right\|_{z} \leqq \rho$. If $g=\mathscr{U}^{\delta} f-\phi$, then $\left\|g-\phi_{g}\right\| \leqq(1+C) \rho, f-\phi_{f}-G_{\dot{\delta}} \phi=G_{\dot{\delta}} g$. $\left\|f-\left(\phi_{f}+G_{\dot{\delta}} \phi\right)\right\|_{Z_{j}} \leqq\left(\left\|G_{\dot{\delta}}\right\|+1+C\right) \rho, G_{\dot{\delta}} \phi \in \mathscr{A}$. Hence $\operatorname{Cl}\left(\mathscr{A}, Z_{\dot{\delta}}\right)=Z_{\dot{j}}$. Since $\mathscr{U}^{\dot{\delta}}$ is closed on Z_{δ} and Z is complete, Z_{δ} is Banach.
(b) The map $T: Z_{\dot{\delta}} \rightarrow Z \times Z$, given by $T f=\left(f, \mathscr{U}^{\circ} f\right)$, $f \in Z_{\delta}$ is an isometry. $T^{*}: Z^{*} \times Z^{*} \rightarrow\left(Z_{\bar{\delta}}\right)^{*}$ is onto by Hahn-Banach Theorem. For $f \in Z_{-\dot{\delta}}^{*}$ with $f=f_{0}+\mathscr{U}^{\delta} f_{1}, f_{0}, f_{1} \in Z^{*}$, define \bar{f} on Z_{δ} given by $\bar{f}(\phi)=$ $\left\langle f_{0}, \phi\right\rangle+\left\langle f_{1}, \mathscr{U}^{\dot{\delta}} \phi\right\rangle,\left(\phi \in Z_{\delta}\right) . \bar{f}$ is well defined and $\bar{f} \in\left(Z_{\dot{\delta}}\right)^{*}$. The map $I: Z_{-j}^{*} \rightarrow\left(Z_{\delta}\right)^{*}$ given by $I(f)=\bar{f}, f \in Z_{-\delta}^{*}$, is one to one. We prove that I is onto: Let $f \in\left(Z_{\delta}\right)^{*}$. Since T^{*} is onto, there exists $h_{0}, h_{1} \in Z^{*}$ such that $T^{*}\left(h_{0}, h_{1}\right)=f$. Define $v \in Z_{-\dot{\delta}}^{*}$ as $v=h_{0}+\mathscr{U}^{\delta} \hbar_{1}$. Then $I v=f$. Hence $Z_{-\delta}^{*}=\left(Z_{i}\right)^{*}$. It is easy to prove (c) and the fact $Z^{*} \subset Z_{-\delta}^{*} \subset \mathscr{A}^{\prime}$.
(d) Let $0<\alpha<\delta$. For $f \in Z_{\dot{\delta}}$, $\mathscr{U}^{\alpha} f=G_{\delta-\alpha} \mathscr{U}^{j} f \in Z$. Hence $Z_{\dot{j}} \subset Z_{\alpha}$. $\mathscr{A} \subset Z_{\dot{\delta}} \subset Z_{\alpha}$ and $\mathrm{Cl}\left(\mathscr{A}, Z_{\alpha}\right)=Z_{\alpha}$ imply $\mathrm{Cl}\left(Z_{\delta}, Z_{\alpha}\right)=Z_{\alpha}$. Hence $Z_{-\alpha}^{*} \subset Z_{-\dot{\delta}}^{*} \subset \mathscr{A}^{\prime}$.
(e) If Z is reflexive, so is Z_{δ}, as Z_{δ} can be embedded as a strongly closed subspace of $Z \times Z$.
(f)

Figure 1.

In this diagram, \rightarrow (resp. \rightarrow) denotes the direction to which proof proceeds, taking transpose (resp. extension) of the operator under consideration:
$\mathrm{Cl}\left(\mathscr{A}, W^{-m}(Z)\right)=W^{-m}(Z) \subset \mathscr{A}^{\prime}$. Hence $\mathscr{A} \subset\left(W^{-m}(Z)\right)^{*} \subset \mathscr{A}^{\prime}$. Let $\left\{\gamma_{k}\right\} \in M(Z)$ defining $T \in[Z]$. By Lemma 4.2 there exists $\bar{T} \in\left[W^{-m}(Z)\right] . \bar{T}^{*} \in\left[\left(W^{-m}(Z)\right)^{*}\right]$ such that $\left\langle\bar{T}^{*} f, \psi_{k}\right\rangle=\left\langle f, T \psi_{k}\right\rangle=\gamma_{k}\left\langle f, \psi_{k}\right\rangle,\left(k \in N, f \in\left(W^{-m}(Z)\right)^{*}\right)$. Hence $\left\{\gamma_{k}\right\}_{k \in N} \in M\left(\left(W^{-m}(Z)\right)^{* *}\right)$ defining $\bar{T}^{* *} \in\left[\left(W^{-m}(Z)\right)^{* *}\right]$. Since $\bar{T}^{* *} f=\bar{T} f$ $\forall f \in W^{-m}(Z),\left\{\gamma_{k}\right\}_{k \in N} \in M\left(W^{-m}(Z)\right)$ defining $\bar{T} \in\left[W^{-m}(Z)\right]$.
(g) Let $f \in W^{-m}\left(Z_{\dot{\delta}}\right) . \quad f=\phi_{f}+\sum_{j=0}^{m} D^{j} G_{\dot{\delta}} g_{j}$ with $\phi \in \Lambda, g_{j} \in Z, 0 \leqq j \leqq m$. By (f) of this lemma, $f=\phi_{f}+G_{j}\left[\sum_{j=0}^{m} D^{j} g_{j}\right]$. This implies $\mathscr{U}^{\delta} f=\sum_{j=0}^{m} D^{j} g_{j} \in W^{-m}(Z)$ thus $W^{-m}\left(Z_{\dot{\delta}}\right) \subset\left(W^{-m}(Z)\right)_{\dot{\delta}}$. Conversely, let $f \in\left(W^{-m}(Z)\right)_{j} . \quad$ Then $\mathscr{U}^{j} f=$ $\sum_{j=0}^{m} D^{j} g_{j} \in W^{-m}(Z) ; g_{j} \in Z, 0 \leqq j \leqq m$. This implies $f=\phi_{f}+G_{j}\left(\sum_{j=0}^{m} D^{j} g_{j}\right)=$ $\phi_{f}+\sum_{j=0}^{m} D^{j} G_{\delta} g_{j} \in W^{-m}\left(Z_{i}\right)$, with $\phi_{f} \in \Lambda$. Hence $\left(W^{-m}(Z)\right)_{\dot{\delta}} \subset W^{-m}\left(Z_{\dot{\delta}}\right)$.
(h) Since $Z^{*} \in \mathscr{F}(m)$ and Z reflexive $W^{m, 0}\left(Z^{*}\right)$ is reflexive. The rest follows by steps similar to those of (b) of this lemma.
(i) $\forall f \in Z^{*}, f, \mathscr{U}^{\delta} f \in Z_{-\dot{d}}^{*}$. Hence $f \in\left(Z_{-\dot{b}}^{*}\right)_{o}$ and $\|f\|_{\left(Z_{-\dot{\delta})}^{*}\right.} \leqq 2\|f\|_{Z^{*}}$ This gives $Z^{*} \subset\left(Z_{-\sigma_{j}}^{*}\right)_{\delta} . \quad \forall f \in\left(Z_{-\delta}^{*}\right)_{\partial}, \mathscr{U}^{\delta} f \in Z_{-\dot{\delta}}^{*}$. Hence $\mathscr{U}^{\delta} f=f_{0}+\mathscr{U}^{\delta} f_{1}$, $f_{0}, f_{1} \in Z^{*}$ or $f=\phi_{f+f_{1}}+G_{\delta} f_{0}+f_{1}, \quad \phi_{f+f_{1}} \in \Lambda$. Hence $f \in Z^{*},\|f\|_{Z^{*}} \leqq$ $C_{1}\left(1+\left\|G_{\dot{\delta}}\right\|\right)\|f\|_{\left(Z_{-\dot{-})}^{*}\right)^{*}}$ This gives $\left(Z_{-\dot{\delta}}^{*}\right)_{\delta} \subset Z^{*}$. Hence $\left(Z_{-\dot{\delta}}^{*}\right)_{\delta}=Z^{*}$. The identity $\left(Z_{\delta}\right)_{-\delta}=Z$ is easy to prove.

Lemma 4.4. Suppose X, Y be Banach subspaces of \mathscr{A}^{\prime} each containing \mathscr{A} as a dense subspace and for $\delta>0,\left\{\nu_{k, \delta}\right\}_{k \in N} \in M(X) \cap M(Y)$. Then for $\left.\begin{array}{l}0<\theta<1,1 \leqq q<\infty \\ 0 \leqq \theta \leqq 1, q=\infty\end{array}\right\}\left((X, Y)_{\theta, q}\right)_{\delta}=\left(X_{\delta}, Y_{\delta}\right)_{\theta, q} ;\left(\left(X^{*}, Y^{*}\right)_{\theta, q}\right)_{-\delta}=\left(X_{-\dot{\delta}}^{*}, Y_{-\dot{\delta}}^{*}\right)_{\theta, q}$.

Proof. For $f \in\left((X, Y)_{\theta, q}\right)_{\delta}$, taking $\mathscr{C}^{\delta} f=f_{1}+f_{2}$, with $f_{1} \in X, f_{2} \in Y$, we can prove for $0<t<\infty, K\left(t, f, X_{\dot{\delta}}, Y_{\delta}\right) \leqq\left(1+\left\|G_{\dot{\delta}}\right\|_{[X]}+\left\|G_{\dot{\delta}}\right\|_{[Y]}\right) K\left(t, \mathscr{U}^{\delta} f, X, Y\right)$. This implies $\left((X, Y)_{\theta, q}\right)_{\delta} \subset\left(X_{\dot{\delta}}, Y_{\delta}\right)_{\theta, q}$. Conversely for $f \in\left(X_{\delta}, Y_{\delta}\right)_{\theta, q}$ with $f=f_{1}+f_{2}, f_{1} \in X_{\delta}, f_{2} \in Y_{\delta}$, we can prove, for $0<t<\infty, K(t, f, X, Y) \leqq$ $K\left(t, f, X_{\delta}, Y_{\delta}\right) ; K\left(t, \mathscr{U}^{\delta} f, X, Y\right) \leqq K\left(t, f, X_{\delta}, Y_{\delta}\right)$. This gives $\left(X_{\dot{\delta}}, Y_{\dot{\delta}}\right)_{\theta, q} \subset$ $\left((X, Y)_{\theta, q}\right)_{\delta}$. Hence the first identity.

$$
\left(\left(X^{*}, Y^{*}\right)_{\theta, q}\right)_{-\delta}=\left(\left(\left(X_{-\delta}^{*}\right)_{j},\left(Y_{-\delta}^{*}\right)_{j}\right)_{\theta, q}\right)_{-\delta}=\left(\left(\left(X_{-\delta}^{*}, Y_{-\delta}^{*}\right)_{\theta, q}\right)_{\delta}\right)_{-\delta}=\left(X_{-\delta}^{*}, Y_{-\delta}^{*}\right)_{\theta, q} .
$$

Lemma 4.5. Let X, Y be Banach subspaces of \mathscr{A}^{\prime} such that \mathscr{A} is dense in both X and $Y^{*}, \mathscr{A} \subset Y, W^{-m}\left(Y^{*}\right) \subset \mathscr{A}^{\prime}$. Then
(a) $M(X, Y) \subset M\left(W^{-m}\left(Y^{*}\right), W^{-m}\left(X^{*}\right)\right) \subset M\left(\left(W^{-m}\left(X^{*}\right)\right)^{*},\left(W^{-m}\left(Y^{*}\right)\right)^{*}\right)$
(b) $U M(X, Y) \subset U M\left(W^{-m}\left(Y^{*}\right), W^{-m}\left(X^{*}\right)\right) \subset U M\left(\left(W^{-m}\left(X^{*}\right)\right)^{*},\left(W^{-m}\left(Y^{*}\right)\right)^{*}\right)$.
$\operatorname{Prooj} . \mathrm{Cl}\left(\mathscr{A}, W^{-m}\left(Y^{*}\right)\right)=W^{-m}\left(Y^{*}\right)$ and $\mathrm{Cl}\left(W^{-m}\left(Y^{*}\right), \mathscr{A}^{\prime}\right)=\mathscr{A}^{\prime}$.

$\bar{\Gamma}^{* *} I_{1}=I_{2} \bar{\Gamma}, I_{1}, I_{2}$ are identity maps.
Figure 2.
Hence $\mathscr{A} \subset\left(W^{-m}\left(Y^{*}\right)\right)^{*} \subset \mathscr{A}^{\prime}$. It is enough to prove (a). $M(X, Y) \subset$ $M\left(Y^{*}, X^{*}\right)$. Let $\left\{\delta_{k}\right\}_{k \in P} \in M\left(Y^{*}, X^{*}\right)$ defining $\Gamma \in\left[Y^{*}, X^{*}\right]$. By Lemma 4.2, there exists $\bar{\Gamma} \in\left[W^{-m}\left(Y^{*}\right), W^{-m}\left(X^{*}\right)\right]$. It is easy to check that $\left\{\delta_{k}\right\}_{k \in P} \in M\left(\left(W^{-m}\left(X^{*}\right)\right)^{*},\left(W^{-m}\left(Y^{*}\right)\right)^{*}\right)$ defining $\bar{\Gamma}^{*} \in\left[\left(W^{-m}\left(X^{*}\right)\right)^{*},\left(W^{-m}\left(Y^{*}\right)\right)^{*}\right]$. $\bar{\Gamma}^{* *} \in\left[\left(W^{m}\left(Y^{*}\right)\right)^{* *},\left(W^{-m}\left(X^{*}\right)\right)^{* *}\right]$ and $\bar{\Gamma}^{* *} f=\bar{\Gamma} f \forall f \in W^{-m}\left(Y^{*}\right)$. Hence $\left\{\delta_{k}\right\}_{k \in N} \in M\left(W^{-m}\left(Y^{*}\right), W^{-m}\left(X^{*}\right)\right)$ defining $\bar{\Gamma} \in\left[W^{-m}\left(Y^{*}\right), W^{-m}\left(X^{*}\right)\right]$ and $\|\bar{\Gamma}\| \leqq\|\Gamma\|$. (Refer Lemma 4.3.f for symbols $\rightarrow,(\rightarrow)$).

Corollary 4.1. Let $X \in \mathscr{F}(m)$ and $\operatorname{Cl}\left(\mathscr{A}, X^{*}\right)=X^{*}$. Then for $0<\theta<1,1 \leqq q \leqq \infty$
(i) $\quad M(X) \subset M\left(W^{m, 0}(X)\right) \cap M\left(W^{-m}(X)\right) \subset M\left(\left(W^{-m}(X), W^{m, 0}(X)\right)_{\theta, q}\right)$
(ii) $\quad U M(X) \subset U M\left(W^{m, 0}(X)\right) \cap U M\left(W^{-m}(X)\right) \subset U M\left(\left(W^{m}(X), W^{m, 0}(X)\right)_{\theta, q}\right)$.

Proof. Apply Lemma 4.5 and Theorem 3.2.23, [13, p. 180].
Lemma 4.6. (a) Suppose $Z \in \mathscr{F}(m, \delta)$, for some $\delta>0$. Then
(1) $\left\{\nu_{k, \delta}\right\} \in M\left(Z, Z_{j}\right) \subset M\left(Z_{-\dot{d}}^{*}, Z^{*}\right) \subset M\left(W^{-m}\left(Z_{-\dot{\delta}}^{*}\right), W^{-m}\left(Z^{*}\right)\right)$, $\left\{\nu_{k, b}\right\} \in M\left(W^{m, 0}\left(Z_{-\delta}^{*}\right), W^{m, 0}\left(Z^{*}\right)\right)$
(2) $\left(W^{-m}\left(Z_{-\dot{\delta}}^{*}\right)\right)_{\delta}=W^{-m}\left(Z^{*}\right)$
(3) $W^{-m}\left(Z_{-\delta}^{*}\right)=\left(W^{-m}\left(Z^{*}\right)\right)_{-\delta}$
(b) If, in addition Z is reflexive then
(1) $\left(W^{m, 0}(Z)\right)_{\delta}=\left(W^{-m}\left(Z_{-\dot{j}}^{*}\right)\right)^{*}$
(2) $\left\{\nu_{k, \delta}\right\} \in M\left(E, E_{\delta}\right) \forall E \in Y(m, \delta, Z)$
(3) $W^{m, 0}\left(Z_{-\delta}^{*}\right)=\left(W^{m, 0}\left(Z^{*}\right)\right)_{-\delta}$
(4) $U M(Z) \subset U M\left(E_{-\delta}\right)$
where $E=$ any one of $Z^{*}, W^{-m}\left(Z^{*}\right), W^{m, 0}\left(Z^{*}\right),\left(W^{-m}\left(Z^{*}\right), W^{m, 0}\left(Z^{*}\right)\right)_{\theta, q}$ $0<\theta<1,1 \leqq q \leqq \infty$.

Proof. (a) (1) Follows from Lemma 4.5 and by similar steps as in the proof of Lemma 4.3 (f).
(2) $W^{-m}\left(Z^{*}\right) \subset W^{m}\left(Z_{-j}^{*}\right)$. For $f \in W^{-m}\left(Z^{*}\right)$ with $f=\sum_{j=0}^{m} D^{j} f_{j}, f_{j} \in Z^{*}$, $0 \leqq j \leqq m$, let $g_{\delta}(f)=\sum_{j=0}^{m} D^{j} \mathscr{U}^{\delta} f_{j} \in W^{-m}\left(Z_{-\delta}^{*}\right) ; f=\phi+G_{\delta}\left(g_{\delta}(f)\right)$ with $\phi \in \Lambda$,
$\mathscr{U}^{\delta}{ }^{\delta} f=g_{\dot{\delta}}(f) \in W^{-m}\left(Z_{-j}^{*}\right)$. Thus, $W^{-m}\left(Z^{*}\right) \subset\left(W^{-m}\left(Z_{-\delta}^{*}\right)\right)_{\delta}$. For $f \in\left(W^{-m}\left(Z_{-\delta}^{*}\right)\right)_{\delta}$, $\mathscr{U}^{\delta} f \in W^{-m}\left(Z_{-\dot{\delta}}^{*}\right)$. By (1), $f=\phi_{f}+G_{\delta}\left(\mathscr{U}^{\delta} f\right) \in W^{-m}\left(Z^{*}\right)$ with $\phi_{f} \in \Lambda$. Thus $\left(W^{-m}\left(Z_{-\dot{\delta}}^{*}\right)\right)_{\delta} \subset W^{-m}\left(Z^{*}\right)$.
(3) $\quad\left(W^{-m}\left(Z^{*}\right)\right)_{-\delta}=\left(\left(\left(W^{-m}\left(Z_{-\dot{\delta}}^{*}\right)\right)_{\delta_{0}}\right)_{-\delta}=W^{-m}\left(Z_{-\dot{\delta}}^{*}\right)\right.$.
(b) (1) If Z is reflexive, so are $W^{m, 0}(Z)$ and $\left(W^{m, 0}(Z)\right)_{\partial}$. Hence $\left.\left(W^{m, 0}(Z)\right)_{\dot{\delta}}=\left[\left(W^{m, 0}(Z)\right)_{\dot{\delta}}\right]^{* *}=\left(\left(W^{m, 0}(Z)\right)_{\dot{\delta}}\right)^{*}\right)^{*}=\left(\left(W^{-m}\left(Z^{*}\right)\right)_{-\delta}\right)^{*}=\left(W^{-m}\left(Z_{-\dot{\delta}}^{*}\right)\right)^{*}$.
(2) Follows from Lemma 4.5 by letting $X=Z, Y=Z_{\delta}$, and $X=Z_{-\delta}^{*}$, $Y=Z^{*}$, and by Theorem 3.2.23, in [13] and by Lemma 4.4.
(3) $W^{m, 0}\left(Z_{-\dot{\delta}}^{*}\right)=\left(W^{-m}\left(Z_{\delta}\right)\right)^{*}=\left(\left(W^{-m}(Z)\right)_{\delta}\right)^{*}=\left(W^{-m}(Z)\right)_{-_{\delta}}^{*}=\left(W^{m, 0}\left(Z^{*}\right)\right)_{-\delta}$.
(4) Let $\left\{\delta_{k}\right\}_{k \in N} \in M\left(Z^{*}\right)$ defining $\Gamma \in\left[Z^{*}\right]$. For $f \in Z_{-\delta}^{*}$ with $f=f_{0}+\mathscr{U}^{\circ}{ }^{\circ} f_{1}$, $f_{0}, f_{1} \in Z^{*}$. Define $\bar{\Gamma} f=\Gamma f_{0}+\mathscr{U}^{\delta} \Gamma f_{1}$. It is easy to check that $\left\{\delta_{k}\right\}_{k \in N} \in M\left(Z_{-\delta}^{*}\right)$ defining $\bar{\Gamma} \in\left[Z_{-\dot{j}}^{*}\right], M(Z) \subset M\left(Z_{-\dot{\delta}}^{*}\right), U M(Z) \subset U M\left(Z_{-\dot{\delta}}^{*}\right)$. The rest follows from Lemma 4.5, Lemma 4.4 and from [13, Theorem 3.3.23].

Using the definition of $M(X, Y)$ we like to give a simple characterization of elements of $M\left(X_{\delta}, X\right)$ for a Banach subspace X of \mathscr{A}^{\prime} and $\delta>0$.

Indeed, for $\left\{\gamma_{k}\right\} \in M\left(X_{\delta}, X\right)$ defining $\Gamma \in\left[X_{\delta}, X\right]$. We have, for every $f \in X, G_{\delta} f \in X_{\delta}$ and hence $\Gamma\left(G_{\delta} f\right) \in X$. Thus $\left\{\gamma_{k} \nu_{k, \delta}\right\}_{k \in N} \in M(X)$ defining $\Gamma G_{\dot{\delta}} \in[X]$ with $\left\|\Gamma G_{\dot{\delta}}\right\|_{[x]} \leqq\|\Gamma\|_{\left[x_{i}, x\right]}\left(C+\left\|G_{\dot{\delta}}\right\|_{[x]}\right)$ (C an independent constant). This gives $\gamma_{k}=\delta_{k} \lambda_{k}^{\delta}\left(k \in N, k \neq i_{0}, \cdots, i_{l}\right)$ for some $\left\{\delta_{k}\right\} \in M(X)$ with $\left\|\left\{\delta_{k}\right\}\right\|_{M(X)} \leqq C_{1}\left\|\left\{\gamma_{k}\right\}\right\|_{M\left(X_{\delta}, X\right)}$. Conversely, for $\left\{\eta_{k}\right\} \in M(X),\left\{\eta_{k} \lambda_{k}^{\delta}\right\} \in M\left(X_{\dot{\delta}}, X\right)$ with $\left\|\left\{\eta_{k} \lambda_{k}^{\delta}\right\}\right\|_{M_{\left(X_{\delta}, X\right)}} \leqq\left\|\left\{\eta_{k}\right\}\right\|_{M(X)}$.

Thus we have proved the following:
Lemma 4.7. Let X be a Banach subspace of \mathscr{A}^{\prime} and $\delta>0$. Then $\left\{\gamma_{k}\right\} \in M\left(X_{\dot{\delta}}, X\right)$ if and only if there exists $\left\{\eta_{k}\right\} \in M\left(X_{\dot{\delta}}, X\right)$ satisfying

$$
\gamma_{k}=\delta_{k} \lambda_{k}^{\delta} \quad\left(k \in N, k \neq i_{0}, \cdots, i_{l}\right) .
$$

In this case

$$
\left\|\left\{\gamma_{k}\right\}\right\|_{M\left(X_{\tilde{j}}, X\right)} \leqq\left\|\left\{\eta_{k}\right\}\right\|_{M(X)} \leqq e_{1}\left\|\left\{\gamma_{k}\right\}\right\|_{M\left(X_{\dot{\delta}}, X\right)}
$$

5. In this section we present the proofs of our main results, utilizing the techniques developed and results obtained in §4.

Proof of Theorem 3.1. (1) Let $\delta>0, X \in \mathscr{F}(m, \delta)$ be reflexive. Then $Y\left(=\right.$ any one of $\left.X, X^{*},\left(X, X^{*}\right)_{\theta, q}, 0<\theta<1,1<q<\infty\right)$, and $Y_{-\delta} \in \mathscr{F}(m)$ and are reflexive. Hence (1) follows from Corollary 4.1 and Lemma 4.6(b).
(2) For $Z \in \mathscr{F}(m), U M(Z) \subset U M\left(Z_{\delta}\right)$ since, for a multiplier type $\Gamma \in[Z]$ and $f \in Z, \Gamma\left(\mathscr{U}^{\delta} f\right)=\mathscr{U}^{\delta}(\Gamma f)$ in \mathscr{A}^{\prime}. Hence, $\|\Gamma f\|_{z_{j}} \leqq\|\Gamma\|\|f\|_{z_{j}},\left(f \in Z_{\delta}\right)$. For $X \in Q(m) U M(X) \subset U M\left(X^{*}\right)$. Since $\operatorname{Cl}\left(\left[\left\{\psi_{n}\right\}\right], X^{\prime}\right)=X^{\prime} \subset X^{*}, U M\left(X^{*}\right) \subset U M\left(X^{\prime}\right)$. If $E=$ either X or X^{\prime}, we have $U M(X) \subset U M(E) \subset U M\left(E^{*}\right)$ and $U M(X) \subset$
$U M(E) \subset U M\left(E_{\delta}\right) \subset U M\left(E_{-\delta}^{*}\right)$. The rest of the theorem follows from Lemma 4.3 (f) and by [13, Theorem 3.2.23].

Proof of Theorem 3.2. Let $\rho(\tau) \searrow 0$ as $\tau \rightarrow \tau_{0}$. Let $\beta>0, \delta>0, X$, $\left\{\gamma_{\tau, k}\right\}, \Gamma_{\tau}$ be as given in Theorem 3.2.
(a) The inequality $\left\|\Gamma_{\tau} f-f\right\|_{X} \leqq C_{1} \rho(\tau)\|f\|_{X_{\delta}}$ for every $f \in X_{\delta}$ implies $\left\{\frac{\gamma_{\tau, k}-1}{\rho(\tau)}\right\} \in U M\left(X_{i}, X\right)$, with

$$
\sup _{\tau}\left\|\left\{\frac{\gamma_{\tau, k}-1}{\rho(\tau)}\right\}\right\|_{M\left(X_{\delta}, X\right)} \leqq \sup _{\tau}\left\|\frac{\Gamma_{\tau}-I}{\rho(\tau)}\right\|_{\left[X_{\delta}, X\right]}<d_{1}<\infty
$$

By Lemma 4.7, for each τ, there exists $\left\{\eta_{\tau, k}\right\} \in M(X)$ satisfying

$$
\frac{\gamma_{\tau, k}-1}{\rho(\tau)}=\eta_{\tau, k} \lambda_{k}^{\delta} \quad\left(k \in N, k \neq i_{0}, \cdots, i_{l}\right)
$$

with

$$
\sup _{\tau}\left\|\left\{\eta_{\tau, k}\right\}\right\|_{M(X)} \leqq e_{1} \sup _{\tau}\left\|\left\{\frac{\gamma_{\tau, k}-1}{\rho(\tau)}\right\}\right\|_{M\left(X_{\delta}, X\right)}<e_{1} d_{1}<\infty .
$$

By Theorem 3.1 we have, $\left\{\eta_{\tau, k}\right\} \in U M(Z)$. By Lemma 4.7 we have, for $Z \in Y(m, \beta, X)(\operatorname{resp} . Q(m, \beta, X)),\left\{\frac{\gamma_{\tau, k}-1}{\rho(\tau)}\right\} \in U M\left(Z_{\delta}, Z\right)$, i.e. $\forall f \in Z_{\delta}$ $\left\|\Gamma_{\tau} f-f\right\|_{z} \leqq C_{11} \rho(\tau)\|f\|_{Z_{\delta}}$. For $Z \in Y(m, \beta, X), Z$ is reflexive and hence $\widetilde{Z}_{\delta}=Z_{\dot{\delta}}$. We have proved (a) for $Z \in Y(m, \beta, X)$. In order to prove that $\left\{\Gamma_{\tau}\right\}$ satisfies Jackson-type inequality of order $\rho(\tau)$ on Z with respect to $\widetilde{Z}_{\dot{\delta}}$ for $Z \in Q(m, \beta, X)$, we have to prove that, $\left\{\frac{\gamma_{\tau, k}-1}{\rho(\tau)}\right\} \in U M\left(\widetilde{Z}_{\dot{\delta}}, Z\right)$ $\forall Z \in Q(m, \beta, X)$. Let $Z \in Q(m, \beta, X)$. $\forall \tau,\left\{\frac{\gamma_{\tau, k}-1}{\rho(\tau)}\right\} \in M(X)$. Hence, by Theorem 3.1 $\left\{\frac{\gamma_{\tau, k}-1}{\rho(\tau)}\right\} \in M(Z)$, defining $\left\{\frac{\Gamma_{\tau}-I}{\rho(\tau)}\right\} \in[Z], \forall \tau$. For $f \in \widetilde{Z}_{\delta}$, there exists a sequence $\left\{f_{n}\right\}$ in Z_{δ} such that $\sup _{n \in P}\left\|f_{n}\right\|_{z_{\delta}} \leqq 2\|f\|_{\tilde{z}_{\delta}}$ and $f_{n} \rightarrow f$ in Z. This implies $\forall \tau, \frac{\Gamma_{\tau} f_{n}-f_{n}}{\rho(\tau)} \rightarrow \frac{\Gamma_{\tau} f-f}{\rho(\tau)}$ in Z and $\left\|\frac{\Gamma_{\tau} f-f}{\rho(\tau)}\right\|_{Z} \leqq$ $\limsup _{n \in P}\left\|\frac{\Gamma_{\tau} f_{n}-f_{n}}{\rho(\tau)}\right\|_{Z} \leqq C_{11} \sup _{n}\left\|f_{n}\right\|_{z_{\delta}} \leqq 2 C_{11}\|f\|_{\tilde{z}_{\dot{\delta}}}$.
(b) Let $Z \in Y(m, \beta, X)$ (resp. $Q(m, \beta, X)$). By hypothesis (b), we have: $\forall f \in X, \Gamma_{\tau} f \in X_{\delta}$ and $\left\|\Gamma_{\tau} f\right\|_{x_{\delta}} \leqq C_{2}(\rho(\tau))^{-1}\|f\|_{X}$; i.e. $\left\|\rho(\tau) \mathscr{U}^{\delta} \Gamma_{\tau} f\right\|_{X} \leqq$ $\rho(\tau)\left\|\Gamma_{\tau} f\right\|_{X_{\delta}} \leqq C_{2}\|f\|_{x}$; i.e. $\left\{\rho(\tau) \lambda_{k}^{\delta} \gamma_{\tau, k}\right\} \in U M(X)$. By Theorem 3.1, $\left\{\rho(\tau) \lambda_{k}^{\delta} \gamma_{\tau, k}\right\} \in U M(Z)$ i.e. $\rho(\tau)\left\|\mathscr{U}^{\delta} \Gamma_{\tau} f\right\|_{Z} \leqq C_{2}\|f\|_{Z}$ for every $f \in Z$. By Theorem 3.1, $\left\{\boldsymbol{\nu}_{k, \delta}\right\} \in M(Z)$ defining $G_{\delta} \in[Z] . \quad \forall f \in Z, \rho(\tau) \Gamma_{\tau} f=G_{\delta}\left[\rho(\tau) \mathscr{U}^{\delta} \Gamma_{\tau} f\right]+$
$\rho(\tau) \Gamma_{\tau} \phi_{f}, \phi_{f}=\sum_{k=0}^{l}\left\langle f, \psi_{i_{k}}\right\rangle \psi_{i_{k}} \in \Lambda$. Hence $\rho(\tau)\left\|\Gamma_{\tau} f\right\|_{z_{\delta}} \leqq\left(A+\left\|G_{\beta}\right\|\right)\|f\|_{z}$, $f \in Z, A \equiv A\left(\psi_{i_{k}} \cdots \psi_{i_{l}}\right)>0$. Hence $\forall f \in Z, \Gamma_{\tau} f \in Z_{\delta},\left\|\Gamma_{\tau} f\right\|_{Z_{\delta}} \leqq C_{22}(\rho(\tau))^{-1}\|f\|_{z}$.
(c) Let $Z \in Y(m, \beta, X)\left(\right.$ resp. $Q(m, \beta, X)$. By (a), we have $\left\|\Gamma_{\tau} f-f\right\|_{z} \leqq$ $C_{1} \rho(\tau)\|f\|_{Z_{j}}, \forall f \in Z_{\bar{\delta}}$.

Case 1: Suppose $\operatorname{Cl}\left(\left[\left\{\psi_{n}\right\}\right], Z\right)=Z .-c \mathscr{C}^{\beta}$ is a closed operator with dense domain Z_{δ} and range in Z. We will show that (i) $\forall f \in Z_{\delta}, \frac{\Gamma_{\tau} f-f}{\rho(\tau)} \rightarrow-c \mathscr{U}^{\delta} f$ in Z, (ii) there exists $\left\{J_{n}\right\}_{n \in P} \subset[Z], \bigcup_{n \in P} J_{n}(Z) \subset Z_{\delta} ; J_{n} f \rightarrow f$ in $Z, \forall f \in Z$; and J_{n} and Γ_{τ} commute $\forall n \in P, \forall \tau$. Then (c) follows by Theorem 13.4.1, Butzer-Nessel [14, p. 502] [Ref. Berens [8]]. For $f \in Z_{\delta}$, let $T_{\tau} f=$ $\frac{\Gamma_{\tau} f-f}{\rho(\tau)}+c \mathscr{U}^{\delta} f$. By uniform boundedness principle $\sup _{\tau}\left\|T_{\tau}\right\|_{\left[Z_{\delta}, z\right]}<\infty$. $\forall k \in P, T_{\tau} \psi_{k}=\left[\frac{\gamma_{\tau, k}-1}{\rho(\tau)}+c \lambda_{k}^{\delta}\right] \psi_{k} \rightarrow 0$ as $\tau \rightarrow \tau_{0} . \quad$ Since $\operatorname{Cl}\left(\left[\left\{\psi_{n}\right\}\right], Z\right)=Z$, Banach Steinhaus theorem implies that $\forall f \in Z_{\dot{\delta}}, \frac{\Gamma_{\tau} f-f}{\rho(\tau)} \rightarrow-c \mathscr{U}^{\delta} f$ in Z as $\tau \rightarrow \tau_{0}$. For $f \in \mathscr{A}^{\prime}$, let $R_{n} f=\sum_{k=0}^{n}\left(1-\frac{k}{n+1}\right)\left\langle f, \psi_{k}\right\rangle \psi_{k} . \quad R_{n} \in[X], \sup _{n}\left\|R_{n}\right\|_{[X]}<d_{1}<\infty$, $R_{n} f \rightarrow f$ in $X, \forall f \in X$. (see Corollary 3.6, [16, I]). Theorem 3.1 implies that $\left\{R_{n}\right\} \in[Z], R_{n}$ and Γ_{τ} commute, $\left\|R_{n}\right\|_{[z]} \leqq d_{1}, R_{n} f \rightarrow f$ in $Z, \forall f \in Z$.

Case 2: Suppose Z is the dual of a Banach space F with $F=$ $\mathrm{Cl}\left(\left[\left\{\psi_{n}\right\}\right], F\right)$, we only have to prove, for $f \in Z,\left\|\Gamma_{\tau} f-f\right\|_{z}=\left\{\begin{array}{l}o(\rho(\tau)) \Rightarrow f \in \Lambda_{1} \\ O(\rho(\tau)) \Rightarrow f \in \widetilde{Z}_{\dot{\delta}}\end{array}\right.$. For $f \in Z$ let $\left\|\Gamma_{\tau} f-f\right\|_{z}=O(\rho(\tau))$. Since bounded sets in Z are weakly* compact there exists $f^{0} \in Z$ and $\left\{\tau_{l}\right\}_{l \in P}$ such that $\tau_{l} \rightarrow \tau_{0}$ as $l \rightarrow \infty$, $\frac{\Gamma_{\tau_{l}} f-f}{\rho\left(\tau_{l}\right)} \rightarrow f^{0}$ as $l \rightarrow \infty$, in the weak* topology of $Z . \quad \forall k \in N$, $\left\langle\frac{\Gamma_{\tau_{l}} f-f}{\rho\left(\tau_{l}\right)}, \psi_{k}\right\rangle=\left(\frac{\gamma_{\tau_{l}, k}-1}{\rho\left(\tau_{l}\right)}\right)\left\langle f, \psi_{k}\right\rangle \rightarrow\left\langle f^{0}, \psi_{k}\right\rangle=\left\langle-c \mathscr{U}^{\delta} f, \psi_{k}\right\rangle$. Hence $\mathscr{U}^{\delta} f=$ $-\frac{1}{c} f^{0} \in Z$; i.e. $f \in Z_{\delta} \subset \widetilde{Z}_{\delta}$. If big O is replaced by small o, then $\mathscr{U}^{\delta} f=0$, i.e. $f \in \Lambda$.

Proof of Theorem 3.3. Let $s_{0} \in P$ such that $\sum_{\substack{k=0 \\ \lambda_{k} \neq 0}}^{\infty}\left|\lambda_{k}\right|^{-2 s_{0}}<M_{0}<\infty$,
(a) Suppose, $\forall k, n \in N,\left\|\mathscr{U}^{k} D \psi_{n}\right\|_{L^{2}(I)} \leqq M_{1}\left(\left|\lambda_{n}\right|^{s+k}\right)$, $(s \in P$, independet of $n, k \in N)$. Let $\phi \in \mathscr{A} . \quad D \phi=\sum_{k=0}^{\infty}\left\langle\phi, \psi_{k}\right\rangle D \psi_{k} \in C^{\infty}(I) . \quad \forall k \in N,\left\|\mathscr{U}^{k} D \phi\right\|_{L^{2}} \leqq$ $\sum_{n=0}^{\infty}\left|\left\langle\phi, \psi_{n}\right\rangle\right|\left\|\mathscr{C}^{k} D \psi_{n}\right\|_{L^{2}} \leqq M_{1} \sum_{n=0}^{\infty}\left|\left\langle\phi, \psi_{n}\right\rangle\right|\left|\lambda_{n}\right|^{s+k} \leqq M_{0} M_{1}\left\{\sum_{k=0}^{\infty}\left|\left\langle\phi, \psi_{n}\right\rangle\right|^{2}\left|\lambda_{n}\right|^{2\left(s+k+s_{0}\right)}\right\}^{1 / 2}<$ ∞. Hence $\mathscr{U}^{k} D \phi \in L^{2}(I), \forall k \in N$. Since $D \phi, \psi_{n} \in$ domain of \mathscr{U}^{k} in $L^{2}(I)$,
$\forall n, k \in N$, we have $\left\langle\mathscr{U}^{k} D \phi, \psi_{n}\right\rangle=\left\langle D \phi, \mathscr{U}^{k} \psi_{n}\right\rangle,(k, n \in N)$. Hence $D \phi \in \mathscr{A}$, by definition of \mathscr{A} [see [37], p. 252]. Let $\left\{\phi_{n}\right\}_{n \in N}$ be a sequence in \mathscr{A} such that $\phi_{n} \rightarrow \phi$ in \mathscr{A}. Let $\phi_{n}=\sum_{k=0}^{\infty} a_{n, k} \psi_{k}, \phi=\sum_{k=0}^{\infty} a_{k} \psi_{k}$. Since $\phi_{n} \rightarrow \phi$ in \mathscr{A} $\forall l \in N, \sum_{k=0}^{\infty}\left|a_{n, k}-a_{k}\right|^{2}\left|\lambda_{k}\right|^{2 l} \rightarrow 0$ as $n \rightarrow \infty$. $\forall l \in N,\left\|\mathscr{U}^{l}\left(D \phi_{n}-D_{\phi}\right)\right\|_{L^{2}} \leqq$ $\sum_{k=0}^{\infty}\left|a_{n, k}-a_{k}\right|| | \mathscr{U}^{2} D \psi_{k} \|_{L^{2}(I)} \leqq M_{1} M_{0}\left\{\sum_{k=0}^{\infty}\left|a_{n, k}-a_{k}\right|^{2}\left|\lambda_{k}\right|^{2\left(s+l+s_{0}\right)}\right\}^{1 / 2} \rightarrow 0$ as $n \rightarrow \infty$. Hence $D \phi_{n} \rightarrow D \phi$ in \mathscr{A} as $n \rightarrow \infty$. This proves that the mappings $D: \mathscr{A} \rightarrow \mathscr{A}, D: \mathscr{A}^{\prime} \rightarrow \mathscr{A}^{\prime}$ are continuous.
(b) Let $\forall k \in N, 0 \leqq k \leqq m,\left\|D^{k} \psi_{n}\right\|_{X_{\cap X^{*}}} \leqq M_{1}\left|\lambda_{n}\right|^{s_{k}},\left(s_{k} \in P\right.$ depending only on $k ; M_{1}, M_{2}$ constants >0). For $\phi \in \mathscr{A},\left\|D^{k} \phi\right\|_{X \cap X^{*}} \leqq \sum_{n=0}^{\infty}\left|\left\langle\phi, \psi_{n}\right\rangle\right| \times$ $\left\|D^{k} \psi_{n}\right\|_{X_{\cap} X^{*}} \leqq M_{1} M_{0}\left\|\mathscr{U}^{s_{k}+s_{0}} \phi\right\|_{L^{2}}<\infty, 0 \leqq k \leqq m$. Thus $(-1)^{k} D^{k}: \mathscr{A} \rightarrow X$, $(-1)^{k} D^{k}: \mathscr{A} \rightarrow X^{*}$ are continuous. Hence (b) follows.
(d) By steps similar to those in the proof of (b), we can show,
 $(-1)^{k} \mathscr{U}^{k_{0}} D^{k}: \mathscr{A} \rightarrow X^{*}$ are continuous. Hence $D^{k} \mathscr{U}^{k_{0}}: X+X^{*} \rightarrow \mathscr{A}^{\prime}$, $0 \leqq k \leqq m$ is continuous.
(c) (i) $\forall \phi \in \mathscr{A},\|\phi\|_{X \cap X^{*}} \leqq$ Const $\|\phi\|_{X \cap Y} \leqq$ Const $\left\|\mathscr{U}^{s+s_{0} \phi}\right\|_{L^{2}(I)}<\infty$. This gives $\mathscr{A} \subset X \cap Y$. Since $\mathrm{Cl}(\mathscr{D}(I), X)=X, \mathrm{Cl}(\mathscr{D}(I), Y)=Y$, we get $\mathrm{Cl}(\mathscr{A}, X)=X, \mathrm{Cl}(\mathscr{A}, Y)=Y \Rightarrow X+X^{*} \subset Y^{*}+X^{*} \subset \mathscr{A}^{\prime}$. Let $\left\|\psi_{n}\right\|_{X_{n} X^{*}} \leqq$ $\sum_{n_{1}}^{B_{1}}\left|\lambda_{n}\right|^{\beta}, B_{1}>0$. Then $\left\|D \psi_{n}\right\|_{X \cap X^{*}} \leqq \sum_{q=0}^{n_{1}}\left|C_{q}^{n}\right|| | \psi_{n_{q}} \|_{X \cap X^{*}} \leqq B_{1} C_{1} C_{2}^{s}\left|\lambda_{n}\right|^{q_{1}+q_{2} s}, D^{2} \psi_{n}=$ $\sum_{q=0}^{n_{1}} C_{q}^{n} D \psi_{n_{q}}$. This gives $\left\|D^{2} \psi_{n}\right\|_{X \cap X^{*}}=O\left(\left|\lambda_{n}\right|^{\left.q_{1}+q_{1} q_{2}+q_{2}^{2 s}\right) \text {. By similar arguments }}\right.$ $\left\|D^{k} \psi_{n}\right\|_{X_{\cap X^{*}}}=O\left(\left|\lambda_{n}\right|^{s_{k}}\right), s_{k} \in P$, depending only on $k \in N$. ${ }_{N_{k}}$ Hence $W^{-l}(X+$ $\left.X^{*}\right) \subset \mathscr{A}^{\prime} \forall l \in P$ by (b). $\forall k, n \in N$, we can write $D_{N_{k}}^{k} \psi_{n}=\sum_{q=0}^{N_{k}} C_{k, q}^{n} \psi_{n, k, q}$ where $N_{k} \in P$, depending only on $k, C_{k, q}^{n}$ constants, with $\sum_{q=0}^{N_{k}}\left|C_{k, q}^{n}\right|=O\left(\left|\lambda_{n}\right|^{d_{k}}\right), \sup _{0 \leq q \leq N_{k}}\left|\lambda_{q}\right|=$ $O\left(\mid \lambda_{n}{ }^{\mid}{ }^{e}\right) ; d_{k_{N},} e_{k} \in P$ depending only on k. This implies, for $\beta>0, k \in P$, $\mathscr{U}^{\beta} D^{k} \psi_{n}=\sum_{k=0}^{N_{k}} C_{k, q}^{n} \lambda_{n_{q}}^{\beta} \psi_{n, k, q},\left\|\mathscr{U}^{\beta} D^{k} \psi_{n}\right\|_{X \cap X^{*}}=O\left(\left|\lambda_{n}\right|^{s_{k, \beta}}\right)$ with $s_{k, \beta}=d_{k}+e_{k}(\beta+s)$. Hence by (d), $W^{-m}\left(X_{-\beta}^{*}+X_{-\beta}\right) \subset \mathscr{A}^{\prime}$.
(ii) The map $T: W^{+m}(X) \rightarrow \underbrace{X \times X \times \cdots \times S}_{(m+1)}=E$ given by $T f=$ $\left(f, D f, D^{2} f, \cdots, D^{m} f\right) \in E$ for $f \in W^{m}(X)$, is an isometry. $T^{*}: \underbrace{X^{*} \times X^{*} \times \cdots}_{(m+1)}$ $\times X^{*}=E^{*} \rightarrow\left(W^{m}(X)\right)^{*}$ is onto by Hahn Banach theorem. Suppose, for times
some
$n_{0} \in N, \psi_{n_{0}} \notin W^{m, 0}(X)$. Since $\mathscr{A} \subset W^{m}(X)$, there exists $\not^{\prime} \in\left(W^{m}(X)\right)^{*}$ with $\left\langle\iota^{\prime}, \psi_{n_{0}}\right\rangle \neq 0,\left\langle\iota^{\prime}, \phi\right\rangle=0, \forall \phi \in W^{m, 0}(X)$. Since T^{*} is onto, $\iota^{\prime}=$ $T^{*}\left(\iota_{0}, \iota_{1}, \cdots, \ell_{m}\right)$ with $\iota_{i} \in X^{*}, 0 \leqq i \leqq m$. Define $v=\sum_{j=0}^{m}(-1)^{j} D^{j} \iota_{j}$. Now $\left.v \in W^{-m}\left(X^{*}\right),\langle v, \phi\rangle=\left\langle\sum_{j=0}^{m}(-1)^{j} D^{j} \iota_{j}, \phi\right\rangle=\sum_{j=0}^{m}\left\langle\iota_{j}, D^{j} \phi\right\rangle=\left\langle\iota_{0}, \iota_{1}, \cdots, \iota_{m}\right), T \phi\right\rangle=$ $\left\langle\ell^{\prime}, \phi\right\rangle=0 \quad \forall \phi \in \mathscr{D}(I), v=0$ in $W^{-m}\left(X^{*}\right) \subset \mathscr{A}^{\prime}$. Hence $\left\langle v, \psi_{k}\right\rangle=0 k \in N$.

But $\left\langle v, \psi_{n_{0}}\right\rangle=\left\langle\sum_{j=0}^{m}(-1)^{j} D^{j} \iota_{j}, \psi_{n_{0}}\right\rangle=\sum_{j=0}^{m}\left\langle\iota_{j}, D^{j} \psi_{n_{0}}\right\rangle=\left\langle\left(\iota_{0}, \iota_{1}, \cdots, \iota_{m}\right), T \psi_{n_{0}}\right\rangle=$ $\left\langle\epsilon^{\prime}, \psi_{n_{0}}\right\rangle \neq 0$. This leads to contradiction. Hence $\psi_{n} \in W^{m, 0}(X) \forall n \in N$. $\mathscr{A} \subset W^{m, 0}(X)$ since, for $\phi \in \mathscr{A}, \phi_{n}=\sum_{k=0}^{n}\left\langle\phi, \psi_{k}\right\rangle \psi_{k} \in W^{m, 0}(X), \phi_{n} \rightarrow \phi$ as $n \rightarrow$ ∞ in $W^{m}(X)$-norm and $W^{m, 0}(X)$ is norm closed subset of $W^{m}(X)$. Since $\mathscr{D}(I) \subset \mathscr{A} \subset W^{m, 0}(X), \mathrm{Cl}\left(\mathscr{A}, W^{m, 0}(X)\right)=W^{m, 0}(X)$. This implies $\mathrm{Cl}\left(\left[\left\{\psi_{n}\right\}\right]\right.$, $\left.W^{m, 0}(X)\right)=W^{m, 0}(X)$.
6. Applications. In this section we illustrate our main results of this paper by means of classical summability methods and classical orthonormal functions.
6.1. First of all we give examples of spaces $X \in \mathscr{F}(m, \delta)$ or $Q(m)$ $m \in P, \delta>0$. Suppose $\forall f \in L^{1}(I)+L^{\infty}(I), D^{k} f \in \mathscr{A}^{\prime}, 0 \leqq k \leqq m$, and $\mathscr{A} \subset L^{1}(I) \cap L^{\infty}(I)$. Then $\mathrm{Cl}\left(\left[\left\{\psi_{n}\right\}\right], X\right)=X$ where $X=$ any one of $L^{p}(I)$, $1 \leqq p<\infty$ or $C_{0}(I)$. For $\delta>0, m \in P$, let $P_{m, \delta}$ denote the set $\{p \mid 1<p<\infty$, $\left.\left\{\nu_{k, \dot{\delta}}\right\}_{k \in N} \in M\left(L^{p}\right), \forall f \in\left(L_{-\dot{\delta}}^{p}+L_{-\dot{b}}^{p^{\prime}}\right), D^{k} f \in \mathscr{A}^{\prime}, 0 \leqq k \leqq m\right\}$. Then $\forall p \in P_{m, \delta}$ $L^{p} \in \mathscr{F}(m, \delta)$ and L^{p} is reflexive. $L^{1}(I), C_{0}(I) \in Q(m)$ and $Q\left(m, \delta, L^{1}\right) \supset$ $\bigcup_{p \in P} Y\left(m, \delta, L^{p}\right) ; Y\left(m, \delta, L^{p}\right) \supset\left\{L^{q}(I) \mid p \leqq q \leqq p^{\prime}\right\}\left(p \in P_{m, \delta}\right)$. Here $C_{0}(I)=C(I)$ $p \in P_{m, \delta}$ if $\stackrel{m}{l}_{I}$ is finite interval.

For a Banach subspace X of $\mathscr{S}^{\prime}(\boldsymbol{R})$ let $X^{\wedge}=$ the set of $f \in \mathscr{S}^{\prime}$, such that, $f=$ distributional Fourier transform of some $g_{f} \in X . \quad X^{\wedge}$ is a Banach space under the norm $\|f\|_{X^{\wedge}}=\left\|g_{f}\right\|_{x} ;\left(X^{\wedge}\right)^{*}=\left(X^{*}\right)^{\wedge}$ if $\mathrm{Cl}(\mathscr{S}(\boldsymbol{R}), X)=X$. For $I=R, m \in P, \delta>0,1<p<\infty, L^{p, \wedge} \in F(m, \delta)$ and $L^{p, \wedge}$ is reflexive. $\left(L^{1}(\boldsymbol{R})\right)^{\wedge}$, $\left(C_{0}(\boldsymbol{R})\right)^{\wedge} \in Q(m) \forall m \in P$. For more details about $L^{p, \wedge}$ spaces see Katznelson [22]. $L^{p, q}(\boldsymbol{R}) \in \mathscr{F}(m, \delta) m \in P, \delta>0,1<p<\infty, 1<q<\infty$.
6.2. Examples of Multiplier Operators. Here we like to give examples of multiplier type approximation processes satisfying Jackson and Bernstein tpye inequalities on a Banach subspace of \mathscr{A}^{\prime}. Let $g_{\delta}(v)=$ any one of the functions $r_{\delta, \mu}(v) \mu \geqq 1, w_{\delta}(v), C_{\delta}(v), \delta>0, v \geqq 0$, where $r_{\delta, \mu}(v)=$ $\left\{\begin{array}{ll}\left(1-v^{\delta}\right)^{\mu} & \text { if } 0 \leqq v \leqq 1 \\ 0 & \text { if } v>1\end{array}, w_{\partial}(v)=e^{-v^{\delta}}, C_{\bar{\delta}}(v)=\frac{1}{1+v^{\delta}} . ~ T h e n ~ g_{\dot{\delta}}(v), v^{\delta} g_{\partial}(v), \frac{1-g_{\delta}(v)}{v^{\delta}}\right.$ are quasi convex $C_{0}(0, \infty)$ functions. [see [14]]. Let $Z \in \mathscr{F}(m, \delta)$ be reflexive space (resp. $Z \in Q(m)) m \in P$. Let $\left\|\sum_{k=0}^{n}\left(1-\frac{k}{n+1}\right)\left\langle f, \psi_{k}\right\rangle \psi_{k}\right\|_{Z} \leqq$ $C\|f\|_{Z}(f \in Z, C$ independent of $n)$. Let $\lambda_{k}=(k+b)^{s}, s>0, b \geqq 0$. $\rho_{\dot{o}}(n)=\lambda_{n+1}^{-\dot{\delta}}=(n+1+b)^{-\delta s}$. Let $\gamma_{n, \delta, k}=g_{\dot{\delta}}\left(\frac{\lambda_{k}}{\lambda_{n+1}}\right)$. Then by a result of Trebels [30, Theorem 3.9, p. 30] [also ref. [16,I]] we obtain $\left\{\gamma_{n, \delta, k}\right\},\left\{\frac{1-\gamma_{n, \delta, k}}{\lambda_{k}^{\delta} \lambda_{n+1}^{\delta}}\right\}$, $\left\{\rho_{\dot{\delta}}(n) \lambda_{k}^{-\delta} \gamma_{n, \delta, k}\right\}_{k \in N, n \in P} \in U M(Z)$. This implies that if $\Gamma_{n} f \sim \sum_{k \in P} \gamma_{n, \delta, k}\left\langle f, \psi_{k}\right\rangle \psi_{k}$ $(f \in Z)$ then $\left\{\Gamma_{n}\right\}_{n \in P} \subset[Z]$ satisfies both Jackson and Bernstein-type in-
equalities on Z with respect to Z_{δ} of order $\rho_{\delta}(n)$. Further $\frac{1-\gamma_{n, \delta, k}}{\rho_{\delta}(n)} \rightarrow c \lambda_{k}^{\delta}$ $(n \rightarrow \infty) \forall$ fixed $k \in N(c$ a constant $\neq 0)$. Hence, using the results of [17, 18] and those of this paper, one can obtain saturation and inverse results for various $\left\{\Gamma_{n}\right\}$ as given above.
6.3. Finally, let us give examples of orthonormal functions $\left\{\psi_{n}\right\}$, corresponding spaces $\mathscr{A}, \mathscr{A}^{\prime}$, in terms of classical orthonormal functions. Let $\sigma_{n}(f)=\sum_{k=0}^{n}(1-k /(n+1))\left\langle f, \psi_{k}\right\rangle \psi_{k}\left(f \in \mathscr{A}^{\prime}, n \in P\right)$.
I. Hermite functions: $I=(-\infty, \infty), X=$ any one of $L^{p}(-\infty, \infty)$, $1<p<\infty$ or $C_{0}(-\infty, \infty)$. $\mathscr{U}=-e^{x^{2} / 2} \frac{d}{d x} e^{-x^{2}} \frac{d}{d x} e^{x^{2} / 2}=-D^{2}+x^{2}-1 . \quad \psi_{n}(x)=$ $\frac{e^{-x^{2} / 2} H_{n}(x)}{\left[2^{n} n!\pi^{1 / 2}\right]^{1 / 2}}, n \in N$, with $H_{n}(x)=$ Hermite polynomial of order $n . \quad \lambda_{n}=2 n$, $n \in N . \quad \lambda_{0}=0$. Hence $\Lambda=\left\{c e^{-x^{2} / 2} \mid c \in \boldsymbol{R}\right\}, \mathscr{A}=\mathscr{S}, \mathscr{A}^{\prime}=\mathscr{S}^{\prime}[36,37]$. (i) $\forall f \in X, \sup _{n \in P}\left\|\sigma_{n}(f)\right\|_{X}<\infty$ [see [25]], (ii) $\frac{d}{d x} \psi_{n}(x)=-\sqrt{\frac{n}{2}} \psi_{n-1}+\sqrt{\frac{n+1}{2}} \psi_{n+1}$, (iii) $\left\|\psi_{n}\right\|_{X \cap X^{*}}=O\left(n^{1 / 4}\right)$, (iv) $\left\|\mathscr{U}^{k} D \psi_{n}\right\|_{L^{2}}=O\left(\lambda_{n}^{k+1}\right), \quad k \in P, \quad$ (v) $\quad \forall \delta>0$, $\left\{\nu_{k, \delta}\right\}_{k \in N} \in M(X)$.
II. Laguerre functions ($\alpha=0$ case): $\quad I=[0, \infty), X=$ any one of $L^{p}[0, \infty), 1 \leqq p<\infty$, or $C_{0}[0, \infty)$. $\mathscr{U}=-e^{+x / 2} \frac{d}{d x} e^{-x} \frac{d}{d x} e^{x / 2}=-x D^{2}+D+\frac{x}{4}-$ $\frac{1}{2}, \psi_{n}(x)=e^{-x / 2} \sum_{m=0}^{n}\binom{n}{m} \frac{(-x)^{m}}{m!}, \lambda_{n}=n, n \in N$. (i) $\lambda_{0}=0, \Lambda=\left\{c e^{-x / 2} \mid c \in \boldsymbol{R}\right\}$, (ii) $\forall f \in X, \sup _{n \in P}\left\|\sigma_{n}(f)\right\|_{X}<\infty$ (see [25]), (iii) $\frac{d}{d x} \psi_{n}(x)=-\frac{1}{2} \psi_{n}-\sum_{k=0}^{n-1} \psi_{k}(x)$, $\left\|\psi_{n}\right\|_{X \cap X^{*}}=O(n),\left\|\mathscr{U}^{k} D \psi_{n}\right\|_{L^{2}(0, \infty)}=O\left(n^{k+1}\right), \forall \delta>0,\left\{\nu_{k, s}\right\}_{k \in N} \in M(X)$.
III. Laguerre functions $(\alpha \neq 0$ case $): \quad I=[0, \infty), X=$ any one of $L^{p}[0, \infty), C_{0}[0, \infty), 1 \leqq p<\infty$. Let $m \in P$. Let $\alpha>2 m-1, \alpha, m$ fixed. $\mathscr{U}_{\alpha}=-x^{-\alpha / 2} e^{x / 2} \frac{d}{d x} e^{-x} x^{\alpha+1} \frac{d}{d x} e^{x / 2} x^{-\alpha / 2}=-\left[x D^{2}+D-\frac{x}{4}+\frac{\alpha^{2}}{4 x}+\frac{\alpha+1}{2}\right] ;$ $\psi_{n}^{(\alpha)}(x)=\left[\frac{\Gamma(n+1)}{\Gamma(n+\alpha+1)}\right]^{1 / 2} x^{\alpha / 2} e^{-x / 2} L_{n}^{(\alpha)}(x)$ with $\left\{L_{n}^{(\alpha)}(x)\right\}_{n \in N}$ are generalized Laguerre polynomials, $\lambda_{n}=n$. (i) $\lambda_{0}=0, \Lambda=\left\{c x^{\alpha / 2} e^{-x / 2} \mid c \in \boldsymbol{R}\right\}$, (ii) $\forall f \in X$, $\sup _{n \in P}\left\|\sigma_{n}(f)\right\|_{X}<\infty \quad$ [see \quad [25]], (iii) $\quad\left\|\psi_{n}\right\|_{X \cap X^{*}}=O(n), \quad$ (iv) $\frac{d}{d x} \psi_{n}^{(\alpha)}=$ $\frac{\alpha}{2} \sum_{k=0}^{n} \sum_{l=0}^{k}\left[\frac{n!}{\Gamma(n+\alpha+1)} \frac{\Gamma(l+\alpha+1)}{l!}\right]^{1 / 2} \psi_{k}^{(\alpha-2)}-\frac{1}{2} \psi_{n}^{(\alpha)}(x)-\sum_{k=0}^{n-1}\left[\frac{n!}{k!} \frac{\Gamma(k+\alpha+1)}{\Gamma(n+\alpha+1)}\right]^{1 / 2} \psi_{k}^{(\alpha)}$, (v) $\left\|\mathscr{U}_{\alpha}^{k} D \psi_{n}^{(\alpha)}\right\|_{L^{2}[0, \infty)}=O\left(n^{k+2}\right), 0 \leqq k \leqq m$; $\forall \delta>0,\left\{\nu_{k, o}\right\}_{k \in N} \in M(X)$.
IV. Legendre functions: $I=(-1,1), X=$ any one of $L^{p}(-1,1)$,
$1 \leqq p<\infty$ or $C(-1,1) . \quad \mathscr{U}=\frac{d}{d x}\left(x^{2}-1\right) \frac{1}{d x}-\frac{1}{4}, \psi_{n}(x)=\sqrt{n+\frac{1}{2}} P_{n}(X)$, $P_{n}(x)=$ Legendre polynomial of degree $n . \quad \lambda_{n}=\left(n+\frac{1}{2}\right)^{2}, \Lambda=\{0\}$. (i) $\forall f \in X,\left\|\sigma_{n}(f)\right\|_{X}<\infty$ [see [4]]. (ii) $\psi_{n}^{\prime}(x)=\sum_{k=1}^{[(n+1) / 2]}\left[\frac{n+1-2 k}{\sqrt{2 n+7 / 2-4 k}}\right] \psi_{2 n-4 k+3}(x)$. (iii) $\left\|\mathscr{U}^{k} D \psi_{n}\right\|_{L^{2}(-1,1)}=O\left(\lambda_{n}^{k+1}\right), k \in P$. (iv) $\forall \beta>0,\left\{\left(k+\frac{1}{2}\right)^{-2 \beta}\right\} \in M(X), k \in N$.
V. Jacobi functions: $I=(-1,1), m \in P$. Let $\kappa>0$. Let $\kappa_{0}=\kappa$ if $\kappa \in P, \kappa_{0}=$ $[\kappa]=1$ otherwise. Let $\alpha>2\left(m+\kappa_{0}\right)+1, \beta>2\left(m+\kappa_{0}\right)+1, m, \kappa, \alpha, \beta$ all fixed. $W_{\alpha, \beta}=(1-x)^{\alpha}(1+x)^{\beta}, \mathscr{U}^{\alpha, \beta}=\frac{1}{\sqrt{W_{\alpha, \beta}}} \frac{d}{d x}(1-x)^{\alpha+1}(1+x)^{\beta+1} \frac{d}{d x} \frac{1}{\sqrt{W_{\alpha, \beta}}}+$ $\frac{(\alpha+\beta+1)^{2}}{4}, P_{n}^{(\alpha, \beta)}=\frac{1}{2^{n}} \sum_{k=0}^{n}\binom{n+\alpha}{m}\binom{n+\beta}{n-m}(x-1)^{n-m}(x+1)^{n+m}$ are Jacobi polynomials $[30] . \psi_{n}^{(\alpha, \beta)}=\sqrt{W_{\alpha, \beta}(x)} \frac{P_{n}^{(\alpha, \beta)}}{\sqrt{h_{n}^{(\alpha, \beta)}}}$ where $h_{n}^{(\alpha, \beta)}=\frac{2^{\alpha+\beta+1} \Gamma(n+\alpha+1) \Gamma(\beta+n+1)}{n!(2 n+\alpha+\beta+1) \Gamma(n+\alpha+\beta+1)} ;$ $\lambda_{n, \alpha, \beta}=\left[n+\left(\frac{\alpha+\beta+1}{2}\right)\right]^{2}$. Let $X=$ any one of $L^{p}(-1,1), 1 \leqq p<\infty$ or $C(-1,1)$. Then, by direct computation, it can be shown that (i) $\left\|D^{k} \psi_{n}^{(\alpha, \beta)}\right\|_{X \cap X^{*}}=O\left(\left|\lambda_{n, \alpha, \beta}\right|^{k_{k}}\right),\left\|\mathscr{U}^{k_{0}} D^{k} \psi_{n}^{(\alpha, \beta)}\right\|_{X \cap X^{*}}=O\left(\lambda_{n, \alpha, \beta}^{l_{k}}\right), 0 \leqq k \leqq m$. s_{k}, $l_{k} \in P$ depending only on k. (ii) $\Lambda=\{0\}$, (iii) If $P_{\sigma, \alpha, \beta}=\{p \mid 1<p<\infty$, $\left.\forall f \in L^{p}(-1,1), \sup _{n \in P}\left\|\sigma_{n}(f)\right\|_{L^{p}}<\infty\right\}$ then $\left(\frac{4}{3}, 4\right) \subset P_{\sigma, \alpha, \beta}$ [see [31]] and $\forall \delta>0$, $\left\{\left(k+\left(\frac{\alpha+\beta+1}{2}\right)\right)^{-2 \delta}\right\}_{k \in N} \in M\left(L^{p}(-1,1)\right), \forall p \in P_{\sigma, \alpha, \beta}$.
VI. Trigonometric functions (first form): $X=$ any one of $L^{p}(-\pi, \pi)$, $1 \leqq p<\infty$ or $C(-\pi, \pi) . \quad \mathscr{C}=i^{-1 / 2} \frac{d}{d x} i^{1 / 2}=-i D, \psi_{n}(X)=\frac{e^{i n x}}{\sqrt{2 \pi}}, \lambda_{n}=n$, $(n \in \boldsymbol{Z}) . \quad \Lambda=\{0\},\left\|\mathscr{U}^{k} D \psi_{n}\right\|_{L^{2}(I)}=O\left(n^{k+1}\right), k \in P . \quad \forall \beta>0,\left\{\nu_{k, \beta}\right\}_{k \in N} \in M(X)$.

Second form: $I=(0, \pi), \mathscr{U}=-D^{2}, \psi_{n}(x)=\sqrt{\frac{2}{\pi}} \cos n x, \lambda_{n}=n^{2}, \lambda_{0}=0$, $\Lambda=$ constants. $\quad\left\|\mathscr{U}^{k} \psi_{n}^{\prime}(x)\right\|_{L^{2}(0, \pi)}=O\left(n^{2 k+1}\right), k \in P . \quad \beta>0,\left\{\nu_{k, \beta}\right\}_{k \in N} \in M(X)$.

Third form: $\quad I=(0, \pi), \mathscr{C}=-D^{2}, \psi_{n}(x)=\sqrt{\frac{2}{\pi}} \sin n x, \lambda_{n}=n^{2}(n \in N)$.
The results of this paper hold true if, instead of taking $\delta>0$ in the Definitions 3.1-3.4 and $\beta>0$ in the Theorems 3.1, 3.2, we take $\delta>\delta_{0}>0$, $\beta>\delta_{0}>0$ there, for some fixed constant $\delta_{0}>0$ depending only on $\left\{\psi_{n}\right\}$. In this case we can cite orthonormal functions constructed through Bessel functions as examples.
VII. Bessel functions (First form)

$$
\begin{gathered}
I=(0,1), \mathscr{U}=-S_{\mu}=-x^{-\mu-1 / 2} D x^{2 \mu+1} D x^{-\mu-1 / 2}, \mu \geqq-1 \\
\psi_{n}(x)=\frac{\sqrt{2 x} J_{\mu}\left(y_{\mu n} x\right)}{J_{\mu+1}\left(y_{\mu, n}\right)} \quad n=1,2,3, \cdots
\end{gathered}
$$

where $J_{\mu}(x)$ is the μ-th order Bessel function of first kind and the $y_{\mu, n}$ denote all the positive roots of $J_{\mu}(y)=0$ with

$$
0<y_{\mu, 1}<y_{\mu, 2}<y_{\mu, 3} \cdots ; \lambda_{n}=y_{\mu, n}^{2} \quad n=1,2,3, \cdots
$$

Using the inequality $J_{\mu+1}^{2}\left(y_{\mu, n}\right)>B_{2}\left(y_{\mu, n}\right)^{-1},\left(B_{2}>0\right.$ a constant) [see Wing [33, Relation 6.2]] we can prove $\left\|\left(\frac{d}{d x}\right)^{k} \psi_{n}\right\|_{L^{1} \cap L^{\infty}}=O\left(\lambda_{n}^{s_{k}}\right) \quad\left(k \in P, s_{k} \in P\right.$ independent of $n \in P$).

Wing [33] has shown that $\left\{\psi_{n}\right\}$ forms a Schauder basis in $L^{p}(0,1)$ $1<p<\infty$ for $\mu \geqq-1 / 2$ and Benedek and Panzone [7] have extended this result to $-1<\mu<-1 / 2$ provided $\frac{1}{\mu+3 / 2}<p<\frac{1}{(-\mu-1 / 2)}$. Further $\sum_{n=1}^{\infty} \frac{1}{y_{\mu, n}^{2 \delta}}<\infty(\delta \in P)$ [see Watson [32, p. 502]]. By these results we have, for $\delta \geqq 1 \quad\left\{\lambda_{k}^{-}\right\} \in M(X) \quad X=L^{p}(0,1)$ with $1<p<\infty$ if $\mu \geqq-1 / 2$ and $\frac{1}{\mu+3 / 2}<p<\frac{1}{(-\mu-1 / 2)}$ if $-1<\mu<-1 / 2$.

Bessel functions (Second form)
$I=(0,1)$. Let $\mu \geqq-1 / 2$. Let a be a real number $a>|\mu|$.

$$
\begin{aligned}
& \mathscr{U}=S_{\mu}=-x^{-\mu-1 / 2} D x^{2 \mu+1} D x^{-\mu-1 / 2}+a^{2}-\mu^{2} \\
& \psi_{n}(x)=\sqrt{\frac{2 x}{h_{n}}} J_{\mu}\left(z_{\mu, n} x\right) \quad n=1,2,3, \cdots
\end{aligned}
$$

where the $z_{\mu, n}$ denote all the positive roots of

$$
z J_{\mu}^{(1)}(z)+a J_{\mu}(z)=0
$$

with $0<z_{\mu, 1}<z_{\mu, 2}<z_{\mu, 3} \cdots$. Here $J_{\mu}^{(1)}(z)=\frac{d}{d z}\left(J_{\mu(}(z)\right)$. Also $h_{n}=\left[J_{\mu}^{(1)}\left(z_{\mu, n}\right)\right]^{2}+$ $\left[1-\frac{\mu^{2}}{z_{\mu, n}^{2}}\right]\left[J_{\mu}\left(z_{\mu, n}\right)\right]^{2} . \quad$ We have $\left\|\left(\frac{d}{d x}\right)^{k} \psi_{n}\right\|_{L^{1} \cap L^{\infty}}=O\left(\lambda_{n}^{s_{k} k}\right) \quad\left(k \in P, s_{k} \in P\right.$ independent of n). $\sum_{n=1}^{\infty} \frac{1}{z_{\mu, n}^{2}+a^{2}-\mu^{2}} \leqq \frac{1}{2(a+\mu)}<\infty$ [see Lamb [23, p. 273]]. Further $\left\{\psi_{n}\right\}$ forms a Schauder basis in $L^{p}(0,1), 1<p<\infty$. See Wing [33]. These results imply that $\left\{\lambda_{n}^{-i}\right\} \in M\left(L^{p}\right), 1<p<\infty, \delta \geqq 1$.

Acknowledgement. The author wishes to thank Professor Z. Ditzian who inspired the work, read the manuscript and made many valuable

suggestions and Professor W. Trebels for his valuable comments.

References

[1] S. Aljancic, Classe de saturation des procédés de sommation de Hölder et de Riesz, Comptes Rendus Paris, 246 (1958), 2567-2569.
[2[S. Aljancic, Meilleure approximation et classes de saturation du procédé de Hölder dans les espaces C et L^{p}, Publ. Inst. Math. Acad. Serbe Sci., 12 (1958), 109-124.
[3] S. Aldancic, Classe de saturation du procédé des moyennes typiques de Riesz, Publ. Inst. Math. Acad. Serbe Sci., 13 (1959), 113-122.
[4] R. Askey and I. I. Hirschman Jr., Mean summability for ultraspherical polynomials, Math. Scand. 12 (1963), 167-177.
[5] R. Askey and S. Wainger, A convolution structure for Jacobi Series, Amer. J. Math. 91 (1969), 463-485.
[6] H. Bavinck, Approximation processes for Fourier-Jacobi expansions, TW 126/71, July; Convolution operators for Fourier-Jacobi expansions, TW 127/71, August; On positive convolution operators for Jacobi series, TW 128/71 August; Mathematisch Centrum, Amsterdam 1971.
[7] A. Benedek and R. Panzone, On mean convergence of fourier series of negative order, Studies in Applied Math. 50 (1971), 281-292.
[8] H. Berens, Interpolationsmethoden zur Behandlung von Approximationsprozessen auf Banachräumen, (Lecture notes in Math. 64) Springer, Berlin 1968.
[9] H. Buchwalter, Saturation dans un espace normé, Comptes Rendus Paris 249 (1960), 651-653.
[10] H. Buchwalter, Saturation de certaines procédés de sommation, Comptes Rendus Paris, 248 (1959), 909-912.
[11] P. L. Butzer, Sur la theorie des demi-groupes et classes de saturation de certaines integrales singulieres, C.R. Acad. Sci. Paris 243 (1956), 1473-1475.
[12] P. L. Butzer, Sur le role de la transformation de Fourier dans quelques problemes d'approximation, C.R. Acad. Sci. Paris 249, (1959), 2467-2469.
[13] P. L. Butzer and H. Berens, Semi-Groups of Operators and Approximation, Springer 1967, xi +318 pp .
[14] P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation, Vol. I, Birkhäuser, Basel, and Academic Press, New York, 1971.
[15] P. L. Butzer, R. J. Nessel and W. Trebels, On the comparison of approximation processes in Hilbert spaces, in: Linear operators and Approximation (P. L. Butzer, J. P. Kahane and B. Sz-Nagy, Eds) I SNM 20, Birkhäuser, Basel 1972.
[16] P. L. Butzer, R. J. Nessel and W. Trebels, On summation processes of Fourier expansions in Banach spaces. I: Comparison theorems, Tôhoku Math. J. 24 (1972), 127-140; II: Saturation theorems, Tôhoku Math. J. 24 (1972), 551-569.
[17] P. L. Butzer and K. Scherer, Approximation theorems for sequences of commutative operators in Banach spaces, Proc. International Conf. on "Constructive Function Theory", varna, May 19-25, 1970.
[18] P. L. Butzer and K. Scherer, Jackson and Bernstein-tpye inequalities for families of commutative operators in Banach spaces, Jour. Approximation Theory 5 (1972), 308-342.
[19] J. Favard, Analyse Harmonique, Coll: Internat. du Centre Nat. Rech. Sci., Paris 15 (1949).
[20] J. Favard, Sur la saturation des procédés de sommation, Jour. de Math. 36 (1957), 359-372.
[21] E. Görlich, R. J. Nessel and W. Trebels, Bernstein-tpye inequalities for families of multiplier operators in Banach spaces with Cesàro decompositions. I: General theory,

II: Applications (to be submitted) 1972.
[22] Y. Katznelson, An introduction to Harmonic analysis, John Wiley 1968, xiii +264 pp .
[23] H. Lamb, Note on the induction of electric currents in a cylinder placed across the lines of magnetic force, Proc. London Math. Soc. xv (1884), 270-274.
[24] R. J. Nessel and A. Pawelke, Uber Favardklassen von summationsprozessen mehrdimensionaler Fourierreihen, Compositio Math. 19 (1968), 196-212.
[25] E. L. Poiani, Mean cesàro summability of Laguerre and Hermite series and asymptotic estimates of Laguerre and Hermite polynomials, Ph. D. Thesis, Rudgers University, New Brunswick, N.J. 1971.
[26] H. Pollard, The mean convergence of orthogonal series II, Trans. Amer. Math. Soc. 63 (1948), 355-367.
[27] L. Schwartz, Théorie des distributions I, II, Hermann, Paris, 1950/51 (Nouv. Ed. 1966 xii +418 pp .).
[28] G. Sunouchi and C. Watari, On determination of the class of saturation in the theory of approximation of functions I, II, Proc. Japan Acad. 34 (1958), 477-481; Tôhoku Math. J. (2) 11 (1959) 480-488.
[29] G. Szegö, Orthogonal polynomials, American Mathematical Society Colloq. publ. Volume xxiii, Rhode Island 1939.
[30] W. Trebels, Multipliers for (C, α)-bounded Fourier expansion in Banach spaces and approximation theory. Arbeitsbericht Lehrstuhl A für Mathematik RheinischWestfälische Technische Hoschule Aachen.
[31] F. Treves, Topological vector spaces, distributions, and kernels, Academci Press, 1967.
[32] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, (1922).
[33] G. M. Wing, The mean convergence of orthonormal series, Amer. J. Math. Vol. 12 (1950) 792-807.
[34] M. Zamansky, Classes de saturation des procédés de sommation des series de Fourier, Ann. Sci. École Norm. Sup., 67 (1950), 161-198.
[35] M. Zamansky, Classes de saturation de certaines procédés d'approximation des series de Fourier des fonctions continues, Ann. Sci. École Norm. Sup., 66 (1949), 19-63.
[36] A. H. Zemanian, Orthonormal series expansions of certain distributions and distributional transform calculus, J. Math. Anal. and Appl. 44 (1966), 263-275.
[37] A. H. Zemanian, Generalized Integral Transformations, Intersicence Publishers, 1968.
Department of Mathematics
University of Alberta
Edmonton, Alberta
Canada

[^0]: † Isaak Killam Doctoral Fellow 1971-73.
 Results of this paper are part of the author's doctoral dissertation written under the direction of Professor Z. Ditzian at University of Alberta.

