# ON DEFORMATIONS OF AUTOMORPHISM GROUPS OF COMPACT COMPLEX MANIFOLDS 

Makoto Namba

(Received April 28, 1973)

Introduction. By an analytic space, we mean a reduced, Hausdorff, complex analytic space. By a complex fiber space, we mean a triple ( $X$, $\pi, S$ ) of analytic spaces $X$ and $S$ and a holomorphic map $\pi$ of $X$ onto $S$. By a family of complex manifolds, we mean a complex fiber space ( $X$, $\pi, S$ ) such that there are an open covering $\left\{X_{\alpha}\right\}_{\alpha \in A}$ of $X$, open sets $\left\{\Omega_{\alpha}\right\}_{\alpha \in A}$ of $C^{n}$, an open covering $\left\{S_{\alpha}\right\}_{\alpha \in A}$ of $S$ and holomorphic isomorphisms

$$
\eta_{\alpha}: X_{\alpha} \rightarrow \Omega_{\alpha} \times S_{\alpha}
$$

such that the diagram

is commutative for each $\alpha \in A$. By the definition, each fiber $\pi^{-1}(s), s \in S$, is a complex manifold. $S$ is called the parameter space of the family. If, moreover, $\pi$ is a proper map, we say that $(X, \pi, S)$ is a family of compact complex manifolds. In this case, each fiber is a compact complex manifold.

Let $V$ be a compact complex manifold. We denote by Aut ( $V$ ) the group of automorphisms (holomorphic isomorphisms onto itself) of $V$. It is well known that $\operatorname{Aut}(V)$ is a complex Lie group (Bochner-Montgomery [1]).

The purpose of this paper is to prove the following theorem.
Main Theorem. Let $(X, \pi, S)$ be a family of compact complex manifolds. We assume that $S$ satisfies the second axiom of countability. Then the disjoint union

$$
A=\coprod_{s \in S} \operatorname{Aut}\left(\pi^{-1}(s)\right)
$$

admits an analytic space structure such that (1) $(A, \lambda, S)$ is a complex fiber space where $\lambda: A \rightarrow S$ is the canonical projection, (2) the map

$$
X \underset{S}{\times} A \rightarrow X
$$

defined by

$$
(P, f) \rightarrow f(P)
$$

is holomorphic, where

$$
X \underset{S}{\times} A=\{(P, f) \in X \times A \mid \pi(P)=\lambda(f)\},
$$

the fiber product of $X$ and $A$ over $S$, (3) the map

$$
S \rightarrow A
$$

defined by

$$
s \rightarrow I_{s}
$$

is holomorphic, where $I_{s}$ is the identity map of $\pi^{-1}(s)$, and (4) the map

$$
A \underset{S}{\times} A \rightarrow A
$$

defined by

$$
(f, g) \rightarrow g^{-1} f
$$

is holomorphic, where

$$
A \underset{S}{\times} A=\{(f, g) \in A \times A \mid \lambda(f)=\lambda(g)\},
$$

the fiber product of $A$ and $A$ over $S$.
The method of the proof of Main Theorem is based on those of [8] and [9], ideas of which are essentially due to Kuranishi's [6].

If we put $S=$ one point, our proof of Main Theorem gives a new proof of the above theorem of Bochner-Montgomery. In this case, $A=$ Aut ( $V$ ) has no singular point, for it is homogeneous. In general cases, $A$ may admit singular points, even if $S$ has no singular point. This is naturally expected, because dimensions of automorphism groups vary upper semicontinuously on parameters [5]. In the case of the family of Hopf surfaces, we have shown Main Theorem by direct calculations [10]. In this case, $A$ admits singular points.

Main Theorem was conjectured by Professor Heisuke Hironaka. I express my thanks to him for his proposal of the problem, his comments and his encouragement.

1. Maximal families of holomorphic maps-Theorem 1. Let $(X, \pi, S)$ be a family of complex manifolds. Let $T$ be an analytic space. Let $b$ be a holomorphic map of $T$ into $S$. We put

$$
b^{*} X=X \underset{S}{\times} T=\{(P, t) \in X \times T \mid \pi(P)=b(t)\}
$$

and $b^{*} \pi=$ the restriction of the projection

$$
X \times T \rightarrow T \text { to } b^{*} X .
$$

Then it is easy to see that $\left(b^{*} X, b^{*} \pi, T\right)$ is a family of complex manifolds. Each fiber $\left(b^{*} \pi\right)^{-1}(t)$ is written as $\pi^{-1}(b(t)) \times t$. We sometimes identify $\left(b^{*} \pi\right)^{-1}(t)$ with $\pi^{-1}(b(t))$.

Definition 1.1. Let $(X, \pi, S)$ be a family of compact complex manifolds. Let ( $Y, \mu, S$ ) be a family of complex manifolds with the same parameter space $S$. Let $T$ be an analytic space. A triple $(E, T, b)$ is called a family of holomorphic maps of $(X, \pi, S)$ into ( $Y, \mu, S$ ) if and only if (1) $b$ is a holomorphic map of $T$ into $S$ and (2) $E$ is a holomorphic map of $b^{*} X$ into $b^{*} Y$ such that the diagram

is commutative.
$T$ is called the parameter space of $(E, T, g)$.
Remark. For each $t \in T,\left(b^{*} \pi\right)^{-1}(t)$ and $\left(b^{*} \mu\right)^{-1}(t)$ are identified with $\pi^{-1}(b(t))$ and $\mu^{-1}(b(t))$ respectively. Thus we may consider $(E, T, b)$ to be a collection $\left\{E_{t}\right\}_{t \in T}$ of holomorphic maps

$$
E_{t}: \pi^{-1}(b(t)) \rightarrow \mu^{-1}(b(t)) .
$$

Definition 1.2. Let $(X, \pi, S)$ and $(Y, \mu, S)$ be as above. A family ( $E, T, b$ ) of holomorphic maps of ( $X, \pi, S$ ) into $(Y, \mu, S)$ is said to be maximal at a point $t \in T$ if and only if, for any family ( $G, R, h$ ) of holomorphic maps of ( $X, \pi, S$ ) into ( $Y, \mu, S$ ) with a point $r \in R$ such that $b(t)=h(r)$ and

$$
E_{t}=G_{r}: \pi^{-1}(b(t)) \rightarrow \mu^{-1}(b(t)),
$$

there are an open neighborhood $U$ of $r$ in $R$ and a holomorphic map

$$
k: U \rightarrow T
$$

such that
(1) $k(r)=t$,
(2) $b k=h$ and
(3) $G_{q}=E_{k(q)}: \pi^{-1}(h(q)) \rightarrow \mu^{-1}(h(q))$ for all $q \in U$.

A maximal family is a family which is maximal at every point of its parameter space.

Theorem 1. Let ( $X, \pi, S$ ) be a family of compact complex manifolds. Let $(Y, \mu, S)$ be a family of complex manifolds with the same parameter
space $S$. Let o be a point of $S$. Let $f$ be a holomorphic map of $\pi^{-1}(o)$ into $\mu^{-1}(o)$. Then there exists a maximal family $(E, T, b)$ of holomorphic maps of $(X, \pi, S)$ into $(Y, \mu, S)$ with a point $t_{0} \in T$ such that
(1) $b\left(t_{0}\right)=0 \quad$ and
(2) $E_{t_{o}}=f: \pi^{-1}(o) \rightarrow \mu^{-1}(o)$.

Remark. Theorem 1 corresponds to Theorem of [9]. In fact, Theorem 1 is essentially reduced to Theorem of [9], if we consider the graph $\Gamma_{f}$ of $f$. However, in order to prove Main Theorem, we need the concrete construction of the analytic space $T$. So we prove Theorem 1 in the sequel. The method is thus similar to that of [9].
2. Banach spaces $C^{p}(F,| |)$. In this section, we refer some results of $\S 2$ of [8], which will be used in the sequel. Let $V$ be a compact complex manifold. Let $F$ be a holomorphic vector bundle on $V$. Let $\left\{U_{i}\right\}_{i \in I}$ be a finite open covering of $V$ such that (1) the closure $\bar{U}_{i}$ is contained in an open set $\widetilde{U}_{i}$ having a local coordinate system

$$
\left(z_{i}\right)=\left(z_{i}^{1}, \cdots, z_{i}^{d}\right)
$$

(2) $U_{i}=\left\{z_{i} \in \widetilde{U}_{i}| | z_{i} \mid<1\right\}$, where

$$
\left|z_{i}\right|=\max \left\{\left|z_{i}^{1}\right|, \cdots,\left|z_{i}^{i}\right|\right\} \quad \text { and }
$$

(3) $F$ is trivial on $U_{i}$.

Let $e, 0<e<1$, be a small positive number such that the open sets $U_{i i}^{e}$ of $V$ defined by

$$
U_{i}^{e}=\left\{z_{i} \in U_{i}| | z_{i} \mid<1-e\right\}
$$

again cover $V$.
We define additive groups $C^{p}(F), p=0,1, \cdots$, as follows. An element $\xi=\left\{\xi_{i_{0} \cdots i_{p}}\right\} \in C^{p}(F)$ is a function which associates to each $(p+1)$-ple ( $i_{0}, \cdots$, $i_{p}$ ) of indices in $I$ a holomorphic section $\xi_{i_{0} \cdots i_{p}}$ of $F$ on $U_{i_{0}}^{e} \cap \cdots \cap U_{i_{p-1}}^{e} \cap U_{i_{p}}$. In particular, an element $\xi=\left\{\xi_{i}\right\} \in C^{\circ}(F)$ is a function which associates to each index $i \in I$ a holomorphic section $\xi_{i}$ of $F$ on $U_{i}$. We define the coboundary map

$$
\delta: C^{p}(F) \rightarrow C^{p+1}(F)
$$

by

$$
(\delta \xi)_{i_{\jmath} \cdots i_{p+1}}(z)=\sum_{\nu}(-1)^{\nu} \xi_{i_{0} \cdots i_{\nu-1} i_{\nu+1} \cdots i_{p+1}}(z)
$$

for $z \in U_{i_{0}}^{i_{0}} \cap \cdots \cap U_{i_{p}}^{e} \cap U_{i_{p+1}}$. Then it is easy to see that $\delta^{2}=0$.
We introduce a norm | | in $C^{p}(F)$. For each $\xi=\left\{\xi_{i_{0} \cdots i_{p}}\right\} \in C^{p}(F)$, we define $|\xi|$ by
$|\xi|=\sup \left\{\left|\xi_{i_{0} \cdots i_{p}}^{\lambda}(z)\right| \mid \lambda=1, \cdots, r, z \in U_{i_{0}}^{e} \cap \cdots \cap U_{i_{p-1}}^{e_{i}} \cap U_{i_{p}},\left(i_{0}, \cdots, i_{p}\right) \in I^{p+1}\right\}$, where $\xi_{i_{0} \cdots i_{p}}^{\lambda}$ is the representation of the component $\xi_{i_{0} \cdots i_{p}}$ of $\xi$ with respect to the local trivialization of $F$ on $U_{i_{0}}$. In particular, we define $|\xi|$ for $\xi \in C^{0}(F)$ by

$$
|\xi|=\sup \left\{\left|\xi_{i}^{2}(z)\right| \mid \lambda=1, \cdots, r, i \in I, z \in U_{i}\right\}
$$

where $\xi_{i}^{\lambda}$ is the representation of $\xi_{i}$ with respect to the local trivialization of $F$ on $U_{i}$. We note that we denoted | $\left.\right|_{e}$ in [8] instead of ||.

We put

$$
C^{p}(F,| |)=\left\{\xi \in C^{p}(F)| | \xi \mid<+\infty\right\} .
$$

It is easy to see that $C^{p}(F,| |)$ is a Banach space and the coboundary map $\delta$ maps $C^{p}(F,| |)$ continuously into $C^{p+1}(F,| |)$. We put

$$
\begin{aligned}
& Z^{p}(F,| |)=\left\{\xi \in C^{p}(F,| |) \mid \delta \xi=0\right\}, \\
& B^{p}(F,| |)=\left(\delta C^{p-1}(F)\right) \cap C^{p}(F,| |) \text { and } \\
& H^{p}(F,| |)=Z^{p}(F,| |) / B^{p}(F,| |),
\end{aligned}
$$

for $p=0,1, \cdots$. It is clear that $H^{0}(F,| |)$ is canonically isomorphic to the 0 -th cohomology group $H^{0}\left(V, F^{\prime}\right)$ of $F$.

By Lemmas 2.3 and 2.4 of [8], there are continuous linear maps

$$
\begin{aligned}
& E_{1}: B^{2}(F, \mid) \rightarrow C^{1}(F,| |) \text { and } \\
& E_{0}: B^{1}(F,| |) \rightarrow C^{0}(F,| |)
\end{aligned}
$$

such that

$$
\begin{aligned}
& \delta E_{1}=\text { the identity map on } B^{2}(F,| |) \text { and } \\
& \delta E_{0}=\text { the identity map on } B^{1}(F,| |)
\end{aligned}
$$

We put

$$
\Lambda=1-E_{1} \delta
$$

Then $\Lambda$ is a projection map of $C^{1}(F,| |)$ onto $Z^{1}(F,| |)$.
By Lemma 2.5 of [8], $B^{1}(F,| |)=\delta C^{0}(F,| |)$ and is closed in $Z^{1}(F,| |)$. Again, by Lemma 2.5 of [8], $H^{1}(F,| |)$ is canonically isomorphic to $H^{1}(V$, $F$ ), the first cohomology group of $F$. Thus there is a subspace $H^{1}(F,| |)$, (we use the same notation for the convenience), of $Z^{1}(F,| |)$ isomorphic to $H^{1}(V, F)$ such that $Z^{1}(F,| |)$ splits into a direct sum of $B^{1}(F,| |)$ and $H^{1}(F, \mid)$ :

$$
Z^{1}(F,| |)=B^{1}(F,| |) \oplus H^{1}(F,| |) .
$$

Let

$$
\begin{aligned}
& B: Z^{1}(F,| |) \rightarrow B^{1}(F,| |) \text { and } \\
& H: Z^{1}(F,| |) \rightarrow H^{1}(F,| |)
\end{aligned}
$$

be the projection maps corresponding to the splitting.
3. Some lemmas. Let $(X, \pi, S)$ be a family of compact complex manifolds. Let ( $Y, \mu, S$ ) be a family of complex manifolds with the same parameter space $S$. Let $o$ be a point of $S$. We put

$$
V=\pi^{-1}(o)
$$

and

$$
W=\mu^{-1}(o) .
$$

Let $f$ be a holomorphic map of $V$ into $W$. We show that there are families of open sets $\left\{X_{i}\right\}_{i \in I}$ and $\left\{\widetilde{X}_{i}\right\}_{i \in I}$ of $X$ and $\left\{Y_{i}\right\}_{i \in I}$ and $\left\{\widetilde{Y}_{i}\right\}_{i \in I}$ of $Y$, with the same finite set $I$ of indices, satisfying following conditions:
(1) $X_{i} \subset \widetilde{X}_{i}$ and $Y_{i} \subset \widetilde{Y}_{i}$ for each $i \in I$ where $A \subset B$ means that the closure $\bar{A}$ is compact and is contained in $B$,
(2) $\left\{X_{i}\right\}_{i \in I}$ and $\left\{Y_{i}\right\}_{i \in I}$ cover $V$ and $f(V)$ respectively,
(3) there are an open neighborhood $\widetilde{S}$ of $o$ and holomorphic isomorphisms

$$
\begin{aligned}
& \eta_{i}: \widetilde{X}_{i} \rightarrow \widetilde{U}_{i} \times \widetilde{S} \text { and } \\
& \xi_{i}: \widetilde{Y}_{i} \rightarrow \widetilde{W}_{i} \times \widetilde{S}
\end{aligned}
$$

such that the diagrams

and

are commutative where $\widetilde{U}_{i}$ and $\widetilde{W}_{i}$ are open sets in $\boldsymbol{C}^{d}$ and $\boldsymbol{C}^{r}$ respectively ( $d=\operatorname{dim} V, r=\operatorname{dim} W$ ),
(4) there are an open neighborhood $S^{\prime}$ of $o$ with $S^{\prime} \in \widetilde{S}$ and open subsets $U_{i}$ and $W_{i}$ of $\widetilde{U}_{i}$ and $\widetilde{W}_{i}$ respectively with $U_{i} \subset \widetilde{U}_{i}$ and $W_{i} \Subset \widetilde{W}_{i}$ such that

$$
\begin{aligned}
X_{i} & =\eta_{i}^{-1}\left(U_{i} \times S^{\prime}\right) \quad \text { and } \\
Y_{i} & =\xi_{i}^{-1}\left(W_{i} \times S^{\prime}\right)
\end{aligned}
$$

for each $i \in I$,
(5) there are coordinate systems

$$
\begin{aligned}
\left(z_{i}\right) & =\left(z_{i}^{1}, \cdots, z_{i}^{d}\right), \\
\left(w_{i}\right) & =\left(w_{i}^{1}, \cdots, w_{i}^{r}\right) \quad \text { and } \\
(s) & =\left(s^{1}, \cdots, s^{k}\right),(o=0),
\end{aligned}
$$

in $\widetilde{U}_{i}, \widetilde{W}_{i}$ and $\widetilde{\Omega}$ respectively, where $\widetilde{\Omega}$ is an ambient space of $\widetilde{S}$, such that

$$
\begin{aligned}
U_{i} & =\left\{z_{i} \in \widetilde{U}_{i}| | z_{i} \mid<1\right\} \\
W_{i} & =\left\{w_{i} \in \widetilde{W}_{i}| | w_{i} \mid<1\right\}
\end{aligned}
$$

for each $i \in I$ and

$$
S^{\prime}=\{s \in \tilde{S}| | s \mid<1\}
$$

$\left(\left|z_{i}\right|=\max \left\{\left|z_{i}^{1}\right|, \cdots,\left|z_{i}^{d}\right|\right\}\right.$ etc. $)$,
(6) $f\left(\eta_{i}^{-1}\left(U_{i} \times o\right)\right) \Subset \xi_{i}^{-1}\left(W_{i} \times o\right)$ and

$$
f\left(\eta_{i}^{-1}\left(\widetilde{U}_{i} \times o\right)\right) \subset \xi_{i}^{-1}\left(\widetilde{W}_{i} \times o\right)
$$

for each $i \in I$.
Let $\Gamma_{f}$ be the grach of the map $f$. Then $\Gamma_{f}$ is a compact subset of $V \times W$. On the other hand, $V \times W$ is naturally regarded as a subset of $X \times{ }_{s} Y$. Hence we regard $\Gamma_{f}$ as a compact subset of $X \times{ }_{s} Y$. Then, for each $(P, f(P)) \in \Gamma_{f}$, there is a neighborhood $\widetilde{X}_{P} \times \tilde{s}_{p} \widetilde{Y}_{P}$ of $(P, f(P))$ in $X \times{ }_{s} Y$ such that there are holomorphic isomorphisms

$$
\begin{aligned}
& \eta_{P}: \widetilde{X}_{P} \rightarrow \widetilde{U}_{P} \times \widetilde{S}_{P} \text { and } \\
& \xi_{P}: \widetilde{Y}_{P} \rightarrow \widetilde{W}_{P} \times \widetilde{S}_{P}
\end{aligned}
$$

such that the diagrams

and

are commutative, where $\widetilde{U}_{P}$ and $\widetilde{W}_{P}$ are open sets in $C^{d}$ and $C^{r}$ respectively. $\quad \widetilde{S}_{P}$ is an open neighborhood of $o$ in $S$. Let $S_{P}$ be an open neighborhood of $o$ in $S$ such that $S_{P} \subset \widetilde{S}_{P}$. Let $U_{P}$ and $W_{P}$ be open subsets of $\widetilde{U}_{P}$ and $\widetilde{W}_{P}$ respectively such that $U_{P} \Subset \widetilde{U}_{P}$ and $W_{P} \subseteq \widetilde{W}_{P}$. We put

$$
\begin{aligned}
X_{P} & =\eta_{P}^{-1}\left(U_{P} \times S_{P}\right) \quad \text { and } \\
Y_{P} & =\xi_{P}^{-1}\left(W_{P} \times S_{P}\right) .
\end{aligned}
$$

Taking $U_{P}$ and $\widetilde{U}_{P}$ sufficiently small, we may assume that

$$
\begin{aligned}
& f\left(\eta_{P}^{-1}\left(U_{P} \times o\right)\right) \subset \xi_{P}^{-1}\left(W_{P} \times o\right) \text { and } \\
& f\left(\eta_{P}^{-1}\left(\widetilde{U}_{P} \times 0\right)\right) \subseteq \xi_{P}^{-1}\left(\widetilde{W}_{P} \times o\right) .
\end{aligned}
$$

We may assume that there are coordinate systems

$$
\begin{aligned}
& \left(z_{P}\right)=\left(z_{P}^{1}, \cdots, z_{P}^{d}\right) \text { and } \\
& \left(w_{P}\right)=\left(w_{P}^{1}, \cdots, w_{P}^{\tau}\right)
\end{aligned}
$$

in $\widetilde{U}_{P}$ and $\widetilde{W}_{P}$ respectively such that

$$
\begin{aligned}
U_{P} & =\left\{z_{P} \in \widetilde{U}_{P}| | z_{P} \mid<1\right\} \text { and } \\
W_{P} & =\left\{w_{P} \in \widetilde{W}_{P}| | w_{P} \mid<1\right\} .
\end{aligned}
$$

Now we cover $\Gamma_{f}$ by $\left\{X_{P} X_{s_{P}} Y_{P}\right\}_{P e r}$. We choose a finite subcovering

$$
\left\{X_{P_{i}} \times{ }_{S_{P_{i}}} Y_{P_{i}}\right\}_{\mathrm{EEI}} .
$$

We put

$$
\begin{aligned}
\eta_{i} & =\eta_{P_{i}}, \\
\xi_{i} & =\xi_{P_{i}}, \\
U_{i} & =U_{P_{i}}, \\
\widetilde{U}_{i} & =\widetilde{U}_{P_{i}}, \\
W_{i} & =W_{P_{i}} \text { and } \\
\widetilde{W}_{i} & =\widetilde{W}_{P_{i}} .
\end{aligned}
$$

We put

$$
\tilde{S}=\bigcap_{i \in I} \tilde{S}_{P_{i}}
$$

Let $\widetilde{\Omega}$ be an ambient space of $\widetilde{S}$ with a coordinate system

$$
(s)=\left(s^{1}, \cdots, s^{k}\right) .
$$

Let $\Omega$ be an open subset of $\widetilde{\Omega}$ such that $\Omega \subset \widetilde{\Omega}$. We may assume that

$$
\Omega=\{s \in \widetilde{\Omega}| | s \mid<1\} .
$$

We assume that $o$ is the origin of $\Omega$. We put

$$
S^{\prime}=\widetilde{S} \cap \Omega .
$$

We may assume that

$$
S^{\prime} \subset \bigcap_{i \in I} S_{P_{i}}
$$

We put

$$
\begin{aligned}
& X_{i}=\eta_{i}^{-1}\left(U_{i} \times S^{\prime}\right), \\
& \widetilde{X}_{i}=\eta_{i}^{-1}\left(\tilde{U}_{i} \times \widetilde{S}\right), \\
& Y_{i}=\xi_{i}^{-1}\left(W_{i} \times S^{\prime}\right) \text { and } \\
& \widetilde{Y}_{i}=\xi_{i}^{-1}\left(\widetilde{W}_{i} \times \widetilde{S}\right) .
\end{aligned}
$$

Then it is clear that $\left\{X_{i}\right\}_{i \in I},\left\{\widetilde{X}_{i}\right\}_{\epsilon \in I},\left\{Y_{i}\right\}_{i \in I}$ and $\left\{\widetilde{Y}_{i}\right\}_{i \in I}$ satisfy above conditions (1)-(6).

Henceforth, we identify $\eta_{i}^{-1}\left(U_{i} \times 0\right), \eta_{i}^{-1}\left(\widetilde{U}_{i} \times o\right), \xi_{i}^{-1}\left(W_{i} \times o\right)$ and $\xi_{i}^{-1}\left(\widetilde{W}_{i} \times o\right)$ with $U_{i}, \widetilde{U}_{i}, W_{i}$ and $\widetilde{W}_{i}$ respectively.

Now, we consider maps

$$
\begin{aligned}
& \eta_{i k}=\eta_{i} \eta_{k}^{-1}: \eta_{k}\left(\widetilde{X}_{i} \cap \tilde{X}_{k}\right) \rightarrow \eta_{i}\left(\widetilde{X}_{i} \cap \tilde{X}_{k}\right), \\
& \xi_{i k}=\xi_{i} \xi_{k}^{-1} \xi_{k}\left(\tilde{Y}_{i} \cap \widetilde{Y}_{k}\right) \rightarrow \xi_{i}\left(\widetilde{Y}_{i} \cap \tilde{Y}_{k}\right) .
\end{aligned}
$$

$\eta_{i k}$ and $\xi_{i k}$ can be written as

$$
\begin{aligned}
& \eta_{i k}\left(z_{k}, s\right)=\left(g_{i k}\left(z_{k}, s\right), s\right) \text { and } \\
& \xi_{i k k}\left(w_{k}, s\right)=\left(h_{i k}\left(w_{k}, s\right), s\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& g_{i k}: \eta_{k}\left(\widetilde{X}_{i} \cap \widetilde{X}_{k}\right) \rightarrow \widetilde{U}_{i} \text { and } \\
& h_{i k}: \xi_{k}\left(\tilde{Y}_{i} \cap \tilde{Y}_{k}\right) \rightarrow \widetilde{W}_{i} .
\end{aligned}
$$

We want to extend $\eta_{i k}$ and $\xi_{i k}$ to ambient spaces of $\eta_{k}\left(X_{i} \cap X_{k}\right)$ and $\xi_{k}\left(Y_{i} \cap Y_{k}\right)$ respectively.

Let $P$ be a point of $\bar{U}_{i} \cap \bar{U}_{k}$. Then it is clear that there is an open neighborhood $U_{P} \times S_{P}$ of $\eta_{k}(P)$ in $\eta_{k}\left(\widetilde{X}_{i} \cap \widetilde{X}_{k}\right)$ such that
(1) $S_{P}=\Omega_{P} \cap S^{\prime}$ where $\Omega_{P}$ is a polydisc in $C^{t}$ contained in $\Omega$ with the center $o$ and
(2) $U_{P}$ is an open neighborhood of $P$ in $V$ contained in $\widetilde{U}_{i} \cap \widetilde{U}_{k}$.

We cover $\eta_{k}\left(\bar{U}_{i} \cap \bar{U}_{k}\right)$ by open sets $\left\{U_{P} \times S_{P}\right\}_{P}$ in $\eta_{k}\left(\widetilde{X}_{i} \cap \tilde{X}_{k}\right)$ having above conditions (1) and (2). We choose a finite subcovering

$$
\left\{U_{\lambda} \times S_{\lambda}\right\}_{\lambda=1, \ldots, q}
$$

from $\left\{U_{P} \times S_{P}\right\}_{P}$, where $U_{\lambda}=U_{P_{\lambda}}, S_{\lambda}=S_{P_{\lambda}}=\Omega_{\lambda} \cap S^{\prime}$ and $\Omega_{\lambda}=\Omega_{P_{\lambda}}$. Then $\left\{U_{\lambda}\right\}_{\lambda_{1=1}, \ldots, q}$ covers $\bar{U}_{i} \cap \bar{U}_{k}$. Let $\Omega_{0}$ be a polydisc in $C^{k}$ with the center $o$, the origin, contained in $\bigcap_{\lambda} \Omega_{\lambda}$. We put $S_{0}=\Omega_{\circ} \cap S^{\prime}$. We may assume that

$$
\Omega_{o}=\left\{s \in \Omega| | s \mid<\varepsilon_{0}\right\}
$$

for a positive number $\varepsilon_{0}, 0<\varepsilon_{0}<1$.
The proofs of Lemmas 3.1 and 3.2 below are similar to those of Lemma 3.1 and 3.2 of [9] respectively, so we omit them.

Lemma 3.1. There is a Stein open set $U_{0}$ of $\tilde{U}_{k}$ such that

$$
\bar{U}_{i} \cap \bar{U}_{k} \subset U_{0} \subset U_{\lambda} U_{\lambda} \subset \widetilde{U}_{i} \cap \widetilde{U}_{k}
$$

Lemma 3.2. Let $U_{o}$ be the open set of $\widetilde{U}_{k}$ in Lemma 3.1. Let $S_{o}$ be sufficiently small. Then

$$
\eta_{k}\left(X_{i} \cap X_{k}\right) \cap\left(\widetilde{U}_{k} \times S_{o}\right) \subset U_{o} \times S_{o} .
$$

Now, it is clear that

$$
U_{o} \times S_{o} \subset \eta_{k}\left(\widetilde{X}_{i} \cap \widetilde{X}_{k}\right)
$$

$U_{0} \times S_{o}$ is a closed subvariety of $U_{o} \times \Omega_{o}$, which is Stein. Thus the map

$$
\eta_{i k}: U_{o} \times S_{o} \rightarrow \widetilde{U}_{i} \times S_{o}
$$

is extended to a holomorphic map

$$
\eta_{i k}: U_{o} \times \Omega_{o} \rightarrow \tilde{U}_{i} \times \Omega_{o}
$$

The extended map $\eta_{i k}$ is written as follows:

$$
\eta_{i k}\left(z_{k}, s\right)=\left(g_{i k}\left(z_{k}, s\right), s\right),
$$

where

$$
g_{i k}: U_{o} \times \Omega_{o} \rightarrow \tilde{U}_{i}
$$

is an extension of the map $g_{i k}$ above.
In a similar way, we can find a Stein open set $W_{0}$ of $\widetilde{W}_{k}$ such that

$$
\begin{aligned}
& \bar{W}_{i} \cap \bar{W}_{k} \subset W_{o} \subset \widetilde{W}_{i} \cap \widetilde{W}_{k}, \\
& W_{o} \times S_{o} \subset \xi_{k}\left(\widetilde{Y}_{i} \cap \widetilde{Y}_{k}\right) \text { and } \\
& \xi_{k}\left(Y_{i} \cap Y_{k}\right) \cap\left(\widetilde{W}_{k} \times S_{o}\right) \subset W_{o} \times S_{o} .
\end{aligned}
$$

$W_{o} \times S_{o}$ is a closed subvariety of $W_{0} \times \Omega_{0}$, which is Stein. Hence the map

$$
\xi_{i k}: W_{0} \times S_{o} \rightarrow \tilde{W}_{i} \times S_{o}
$$

is extended to a holomorphic map

$$
\xi_{i k}: W_{o} \times \Omega_{o} \rightarrow \widetilde{W}_{i} \times \Omega_{0} .
$$

The extended map $\xi_{i k}$ is written as follows:

$$
\xi_{i k}\left(w_{k}, s\right)=\left(h_{i k k}\left(w_{k}, s\right), s\right)
$$

where

$$
h_{i k}: W_{o} \times \Omega_{o} \rightarrow \widetilde{W}_{i}
$$

is an extension of the map $h_{i k}$ above.
Let $e, 0<e<1$, be a positive number. We put

$$
\begin{aligned}
U_{i}^{e} & =\left\{z_{i} \in U_{i}| | z_{i} \mid<1-e\right\} \text { and } \\
W_{i}^{e} & =\left\{w_{i} \in W_{i}| | w_{i} \mid<1-e\right\} .
\end{aligned}
$$

Lemma 3.3. If $e$ is sufficiently small, then $\left\{U_{i}^{e}\right\}_{i \in I}$ and $\left\{W_{i}^{e}\right\}_{i \in I}$ cover $V$ and $f(V)$ respectively.

Proof. We prove the first half. The second half is shown in a similar way. We assume the converse. Let

$$
1>e_{1}>e_{2}>\cdots>0
$$

be a sequence of positive numbers converging to 0 . We put

$$
A_{n}=V-\bigcup_{i \in I} U_{i}^{e n}, \quad n=1,2, \cdots
$$

Then $A_{n}, n=1,2, \cdots$, are non-empty, compact and satisfy

$$
A_{1} \supset A_{2} \supset \cdots .
$$

Hence

$$
\bigcap_{n} A_{n} \neq \varnothing
$$

On the other hand,

$$
\begin{aligned}
\bigcap_{n} A_{n} & =\bigcap_{n}\left(V-\bigcup_{i \in I} U_{i}^{e^{e}}\right)=\bigcap_{n}\left(\bigcap_{i}\left(V-U_{i}^{e} n\right)\right) \\
& =\bigcap_{i}\left(\bigcap_{n}\left(V-U_{i}^{e} n\right)\right)=\bigcap_{i}\left(V-U_{i}\right)=\varnothing
\end{aligned}
$$

a contradiction.
q.e.d.

Lemma 3.4. If $e$ is sufficiently small, then

$$
f\left(\bar{U}_{i}\right) \subset W_{i}^{e}
$$

for each $i \in I$.
Proop. We assume the converse. Let

$$
1>e_{1}>e_{2}>\cdots>0
$$

be a sequence of positive numbers converging to 0 . We put

$$
A_{n}=\left(W_{i}-W_{i}^{e} n\right) \cap f\left(\bar{U}_{i}\right), \quad n=1,2 \cdots
$$

Then $A_{n}, n=1,2, \cdots$, are non-empty compact subsets of $W_{i}$. Since

$$
A_{1} \supset A_{2} \supset \cdots,
$$

we have

$$
\bigcap_{n} A_{n} \neq \varnothing
$$

On the other hand,

$$
\bigcap_{n} A_{n}=\left(\bigcap_{n}\left(W_{i}-W_{i}^{e} n\right)\right) \bigcap f\left(\bar{U}_{i}\right)=\varnothing,
$$

a contradiction.
q.e.d.

Let $e$ and $e^{\prime}, 0<e<e^{\prime}<1$, be small positive numbers satisfying Lemmas 3.3 and 3.4.

For any positive number $\varepsilon$ with $0<\varepsilon<\varepsilon_{0}$, we put

$$
\begin{aligned}
& \Omega_{\varepsilon}=\{s \in \Omega| | s \mid<\varepsilon\} \quad \text { and } \\
& S_{\varepsilon}=\Omega_{\varepsilon} \cap S^{\prime}
\end{aligned}
$$

The proofs of Lemmas 3.5, 3.6, and 3.7 below are similar to those of Lemma $3.3,3.4$, and 3.5 of [9] respectively, so we omit them.

Lemma 3.5. There is a small positive number $\varepsilon$ (independent of indices in $I)$ with $0<\varepsilon<\varepsilon_{o}$ such that if $s \in \Omega_{\varepsilon}$, then $g_{i k}\left(z_{k}, s\right)\left(r e s p . h_{i k}\left(w_{k}, s\right)\right)$ is defined and is a point of $U_{i}\left(r e s p . W_{i}\right)$ for all $z_{k} \in U_{i}^{e} \cap U_{k}$ (resp. for all $\left.w_{k} \in W_{i}^{e} \cap W_{k}\right)$.

Lemma 3.6. There is a small positive number $\varepsilon$ (independent of indices in $I$ ) with $0<\varepsilon<\varepsilon_{0}$ such that if $s \in S_{c}$, then

$$
\eta_{k}^{-1}\left(z_{k}, s\right) \in X_{i} \cap X_{k}
$$

(resp. $\xi_{k}^{-1}\left(w_{k}, s\right) \in Y_{i} \cap Y_{k}$ ) for all $z_{k} \in U_{i}^{e} \cap U_{k}$ (resp. for all $w_{k} \in W_{i}^{e} \cap W_{k}$ ).
Lemma 3.7. There is a small positive number $\varepsilon$ (independent of indices in $I$ ) with $0<\varepsilon<\varepsilon_{0}$ such that if $s \in S_{\varepsilon}$ and if

$$
\eta_{k}^{-1}\left(z_{k}, s\right) \in X_{i}^{e^{\prime}} \cap X_{k}
$$

then $z_{k} \in U_{i}^{e} \cap U_{k}$.
The set $U_{0}$ in Lemma 3.1 and the set $W_{0}$ above depend on the indices $i$ and $k$. On the other hand, we may assume that $\varepsilon_{0}$ is independent of indices, for the set $I$ of indices is a finite set. Hence we may assume that $\Omega_{0}$ and $S_{0}$ are independent of indices. We write

$$
\begin{aligned}
U_{0} & =U_{0(i k)} \quad \text { and } \\
W_{0} & =W_{0(i k k)},
\end{aligned}
$$

whenever we want to distinguish them. $\eta_{j k}^{-1}\left(U_{o(i j)} \times \Omega_{o}\right)$ and $\xi_{j k}^{-1}\left(W_{o(i j)} \times\right.$ $\Omega_{o}$ are open sets of $U_{o(j k)} \times \Omega_{0}$ and $W_{o(i k)} \times \Omega_{0}$ respectively, and contain $\bar{U}_{i} \cap \bar{U}_{j} \cap \bar{U}_{k}$ and $\bar{W}_{i} \cap \bar{W}_{j} \cap \bar{W}_{k}$ respectively. The proof of the following Lemma is similar to that of Lemma 3.7 of [9], so we omit it.

Lemma 3.8. There is a small positive number $\varepsilon$ (independent of indices in I) with $0<\varepsilon<\varepsilon_{o}$ such that if $s \in \Omega_{c}$, then
(1) $\left(z_{k}, s\right) \in \eta_{j k}^{-1}\left(U_{0 i(i j)} \times \Omega_{o}\right)$
for all $z_{k} \in U_{i} \cap U_{j} \cap U_{k}$,
(1) $\quad\left(w_{k}, s\right) \in \xi_{j k}^{-1}\left(W_{o(i j)} \times \Omega_{o}\right)$
for all $w_{k} \in W_{i} \cap W_{j} \cap W_{k}$,
(2) $g_{i k}\left(z_{k}, s\right) \in U_{i}^{e / 2} \cap U_{j}^{c / 2}$
for all $z_{k} \in U_{i}^{e} \cap U_{j}^{e} \cap U_{k}$, where

$$
U_{i}^{e / 2}=\left\{z_{i} \in U_{i}| | z_{i} \mid<1-e / 2\right\},
$$

(2) $h_{i k}\left(w_{k}, s\right) \in W_{i}^{e / 2} \cap W_{j}^{e / 2}$
for all $w_{k} \in W_{i}^{e} \cap W_{j}^{e} \cap W_{k}$, where

$$
W_{i}^{e \mid 2}=\left\{w_{i} \in W_{i}| | w_{i} \mid<1-e / 2\right\} .
$$

Let $A$ be a compact subset of $W_{k}$. Let $\varepsilon$ be a small positive number. We regard $W_{k}$ as a polydise

$$
W_{k}=\left\{w_{k} \in \boldsymbol{C}^{r}| | w_{k} \mid<1\right\}
$$

in $\boldsymbol{C}^{r}$. We consider a subset

$$
A_{c}=\left\{w_{k}+x_{k} \mid w_{k} \in A \quad \text { and } \quad\left|x_{k}\right| \leqq \varepsilon\right\}
$$

of $\boldsymbol{C}^{r}$, where the summation is taken in $\boldsymbol{C}^{r}$. $A_{\varepsilon}$ is compact, for the summation is a continuous operation. Since the proof of the following lemma is straightforward, we omit it.

Lemma 3.9. There is a small positive number $\varepsilon$ such that $A_{\varepsilon} \subset W_{k}$.
Since $\overline{f\left(U_{i}\right)}$ is a compact subset of $W_{i}^{e}, \overline{f\left(U_{i}\right)} \cap \overline{f\left(U_{k}\right)}$ is a compact subset of $W_{i}^{*} \cap W_{k}$, which is open in $W_{k}$. By Lemma 3.9, there is a small positive number $\varepsilon$ such that

$$
\left(\overline{f\left(U_{i}\right)} \cap \overline{f\left(U_{k}\right)}\right)_{c} \subset W_{k} .
$$

Since the proof of the following lemma is straightforward, we omit it.
Lemma 3.10. There is a small positive number $\varepsilon$ (independent of indices in I) such that

$$
\left.\left.\overline{\left(f\left(U_{i}\right)\right.} \cap \overline{f\left(U_{k}\right.}\right)\right)_{\varepsilon} \subset W_{i}^{e} \cap W_{k} \subset W_{k}
$$

4. The linear map $\sigma$. We use the same notations as §3. Henceforth, we assume that $\widetilde{S} \subset \widetilde{\Omega}$ is a neat imbedding of $\widetilde{S}$ at $o$, [3]. Thus $k$ is equal to the dimension of the Zariski tangent space $T_{o} S$ at $o$. We assume that $\widetilde{S}$ is defined in $\widetilde{\Omega}$ as common zeros of holomorphic functions

$$
e_{1}(s), \cdots, e_{m}(s)
$$

It is easy to see that
(1) $e_{\alpha}(o)=0, \alpha=1, \cdots, m$,
(2) $\left(\partial e_{\alpha} / \partial s^{\beta}\right)(o)=0, \alpha=1, \cdots, m, \beta=1, \cdots, k$.

In §3, we extended the maps

$$
\begin{aligned}
& \eta_{i k}=\eta_{i} \eta_{k}^{-1}: U_{o} \times S_{o} \rightarrow \widetilde{U}_{i} \times S_{o} \quad \text { and } \\
& \xi_{i k}=\xi_{i} \xi_{k}^{-1}: W_{o} \times S_{o} \rightarrow \widetilde{W}_{i} \times S_{o}
\end{aligned}
$$

to

$$
\begin{aligned}
& \eta_{i k}: U_{0} \times \Omega_{o} \rightarrow \widetilde{U}_{i} \times \Omega_{o} \quad \text { and } \\
& \xi_{i k}: W_{o} \times \Omega_{o} \rightarrow \widetilde{W}_{i} \times \Omega_{o}
\end{aligned}
$$

The extended maps $\eta_{i k}$ and $\xi_{i k}$ were written as

$$
\begin{aligned}
\eta_{i k}\left(z_{k}, s\right) & =\left(g_{i k}\left(z_{k}, s\right), s\right) \quad \text { and } \\
\xi_{i k k}\left(w_{k}, s\right) & =\left(h_{i k}\left(w_{k}, s\right), s\right) .
\end{aligned}
$$

Lemma 4.1. Let $z_{k}$ and $w_{k}$ be points of $U_{i} \cap U_{k}$ and $W_{i} \cap W_{k}$ respectively. Then the matrices

$$
\begin{aligned}
& \left(\partial g_{i k} / \partial z_{k}\right)\left(z_{k}, o\right), \\
& \left(\partial g_{i k} / \partial s\right)\left(z_{k}, o\right), \\
& \left(\partial h_{i k} / \partial w_{k}\right)\left(w_{k}, o\right) \quad \text { and } \\
& \left(\partial h_{i k} / \partial s\right)\left(w_{k}, o\right)
\end{aligned}
$$

are independent how to extend maps $\eta_{i k}$ and $\xi_{i k}$.
Proof. We show that $\left(\partial h_{i k} / \partial s\right)\left(w_{k}, o\right)$ is independent how to extend the $\operatorname{map} \xi_{i k}$. Others can be shown in similar ways. In a neighborhood of ( $w_{k}, o$ ) in $W_{0} \times \Omega_{0}$, another extension of $\xi_{i k}$ is written as follows:

$$
w_{i}=h_{i k}^{\prime}\left(w_{k}, s\right)=h_{i k}\left(w_{k}, s\right)+\sum_{\alpha=1}^{m} a_{i k}^{\alpha}\left(w_{k}, s\right) e_{\alpha}(s)
$$

where $\alpha_{i k}^{\alpha}, \alpha=1, \cdots, m$, are vector valued holomorphic functions in the neighborhood. Hence

$$
\left(\partial h_{i k}^{\prime} / \partial s\right)\left(w_{k}, o\right)=\left(\partial h_{i k} / \partial s\right)\left(w_{k}, o\right)
$$

$$
\begin{aligned}
& +\sum_{\alpha=1}^{m}\left(\partial \alpha_{i k}^{\alpha} / \partial s\right)\left(w_{k}, o\right) e_{\alpha}(o) \\
& +\sum_{\alpha=1}^{m} a_{i k}^{\alpha}\left(w_{k}, o\right)\left(\partial e_{\alpha} / \partial s\right)(o) \\
& =\left(\partial h_{i k} / \partial s\right)\left(w_{k}, o\right)
\end{aligned}
$$

by (1) and (2) above.
q.e.d.

Now, $f$ maps $\widetilde{U}_{i}$ into $\widetilde{W}_{i}$. Using the local coordinates, it is expressed by the equations

$$
w_{i}=f_{i}\left(z_{i}\right), \quad i \in I
$$

where $f_{i}$ is a vector valued holomorphic function on $\widetilde{U}_{i}$.
Let $z_{k}^{0}$ be a point of $U_{i} \cap U_{j} \cap U_{k}$. Then there are neighborhoods $A$ of ( $z_{k}^{o}, o$ ) in $U_{o(j k)} \times \Omega_{o}$ and $B$ of $\left(f_{k}\left(z_{k}^{o}\right), o\right)$ in $W_{0(j k)} \times \Omega_{o}$ and vector valued holomorphic functions

$$
\begin{aligned}
& b^{\alpha}\left(z_{k}, s\right), \alpha=1, \cdots, m \quad \text { and } \\
& c^{\alpha}\left(w_{k}, s\right), \alpha=1, \cdots, m
\end{aligned}
$$

on $A$ and $B$ respectively such that $\eta_{i j} \eta_{j k}$ and $\xi_{i j} \xi_{j k}$ are defined on $A$ and $B$ respectively and such that
(3) $g_{i k}\left(z_{k}, s\right)=g_{i j}\left(g_{j k}\left(z_{k}, s\right), s\right)+\sum_{\alpha=1}^{m} b^{\alpha}\left(z_{k}, s\right) e_{\alpha}(s)$
for all $\left(z_{k}, s\right) \in A$ and

$$
\begin{equation*}
h_{i k}\left(w_{k}, s\right)=h_{i j}\left(h_{j k}\left(w_{k}, s\right), s\right)+\sum_{\alpha=1}^{m} c^{\alpha}\left(w_{k}, s\right) e_{\alpha}(s) \tag{4}
\end{equation*}
$$

for all $\left(w_{k}, s\right) \in B$.
Lemma 4.2. Let $z_{k}^{o}$ be a point of $U_{i} \cap U_{j} \cap U_{k}$. Then

$$
\begin{aligned}
& \left(\partial h_{i k} / \partial w_{k}\right)\left(f_{k}\left(z_{k}^{0}\right), o\right) \\
= & \left(\partial h_{i j} / \partial w_{j}\right)\left(f_{j}\left(z_{j}^{0}\right), o\right)\left(\partial h_{j k} / \partial w_{k}\right)\left(f_{k}\left(z_{k}^{0}\right), o\right)
\end{aligned}
$$

where $z_{j}^{o}=g_{j k}\left(z_{k}^{o}, o\right)$.
Proof. We differentiate (4) with respect to $w_{k}$ at $\left(f_{k}\left(z_{k}^{0}\right), o\right)$. Since $h_{j_{k}}\left(f_{k}\left(z_{k}^{o}\right), o\right)=f_{j}\left(z_{j}^{o}\right)$, we obtain the above equality by (1). q.e.d.

The holomorphic vector bundle on $V$ defined by the transition matrices $\left\{\left(\partial h_{i k} / \partial w_{k}\right)\left(f_{k}\left(z_{k}\right), o\right)\right\}$ is nothing but the induced bundle $f^{*} T W$ of the holomorphic tangent bundle $T W$ over $f$.

Lemma 4.3. Let $z_{k}^{0}$ be a point of $U_{i} \cap U_{j} \cap U_{k}$. Then

$$
\begin{aligned}
& \left(\partial h_{i k} / \partial s\right)\left(f_{k}\left(z_{k}^{0}\right), o\right)=\left(\partial h_{i j} / \partial s\right)\left(f_{j}\left(z_{j}^{o}\right), o\right) \\
& \quad+\left(\partial h_{i j} / \partial w_{j}\right)\left(f_{j}\left(z_{j}^{o}\right), o\right)\left(\partial h_{j k} / \partial s\right)\left(f_{k}\left(z_{k}^{o}\right), o\right),
\end{aligned}
$$

where $z_{j}^{o}=g_{j k}\left(z_{k}^{o}, o\right)$.
Proof. We differentiate (4) with respect to $s$ at $\left(f_{k}\left(z_{k}^{o}\right), o\right)$ and obtain the above equality by (1) and (2). q.e.d.

Lemma 4.4. Let $z_{k}^{0}$ be a point of $U_{i} \cap U_{j} \cap U_{k}$. Then

$$
\begin{aligned}
& \left(\partial g_{i k} / \partial s\right)\left(z_{k}^{0}, o\right)=\left(\partial g_{i j} / \partial s\right)\left(z_{j}^{0}, o\right) \\
& \quad+\left(\partial g_{i j} / \partial z_{j}\right)\left(z_{j}^{0}, o\right)\left(\partial g_{j k} / \partial s\right)\left(z_{k}^{0}, o\right)
\end{aligned}
$$

where $z_{j}^{o}=g_{j_{k}}\left(z_{k}^{o}, o\right)$.
Proof. We differentiate (3) with respect to $s$ at ( $z_{k}^{n}, o$ ) and obtain the above equality by (1) and (2). q.e.d.

Lemma 4.5. Let $z_{k}^{o}$ be a point of $U_{i} \cap U_{j} \cap U_{k}$. Then

$$
\begin{aligned}
& \left(\partial f_{i} / \partial z_{i}\right)\left(z_{i}^{o}\right)\left(\partial g_{i k} / \partial s\right)\left(z_{k}^{o}, o\right) \\
& \quad=\left(\partial f_{i} / \partial z_{i}\right)\left(z_{i}^{o}\right)\left(\partial g_{i j} / \partial s\right)\left(z_{j}^{0}, o\right) \\
& \quad+\left(\partial h_{i j} / \partial w_{j}\right)\left(f_{j}\left(z_{j}^{0}\right), o\right)\left(\partial f_{j} / \partial z_{j}\right)\left(z_{j}^{0}\right)\left(\partial g_{j k} / \partial s\right)\left(z_{k}^{0}, o\right)
\end{aligned}
$$

where $z_{i}^{o}=g_{i k}\left(z_{k}^{o}, o\right)$ and $z_{j}^{o}=g_{j_{k}}\left(z_{k}^{o}, o\right)$.
Proof. $f_{i}, i \in I$, must satisfy the following compatibility conditions:

$$
h_{i j}\left(f_{j}\left(z_{j}\right), o\right)=f_{i}\left(g_{i j}\left(z_{j}, o\right)\right)
$$

for all $z_{j} \in U_{i} \cap U_{j}$. Differentiating the equation with respect to $z_{j}$ at $z_{j}^{0}$, we obtain

$$
\begin{aligned}
& \left(\partial h_{i j} / \partial w_{j}\right)\left(f_{j}\left(z_{j}^{o}\right), o\right)\left(\partial f_{j} / \partial z_{j}\right)\left(z_{j}^{o}\right) \\
& \quad=\left(\partial f_{i} / \partial z_{i}\right)\left(z_{i}^{o}\right)\left(\partial g_{i j} / \partial z_{j}\right)\left(z_{j}^{o}, o\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left(\partial f_{i} / \partial z_{i}\right) & \left(z_{i}^{o}\right)\left(\partial g_{i j} / \partial s\right)\left(z_{j}^{o}, o\right) \\
& +\left(\partial h_{i j} / \partial w_{j}\right)\left(f_{j}\left(z_{j}^{0}\right), o\right)\left(\partial f_{j} / \partial z_{j}\right)\left(z_{j}^{o}\right)\left(\partial g_{j k} / \partial s\right)\left(z_{k}^{o}, o\right) \\
= & \left(\partial f_{i} \partial z_{i}\right)\left(z_{i}^{o}\right)\left(\partial g_{i j} / \partial s\right)\left(z_{j}^{o}, o\right) \\
& +\left(\partial f_{i} / \partial z_{i}\right)\left(z_{i}^{o}\right)\left(\partial g_{i j} / \partial z_{j}\right)\left(z_{j}^{0}, o\right)\left(\partial g_{j k} / \partial s\right)\left(z_{k}^{o}, o\right) \\
= & \left(\partial f_{i} / \partial z_{i}\right)\left(z_{i}^{o}\right)\left(\partial g_{i k} / \partial s\right)\left(z_{k}^{o}, o\right)
\end{aligned}
$$

by Lemma 4.4.
q.e.d.

We put $F=f^{*} T W$. Then Lemma 4.3 and Lemma 4.5 show that

$$
\left\{\left(\partial h_{i k} / \partial s\right)\left(f_{k}\left(z_{k}\right), o\right)-\left(\partial f_{i} / \partial z_{i}\right)\left(z_{i}\right)\left(\partial g_{i k} / \partial s\right)\left(z_{k}, o\right)\right\}
$$

is an element of $Z^{1}(F,| |)$, (the space of 1-cocycles defined in §2), where $z_{k} \in U_{i}^{e} \cap U_{k}$ and $z_{i}=g_{i k}\left(z_{k}, o\right)$. This follows from the fact that

$$
\left|\left(\partial f_{i} / \partial z_{i}\right)\left(z_{i}\right)\right|, \quad z_{i} \in U_{i}^{e},
$$

is estimated by $\sup \left\{\left|f_{i}\left(z_{i}\right)\right| \mid z_{i} \in U_{i}\right\},(<1)$. Hence we can define a continuous linear map

$$
\sigma: T_{o} S \rightarrow Z^{1}(F,| |)
$$

by

$$
\begin{gathered}
\sigma(\alpha)_{i k}\left(z_{i}\right)=\sum_{\alpha=1}^{k} a^{\alpha}\left[\left(\partial h_{i k} / \partial s^{\alpha}\right)\left(f_{k}\left(z_{k}\right), o\right)\right. \\
\left.-\left(\partial f_{i} / \partial z_{i}\right)\left(z_{i}\right)\left(\partial g_{i k} / \partial s^{\alpha}\right)\left(z_{k}, o\right)\right]
\end{gathered}
$$

for $z_{i} \in U_{i}^{e} \cap U_{k}$, where $z_{k}=g_{k i}\left(z_{i}, o\right)$ and $a=\sum_{\alpha=1}^{k} a^{\alpha}\left(\partial / \partial s^{\alpha}\right)_{o}$.
Remark. We write $\sigma(a)_{i k}\left(z_{i}\right)$ instead of writing $\sigma(a)_{i k}\left(z_{k}\right)$ following the definition of || in §2.
5. Proof of Theorem 1. We use the same notations as in $\S 3$ and $\S 4$. $f$ maps $\bar{U}_{i}$ into $W_{i}^{e}$. Using the local coordinates, it is expressed by the equations

$$
w_{i}=f_{i}\left(z_{i}\right), \quad i \in I
$$

Then the vector valued holomorphic functions $f_{i}, i \in I$, must satisfy the following compatibility conditions:

$$
h_{i k}\left(f_{k}\left(z_{k}\right), o\right)=f_{i}\left(g_{i k}\left(z_{k}, o\right)\right)
$$

for all $z_{k} \in U_{i} \cap U_{k}$. As in §4, we put $F=f^{*} T W$, the induced bundle over $f$ of the holomorphic tangent bundle $T W$. Let $T_{o} S$ be the Zariski tangent space to $S$ at $o$. We consider the product

$$
C^{0}(F,| |) \times T_{0} S,
$$

where $C^{0}(F,| |)$ is the Banach space introduced in §2. We introduce a norm || in $C^{0}(F,| |) \times T_{0} S$ as follows:

$$
|(\phi, s)|=\max \{|\phi|,|s|\}
$$

for $(\phi, s) \in C^{0}(F,| |) \times T_{0} S$, where $|s|=\max _{\alpha}\left|a^{\alpha}\right|, s=\sum_{\alpha=1}^{k} \alpha^{\alpha}\left(\partial / \partial s^{\alpha}\right)_{0}$. Then $C^{0}(F,| |) \times T_{0} S$ is a Banach space. We identify $\widetilde{\Omega}$ with an open set of $T_{0} S$ by

$$
\left(a^{1}, \cdots, a^{k}\right) \in \widetilde{\Omega} \rightarrow \sum_{\alpha=1}^{k} a^{\alpha}\left(\partial / \partial s^{\alpha}\right)_{o} \in T_{o} S
$$

Let $f^{\prime}$ be a holomorphic map of $\pi^{-1}(s)$ into $\mu^{-1}(s)$ for a point $s \in S^{\prime}$ such that

$$
f^{\prime}\left(\pi^{-1}(s) \cap X_{i}\right) \Subset \mu^{-1}(s) \cap Y_{i}
$$

for all $i \in I$. We express the $\operatorname{map} f^{\prime}$ by the equations

$$
w_{i}=f_{i}^{\prime}\left(z_{i}\right), \quad i \in I,
$$

using the isomorphisms

$$
\begin{aligned}
& \eta_{i}: X_{i} \rightarrow U_{i} \times S^{\prime \prime} \text { and } \\
& \xi_{i}: Y_{i} \rightarrow W_{i} \times S^{\prime} .
\end{aligned}
$$

Then the vector valued holomorphic functions $f_{i}^{\prime}$ satisfy $f_{i}^{\prime}\left(U_{i}\right) \subset W_{i}$. We write

$$
f_{i}^{\prime}=f_{i}+\phi_{i}
$$

where $\phi_{i}$ is a vector valued holomorphic function on $U_{i}$. We regard $\phi=$ $\left\{\phi_{i}\right\}_{i \in I}$ as an element of $C^{0}(F,| |)$. We associate to $f^{\prime}$ an element $(\phi, s) \in$ $C^{0}(F,| |) \times T_{o} S$ where $s \in S^{\prime} \subset \Omega \subset T_{0} S$. Then it is clear that ( $\phi, s$ ) must satisfy the following compatibility conditions:
(1) $s \in S^{\prime}$ and
(2) $h_{i k}\left(f_{k}\left(z_{k}\right)+\phi_{k}\left(z_{k}\right), s\right)=f_{i}\left(g_{i k}\left(z_{k}, s\right)\right)+\phi_{i}\left(g_{i k}\left(z_{k}, s\right)\right)$ for $\left(z_{k}, s\right) \in \eta_{k}\left(X_{i} \cap X_{k}\right) \cap \pi^{-1}(s) \quad$ and $\quad\left(f_{k}\left(z_{k}\right)+\phi_{k}\left(z_{k}\right), s\right) \in \xi_{k}\left(Y_{i} \cap Y_{k}\right) \cap \mu^{-1}(s)$.

Conversely, if an element $(\phi, s) \in C^{0}(F,| |) \times T_{0} S$ satisfies $|(\phi, s)|<\varepsilon$, (where $\varepsilon$ satisfies Lemma 3.9 for $A=\overline{f_{k}\left(U_{k}\right)}$ for each $k \in I$ ), and satisfies the conditions (1) and (2) above, then the equations

$$
w_{i}=f_{i}^{\prime}\left(z_{i}\right)=f_{i}\left(z_{i}\right)+\phi_{i}\left(z_{i}\right),
$$

for $z_{i} \in U_{i}$ and $i \in I$, define a holomorphic $\operatorname{map} f^{\prime}$ of $\pi^{-1}(s)$ into $\mu^{-1}(s)$. By Lemma 3.9, $f^{\prime}$ satisfies

$$
f^{\prime}\left(\pi^{-1}(s) \cap X_{i}\right) \subset \mu^{-1}(s) \cap Y_{i}, i \in I .
$$

Henceforth, let $\varepsilon, 0<\varepsilon<1$, be a small positive number satisfying Lemma 3.5-Lemma 3.8, Lemma 3.9 for $A=\overline{f_{k}\left(\overline{U_{k}}\right)}$ for each $k \in I$, and Lemma 3.10. Let $B_{\varepsilon}$ be the open $\varepsilon$-ball of $C^{0}(F,| |)$ with the center 0 . Let $\Omega_{\varepsilon}$ be the open $\varepsilon$-ball of $T_{o} S$ with the center $o$. We put $S_{\varepsilon}=S^{\prime \prime} \cap \Omega_{\varepsilon}$. We assume that $S^{\prime}$ is defined in $\Omega$ as common zeros of holomorphic functions

$$
e_{1}(s), \cdots, e_{m}(s)
$$

We define a holomorphic map

$$
e: \Omega \rightarrow \boldsymbol{C}^{m}
$$

by

$$
e(s)=\left(e_{1}(s), \cdots, e_{m}(s)\right)
$$

Then

$$
S_{\varepsilon}=\left\{s \in \Omega_{\varepsilon} \mid e(s)=0\right\}
$$

Now we define a map

$$
K: B_{\varepsilon} \times \Omega_{\varepsilon} \rightarrow C^{1}(F,| |)
$$

by

$$
\begin{gathered}
K(\phi, s)_{i k}\left(z_{i}\right)=h_{i k}\left(f_{k}\left(z_{k}\right)+\phi_{k}\left(z_{k}\right), s\right) \\
\quad-f_{i}\left(g_{i k}\left(z_{k}, s\right)\right)-\phi_{i}\left(g_{i k}\left(z_{k}, s\right)\right)
\end{gathered}
$$

for $z_{i} \in U_{i}^{e} \cap U_{k}$, where $z_{k}=g_{k i}\left(z_{i}, o\right)$. Then $K(0, o)=0$. If $z_{k} \in U_{i}^{e} \cap U_{k}$ and $s \in \Omega_{\varepsilon}$, then $g_{i k}\left(z_{k}, s\right)$ is defined and is a point of $U_{i}$ by Lemma 3.5. Hence $f_{i}\left(g_{i k}\left(z_{k}, s\right)\right)$ and $\phi_{i}\left(g_{i k}\left(z_{k}, s\right)\right)$ are defined. On the other hand, $f_{k}\left(z_{k}\right)+$ $\phi_{k}\left(z_{k}\right) \in W_{i}^{e} \cap W_{k}$ for $z_{k} \in U_{i}^{e} \cap U_{k}$ by Lemma 3.10. Hence $h_{i k}\left(f_{k}\left(z_{k}\right)+\phi_{k}\left(z_{k}\right)\right.$, $s$ ) is defined and is a point of $W_{i}$ by Lemma 3.5. Moreover, it is clear that

$$
|K(\phi, s)|<2+\varepsilon
$$

if $|(\phi, s)|<\varepsilon$. Thus $K$ maps $B_{\varepsilon} \times \Omega_{\varepsilon}$ into $C^{1}(F,| |)$.
Let

$$
\beta: C^{o}(F,| |) \times T_{o} S \rightarrow T_{o} S
$$

be the canonical projection. We put

$$
M_{1}=\left\{(\phi, s) \in B_{\varepsilon} \times \Omega_{\varepsilon} \mid K(\phi, s)=0\right\}
$$

and

$$
\begin{aligned}
M & =\left\{(\phi, s) \in B_{\varepsilon} \times \Omega_{\varepsilon} \mid K(\phi, s)=0, e \beta(\phi, s)=e(s)=0\right\} \\
& =\left\{(\phi, s) \in B_{\varepsilon} \times S_{\varepsilon} \mid K(\phi, s)=0\right\}
\end{aligned}
$$

Now we take an element $(\phi, s) \in B_{\varepsilon} \times \Omega_{\varepsilon}$ which satisfies the compatibility conditions (1) and (2) above. Let $z_{i}$ be any fixed point of $U_{i}^{e} \cap U_{k}$. Let $z_{k}=g_{k i}\left(z_{i}, o\right)$. By Lemma 3.6, $\left(z_{k}, s\right) \in \eta_{k}\left(X_{i} \cap X_{k}\right)$. By Lemma 3.10 and Lemma 3.6, $\left(f_{k}\left(z_{k}\right)+\phi_{k}\left(z_{k}\right), s\right) \in \xi_{k}\left(Y_{i} \cap Y_{k}\right)$. Hence, by (2),

$$
K(\phi, s)_{i k}\left(z_{i}\right)=0
$$

Since $z_{i} \in U_{i}^{e} \cap U_{k}$ is arbitrary,

$$
K(\phi, s)=0
$$

Hence $(\phi, s) \in M$. Conversely, let $(\phi, s) \in M$. (1) of the compatibility conditions is automatically satisfied. Let $z_{k}$ be a point of $U_{k}$. We assume that $\left(z_{k}, s\right) \in \eta_{k}\left(X_{i}^{e^{\prime}} \cap X_{k}^{e^{\prime}}\right)$ and $\left(f_{k}\left(z_{k}\right)+\phi_{k}\left(z_{k}\right), s\right) \in \xi_{k}\left(Y_{i}^{e^{\prime}} \cap Y_{k}^{e^{\prime}}\right)$. Then, by Lemma 3.7, $z_{k} \in U_{i}^{e} \cap U_{k}$. Since $K(\phi, s)=0$,

$$
h_{i k}\left(f_{k}\left(z_{k}\right)+\phi_{k}\left(z_{k}\right), s\right)=f_{i}\left(g_{i k}\left(z_{k}, s\right)\right)+\phi_{i}\left(g_{i k}\left(z_{k}, s\right)\right) .
$$

Hence the equations

$$
w_{i}=f_{i}\left(z_{i}\right)+\phi_{i}\left(z_{i}\right),
$$

for $z_{i} \in U_{i}^{e^{\prime}}$ and $i \in I$, define a holomorphic map $f^{\prime}$ of $\pi^{-1}(s)$ into $\mu^{-1}(s)$. Thus, by the principle of analytic continuation, equations

$$
w_{i}=f_{i}\left(z_{i}\right)+\phi_{i}\left(z_{i}\right),
$$

for $z_{i} \in U_{i}$ and $i \in I$, define $f^{\prime}$. Hence ( $\phi, s$ ) satisfies (2) of the compatibility conditions. Thus the problem is reduced to analyze the set $M$.

Proposition 5.1. Let $\varepsilon$ be sufficiently small. Then

$$
K: B_{\varepsilon} \times \Omega_{\varepsilon} \rightarrow C^{1}(F,| |)
$$

is an analytic map and

$$
K^{\prime}(0, o)=\delta+\sigma: C^{0}(F,| |) \times T_{o} S \rightarrow C^{1}(F,| |)
$$

where $\delta$ and $\sigma$ are the continuous linear maps defined in §2 and §4 respectively and $\delta+\sigma$ is defined by

$$
(\delta+\sigma)(\phi, s)=\delta \phi+\sigma s
$$

for $(\phi, s) \in C^{0}(F,| |) \times T_{o} S$.
Proof. The proof of the first half is similar to that of Lemma 3.4 of [8], so we we omit it. We prove the second half. Let $o(\phi, s)$ be some function of $\phi$ and $s$ (and $z_{i}$ ) such that

$$
|o(\phi, s)| /|(\phi, s)| \rightarrow 0
$$

as $|(\phi, s)| \rightarrow 0$. Let $z_{i} \in U_{i}^{e} \cap U_{k}$. We put $z_{k}=g_{k i}\left(z_{i}, o\right)$. Then

$$
\begin{aligned}
K(\phi, s)_{i k} & \left(z_{i}\right)=K(\phi, s)_{i k}\left(z_{i}\right)-K(0, o)_{i k}\left(z_{i}\right) \\
= & \left(\partial h_{i k} / \partial w_{k}\right)\left(f_{k}\left(z_{k}\right), o\right) \phi_{k}\left(z_{k}\right)+\left(\partial h_{i k} / \partial s\right)\left(f_{k}\left(z_{k}\right), o\right) s \\
\quad & \quad\left\{f_{i}\left(g_{i k}\left(z_{k}, s\right)\right)-f_{i}\left(g_{i k}\left(z_{k}, o\right)\right)\right\} \\
\quad & \quad-\left\{\phi_{i}\left(g_{i k}\left(z_{k}, s\right)\right)-\phi_{i}\left(g_{i k}\left(z_{k}, o\right)\right)\right\}-\phi_{i}\left(z_{i}\right)+o(\phi, s) \\
= & \left(\partial h_{i k} / \partial w_{k}\right)\left(f_{k}\left(z_{k}\right), o\right) \phi_{k}\left(z_{k}\right)+\left(\partial h_{i k} / \partial s\right)\left(f_{k}\left(z_{k}\right), o\right) s \\
& \quad-\left(\partial f_{i} / \partial z_{i}\right)\left(z_{i}\right)\left(\partial g_{i k} / \partial s\right)\left(z_{k}, o\right) s \\
& \quad-\left(\partial \dot{\phi}_{i} / \partial z_{i}\right)\left(z_{i}\right)\left(\partial g_{i k} / \partial s\right)\left(z_{k}, o\right) s-\phi_{i}\left(z_{i}\right)+o(\phi, s) .
\end{aligned}
$$

Since

$$
\left|\left(\partial \dot{\phi}_{i} / \partial z_{i}\right)\left(z_{i}\right)\right|, \quad z_{i} \in U_{i}^{e},
$$

is estimated by $|\phi|$, we may put

$$
-\left(\partial \dot{\phi}_{i} / \partial z_{i}\right)\left(z_{i}\right)\left(\partial g_{i k} / \partial s\right)\left(z_{k}, o\right) s=o(\phi, s) .
$$

Hence

$$
\begin{aligned}
K(\phi, s)_{i k}\left(z_{i}\right)= & (\delta \phi)_{i k}\left(z_{i}\right)+\left(\partial h_{i k} / \partial s\right)\left(f_{k}\left(z_{k}\right), o\right) s \\
& -\left(\partial f_{i} / \partial z_{i}\right)\left(z_{i}\right)\left(\partial g_{i k} / \partial s\right)\left(z_{k}, o\right) s+o(\phi, s) \\
= & (\delta \phi)_{i k}\left(z_{i}\right)+(\sigma s)_{i k}\left(z_{i}\right)+o(\phi, s) .
\end{aligned}
$$

Hence

$$
K(\phi, s)=\delta \phi+\sigma s+o(\phi, s) .
$$

q.e.d.

Now we define a map

$$
L: B_{\varepsilon} \times \Omega_{\varepsilon} \rightarrow C^{0}(F,| |) \times T_{o} S
$$

by

$$
L(\phi, s)=\left(\phi+E_{0} B \Lambda K(\phi, s)-E_{0} \delta \phi, s\right)
$$

where $E_{0}, B, \Lambda$, and $\delta$ are the continuous linear maps defined in $\S 2$. Then $L$ is analytic by Proposition 5.1. We have $L(0, o)=(0, o)$ and

$$
\begin{aligned}
L^{\prime}(0, o) & =\left(\begin{array}{cc}
1+E_{0} B \Lambda \delta-E_{0} \delta & E_{0} B \Lambda \sigma \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & E_{0} B \sigma \\
0 & 1
\end{array}\right)
\end{aligned}
$$

(We note that $B \Lambda \delta=\delta$ and $\Lambda \sigma=\sigma$.) Thus $L^{\prime}(0, o)$ is a continuous linear isomorphism. Hence, by the inverse mapping theorem, there are a small positive number $\varepsilon^{\prime}$, an open neighborhood $U$ of ( $0, o$ ) in $B_{\varepsilon} \times \Omega_{\varepsilon}$ and an analytic isomorphism $\Phi$ of $B_{\varepsilon^{\prime}} \times \Omega_{\varepsilon^{\prime}}$ onto $U$ such that $L \mid U=\Phi^{-1}$. We put

$$
\begin{aligned}
T_{1} & =L\left(M_{1} \cap U\right) \quad \text { and } \\
T & =L(M \cap U)
\end{aligned}
$$

Then $M_{1} \cap U=\Phi\left(T_{1}\right)$ and $M \cap U=\Phi(T)$.
Lemma 5.1. $\quad T_{1} \subset\left(H^{0}(F,| |) \cap B_{\varepsilon^{\prime}}\right) \times \Omega_{\varepsilon^{\prime}}$.
Proof. Let $(\phi, s) \in M_{1} \cap U$. Then

$$
\begin{aligned}
L(\phi, s) & =\left(\phi+E_{0} B \Lambda K(\phi, s)-E_{0} \delta \phi, s\right) \\
& =\left(\phi-E_{0} \delta \dot{\phi}, s\right)
\end{aligned}
$$

We have

$$
\delta\left(\phi-E_{0} \delta \phi\right)=\delta \phi-\delta \phi=0
$$

Corollary 1. $\quad T_{1}=\left\{(\xi, s) \in\left(H^{0}(F,| |) \cap B_{\varepsilon^{\prime}}\right) \times \Omega_{\varepsilon^{\prime}} \mid K \Phi(\xi, s)=0\right\}$.
Corollary 2. $\quad T=\left\{(\xi, s) \in\left(H^{0}(F,| |) \cap B_{\varepsilon^{\prime}}\right) \times S_{\varepsilon^{\prime}} \mid K \Phi(\xi, s)=0\right\}$.
Corollary 1 follows from the definition of $M_{1}$ and Lemma 5.1. Corollary 2 follows from Corollary 1.

Now let $(\xi, s) \in\left(H^{0}(F,| |) \cap B_{\varepsilon^{\prime}}\right) \times \Omega_{\varepsilon^{\prime}}$. We put $(\phi, s)=\Phi(\xi, s)$. Then

$$
\begin{aligned}
0 & =\delta \xi=\delta\left(\phi+E_{0} B \Lambda K(\phi, s)-E_{0} \delta \phi\right) \\
& =B \Lambda K(\phi, s)=B \Lambda K \Phi(\xi, s) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
K \Phi(\xi, s) & =H \Lambda K \Phi(\xi, s)+B \Lambda K \Phi(\xi, s)+E_{1} \delta K \Phi(\xi, s) \\
& =H \Lambda K \Phi(\xi, s)+E_{1} \delta K \Phi(\xi, s)
\end{aligned}
$$

where $H$ and $E_{1}$ are the continuous linear maps defined in $\S 2$.
Proposition 5.2. Let $\varepsilon^{\prime}$ be sufficiently small. Then

$$
T=\left\{(\xi, s) \in\left(H^{0}(F,| |) \cap B_{\varepsilon^{\prime}}\right) \times S_{\varepsilon^{\prime}} \mid H \Lambda K \Phi(\xi, s)=0\right\}
$$

Proof. The proof is almost similar to that of Lemma 3.6 of [8]. Only what we have to note are the following two points.
(A) By (2) of Lemma 3.8, if $(\phi, s) \in B_{\varepsilon} \times \Omega_{\varepsilon}$, then

$$
\zeta_{j}=g_{j k}\left(z_{k}, s\right) \in U_{i}^{e / 2} \cap U_{j}^{e / 2}
$$

if $z_{k}=g_{k i}\left(z_{i}, o\right) \in U_{i}^{e} \cap U_{j}^{e} \cap U_{k}$.
(B) For $(\phi, s) \in B_{\varepsilon} \times \Omega_{\varepsilon}$, we put

$$
\begin{aligned}
& R^{1}(K(\phi, s), \phi, s)=\left\{R^{1}(K(\phi, s), \phi, s)_{i j k}\right\} \in C^{2}(F,| |), \\
& \quad R^{1}(K(\phi, s), \phi, s)_{i j_{k}}\left(z_{i}\right)=h_{i j}\left(f_{j}\left(\zeta_{j}\right)+\phi_{j}\left(\zeta_{j}\right), s\right) \\
& \quad-h_{i j}\left(h_{j_{k}}\left(f_{k}\left(z_{k}\right)+\phi_{k k}\left(z_{k}\right), s\right), s\right) \\
& \quad+F_{i j}\left(z_{j}\right) K(\phi, s)_{j k}\left(z_{j}\right)
\end{aligned}
$$

where $z_{j}=g_{j i}\left(z_{i}, o\right), z_{k}=g_{k i}\left(z_{i}, o\right)$ and $F_{i j}\left(z_{j}\right)=\left(\partial h_{i j} / \partial w_{j}\right)\left(f_{j}\left(z_{j}\right), o\right)$. Then, for $s \in S_{\varepsilon}$,

$$
\begin{aligned}
& R^{1}(K(\phi, s), \phi, s)_{i j k}\left(z_{i}\right)=h_{i j}\left(f_{j}\left(\zeta_{j}\right)+\phi_{j}\left(\zeta_{j}\right), s\right) \\
& \quad-f_{i}\left(g_{i j}\left(\zeta_{j}, s\right)\right)-h_{i k}\left(f_{k}\left(z_{k}\right)+\phi_{k}\left(z_{k}\right), s\right) \\
& \quad+f_{i}\left(g_{i k}\left(z_{k}, s\right)\right)+F_{i j}\left(z_{j}\right) K(\phi, s)_{j k}\left(z_{j}\right) .
\end{aligned}
$$

The rest goes pararell to the proof of Lemma 3.6 of [8]. q.e.d.
Corollary. If $H^{1}(V, F)=0$, then

$$
T=\left(H^{0}(F,| |) \cap B_{\varepsilon^{\prime}}\right) \times S_{\varepsilon^{\prime}} .
$$

Now, for each $t=(\xi, s) \in T$, we put

$$
\Phi(t)=(\phi(t), b(t))
$$

Then

$$
\begin{aligned}
& \phi: T \rightarrow C^{0}(F,| |) \quad \text { and } \\
& b: T \rightarrow S
\end{aligned}
$$

are analytic maps. The map $b$ is actually the projection map

$$
t=(\xi, s) \rightarrow s
$$

If we write

$$
\phi(t)=\left\{\phi_{i}\left(z_{i}, t\right)\right\}_{i \in I},
$$

then it is easy to see that

$$
\phi_{i}: U_{i} \times T \rightarrow \boldsymbol{C}^{r}
$$

is a holomorphic map. We define a holomorphic map

$$
E: b^{*} X \rightarrow b^{*} Y
$$

be the equations

$$
w_{i}=f_{i}\left(z_{i}\right)+\phi_{i}\left(z_{i}, t\right), \quad \text { for } \quad z_{i} \in U_{i}, \quad \text { and } \quad t=t
$$

Then $(E, T, b)$ is a family of holomorphic maps of $(X, \pi, S)$ into $(Y, \mu, S)$ and satisfies

$$
E_{(0,0)}=f .
$$

We show that $(E, T, b)$ is a maximal family. Let $t_{o}=\left(\xi_{0}, s_{0}\right)$ be a point of $T$. Let $(G, R, h)$ be a family of holomorphic maps of $(X, \pi, S)$ into $(Y, \mu, S)$ with a point $r_{o}$ such that $h\left(r_{o}\right)=s_{o}$ and

$$
G_{r_{o}}=E_{t_{o}}: \pi^{-1}\left(s_{o}\right) \rightarrow \mu^{-1}\left(s_{o}\right) .
$$

The map $G_{r_{o}}=E_{t_{o}}$ is defined by the equations

$$
w_{i}=f_{i}\left(z_{i}\right)+\phi_{i}\left(z_{i}, t_{0}\right)
$$

for $z_{i} \in U_{i}$. Then it is easy to see that, there are a neighborhood $R^{\prime}$ of $r_{o}$, an ambient space $\widetilde{R}^{\prime}$ of $R^{\prime}$ and a vector valued holomorphic function $\psi_{i}$ on $U_{i} \times \widetilde{R}^{\prime}$ such that, for each fixed $r \in R^{\prime}, G_{r}$ is defined by equations

$$
w_{i}=f_{i}\left(z_{i}\right)+\phi_{i}\left(z_{i}, t_{o}\right)+\psi_{i}\left(z_{i}, r\right),
$$

for $z_{i} \in U_{i}$. We put

$$
\begin{aligned}
\phi_{i}^{\prime}\left(z_{i}, r\right) & =\phi_{i}\left(z_{i}, t_{o}\right)+\psi_{i}\left(z_{i}, r\right) \quad \text { and } \\
\phi^{\prime}(r) & =\left\{\phi_{i}^{\prime}\left(z_{i}, r\right)\right\}_{i \in I}
\end{aligned}
$$

for $r \in \widetilde{R^{\prime}}$. We extend the map $h$ to $\widetilde{R}^{\prime}$. Then

$$
\left(\phi^{\prime}(r), h(r)\right) \in C^{0}(F,| |) \times \Omega .
$$

We note that

$$
\left(\phi^{\prime}\left(r_{o}\right), h\left(r_{o}\right)\right)=\Phi\left(t_{o}\right) .
$$

It is easy to see that $\phi^{\prime}$ is an analytic map of $\widetilde{R^{\prime}}$ into $C^{0}(F,| |)$.
We may assume that

$$
\left(\phi^{\prime}(r), h(r)\right) \in U=\Phi\left(B_{\varepsilon^{\prime}} \times \Omega_{\varepsilon^{\prime}}\right)
$$

for all $r \in \widetilde{R^{\prime}}$. Let $r \in R^{\prime}$. Since the equations

$$
w_{i}=\phi_{i}^{\prime}\left(z_{i}, r\right),
$$

for $z_{i} \in U_{i}$, define a holomorphic map of $\pi^{-1}(h(r))$ into $\mu^{-1}(h(r))$, $\left(\phi^{\prime}(r), h(r)\right) \in$ $U \cap M$ for each $r \in R^{\prime}$. Hence $L\left(\phi^{\prime}(r), h(r)\right) \in T$ for each $r \in R^{\prime}$. We put

$$
k(r)=L\left(\phi^{\prime}(r), h(r)\right)
$$

for $r \in R^{\prime}$. Then $k$ is a holomorphic map of $R^{\prime}$ into $T$. We note that $k\left(r_{0}\right)=L \Phi\left(t_{0}\right)=t_{o}$. We have

$$
\Phi(k(r))=\left(\phi^{\prime}(r), h(r)\right) .
$$

Hence $h=b k$ and $\phi^{\prime}=\phi k$. From these identities, we have

$$
G_{r}=E_{k(r)}: \pi^{-1}(h(r)) \rightarrow \mu^{-1}(h(r))
$$

for all $r \in R^{\prime}$. Thus ( $E, T, b$ ) is a maximal family.
This completes the proof of Theorem 1.
Remark. Among maximal families, our maximal family ( $E, T, b$ ) is a special one. It is so called effectively parametrized. In other words, the map $k$ with properties

$$
\begin{aligned}
h & =b k \quad \text { and } \\
G_{r} & =E_{k(r)}: \pi^{-1}(h(r)) \rightarrow \mu^{-1}(h(r)),
\end{aligned}
$$

for all $r \in R^{\prime}$, is uniquely determined.

## Appendix of §5. Extensions of holomorphic maps.

Definition. Let $V$ be a compact complex manifold. Let $W$ be a complex manifold. Let $f$ be a holomorphic map of $V$ into $W$. $f$ is said to be extendable if and only if, for any families ( $X, \pi, S$ ) and ( $Y$, $\mu, S$ ) of compact complex manifolds and of complex manifolds respectively
with a point $o \in S$ such that $\pi^{-1}(o)=V$ and $\mu^{-1}(o)=W$, there are a neighborhood $U$ of $o$ in $S$ and a holomorphic map $H$ of $\pi^{-1}(U)$ into $\mu^{-1}(U)$ such that
(1) the diagram

is commutative and
(2) $H \mid V=f$.

The following theorem is essentially due to Kodaira (Theorem 1, [4]). See also §6 of [9].

Theorem. Let $V$ be a compact complex manifold. Let $W$ be a complex manifold. Let $f$ be a holomorphic map of $V$ into $W$. Let $f^{*} T W$ be the induced bondle over $f$ of the holomorphic tangent bundle $T W$ of $W$. If $H^{1}\left(V, f^{*} T W\right)=0$, then $f$ is extendable.

Proof. Let $(X, \pi, S)$ and $(Y, \mu, S)$ be families of compact complex manifolds and of complex manifolds with a point $o \in S$ such that $\pi^{-1}(o)=$ $V$ and $\mu^{-1}(o)=W$. Let $(E, T, b)$ be the maximal family of holomorphic maps of ( $X, \pi, S$ ) into ( $Y, \mu, S$ ) constructed in $\S 5$ with respect to $f$. If $H^{1}(V, F)=0$, where $F=f^{*} T W$, then

$$
T=\left(H^{\circ}(F,| |) \cap B_{\varepsilon^{\prime}}\right) \times S_{\varepsilon^{\prime}}
$$

by the corollary of Proposition 5.2. We define a map

$$
j: S_{\varepsilon^{\prime}} \rightarrow T
$$

by

$$
j(s)=(0, s) .
$$

Then $j$ is a holomorphic injection. Using the notations in §5, we define a holomorphic map

$$
H: \pi^{-1}\left(S_{\varepsilon^{\prime}}\right) \rightarrow \mu^{-1}\left(S_{\varepsilon^{\prime}}\right)
$$

by the equations

$$
w_{i}=f_{i}\left(z_{i}\right)+\phi_{i}\left(z_{i}, j(s)\right)
$$

for $\left(z_{i}, s\right) \in U_{i} \times S_{\varepsilon^{\prime}}$. Then $H$ satisfies the requirement. q.e.d.
6. Theorem 2, Theorem 3 and their proofs. Let $V$ be a compact complex manifold. Let $W$ be a complex manifold. We denote by $H(V$,
$W)$ the set of all holomorphic maps of $V$ into $W$.
Theorem 2. Let $(X, \pi, S)$ and $(Y, \mu, S)$ be families of compact complex manifolds and of complex manifolds respectively. We assume that $X$ and $Y$ satisfy the second axiom of countability. Then the disjoint union

$$
H=\coprod_{\varepsilon \in S} H\left(\pi^{-1}(s), \mu^{-1}(s)\right)
$$

admits an analytic space structure such that
(1) $(H, \lambda, S)$ is a complex fiber space where

$$
\lambda: H \rightarrow S
$$

is the canonical projection and
(2) the map

$$
X \underset{S}{\times} H \rightarrow Y
$$

defined by

$$
(P, f) \rightarrow f(P)
$$

is holomorphic, where

$$
X \underset{S}{\times} H=\{(P, f) \in X \times H \mid \pi(P)=\lambda(f)\},
$$

the fiber product of $X$ and $H$ over $S$.
The proof of Theorem 2 below is essentially due to that of Theorem 2 of [8]. Let $(X, \pi, S)$ and $(Y, \mu, S)$ be as above. Let $o$ be a point of $S$. Let $f$ be a holomorphic map of $\pi^{-1}(o)$ into $\mu^{-1}(o)$. Let $(E, T, b)$ be the maximal family of holomorphic maps of ( $X, \pi, S$ ) into ( $Y, \mu, S$ ) constructed in $\S 5$ with respect to $f$. By the construction of $(E, T, b)$ in $\S 5$, for any two different point $t_{1}$ and $t_{2}$ of $T$, the corresponding maps

$$
E_{t_{1}}: \pi^{-1}\left(b\left(t_{1}\right)\right) \rightarrow \mu^{-1}\left(b\left(t_{1}\right)\right)
$$

and

$$
E_{t_{2}}: \pi^{-1}\left(b\left(t_{2}\right)\right) \rightarrow \mu^{-1}\left(b\left(t_{2}\right)\right)
$$

are different, (even if $b\left(t_{1}\right)=b\left(t_{2}\right)$ ). Thus there is a unique injective map

$$
T \rightarrow \dot{H}
$$

defined by

$$
t \rightarrow E_{t}
$$

We take this map as a local chart around $f \in H$. Using the maximality
of ( $E, T, b$ ) and Remark at the end of $\S 5$, these local charts patch up to give a (locally finite dimensional) analytic space structure in $H$. We have to show that the underlying topological space of $H$ is a Hausdorff space.

Since $X$ and $Y$ are locally compact and satisfy the second axiom of countability by the assumption, they are metrizable. We denote by $d$ and $d^{\prime}$ metrics in $X$ and $Y$ respectively. Let $f$ and $g$ be two elements of $H$. We define a distance

$$
\widetilde{d}(f, g)
$$

by

$$
\begin{aligned}
\widetilde{d}(f, g)= & \sup _{P \in \pi^{-1}(\hat{(\lambda)}(\mathrm{f})} \inf _{Q \in \pi^{-1}(\lambda(g))}\left\{d(P, Q)+d^{\prime}(f(P), g(Q))\right\} \\
& +\sup _{\left.Q \in \pi^{-1}(\lambda(g))\right)} \inf _{P \in \pi^{-1}(\lambda(f))}\left\{d(P, Q)+d^{\prime}(f(P), g(Q))\right\} .
\end{aligned}
$$

Lemma 6.1. $\tilde{d}$ is a metric in $H$.
Proof. It is easy to check that $\tilde{d}$ satisfies the three axioms for metric.

Lemma 6.2. Let $(E, T, b)$ be a family of holomorphic maps of $(X, \pi$, $S)$ into $(Y, \mu, S)$. Let $t_{o}$ be a point of $T$. Then $\widetilde{d}\left(E_{t}, E_{t_{o}}\right)$ is a continuous function of $t \in T$.

Proof. It suffices to prove that

$$
\tilde{d}\left(E_{t}, E_{t_{0}}\right) \rightarrow 0 \quad \text { as } \quad t \rightarrow t_{o} .
$$

It is known [7] that there are an open neighborhood $T^{\prime \prime}$ of $t_{o}$ in $T$ and a continuous retraction

$$
R:\left(b^{*} \pi\right)^{-1}\left(T^{\prime}\right) \rightarrow\left(b^{*} \pi\right)^{-1}\left(t_{o}\right)
$$

such that $R_{t}=R \mid\left(b^{*} \pi\right)^{-1}(t)$ is a $C^{\infty}$-diffeomorphism of $\left(b^{*} \pi\right)^{-1}(t)$ onto $\left(b^{*} \pi\right)^{-1}\left(t_{0}\right)$ for each $t \in T^{\prime}$. We fix a point $t \in T^{\prime}$. We identify $\left(b^{*} \pi\right)^{-1}(t)$ and $\left(b^{*} \pi\right)^{-1}\left(t_{o}\right)$ with $\pi^{-1}(b(t))$ and $\pi^{-1}\left(b\left(t_{0}\right)\right)$ respectively in a canonical way (§1). Then $R_{t}$ is regarded as a diffeomorphism of $\pi^{-1}(b(t))$ onto $\pi^{-1}\left(b\left(t_{o}\right)\right)$. We have

$$
\begin{aligned}
& \inf _{Q \in \pi^{-1}\left(b\left(t_{0}\right)\right)}\left\{d(P, Q)+d^{\prime}\left(E_{t}(P), E_{t_{o}}(Q)\right)\right\} \\
& \quad \leqq d\left(P, R_{t}(P)\right)+d^{\prime}\left(E_{t}(P), E_{t_{o}}\left(R_{t}(P)\right)\right)
\end{aligned}
$$

for any point $P \in \pi^{-1}(b(t))$. Hence

$$
\begin{aligned}
& \sup _{P \in \pi^{-1}(b(t))} \inf _{Q \in \pi^{-1}\left(b\left(t_{0}\right)\right)}\left\{d(P, Q)+d^{\prime}\left(E_{t}(P), E_{t_{0}}(Q)\right)\right\} \\
& \quad \leqq \sup _{P \in \pi^{-1}(b(t))}\left\{d\left(P, R_{t}(P)\right)+d^{\prime}\left(E_{t}(P), E_{t_{0}}\left(R_{t}(P)\right)\right)\right\}
\end{aligned}
$$

In a similar way, we get

$$
\begin{aligned}
& \sup _{Q \in \pi^{-1}\left(b\left(t_{0}\right)\right)} \inf _{P \in \pi^{-1}(b(t))}\left\{d(P, Q)+d^{\prime}\left(E_{t}(P), E_{t_{0}}(Q)\right)\right\} \\
& \quad \leqq \sup _{Q \in \pi^{-1}\left(b\left(t_{0}\right)\right)}\left\{d\left(Q, R_{t}^{-1}(Q)\right)+d^{\prime}\left(E_{t}\left(R_{t}^{-1}(Q)\right), E_{t_{0}}(Q)\right)\right\} .
\end{aligned}
$$

Thus

$$
\widetilde{d}\left(E_{t}, E_{t_{0}}\right) \leqq 2 \sup _{P \in \pi^{-1}(b(t))}\left\{d\left(P, R_{t}(P)\right)+d^{\prime}\left(E_{t}(P), E_{t_{0}}\left(R_{t}(P)\right)\right)\right\}
$$

Now it suffices to show that

$$
\sup _{P \in \pi^{-1}(b(t))}\left\{d\left(P, R_{t}(P)\right)+d^{\prime}\left(E_{t}(P), E_{t_{0}}\left(R_{t}(P)\right)\right)\right\} \rightarrow 0
$$

as $t \rightarrow t_{0}$. We assume the converse. Then there are a positive number $\varepsilon$, a sequence $\left\{t_{n}\right\}_{n=1,2, \ldots}$ of points of $T^{\prime}$ converging to $t_{o}$ and a sequence $\left\{P_{n}\right\}_{n=1,2, \ldots}$ of points of $X$ such that $P_{n} \in \pi^{-1}\left(b\left(t_{n}\right)\right), n=1,2, \cdots$, and

$$
d\left(P_{n}, R_{t_{n}}\left(P_{n}\right)\right)+d^{\prime}\left(E_{t_{n}}\left(P_{n}\right), E_{t_{0}}\left(R_{t_{n}}\left(P_{n}\right)\right)\right) \geqq \varepsilon
$$

for $n=1,2, \cdots$. Since each fiber $\pi^{-1}(s), s \in S$, is compact, we may assume that $\left\{P_{n}\right\}_{n=1,2}$.. converges to a point $P \in \pi^{-1}\left(b\left(t_{o}\right)\right)$. Then

$$
\begin{aligned}
\varepsilon & \leqq d\left(P, R_{t_{o}}(P)\right)+d^{\prime}\left(E_{t_{o}}(P), E_{t_{o}}\left(R_{t_{o}}(P)\right)\right) \\
& =d(P, P)+d^{\prime}\left(E_{t_{o}}(P), E_{t_{o}}(P)\right) \\
& =0
\end{aligned}
$$

a contradiction.
q.e.d.

Let ( $H, \widetilde{d}$ ) be the metric space $H$ with the metric $\widetilde{d}$ introduced above. Lemma 6.2 asserts that the identity map

$$
I: H \rightarrow(H, \tilde{d})
$$

is a continuous map. Since $(H, \widetilde{d})$ is a Hausdorff space, $H$ is also a Hausdorff space.

Next we prove (1) of Theorem 2. The map

$$
\lambda: H \rightarrow S
$$

is surjective, for $H\left(\pi^{-1}(s), \mu^{-1}(s)\right)$ contains constant maps for any $s \in S$. In order to prove that $\lambda$ is holomorphic, it is enough to prove it locally. Let $o$ be a point of $S$. Let $f$ be a holomorphic map of $\pi^{-1}(o)$ into $\mu^{-1}(o)$. Let $(E, T, b)$ be the maximal family of holomorphic maps of $(X, \pi, S)$ into ( $Y, \mu, S$ ) constructed in $\S 5$ with respect to $f$. Then it is clear that $\lambda$ is locally given by the map $b$ which is holomorphic.

Finally we prove (2) of Theorem 2. It is enough to prove it locally. Let $o, f$ and $(E, T, b)$ be as above. $E$ is a holomorphic map of $b^{*} X=$ $X \times_{s} T$ into $b^{*} Y=Y \times_{s} T$. It is written as

$$
E(P, t)=\left(E_{t}(P), t\right)
$$

for $(P, t)$ with $\pi(P)=b(t)$, where $E_{t}$ is the holomorphic map of $\pi^{-1}(b(t))$ into $\mu^{-1}(b(t))$ corresponding to $t . \quad E_{t}(P)$ is holomorphic in $(P, t)$, (see §5). It is clear that $E_{t}(P)$ is the local expression of the map in (2) of Theorem 2. This completes the proof of Theorem 2.

Theorem 3. Let $(X, \pi, S)$ and $(Y, \mu, S)$ be as in Theorem 2. Then there is a maximal family $(G, H, \lambda)$ of holomorphic maps of $(X, \pi, S)$ into $(Y, \mu, S)$ with the following universal property: for any family $(M, R, h)$ of holomorphic maps of $(X, \pi, S)$ into $(Y, \mu, S)$, there is a unique holomorphic map $k$ of $R$ into $H$ such that
(1) $\lambda k=h \quad$ and
(2) $M_{r}=G_{k(r)}: \pi^{-1}(h(r)) \rightarrow \mu^{-1}(h(r))$ for all $r \in R$.

Proof. Let $H$ and $\lambda$ be as in Theorem 2. Let $f$ be an element of $H$. Let $(E, T, b)$ be the maximal family of holomorphic maps of $(X, \pi, S)$ into ( $Y, \mu, S$ ) constructed in $\S 5$ with respect to $f . E$ is a holomorphic map of $b^{*} X$ into $b^{*} Y$. We took the map

$$
t \in T \rightarrow E_{t} \in H
$$

as a local chart around $f$. The canonical projection $\lambda$ was locally given by $b$. We define a holomorphic map

$$
G: \lambda^{*} X \rightarrow \lambda^{*} Y
$$

by $G=E$ on $b^{*} X=\left(\lambda^{*} X\right) \mid T$. It is clear that $G$ is well defined and has the universal property above.
q.e.d.

## 7. Theorem 4 and its proof.

Theorem 4. Let $(X, \pi, S)$ and $(Y, \mu, S)$ be families of compact complex manifolds. Let $(Z, \tau, S)$ be a family of complex manifolds. We assume that $X, Y$, and $Z$ satisfy the second axiom of countability. Let

$$
\begin{aligned}
& H(X, Y ; S)=\coprod_{s \in S} H\left(\pi^{-1}(s), \mu^{-1}(s)\right) \\
& H(Y, Z ; S)=\coprod_{s \in S} H\left(\mu^{-1}(s), \tau^{-1}(s)\right) \quad \text { and } \\
& H(X, Z ; S)=\coprod_{s \in S} H\left(\pi^{-1}(s), \tau^{-1}(s)\right)
\end{aligned}
$$

be the analytic spaces whose analytic structures are introduced by Theorem 2. Let $\lambda_{X Y}, \lambda_{Y Z}$, and $\lambda_{X Z}$ be the canonical projections of $H(X, Y ; S), H(Y, Z ; S)$, and $H(X, Z ; S)$ respectively onto $S$. Then the map

$$
H(X, Y ; S) \underset{S}{\times} H(Y, Z ; S) \rightarrow H(X, Z ; S)
$$

defined by

$$
(f, g) \rightarrow g f
$$

for $(f, g)$ with $\lambda_{X Y}(f)=\lambda_{Y Z}(g)$, is holomorphic.
Let $o$ be a point of $S$. We put $V=\pi^{-1}(o), W=\mu^{-1}(o)$ and $N=\tau^{-1}(o)$. Then $V$ and $W$ are compact. Let

$$
\begin{aligned}
& f: V \rightarrow W \text { and } \\
& g: W \rightarrow N
\end{aligned}
$$

be holomorphic maps. Then similar arguments to those in $\S 3$ show that there are finite sets $I$ and $A$ and families of open sets $\left\{X_{i}\right\}_{i \in I}$ and $\left\{\tilde{X}_{i}\right\}_{i \in I}$ of $X,\left\{Y_{i}\right\}_{i \in I},\left\{\widetilde{Y}_{i}\right\}_{i \in I},\left\{Y_{\alpha}\right\}_{\alpha \in A}$ and $\left\{\tilde{Y}_{\alpha}\right\}_{\alpha \in A}$ of $Y$ and $\left\{Z_{i}\right\}_{i \in I},\left\{\widetilde{Z}_{i}\right\}_{i \in I},\left\{Z_{i}\right\}_{\alpha \in A}$ and $\left\{\widetilde{Z}_{\alpha}\right\}_{\alpha \in A}$ of $Z$ satisfying the following conditions (1)-(7).
(1) $X_{i} \Subset \widetilde{X}_{i}, Y_{i} \subset \widetilde{Y}_{i}$ and $Z_{i} \Subset \widetilde{Z}_{i}$ for each $i \in I$ and $Y_{\alpha} \Subset \widetilde{Y}_{\alpha}$ and $Z_{\alpha} \Subset$ $\widetilde{Z}_{\alpha}$ for each $\alpha \in A$,
(2) $\left\{X_{i}\right\}_{i \in I},\left\{Y_{i}\right\}_{i \in I},\left\{Z_{i}\right\}_{i \in I},\left\{Y_{i}\right\}_{i \in I} \cup\left\{Y_{\alpha}\right\}_{\alpha \in A}$ and $\left\{Z_{i}\right\}_{i \in I} \cup\left\{Z_{\alpha}\right\}_{\alpha \in A}$ cover $V, f(V), g f(V), W$ and $g(W)$ respectively,
(3) $Y_{\alpha} \cap f(V)=\varnothing$ for each $\alpha \in A$,
(4) there are an open neighborhood $\widetilde{S}$ of $o$ and holomorphic isomorphisms

$$
\begin{aligned}
& \eta_{i}: \widetilde{X}_{i} \rightarrow \widetilde{U}_{i} \times \widetilde{S}, \\
& \xi_{i}: \widetilde{Y}_{i} \rightarrow \widetilde{W}_{i} \times \widetilde{S} \\
& \xi_{\alpha}: \widetilde{Y}_{\alpha} \rightarrow \widetilde{W}_{\alpha} \times \widetilde{S}, \\
& \zeta_{i}: \widetilde{Z}_{i} \rightarrow \widetilde{N}_{i} \times \widetilde{S} \text { and } \\
& \zeta_{\alpha}: \widetilde{Z}_{\alpha} \rightarrow \widetilde{N}_{\alpha} \times \widetilde{S}
\end{aligned}
$$

such that diagrams


and

are commutative for each $i \in I$ and for each $\alpha \in A$, where $\widetilde{U}_{i}, i \in I$, are open sets in $C^{d}(d=\operatorname{dim} V), \widetilde{W}_{i}, i \in I$, and $\widetilde{W}_{\alpha}, \alpha \in A$, are open sets in $C^{r}(r=$ $\operatorname{dim} W)$, and $\tilde{N}_{i}, i \in I$ and $\tilde{N}_{\alpha}, \alpha \in A$, are open sets in $C^{q}(q=\operatorname{dim} N)$,
(5) there are an open neighborhood $S^{\prime}$ of $o$ with $S^{\prime} \subseteq \widetilde{S}$ and open subsets $U_{i}, W_{i}, W_{\alpha}, N_{i}$, and $N_{\alpha}$ of $\widetilde{U}_{i}, \widetilde{W}_{i}, \widetilde{W}_{\alpha}, \widetilde{N}_{i}$, and $\widetilde{N}_{\alpha}$ respectively such that $U_{i} \subset \widetilde{U}_{i}, W_{i} \subset \tilde{W}_{i}, W_{\alpha} \subset \tilde{W}_{\alpha}, N_{i} \subset \tilde{N}_{i}$, and $N_{\alpha} \subset \widetilde{N}_{\alpha}$ and such that

$$
\begin{aligned}
X_{i} & =\eta_{i}^{-1}\left(U_{i} \times S^{\prime}\right), \\
Y_{i} & =\xi_{i}^{-1}\left(W_{i} \times S^{\prime}\right) \\
Y_{\alpha} & =\xi_{\alpha}^{-1}\left(W_{\alpha} \times S^{\prime}\right), \\
Z_{i} & =\zeta_{i}^{-1}\left(N_{i} \times S^{\prime}\right) \quad \text { and } \\
Z_{\alpha} & =\zeta_{\alpha}^{-1}\left(N_{\alpha} \times S^{\prime}\right),
\end{aligned}
$$

for each $i \in I$ and for each $\alpha \in A$,
(6) there are coordinate systems

$$
\begin{aligned}
\left(z_{i}\right) & =\left(z_{i}^{1}, \cdots, z_{i}^{d}\right), \\
\left(w_{i}\right) & =\left(w_{i}^{1}, \cdots, w_{i}^{r}\right), \\
\left(w_{\alpha}\right) & =\left(w_{\alpha}^{1}, \cdots, w_{\alpha}^{r}\right), \\
\left(y_{i}\right) & =\left(y_{i}^{1}, \cdots, y_{i}^{q}\right), \\
\left(y_{\alpha}\right) & =\left(y_{\alpha}^{1}, \cdots, y_{\alpha}^{q}\right) \quad \text { and } \\
(s) & =\left(s^{1}, \cdots, s^{k}\right)
\end{aligned}
$$

in $\widetilde{U}_{i}, \widetilde{W}_{i}, \widetilde{W}_{\alpha}, \widetilde{N}_{i}, \widetilde{N}_{\alpha}$, and $\widetilde{\Omega}$ respectively, where $\widetilde{S} \subset \widetilde{\Omega}$ is a neat imbedding, such that

$$
\begin{aligned}
U_{i} & =\left\{z_{i} \in \widetilde{U}_{i}| | z_{i} \mid<1\right\}, \\
W_{i} & =\left\{w_{i} \in \widetilde{W}_{i}| | w_{i} \mid<1\right\}, \\
W_{\alpha} & =\left\{w_{\alpha} \in \widetilde{W}_{\alpha}| | w_{\alpha} \mid<1\right\}, \\
N_{i} & =\left\{y_{i} \in \widetilde{N}_{i}| | y_{i} \mid<1\right\}, \\
N_{\alpha} & =\left\{y_{\alpha} \in \widetilde{N}_{\alpha}| | y_{\alpha} \mid<1\right\} \text { and } \\
S^{\prime} & =\{s \in \widetilde{S}| | s \mid<1\},
\end{aligned}
$$

$$
\begin{align*}
& f\left(\eta_{i}^{-1}\left(U_{i} \times o\right)\right) \subset \xi_{\xi^{-1}}\left(W_{i} \times o\right),  \tag{7}\\
& f\left(\eta_{i}^{-1}\left(\widetilde{U}_{i} \times o\right)\right) \subset \xi_{i}^{-1}\left(\tilde{W}_{i} \times o\right), \\
& g\left(\xi_{i}^{-1}\left(W_{i} \times o\right)\right) \subset \zeta_{i}^{-1}\left(N_{i} \times o\right), \\
& g\left(\xi_{\xi^{-1}}\left(\tilde{W}_{i} \times o\right)\right) \subset \zeta_{i}^{-1}\left(\widetilde{N}_{i} \times o\right), \\
& g\left(\xi_{\alpha}^{-1}\left(W_{\alpha} \times o\right)\right) \subset \zeta_{\alpha}^{-1}\left(N_{\alpha} \times o\right) \text { and } \\
& g\left(\xi_{\alpha}^{-1}\left(\widetilde{W}_{\alpha} \times o\right)\right) \subset \zeta_{\alpha}^{-1}\left(\widetilde{N}_{\alpha} \times o\right)
\end{align*}
$$

for each $i \in I$ and for each $\alpha \in A$.
Henceforth, we identify $\eta_{i}^{-1}\left(U_{i} \times o\right), \eta_{i}^{-1}\left(\widetilde{U}_{i} \times o\right), \xi_{i}^{-1}\left(W_{i} \times o\right), \xi_{i}^{-1}\left(\widetilde{W}_{i} \times o\right)$, $\xi_{\alpha}^{-1}\left(W_{\alpha} \times o\right), \xi_{\alpha}^{-1}\left(\widetilde{W}_{\alpha} \times o\right), \zeta_{i}^{-1}\left(N_{i} \times o\right), \zeta_{i}^{-1}\left(\widetilde{N}_{i} \times o\right), \zeta_{\alpha}^{-1}\left(N_{\alpha} \times o\right)$ and $\zeta_{\alpha}^{-1}\left(\widetilde{N}_{\alpha} \times o\right)$ with $U_{i}, \widetilde{U}_{i}, W_{i}, \widetilde{W}_{i}, W_{\alpha}, \widetilde{W}_{\alpha}, N_{i}, \tilde{N}_{i}, N_{\alpha}$ and $\tilde{N}_{\alpha}$ respectively.

We put

$$
\Omega=\{s \in \widetilde{\Omega}| | s \mid<1\} .
$$

Then $S^{\prime}=\widetilde{S} \cap \Omega$.
Let $e, 0<e<1$, be a positive number. We put

$$
U_{i}^{e}=\left\{z_{i} \in U_{i}| | z_{i} \mid<1-e\right\} \quad \text { etc. . }
$$

Then, by Lemmas 3.3 and 3.4, taking $e$ sufficiently small, we may assume that
(8) $\left\{U_{i}^{e}\right\}_{i \in I},\left\{W_{i}^{e}\right\}_{i \in I},\left\{N_{i}^{e}\right\}_{i \in I},\left\{W_{i}^{e}\right\}_{i \in I} \cup\left\{W_{\alpha}^{e}\right\}_{\alpha \in A}$ and $\left\{N_{i}^{e}\right\}_{i \in I} \cup\left\{N_{\alpha}^{e}\right\}_{\alpha \in A}$ cover $V, f(V), g f(V), W$, and $g(W)$ respectively and
(9) $f\left(U_{i}\right) \subset W_{i}^{e}, g\left(W_{i}\right) \Subset N_{i}^{e}$, and $g\left(W_{\alpha}\right) \Subset N_{\alpha}^{e}$ for each $i \in I$ and for each $\alpha \in A$.

We put $F=f^{*} T W$ and $G=g^{*} T N$. Let $C^{p}(F,| |)$ and $C^{p}(G,| |)$ be the Banach spaces defined in $\S 2$ with respect to coverings $\left\{U_{i}\right\}_{i \in I}$ of $V$ and $\left\{W_{i}\right\}_{i \in I} \cup\left\{W_{\alpha}\right\}_{\alpha \in A}$ of $W$ respectively.

Now we express the map $f$ by the equations

$$
w_{i}=f_{i}\left(z_{i}\right)
$$

for $z_{i} \in U_{i}$ and $i \in I$. We also express the map $g$ by the equations

$$
\begin{aligned}
& y_{i}=g_{i}\left(w_{i}\right) \quad \text { and } \\
& y_{\alpha}=g_{\alpha}\left(w_{\alpha}\right)
\end{aligned}
$$

for $w_{i} \in W_{i}, i \in I$, and $w_{\alpha} \in W_{\alpha}, \alpha \in A$. Let $s$ be a point of $S^{\prime}$. Let

$$
\begin{aligned}
& f^{\prime}: \pi^{-1}(s) \rightarrow \mu^{-1}(s) \quad \text { and } \\
& g^{\prime}: \mu^{-1}(s) \rightarrow \tau^{-1}(s)
\end{aligned}
$$

be holomorphic maps such that

$$
f^{\prime}\left(\pi^{-1}(s) \cap X_{i}\right) \Subset \mu^{-1}(s) \cap Y_{i},
$$

$$
\begin{aligned}
& g^{\prime}\left(\mu^{-1}(s) \cap Y_{i}\right) \Subset \tau^{-1}(s) \cap Z_{i} \quad \text { and } \\
& g^{\prime}\left(\mu^{-1}(s) \cap Y_{\alpha}\right) \Subset \tau^{-1}(s) \cap Z_{\alpha}
\end{aligned}
$$

for each $i \in I$ and for each $\alpha \in A$. We express the map $f^{\prime}$ by the equations

$$
w_{i}=f_{i}^{\prime}\left(z_{i}\right)
$$

for $z_{i} \in U_{i}, i \in I$, using the isomorphisms

$$
\begin{aligned}
& \eta_{i}: X_{i} \rightarrow U_{i} \times S^{\prime} \quad \text { and } \\
& \xi_{i}: Y_{i} \rightarrow W_{i} \times S^{\prime}
\end{aligned}
$$

We express the map $g^{\prime}$ by the equations

$$
\begin{aligned}
y_{i} & =g_{i}^{\prime}\left(w_{i}\right) \quad \text { and } \\
y_{\alpha} & =g_{\alpha}^{\prime}\left(w_{\alpha}\right)
\end{aligned}
$$

for $w_{i} \in W_{i}, i \in I$, and $w_{\alpha} \in W_{\alpha}, \alpha \in A$, using the isomorphisms

$$
\begin{aligned}
& \xi_{i}: Y_{i} \rightarrow W_{i} \times S^{\prime}, \\
& \xi_{\alpha}: Y_{\alpha} \rightarrow W_{\alpha} \times S^{\prime}, \\
& \zeta_{i}: Z_{i} \rightarrow N_{i} \times S^{\prime} \text { and } \\
& \zeta_{\alpha}: Z_{\alpha} \rightarrow N_{\alpha} \times S^{\prime}
\end{aligned}
$$

Then the vector valued holomorphic functions $f_{i}^{\prime}, g_{i}^{\prime}$, and $g_{\alpha}^{\prime}$ satisfy

$$
\begin{aligned}
f_{i}^{\prime}\left(U_{i}\right) & \subset W_{i}, \\
g_{i}^{\prime}\left(W_{i}\right) & \subset N_{i} \quad \text { and } \\
g_{\alpha}^{\prime}\left(W_{\alpha}\right) & \subset N_{\alpha} .
\end{aligned}
$$

We write

$$
\begin{aligned}
f_{i}^{\prime} & =f_{i}+\phi_{i}, \\
g_{i}^{\prime} & =g_{i}+\psi_{i} \text { and } \\
g_{\alpha}^{\prime} & =g_{\alpha}+\psi_{\alpha}
\end{aligned}
$$

for each $i \in I$ and for each $\alpha \in A$. We consider elements

$$
\begin{aligned}
\phi & =\left\{\phi_{i}\right\}_{i \in I} \in C^{0}(F,| |) \text { and } \\
\psi & =\left\{\psi_{i}\right\}_{i \in I} \cup\left\{\psi_{\alpha}\right\}_{\alpha \in A} \in C^{0}(G,| |) .
\end{aligned}
$$

In §5, we have associated to $f^{\prime}$ and $g^{\prime}$,

$$
\begin{aligned}
& (\phi, s) \in C^{0}(F,| |) \times T_{o} S \text { and } \\
& (\psi, s) \in C^{o}(G,| |) \times T_{o} S
\end{aligned}
$$

respectively. Now the holomorphic map

$$
g^{\prime} f^{\prime}: \pi^{-1}(s) \rightarrow \tau^{-1}(s)
$$

satisfies

$$
g^{\prime} f^{\prime}\left(\pi^{-1}(s) \cap X_{i}\right) \Subset \tau^{-1}(s) \cap Z_{i}
$$

for each $i \in I$. The map $g^{\prime} f^{\prime}$ is expressed by the equations

$$
y_{i}=g_{i}^{\prime}\left(f_{i}^{\prime}\left(z_{i}\right)\right)=g_{i}^{\prime} f_{i}^{\prime}\left(z_{i}\right)
$$

for $z_{i} \in U_{i}, i \in I$, using the isomorphisms

$$
\begin{aligned}
& \eta_{i}: X_{i} \rightarrow U_{i} \times S^{\prime} \text { and } \\
& \zeta_{i}: Z_{i} \rightarrow N_{i} \times S^{\prime} .
\end{aligned}
$$

The vector valued holomorphic function $g_{i}^{\prime} f_{i}^{\prime}$ satisfies

$$
g_{i}^{\prime} f_{i}^{\prime}\left(U_{i}\right) \subseteq N_{i} .
$$

We put

$$
g_{i}^{\prime} f_{i}^{\prime}=g_{i} f_{i}+\kappa_{i}
$$

for each $i \in I$. Then

$$
\begin{aligned}
\kappa_{i}\left(z_{i}\right)=g_{i}\left(f_{i}\left(z_{i}\right)\right. & \left.+\phi_{i}\left(z_{i}\right)\right)-g_{i}\left(f_{i}\left(z_{i}\right)\right) \\
& +\psi_{i}\left(f_{i}\left(z_{i}\right)+\phi_{i}\left(z_{i}\right)\right)
\end{aligned}
$$

for $z_{i} \in U_{i}, i \in I$. We consider the element

$$
\kappa=\left\{\kappa_{i}\right\}_{i \in I} \in C^{0}(H,| |)
$$

where $H=(g f)^{*} T N=f^{*} G$ and $C^{0}(H,| |)$ is the Banach space defined in $\S 2$ with respect to the covering $\left\{U_{i}\right\}_{i \in I}$ of $V$. In §5, we have associated to the map $g^{\prime} f^{\prime}$

$$
(\kappa, s) \in C^{0}(H,| |) \times T_{o} S
$$

Let $\varepsilon, 0<\varepsilon<1$, be a small positive number satisfying Lemmas 3.53.10 with respect to all pairs

$$
\begin{aligned}
& \left(\left\{X_{i}\right\}_{i \in I},\left\{Y_{i}\right\}_{i \in I}\right), \\
& \left(\left\{Y_{i}\right\}_{i \in I} \cup\left\{Y_{\alpha}\right\}_{\alpha \in A},\left\{Z_{i}\right\}_{i \in I} \cup\left\{Z_{\alpha}\right\}_{\alpha \in A}\right) \text { and } \\
& \left(\left\{X_{i}\right\}_{i \in I},\left\{Z_{i}\right\}_{i \in I}\right)
\end{aligned}
$$

(Lemma 3.9 for $A=\overline{f_{k}\left(U_{k}\right)}$ for all $k \in I$, etc.). Let $B_{\varepsilon}(F)\left(\right.$ resp. $B_{\varepsilon}(G)$ ) be the open $\varepsilon$-ball in $C^{0}(F,| |)\left(\right.$ resp. $\left.C^{0}(G,| |)\right)$ with the center the origin. We define a norm $\left|\mid\right.$ in $C^{0}(F,| |) \times C^{0}(G,| |)$ by

$$
|(\phi, \psi)|=\max (|\phi|,|\psi|)
$$

for $(\phi, \psi) \in C^{0}(F,| |) \times C^{0}(G,| |)$. Then $C^{0}(F,| |) \times C^{0}(G,| |)$ is a Banach space and $B_{\varepsilon}(F) \times B_{\varepsilon}(G)$ is the open $\varepsilon$-ball in $C^{0}(F,| |) \times C^{0}(G,| |)$ with
the center $(0,0)$.
We define a map

$$
\kappa: B_{\varepsilon}(F) \times B_{\varepsilon}(G) \rightarrow C^{\circ}(H,| |)
$$

by

$$
\begin{aligned}
\kappa\left(\phi, \psi_{)_{i}}\left(z_{i}\right)=g_{i}\left(f_{i}\left(z_{i}\right)\right.\right. & \left.+\phi_{i}\left(z_{i}\right)\right)-g_{i}\left(f_{i}\left(z_{i}\right)\right) \\
& +\psi_{i}\left(f_{i}\left(z_{i}\right)+\phi_{i}\left(z_{i}\right)\right)
\end{aligned}
$$

for $z_{i} \in U_{i}, i \in I$. Then $\kappa(0,0)=0$.
Lemma 7.1. Let $\varepsilon<e / 2$. Then

$$
\kappa: B_{\varepsilon}(F) \times B_{\varepsilon}(G) \rightarrow C^{\circ}(H,| |)
$$

is an analytic map.
Proof. We show that for any affine line $L$ in $C^{0}(F,| |) \times C^{0}(G,| |)$, $\kappa$ is an analytic map of $L \cap\left(B_{c}(F) \times B_{\varepsilon}(G)\right)$ into $C^{\circ}(H,| |)$. This implies that the map

$$
\kappa: B_{\varepsilon}(F) \times B_{s}(G) \rightarrow C^{\circ}(H,| |)
$$

is analytic, (see e.g., Proposition 2 of [2]). We take a point $\left(\dot{p}^{0}, \psi^{0}\right) \in$ $L \cap\left(B_{\varepsilon}(F) \times B_{\varepsilon}(G)\right)$. Then $L$ is written as

$$
L(t)=\left(\phi^{0}, \psi^{0}\right)+t\left(\phi^{1}, \psi^{1}\right)
$$

for $t \in \boldsymbol{C}$ where $\left(\dot{\rho}^{1}, \psi^{1}\right) \in C^{0}(F,| |) \times C^{0}(G,| |)$. We may assume that ( $\rho^{1}$, $\left.\psi^{1}\right) \in B_{\varepsilon}(F) \times B_{\varepsilon}(G)$ and $L(t) \in B_{\varepsilon}(F) \times B_{\varepsilon}(G)$ for all $t \in \Delta$, where

$$
\Delta=\{t \in \boldsymbol{C}| | t \mid<1\} .
$$

Now

$$
\begin{aligned}
& (\kappa L(t))_{i}\left(z_{i}\right)=g_{i}\left(f_{i}\left(z_{i}\right)+\phi_{i}^{0}\left(z_{i}\right)+t \phi_{i}^{1}\left(z_{i}\right)\right) \\
& \quad-g_{i}\left(f_{i}\left(z_{i}\right)\right)+\psi_{i}^{0}\left(f_{i}\left(z_{i}\right)+\phi_{( }^{0}\left(z_{i}\right)+t \phi_{i}^{1}\left(z_{i}\right)\right) \\
& \quad+t \psi_{i}^{1}\left(f_{i}\left(z_{i}\right)+\phi_{i}^{0}\left(z_{i}\right)+t+\phi_{i}^{\prime}\left(z_{i}\right)\right)
\end{aligned}
$$

for $z_{i} \in U_{i}, i \in I$, and $t \in \Delta$. We put

$$
\begin{aligned}
& A(t)_{i}\left(z_{i}\right)=g_{i}\left(f_{i}\left(z_{i}\right)+\phi_{i}^{0}\left(z_{i}\right)+t \phi_{i}^{1}\left(z_{i}\right)\right)-g_{i}\left(f_{i}\left(z_{i}\right)\right), \\
& B(t)_{i}\left(z_{i}\right)=\psi_{i}^{0}\left(f_{i}\left(z_{i}\right)+\phi_{i}^{0}\left(z_{i}\right)+t \phi_{i}^{\prime}\left(z_{i}\right)\right) \text { and } \\
& C(t)_{i}\left(z_{i}\right)=t \psi_{i}^{\top}\left(f_{i}\left(z_{i}\right)+\phi_{i}^{( }\left(z_{i}\right)+t \phi_{i}^{( }\left(z_{i}\right)\right) .
\end{aligned}
$$

We put

$$
\begin{aligned}
& A(t)=\left\{A(t)_{i}\right\}_{i \in I}, \\
& B(t)=\left\{B(t)_{i}\right\}_{i \in I} \text { and } \\
& C(t)=\left\{C(t)_{i}\right\}_{i \in I} .
\end{aligned}
$$

We show that $B(t)$ is an anatic map of $\Delta$ into $C^{\circ}(H,| |)$. Similar arguments show that $A(t)$ and $C(t)$ are analytic.
We put

$$
w_{i}=f_{i}\left(z_{i}\right)+\phi_{i}^{0}\left(z_{i}\right)
$$

and

$$
x=x(t)=t \phi_{i}^{1}\left(z_{i}\right) .
$$

By (9) above,

$$
\left|f_{i}\left(z_{i}\right)\right|<1-e
$$

for all $z_{i} \in U_{i}$. Hence

$$
\left|w_{i}\right|<1-e+\frac{e}{2}=1-\frac{e}{2}
$$

by the assumption that $\varepsilon<e / 2$. By Cauchy's estimate,

$$
\begin{aligned}
& \psi_{i}^{0}\left(w_{i}+x\right)-\psi_{i}^{0}\left(w_{i}\right) \\
& \quad \ll \sum \varepsilon x_{1}^{\nu_{1}} \cdots x_{r}^{\prime y_{r}} /\left(\frac{e}{2}\right)^{\nu_{1}+\cdots \nu_{r}}=D(x)
\end{aligned}
$$

if $\left|w_{i}\right|<1-e / 2$ and $|x|<e / 2$, where $\sum$ is extended over all non-negative integers with $\nu_{1}+\cdots+\nu_{r} \geqq 1$ and $\ll$ means that the absolute values of the coefficients of $\psi_{i}^{0}\left(w_{i}+x\right)-\psi_{i}^{0}\left(w_{i}\right)$ in the formal power series in $x_{1}, \cdots, x_{r}$ are less than those of the corresponding coefficients of $D(x)$. Hence

$$
B(t)_{i}\left(z_{i}\right)-B(0)_{i}\left(z_{i}\right) \ll \sum \varepsilon(t \varepsilon)^{\nu_{1}} \cdots(t \varepsilon)^{\nu_{r}} /\left(\frac{e}{2}\right)^{\nu_{1}+\cdots+\nu_{r}}=E(t)
$$

for $z_{i} \in U_{i}, i \in I$. Thus

$$
B(t)-B(0) \ll E(t) .
$$

$E(t)$ converges absolutely for $t \in \Delta$. This shows that $B(t)$ is an analytic map of $\Delta$ into $C^{0}(H,| |)$.
q.e.d.

Let $\varepsilon<e / 2$. Let $\Omega_{\varepsilon}$ be the open $\varepsilon$-ball of $T_{o} S$ with the center $o$. We put $S_{\varepsilon}=S^{\prime} \cap \Omega_{\varepsilon}$. By Lemma 7.1, the map

$$
\tilde{\kappa}: B_{\varepsilon}(F) \times B_{\varepsilon}(G) \times \Omega_{\varepsilon} \rightarrow C^{0}(H,| |) \times \Omega_{\varepsilon}
$$

defined by

$$
\tilde{\kappa}(\phi, \psi, s)=(\kappa(\phi, \psi), s)
$$

is an analytic map, where $B_{\varepsilon}(F) \times B_{\varepsilon}(G) \times \Omega_{\varepsilon}$ is the open $\varepsilon$-ball in the

Banach space $C^{0}(F,| |) \times C^{0}(G,| |) \times T_{0} S$ with the center the origin. Let

$$
\begin{aligned}
K_{f} & : B_{\varepsilon}(F) \times \Omega_{\varepsilon} \rightarrow C^{1}(F,| |), \\
K_{g} & : B_{\varepsilon}(G) \times \Omega_{\varepsilon} \rightarrow C^{1}(G,| |) \text { and } \\
K_{g f}: & B_{\varepsilon}(H) \times \Omega_{\varepsilon} \rightarrow C^{1}(H,| |)
\end{aligned}
$$

be the maps defined in $\S 5$ with respect to $f, g$, and $g f$ respectively. Let $\varepsilon$ be sufficiently small. Then $K_{f}, K_{g}$, and $K_{g f}$ are analytic by Proposition 5.1. We put

$$
\begin{aligned}
M_{f} & =\left\{(\phi, s) \in B_{\varepsilon}(F) \times S_{\varepsilon} \mid K_{f}(\phi, s)=0\right\}, \\
M_{g} & =\left\{(\psi, s) \in B_{\varepsilon}(G) \times S_{\varepsilon} \mid K_{g}(\psi, s)=0\right\} \quad \text { and } \\
M_{g f} & =\left\{(\kappa, s) \in B_{\varepsilon}(H) \times S_{\varepsilon} \mid K_{g f}(\kappa, s)=0\right\} .
\end{aligned}
$$

Now the set

$$
\begin{aligned}
C= & \left(C^{0}(F,| |) \times T_{o} S\right) \times \underset{T_{o} S}{ }\left(C^{0}(G,| |) \times T_{o} S\right) \\
= & \left\{\left((\phi, s),\left(\psi, s^{\prime}\right)\right) \in\left(C^{0}(F,| |) \times T_{o} S\right)\right. \\
& \left.\times\left(C^{0}(G,| |) \times T_{0} S\right) \mid s=s^{\prime}\right\}
\end{aligned}
$$

is a closed subspace of the Banach space $\left(C^{0}(F,| |) \times T_{o} S\right) \times\left(C^{0}(G,| |) \times\right.$ $\left.T_{0} S\right)$ and is isomorphic to the Banach space

$$
C^{0}(F,| |) \times C^{0}(G,| |) \times T_{o} S
$$

by the map

$$
j:((\phi, s),(\psi, s)) \rightarrow(\phi, \psi, s) .
$$

The open $\varepsilon$-ball

$$
C_{\varepsilon}=\left(B_{\varepsilon}(F) \times \Omega_{\varepsilon}\right) \underset{a_{\varepsilon}}{\times}\left(B_{\varepsilon}(G) \times \Omega_{\varepsilon}\right)
$$

in $C$ with the center the origin contains $M_{f} \times_{S_{\varepsilon}} M_{g}$. By the definition of $\tilde{\kappa}, \tilde{\kappa} \operatorname{maps} j\left(M_{f} \times_{S_{\varepsilon}} M_{g}\right)$ into $M_{g f}$.

Let

$$
\begin{aligned}
& \Phi_{f}: B_{\varepsilon^{\prime}}(F) \times \Omega_{\varepsilon^{\prime}} \rightarrow U_{f} \subset B_{\varepsilon}(F) \times \Omega_{\varepsilon} \\
& \Phi_{g}: B_{\varepsilon^{\prime}}(G) \times \Omega_{\varepsilon^{\prime}} \rightarrow U_{g} \subset B_{\varepsilon}(G) \times \Omega_{\varepsilon} \quad \text { and } \\
& \Phi_{g f}: B_{\varepsilon^{\prime}}(H) \times \Omega_{\varepsilon^{\prime}} \rightarrow U_{g f} \subset B_{\varepsilon}(H) \times \Omega_{\varepsilon}
\end{aligned}
$$

be the analytic isomorphisms defined in §5 with respect to $f, g$ and $g f$ respectively. We may assume that $\tilde{\kappa}$ maps $j\left(C \cap\left(U_{f} \times U_{g}\right)\right)$ into $U_{g f}$.

Let $T_{f}, T_{g}$, and $T_{g f}$ be the analytic spaces defined in $\S 5$ with respect to $f, g$, and $g f$ respectively. Then, by the definitions of $T_{f}, T_{g}$, and $T_{g f}$,

$$
\begin{aligned}
\Phi_{f}\left(T_{f}\right) & =M_{f} \cap U_{f}, \\
\Phi_{g}\left(T_{g}\right) & =M_{s} \cap U_{g} \quad \text { and } \\
\Phi_{g f}\left(T_{g f}\right) & =M_{g f} \cap U_{g f} .
\end{aligned}
$$

Now we define a holomorphic map

$$
c: T_{f} \times{ }_{S e^{\prime}} T_{g} \rightarrow T_{g f}
$$

by

$$
c\left((\xi, s),\left(\xi^{\prime}, s\right)\right)=\Phi_{\emptyset f}^{-1}\left(\tilde{k} j\left(\Phi_{f}(\xi, s), \Phi_{g}\left(\xi^{\prime}, s\right)\right)\right) .
$$

Then the map
$H(X, Y ; S) \underset{S}{\times} H(Y, Z ; S) \rightarrow H(X, Z ; S)$,
defined by

$$
(f, g) \rightarrow g f
$$

for $(f, g)$ with $\lambda_{X Y}(f)=\lambda_{Y Z}(g)$, is locally given by the map $c$. This completes the proof of Theorem 4.

In order to prove Main Theorem, we will need the following lemma.
Lemma 7.2. The derivative $\kappa^{\prime}(0,0)$ at $(0,0)$ of the analytic map $\kappa$ in Lemma 7.1 is given by

$$
\kappa^{\prime}(0,0)(\phi, \psi)=\left(f^{*} J_{g}\right) \phi+f^{*} \psi
$$

for $(\phi, \psi) \in C^{0}(F,| |) \times C^{0}(G,| |)$ where

$$
\left(\left(f^{*} J_{g}\right) \phi_{i}\left(z_{i}\right)=\left(\partial g_{i} / \partial w_{i}\right)\left(f_{i}\left(z_{i}\right)\right) \phi_{i}\left(z_{i}\right)\right.
$$

$\left(\left(\partial g_{i} / \partial w_{i}\right)\left(f_{i}\left(z_{i}\right)\right)\right.$ is a matrix operating on the vector $\left.\phi_{i}\left(z_{i}\right)\right)$, and

$$
\left(f^{*} \psi\right)_{i}\left(z_{i}\right)=\psi_{i}\left(f_{i}\left(z_{i}\right)\right), \text { for } \quad z_{i} \in U_{i}, i \in I .
$$

Proof. We note that $\kappa(0,0)=0$. Now, for $z_{i} \in U_{i}$,

$$
\begin{aligned}
& \kappa(\phi, \psi)_{i}\left(z_{i}\right)=g_{i}\left(f_{i}\left(z_{i}\right)+\phi_{i}\left(z_{i}\right)\right)-g_{i}\left(f_{i}\left(z_{i}\right)\right) \\
& \quad+\psi_{i}\left(f_{i}\left(z_{i}\right)+\phi_{i}\left(z_{i}\right)\right)-\psi_{i}\left(f_{i}\left(z_{i}\right)\right)+\psi_{i}\left(f_{i}\left(z_{i}\right)\right) \\
& =\left(\partial g_{i} / \partial w_{i}\right)\left(f_{i}\left(z_{i}\right)\right) \phi_{i}\left(z_{i}\right)+\left(\partial \psi_{i} / \partial w_{i}\right)\left(f_{i}\left(z_{i}\right)\right) \phi_{i}\left(z_{i}\right) \\
& \quad+\psi_{i}\left(f_{i}\left(z_{i}\right)\right)+o(\phi, \psi)
\end{aligned}
$$

where $o(\phi, \psi)$ is some function of ( $\phi, \psi$ ) (and of $z_{i} \in U_{i}$ ) such that

$$
|o(\phi, \psi)| /|(\phi, \psi)| \rightarrow 0
$$

as $|(\phi, \psi)| \rightarrow 0$. Since $f_{i}\left(z_{i}\right) \in W_{i}^{e}$ for $z_{i} \in U_{i}$ by (9) above,

$$
\left|\left(\partial \psi_{i} / \partial w_{i}\right)\left(f_{i}\left(z_{i}\right)\right)\right|, \quad z_{i} \in U_{i},
$$

is estimated by $|\psi|$. Hence we may put

$$
\left(\partial \psi_{i} / \partial w_{i}\right)\left(f_{i}\left(z_{i}\right)\right) \phi_{i}\left(z_{i}\right)=o(\phi, \psi) .
$$

Thus

$$
\kappa(\phi, \psi)_{i}\left(z_{i}\right)=\left(\partial g_{i} / \partial w_{i}\right)\left(f_{i}\left(z_{i}\right)\right) \phi_{i}\left(z_{i}\right)+\psi_{i}\left(f_{i}\left(z_{i}\right)\right)+o(\phi, \psi) .
$$

q.e.d.
8. Proof of Main Theorem. Let $(X, \pi, S)$ and $(Y, \mu, S)$ be families of compact complex manifolds. We assume that $S$ satisfies the second axiom of countability. Since $(X, \pi, S)$ and ( $Y, \mu, S$ ) are topological fiber bundles (see e.g., [7]), $X$ and $Y$ satisfy the second axiom of countability. By Theorem 2,

$$
H=\coprod_{s \in S} H\left(\pi^{-1}(s), \mu^{-1}(s)\right)
$$

admits an analytic space structure such that $(H, \lambda, S)$ is a complex fiber space where

$$
\lambda: H \rightarrow S
$$

is the canonical projection. Let $s \in S$. We denote by $I\left(\pi^{-1}(s), \mu^{-1}(s)\right)$ the set of all holomorphic isomorphisms of $\pi^{-1}(s)$ onto $\mu^{-1}(s)$. (It may be empty.)

Lemma 8.1. The disjoint union

$$
I=\coprod_{s \in S} I\left(\pi^{-1}(s), \mu^{-1}(s)\right)
$$

is an open subset of $H$.
Proof. Let $o$ be a point of $S$. We put as before $V=\pi^{-1}(o)$ and $W=\mu^{-1}(o)$. Let $f$ be a holomorphic isomorphism of $V$ onto $W$. Let ( $E$, $T, b$ ) be the maximal family of holomorphic maps of ( $X, \pi, S$ ) into ( $Y, \mu, S$ ) constructed in $\S 5$ with respect to $f$. We use the notations in §5. For $t \in$ $T, E_{t}$ is a holomorphic map of $\pi^{-1}(b(t))$ into $\mu^{-1}(b(t))$. In particular, $E_{(0,0)}=$ $f$. We write 0 instead of $(0, o)$ to simplify the notation. We show that there is an open neighborhood $T^{\prime \prime}$ of 0 in $T$ such that, for each $t \in T^{\prime}$, $E_{t}$ is a holomorphic isomorphism of $\pi^{-1}(b(t))$ onto $\mu^{-1}(b(t))$. Since $T$ gives a local chart in $H$, this proves the lemma.

The map

$$
E: b^{*} X \rightarrow b^{*} Y
$$

is given by the equations

$$
\begin{aligned}
w_{i} & =f_{i}\left(z_{i}\right)+\phi_{i}\left(z_{i}, t\right), \\
t & =t,
\end{aligned}
$$

for $\left(z_{i}, t\right) \in U_{i} \times T$. Its Jacobian matrix at $\left(z_{i}, 0\right)$ is

$$
\left(\begin{array}{cc}
\left(\partial f_{i} / \partial z_{i}\right)\left(z_{i}\right) & \left(\partial \phi_{i} / \partial t\right)\left(z_{i}, 0\right) \\
0 & 1
\end{array}\right)
$$

It is non-singular. Noting that $V$ is compact, this implies that there is an open neighborhood $T^{\prime \prime}$ of 0 in $T$ such that

$$
E:\left(b^{*} \pi\right)^{-1}\left(T^{\prime}\right) \rightarrow\left(b^{*} \mu\right)^{-1}\left(T^{\prime}\right)
$$

is a local isomorphism. In particular, $E_{t}$ is a local isomorphism of $\pi^{-1}(b(t))$ into $\mu^{-1}(b(t))$ for each $t \in T^{\prime}$.

Next we show that $E_{t}$ is surjective for each $t \in T^{\prime \prime}$ provided $T^{\prime \prime}$ is sufficiently small. Since $V$ is compact, the number of connected components of $V$ is finite. We arrange them as follows:

$$
V_{1}, \cdots, V_{m}
$$

Since $f$ is a holomorphic isomorphism of $V$ onto $W$, connected components of $W$ are

$$
W_{1}=f\left(V_{1}\right), \cdots, W_{m}=f\left(V_{m}\right)
$$

On the other hand, it is known [7] that there are an open neighborhood $T^{\prime \prime}$ of 0 in $T$ and a continuous retraction

$$
R_{1}:\left(b^{*} \pi\right)^{-1}\left(T^{\prime}\right) \rightarrow V
$$

such that $R_{1 t}=R_{1} \mid\left(b^{*} \pi\right)^{-1}(t)$ is a $C^{\infty}$-diffeomorphism of $\left(b^{*} \pi\right)^{-1}(t)=\pi^{-1}(b(t))$ onto $V$ for each $t \in T^{\prime \prime}$. Hence $\pi^{-1}(b(t))$ has $m$ connected components

$$
V_{1}(t)=R_{1 t}^{-1}\left(V_{1}\right), \cdots, V_{m}(t)=R_{1 t}^{-1}\left(V_{m}\right)
$$

In a similar way, there is a continuous retraction

$$
R_{2}:\left(b^{*} \mu\right)^{-1}\left(T^{\prime}\right) \rightarrow W
$$

such that $R_{2 t}=R_{2} \mid\left(b^{*} \mu\right)^{-1}(t)$ is a $C^{\infty}$-diffeomorphism of $\mu^{-1}(b(t))$ onto $W$ for each $t \in T^{\prime \prime}$. Hence $\mu^{-1}(b(t))$ has $m$ connected components

$$
W_{1}(t)=R_{2 t}^{-1}\left(W_{1}\right), \cdots, W_{m}(t)=R_{2 t}^{-1}\left(W_{m}\right)
$$

We may assume that $T^{\prime}$ is connected. Then we show that connected components of $\left(b^{*} \pi\right)^{-1}\left(T^{\prime}\right)$ and $\left(b^{*} \mu\right)^{-1}\left(T^{\prime}\right)$ are

$$
X_{\alpha}=\bigcup_{t \in T^{\prime}} V_{\alpha}(t), \alpha=1, \cdots, m
$$

and

$$
Y_{\alpha}=\bigcup_{t \in T^{\prime}} W_{\alpha}(t), \alpha=1, \cdots, m
$$

respectively. We note that the map

$$
\widetilde{R}_{1}:\left(b^{*} \pi\right)^{-1}\left(T^{\prime}\right) \rightarrow V \times T^{\prime}
$$

defined by

$$
\widetilde{R}_{1}(P)=\left(R_{1}(P), b^{*} \pi(P)\right),
$$

for $P \in\left(b^{*} \pi\right)^{-1}\left(T^{\prime}\right)$, is a homeomorphism, as is easily seen. In order to show that $X_{\alpha}$ is connected, it is enough to show that any point $P \in V_{\alpha}(t)$ is connected to $R_{1 t}(P) \in V_{\alpha}$ by a curve in $X_{\alpha}$. Let $c(\tau)$ be a continuous curve in $T^{\prime \prime}$ such that $c(0)=t$ and $c(1)=0$. Then the curve

$$
d(\tau)=\widetilde{R}_{1}^{-1}\left(R_{1 t}(P), c(\tau)\right)
$$

belongs in $X_{\alpha}$ and $d(0)=P$ and $d(1)=R_{1 t}(P)$. Hence $X_{\alpha}$ is connected. We show that any points $P \in X_{\alpha}$ and $Q \in X_{\beta}, \alpha \neq \beta$, can not be connected by a curve in $\left(b^{*} \pi\right)^{-1}\left(T^{\prime}\right)$. If it is so, then the above argument shows that some points $P \in V_{\alpha}$ and $Q \in V_{\beta}, \alpha \neq \beta$, is connected by a curve $d(\tau)$ in $\left(b^{*} \pi\right)^{-1}\left(T^{\prime}\right)$. Then $P$ and $Q$ are connected by the curve $R_{1}(d(\tau))$ in $V$, a contradiction. Hence $X_{\alpha}, \alpha=1, \cdots, m$ are connected components of $\left(b^{*} \pi\right)^{-1}\left(T^{\prime \prime}\right)$. In a similar way, we see that $Y_{\alpha}, \alpha=1, \cdots, m$ are connected components of $\left(b^{*} \mu\right)^{-1}\left(T^{\prime}\right)$. Now we take $T^{\prime \prime}$ sufficiently small so that $E_{t}$ is a local isomorphism of $\pi^{-1}(b(t))$ into $\mu^{-1}(b(t))$ for each $t \in T^{\prime \prime}$. Then $E_{t}\left(V_{\alpha}(t)\right)$ coincides with a connected component of $\mu^{-1}(b(t))$ for each $t \in T^{\prime}$ and for each $\alpha$. Since $E_{t}(z)=E(z, t)$ is holomorphic (and hence continuous) in both variables, $E_{t}\left(V_{\alpha}(t)\right)$ and $f\left(V_{\alpha}\right)=W_{\alpha}$ belong to the same connected component $Y_{\alpha}$ of $\left(b^{*} \mu\right)^{-1}\left(T^{\prime}\right)$. Thus $E_{t}\left(V_{\alpha}(t)\right)=W_{\alpha}(t)$. This shows that $E_{t}$ is surjective for each $t \in T^{\prime}$.

Finally we show that $E_{t}$ is injective for each $t \in T^{\prime}$ provided $T^{\prime \prime}$ is sufficiently small. We assume the converse. Then there are a sequence $\left\{t_{n}\right\}$ in $T^{\prime}$ converging to 0 and a sequence of pairs of different points $\left\{\left(P_{n}, Q_{n}\right)\right\}_{n=1,2, \ldots}$ of $\pi^{-1}\left(b\left(t_{n}\right)\right)$ such that $E_{t_{n}}\left(P_{n}\right)=E_{t_{n}}\left(Q_{n}\right), n=1,2, \cdots$. Since $\pi$ is a proper map, we may assume that

$$
\begin{aligned}
& P_{n} \rightarrow P \in V \text { and } \\
& Q_{n} \rightarrow Q \in V
\end{aligned}
$$

as $n \rightarrow+\infty$. Then $f(P)=f(Q)$ so that $P=Q$. Since

$$
E:\left(b^{*} \pi\right)^{-1}\left(T^{\prime}\right) \rightarrow\left(b^{*} \mu\right)^{-1}\left(T^{\prime}\right)
$$

is a local isomorphism, there is an open neighborhood $X^{\prime}$ of $P$ in $\left(b^{*} \pi\right)^{-1}\left(T^{\prime \prime}\right)$ such that $E$ is an isomorphism on $X^{\prime}$. If $n$ is sufficiently large, $P_{n}$ and $Q_{n}$ belong to $X^{\prime}$.
Thus

$$
E\left(P_{n}\right)=E_{t_{n}}\left(P_{n}\right)=E_{t_{n}}\left(Q_{n}\right)=E\left(Q_{n}\right)
$$

implies that $P_{n}=Q_{n}$, a contradiction.
q.e.d.

Let ( $X, \pi, S$ ) be a family of compact complex manifolds. We assume that $S$ satisfies the second axiom of countability. Then, by Lemma 8.1,

$$
A=\coprod_{s \in S} \operatorname{Aut}\left(\pi^{-1}(s)\right)
$$

is an open subset of the analytic space

$$
H=\coprod_{s \in S} H\left(\pi^{-1}(s), \pi^{-1}(s)\right) .
$$

Hence $A$ is an analytic space. The canonical projection

$$
\lambda: A \rightarrow S
$$

is holomorphic by Theorem 2. For each $s \in S$, $\operatorname{Aut}\left(\pi^{-1}(s)\right)$ contains the identity map $I_{s}$. Hence $\lambda$ is surjective. This shows (1) of Main Theorem.
$X \times_{S} A$ is an open subset of $X \times_{S} H$. By Theorem 2, the map

$$
X \times{ }_{S} A \rightarrow X
$$

defined by

$$
(P, f) \rightarrow f(P)
$$

where $\pi(P)=\lambda(f)$, is holomorphic. This shows (2) of Main Theorem.
Now, we show (3) of Main Theorem. Let o be a point of S. Let $I_{0}$ be the identity map of $V=\pi^{-1}(o)$. We review the considerations in §3-§5 replacing $f,(Y, \mu, S),\left(w_{i}\right), h_{i k}$ and $\xi_{i}$ in $\S 3$ to $I_{o},(X, \pi, S),\left(z_{i}\right), g_{i k}$ and $\eta_{i}$ respectively. We may assume that open sets $W_{i}$ and $\widetilde{W}_{i}$ in $\S 3$ satisfy

$$
U_{i} \Subset W_{i} \Subset \widetilde{U}_{i} \Subset \widetilde{W}_{i}
$$

in the present case. We may also assume that

$$
W_{i}=\left\{z_{i} \in \widetilde{U}_{i}| | z_{i} \mid<1+e^{\prime}\right\}
$$

and

$$
W_{i}^{e}=\left\{z_{i} \in \widetilde{U}_{i}| | z_{i} \mid<1+e^{\prime}-e\right\}
$$

where $e$ and $e^{\prime}$ are small positive numbers such that $0<e<e^{\prime}<1$. The holomorphic vector bundle $F$ in $\S 4$ becomes $T V$ (the holomorphic tangent bundle) in the present case. Now let $s \in S^{\prime}$ and let $f^{\prime}$ be a holomorphic map of $\pi^{-1}(s)$ into itself. We assume that

$$
f^{\prime}\left(\pi^{-1}(s) \cap X_{i}\right) \subset \pi^{-1}(s) \cap Y_{i}
$$

where $X_{i}=\eta_{i}^{-1}\left(U_{i} \times S^{\prime}\right)$ and $Y_{i}=\eta_{i}^{-1}\left(W_{i} \times S^{\prime}\right)$. Then $f^{\prime}$ is expressed locally as vector valued holomorphic functions $f_{i}^{\prime}\left(z_{i}\right), z_{i} \in U_{i}$. We put

$$
\begin{aligned}
\phi_{i}\left(z_{i}\right) & =f_{i}^{\prime}\left(z_{i}\right)-z_{i} \quad \text { and } \\
\phi & =\left\{\phi_{i}\right\}_{i \in I} \in C^{0}(F,| |) .
\end{aligned}
$$

We have associated $(\phi, s) \in C^{0}(F,| |) \times T_{0} S$ to $f^{\prime}$ in $\S 5$.
Now we assume that $f^{\prime}=I_{s}$, the identity map of $\pi^{-1}(s)$. Then the local expression $f_{i}^{\prime}\left(z_{z}\right)$ of $f^{\prime}$ must be the identity function: $f_{i}^{\prime}\left(z_{i}\right)=z_{i}$. Hence the corresponding $\phi$ must be zero. We use the notations in $\S 5$. We put

$$
M=\left\{(\phi, s) \in B_{\varepsilon} \times S_{\varepsilon} \mid K(\phi, s)=0\right\}
$$

Then the above consideration shows that

$$
(0, s) \in M
$$

for all $s \in S_{\varepsilon}$. On the other hand, the map $L$ in $\S 5$ was defined by

$$
L(\phi, s)=\left(\phi+E_{0} B \Lambda K(\phi, s)-E_{0} \delta \phi, s\right) .
$$

Thus

$$
L(0, s)=\left(0+E_{0} B \Lambda K(0, s)-E_{0} \delta 0, s\right)=(0, s)
$$

Hence the set

$$
\left\{(0, s) \in\left(H^{0}(F| |) \cap B_{\varepsilon^{\prime}}\right) \times S_{\varepsilon^{\prime}} \mid s \in S_{\varepsilon^{\prime}}\right\}
$$

is contained in

$$
T=\left\{(\xi, s) \in\left(H^{0}(F,| |) \cap B_{\varepsilon^{\prime}}\right) \times S_{\varepsilon^{\prime}} \mid H \Lambda K \Phi(\xi, s)=0\right\}
$$

Each $(0, s) \in T, s \in S_{\varepsilon^{\prime}}$, corresponds to the identity map $I_{s}$ of $\pi^{-1}(s)$. The map

$$
s \in S_{\varepsilon^{\prime}} \rightarrow(0, s) \in T
$$

is holomorphic. The proof of Lemma 8.1 shows that there is an open neighborhood $T^{\prime \prime}$ of ( $0, o$ ) in $T$ such that $T^{\prime \prime}$ gives a local chart in $A$ around $I_{o}$. This proves (3) of Main Theorem.

Finally we prove (4) of Main Theorem.
Lemma 8.2. Let $(X, \pi, S)$ be a family of compact complex manifolds. We assume that $S$ satisfies the second axiom of countability. Let

$$
A=\coprod_{s \in S} \operatorname{Aut}\left(\pi^{-1}(s)\right)
$$

be the analytic space whose analytic space structure is introduced above. Then the map

$$
f \in A \rightarrow f^{-1} \in A
$$

is holomorphic.

Proof. Let $o$ be a point of $S$. Let $f$ be an automorphism of $V=$ $\pi^{-1}(o)$. We replace $f$ and $g$ in the proof of Theorem 4 to $f^{-1}$ and $f$ respectively. Thus, in the present case, we replace ( $Z, \tau, S$ ), $\left(y_{i}\right)$ and $\zeta_{i}$ to ( $X, \pi, S$ ), $\left(z_{i}\right)$, and $\eta_{i}$ respectively. We may assume that the open sets $N_{i}$ and $\widetilde{N}_{i}$ in $\S 7$ satisfy

$$
U_{i} \subset N_{i} \subset \widetilde{U}_{i} \subset \widetilde{N}_{i}
$$

in the present case. We may assume that

$$
N_{i}=\left\{z_{i} \in \widetilde{U}_{i}| | z_{i} \mid<1+e^{\prime}\right\}
$$

and

$$
N_{i}^{e}=\left\{z_{i} \in \widetilde{U}_{i}| | z_{i} \mid<1+e^{\prime}-e\right\}
$$

where $e$ and $e^{\prime}$ are small positive numbers such that $0<e<e^{\prime}<1$. We note that the set $A$ of indices in $\S 7$ is empty in the present case. Now we put

$$
h=f^{-1}
$$

Let $s$ be a point of $S^{\prime}$. Let $h^{\prime}$ and $f^{\prime}$ be holomorphic maps of $\pi^{-1}(s)$ into itself such that

$$
\begin{aligned}
& h^{\prime}\left(\pi^{-1}(s) \cap X_{i}\right) \Subset \pi^{-1}(s) \cap Y_{i} \quad \text { and } \\
& f^{\prime}\left(\pi^{-1}(s) \cap Y_{i}\right) \Subset \pi^{-1}(s) \cap Z_{i}
\end{aligned}
$$

where $Z_{i}=\eta_{i}^{-1}\left(N_{i} \times S^{\prime}\right)$. We express the maps $h^{\prime}$ and $f^{\prime}$ by the equations

$$
w_{i}=h_{i}^{\prime}\left(z_{i}\right),
$$

for $z_{i} \in U_{i}$, and

$$
z_{i}=f_{i}^{\prime}\left(w_{i}\right)
$$

for $w_{i} \in W_{i}$, respectively. We write

$$
\begin{aligned}
h_{i}^{\prime} & =h_{i}+\phi_{i} \quad \text { and } \\
f_{i}^{\prime} & =f_{i}+\psi_{i} .
\end{aligned}
$$

We consider the elements

$$
\begin{aligned}
\phi & =\left\{\phi_{i}\right\}_{i \in I} \in C^{0}(G,| |) \text { and } \\
\psi & =\left\{\psi_{i}\right\}_{i \in I} \in C^{0}(F,| |)
\end{aligned}
$$

where $G=h^{*} T V=\left(f^{-1}\right)^{*} T V$ and $F=f^{*} T V$.
As in $\S 7$, We associate

$$
\begin{aligned}
& (\phi, s) \in C^{0}(G,| |) \times T_{o} S \text { and } \\
& (\psi, s) \in C^{0}(F,| |) \times T_{0} S
\end{aligned}
$$

to $h^{\prime}$ and $f^{\prime}$ respectively. Then the composition $f^{\prime} h^{\prime}$ corresponds to

$$
(\kappa, s) \in C^{0}(H,| |) \times T_{o} S
$$

where $H=T V$ and $\kappa=\left\{\kappa_{i}\right\}_{i \in I}$ where

$$
\kappa_{i}\left(z_{i}\right)=f_{i}\left(h_{i}\left(z_{i}\right)+\phi_{i}\left(z_{i}\right)\right)-z_{i}+\psi_{i}\left(h_{i}\left(z_{i}\right)+\phi_{i}\left(z_{i}\right)\right)
$$

for $z_{i} \in U_{i}$. We define a map

$$
\kappa: B_{\varepsilon}(G) \times B_{\varepsilon}(F) \rightarrow C^{0}(H,| |)
$$

by

$$
\kappa(\phi, \psi)_{i}\left(z_{i}\right)=f_{i}\left(h_{i}\left(z_{i}\right)+\phi_{i}\left(z_{i}\right)\right)-z_{i}+\psi_{i}\left(h_{i}\left(z_{i}\right)+\phi_{i}\left(z_{i}\right)\right)
$$

for $z_{i} \in U_{i}$. By Lemma 7.1, $\kappa$ is analytic, provided $\varepsilon$ is sufficiently small. By Lemma 7.2,

$$
\kappa^{\prime}(0,0)(\phi, \psi)=\left(h^{*} J_{f}\right) \phi+h^{*} \psi
$$

for $(\phi, \psi) \in C^{0}(G,| |) \times C^{0}(F,| |)$, where

$$
\left(\left(h^{*} J_{f}\right) \phi\right)_{i}\left(z_{i}\right)=\left(\partial f_{i} / \partial w_{i}\right)\left(h_{i}\left(z_{i}\right)\right) \phi_{i}\left(z_{i}\right)
$$

for $z_{i} \in U_{i}$ and

$$
\left(h^{*} \psi\right)_{i}\left(z_{i}\right)=\psi_{i}\left(h_{i}\left(z_{i}\right)\right)
$$

for $z_{i} \in U_{i}$. We consider an analytic map

$$
\beta: B_{\varepsilon}(G) \times B_{\varepsilon}(F) \rightarrow C^{0}(H,| |) \times C^{0}(F,| |)
$$

defined by

$$
\beta(\phi, \psi)=(\kappa(\phi, \psi), \psi) .
$$

Then

$$
\beta^{\prime}(0,0)=\left(\begin{array}{cc}
h^{*} J_{f} & h^{*} \\
0 & 1
\end{array}\right)
$$

It is easy to see that

$$
h^{*} J_{f}: C^{\circ}(G,| |) \rightarrow C^{\circ}(H,| |)
$$

is a continuous linear isomorphism. Hence $\beta^{\prime}(0,0)$ is a continuous linear isomorphism. By the inverse mapping theorem, there are a small positive number $\varepsilon^{\prime}$, an open neighborhood $U$ of $(0,0)$ in $B_{\varepsilon}(G) \times B_{\varepsilon}(F)$ and an analytic isomorphism

$$
\alpha: B_{\varepsilon^{\prime}}(H) \times B_{\varepsilon^{\prime}}(F) \rightarrow U
$$

such that $\beta \mid U=\alpha^{-1}$. We write

$$
\alpha(\kappa, \psi)=(\gamma(\kappa, \psi), \psi) .
$$

Then the map

$$
\psi \in B_{\varepsilon^{\prime}}(F) \rightarrow \gamma(0, \psi) \in B_{\varepsilon}(G)
$$

is an analytic map. Hence the map

$$
(\psi, s) \in B_{\varepsilon^{\prime}}(F) \times \Omega_{\varepsilon^{\prime}} \rightarrow(\gamma(0, \psi), s) \in B_{\varepsilon}(G) \times \Omega_{\varepsilon^{\prime}}
$$

is analytic, where $\Omega_{\varepsilon^{\prime}}$ is the open $\varepsilon^{\prime}$-ball in $T_{o} S$ with the center $o$. Now it is clear that if $(\psi, s) \in B_{\varepsilon^{\prime}}(F) \times S_{\varepsilon^{\prime}}$ corresponds to an automorphism $f^{\prime}$ of $\pi^{-1}(s)$, then $(\gamma(0, \psi), s)$ corresponds to $\left(f^{\prime}\right)^{-1}$. Let $T_{f}$ and $T_{f-1}$ be the analytic spaces constructed in $\S 5$ with respect to $f$ and $h=f^{-1}$ respectively. Let $\Phi_{f}$ and $L_{f^{-1}}$ be the analytic maps defined in $\S 5$ with respect to $f$ and $f^{-1}$ respectively. The proof of Lemma 8.1 shows that if we take a sufficiently small open neighborhood $T^{\prime}$ of $(0, o)$ in $T_{f}$, then each $t=(\xi, s) \in T^{\prime}$ corresponds to an automorphism $E_{t}$ of $\pi^{-1}(s)$. We put $\Phi_{f}(t)=(\psi, s)$. Then the above argument shows that $L_{f^{-1}}(\gamma(0, \psi), s)$ belongs to $T_{f^{-1}}$ and corresponds to $E_{t}^{-1}$. Now the map

$$
T^{\prime} \rightarrow T_{f-1}
$$

defined by

$$
t=(\xi, s) \xrightarrow{\Phi_{f}}(\psi, s) \rightarrow L_{f^{-1}}(\gamma(0, \psi), s)
$$

is holomorphic. This proves Lemma 8.2.
q.e.d.

Now, $A \times{ }_{s} A$ is an open subset of $H \times{ }_{s} H$. Hence Theorem 4 and Lemma 8.2 imply (4) of Main Theorem.

## References

[1] S. Bochner and D. Montgomery, Groups on analytic manifolds, Ann. of Math., 48 (1947), 659-669.
[2] A. Douady, Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné, Ann. Inst. Fourier, Grenoble 16, 1 (1966), 1-95.
[3] R. C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, PrenticeHall, Englewood Cliffs, N. J., 1965.
[4] K. Kodaira, On stability of compact submanifolds of complex manifolds, Amer. J. Math., 85 (1963), 79-94.
[5] K. Kodaira and D. C. Spencer, On deformations of complex analytic structures III, Ann. of Math., 71 (1960), 43-76.
[6] M. Kuranishi, New proof for the existence of locally complete families of complex structures, Proc. Conf. on Complex Analysis, Minneapolis, 1964, Springer Verlag, New York, 1965.
[7] ——, Lectures on deformations of complex structures on compact complex manifolds, Proc. of the International Seminar on Deformation Theory and Global Analysis, University of Montreal, Montreal, 1969.
[8] M. Namba, On maximal families of compact complex submanifolds of complex manifolds, Tôhoku Math. J., 24 (1972), 581-609.
[9] -, On maximal families of compact complex submanifolds of complex fiber spaces, Tôhoku Math. J., 25 (1973), 237-262.
[10] ——Automorphism groups of Hopf surfaces, Tôhoku Math. J., 26 (1974), 133-157.
Mathematical Institute
TôHoku University
Sendai, Japan

