
Tόhoku Math. Journ.
26(1974), 237-283.

ON DEFORMATIONS OF AUTOMORPHISM GROUPS
OF COMPACT COMPLEX MANIFOLDS

MAKOTO NAMBA

(Received April 28, 1973)

Introduction. By an analytic space, we mean a reduced, Hausdorff,
complex analytic space. By a complex fiber space, we mean a triple (X,
π, S) of analytic spaces X and S and a holomorphic map π of X onto S.
By a family of complex manifolds, we mean a complex fiber space (X,
π, S) such that there are an open covering {Xa}aeA of X, open sets {Ωa}aeA

of Cn, an open covering {Sa}aeA of S and holomorphic isomorphisms

ηa: Xa-+Ωax Sa

such that the diagram

-ΛΓα *Ώ<χ X &α

is commutative for each ae A. By the definition, each fiber π"1^), s e S,
is a complex manifold. S is called the parameter space of the family. If,
moreover, π is a proper map, we say that (X, π, S) is a family of compact
complex manifolds. In this case, each fiber is a compact complex manifold.

Let V be a compact complex manifold. We denote by Aut(F) the
group of automorphisms (holomorphic isomorphisms onto itself) of V. It
is well known that Aut (V) is a complex Lie group (Bochner-Montgomery

[i]).
The purpose of this paper is to prove the following theorem.

MAIN THEOREM. Let (X, π, S) be a family of compact complex mani-
folds. We assume that S satisfies the second axiom of countability. Then
the disjoint union

A = Π Aut (TΓ-'OO)
seS

admits an analytic space structure such that (1) (A, λ, S) is a complex
fiber space where λ: A —> S is the canonical projection, (2) the map

XXA-+X
s
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defined by

is holomorphίc, where

XX A = {(P, f ) < = X x A \ π ( P ) = λ(/)} ,
S

the βber product of X and A over S, (3) the map

S-+A

defined by

s-*I,

is holomorphίc, where I, is the identity map of π~l(s), and (4) the map

AX A — A
S

defined by

(f,g)-+g-lf
is holomorphίc, where

AXA = {(/, βr) 6 A x A\\(f) = \(g)} ,
S

the fiber product of A and A over S.

The method of the proof of Main Theorem is based on those of [8]
and [9], ideas of which are essentially due to Kuranishi's [6].

If we put S = one point, our proof of Main Theorem gives a new
proof of the above theorem of Bochner-Montgomery. In this case, A —
Aut(F) has no singular point, for it is homogeneous. In general cases,
A may admit singular points, even if S has no singular point. This is
naturally expected, because dimensions of automorphism groups vary upper
semicontinuously on parameters [5]. In the case of the family of Hopf
surfaces, we have shown Main Theorem by direct calculations [10]. In
this case, A admits singular points.

Main Theorem was conjectured by Professor Heisuke Hironaka. I
express my thanks to him for his proposal of the problem, his comments
and his encouragement.

1. Maximal families of holomorphic maps — Theorem 1. Let (X, π, S)
be a family of complex manifolds. Let T be an analytic space. Let b
be a holomorphic map of T into S. We put

b*X = XX T = {(P, ί) e X x T\π(P) = b(t)}
s

and &*τr = the restriction of the projection
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Xx T-+ T to δ*X.

Then it is easy to see that (δ* JΓ, δ*ττ, T) is a family of complex manifolds.
Each fiber (b*π)~\t) is written as π~l(b(t)) x t. We sometimes identify
(b*π)~l(t) with π~\b(t)).

DEFINITION 1.1. Let (X, π, S) be a family of compact complex mani-
folds. Let (Y, μ, S) be a family of complex manifolds with the same
parameter space S. Let T be an analytic space. A triple (E, T, δ) is
called a family of holomorphίc maps of (X, π, S) into (Y, μ, S) if and
only if (1) 6 is a holomorphic map of T into S and (2) E is a holomorphic
map of b*X into δ* Y such that the diagram

δ* X — > 6* Y

is commutative.
T is called the parameter space of (E, T, g).

REMARK. For each ί e Γ, (δ*^)-1^) and (δ*^)"1^) are identified with
^"Xδίί)) and μ~l(b(t)) respectively. Thus we may consider (E, T, δ) to be
a collection {#t}ter of holomorphic maps

DEFINITION 1.2. Let (X, π, S) and (Y, μ, S) be as above. A family
(E, T, δ) of holomorphic maps of (X, π, S) into (Γ, μ, S) is said to be
maximal at a point t e T if and only if, for any family (G, 12, ft) of holo-
morphic maps of (X, π, S) into ( Y, μ, S) with a point r e R such that
b(t) = h(r) and

there are an open neighborhood U of r in 7? and a holomorphic map

fc: U— T

such that
(1) k(r) = t,
( 2 ) δ& = ft, and

( 3 ) Gq = Ek(q): ιrl(h(q)) - μ~l(h(q)) for all g 6 C7.
A maximal family is a family which is maximal at every point of its
parameter space.

THEOREM 1. Let (X, π, S) be a family of compact complex manifolds.
Let (Y, μ, S) be a family of complex manifolds with the same parameter
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space S. Let o be a point of S. Let f be a holomorphίc map of π'^o)
into μ~l(o). Then there exists a maximal family (E, T, b) of holomorphic
maps of (X, π, S) into (Y, μ, S) with a point t0eT such that

( 1 ) b(t0) = o and
(2) Eto = f:π~\ό)^μ-\o).

REMARK. Theorem 1 corresponds to Theorem of [9]. In fact, Theorem
1 is essentially reduced to Theorem of [9], if we consider the graph Γf

of /. However, in order to prove Main Theorem, we need the concrete
construction of the analytic space T. So we prove Theorem 1 in the
sequel. The method is thus similar to that of [9].

2. Banach spaces CP(F, \ |). In this section, we refer some results
of §2 of [8], which will be used in the sequel. Let F be a compact
complex manifold. Let F be a holomorphic vector bundle on V. Let
{t/ihei be a finite open covering of V such that (1) the closure Ui is con-
tained in an open set Ut having a local coordinate system

(2) Ui = {zieUi\\zi\ <!}, where

\Zi\ = max (\z\\, •••, \zί\} and

( 3 ) F is trivial on Ui9

Let e, 0 < e < 1, be a small positive number such that the open sets
i of V defined by

again cover V.
We define additive groups CP(F), p = 0, 1, , as follows. An element

ξ = {£<0...ίp} e CP(F) is a function which associates to each (p + l)-ple (ί0, ,
ip) of indices in I a holomorphic section £<0...4p of F on Z7|0 Π Π U5p-1 Π Uip.
In particular, an element ξ = {f J e C°(F) is a function which associates to
each index i e I a holomorphic section ξt of F on U^ We define the
coboundary map

δ: CP(F) — Cp+ί(F)

by

for ze C/|0 n Π U\p n Z7ip+1. Then it is easy to see that δ2 = 0.
We introduce a norm [ in CP(F). For each ξ = {?<„... ίp} e C%F), we

define | f | by



DEFORMATIONS OF AUTOMORPHISM GROUPS 241

I - sup{|£i0. *(*)l |λ = 1, ^On n ^ n t f ,(v
where £i0...<p is the representation of the component £<0...<p of ζ with respect
to the local trivialization of F on Uio. In particular, we define \ξ\ for
£eC°CF) by

where ξ\ is the representation of ζt with respect to the local trivialization
of F on Ui. We note that we denoted

We put
|β in [8] instead of

It is easy to see that CP(F, | |) is a Banach space and the coboundary
map δ maps CP(F, \ |) continuously into CP+1(F, | |). We put

B*(F, I I) = (δC'-^F)) Π C*(F, I I) and

H>(F, I I) - ̂ (F, I \)/B>(F, \ |) ,

f or p = 0, 1, . It is clear that H°(F, \ |) is canonically isomorphic to
the 0-th cohomology group H\V, F) of F.

By Lemmas 2.3 and 2.4 of [8], there are continuous linear maps

E, .B\F,\ \)-+V(F,\ I) and

such that

We put

<?EΊ — the identity map on B2(F, |) and

<5j570 = the identity map on B\F, \ |) .

Λ = 1 - ELδ .

Then A is a projection map of C\F, \ |) onto Zl(F, |).
By Lemma 2.5 of [8], B\F, \ |) - 3C°(F, \ |) and is closed in Z\F, \ |).

Again, by Lemma 2.5 of [8], Hl(F, \ |) is canonically isomorphic to Hl(V,
F), the first cohomology group of F. Thus there is a subspace Hl(F, \ |),
(we use the same notation for the convenience), of Z\F, \ |) isomorphic
to Hl(V, F) such that Z\F, \ |) splits into a direct sum of B\F, \ |) and
H\F, I):

i)

Let
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B:P(F,\ \)-+&(F,\ I) and

H:P(F,\ |)-*JEΓ(F, I |)

be the projection maps corresponding to the splitting.

3. Some lemmas. Let (X, π, S) be a family of compact complex
manifolds. Let (Y, μ, S) be a family of complex manifolds with the same
parameter space S. Let o be a point of S. We put

V = π~l(ό)

and

W = μ~l(o) .

Let / be a holomorphic map of V into W. We show that there are
families of open sets {Xt}iel and {^}ίej of X and {Yi}ίel and [Ϋi}iel of Y,
with the same finite set / of indices, satisfying following conditions:

(1) Xi c Xi and F< c Ϋt for each i e I where A c B means that the
closure A is compact and is contained in B,

(2) {-Xfhei and {Y;}ίe/ cover F and f(V) respectively,
(3) there are an open neighborhood S of o and holomorphic iso-

morphisms

ft: Xi-'+UiX S and

£«: f.-T^x S

such that the diagrams

and

are commutative where Ut and TF^ are open sets in Cd and Cr respectively
(d = dim V, r = dim W),

(4) there are an open neighborhood S' of o with S'c S and open
subsets Ut and Wi of ̂  and Wt respectively with D* c ^ and Wi c ̂  such
that

Xi = ηTί(Ui x S') and
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for each i e /,
(5) there are coordinate systems

in f and

(wt) = (w\, •••, wl) and

(s) = (s\ •••,**), (o = 0),

respectively, where £? is an ambient space of S, such that

for each i 6 I and

-max {\z\\, •••, \zί\} etc.),

( 6 ) f(ηil( U< x o)) c ξ?( Wt x o) and

for each i e 7.
Let /V be the grach of the map /. Then Γf is a compact subset

of V x TF. On the other hand, V x TF is naturally regarded as a subset
of XχsY. Hence we regard Γf as a compact subset of Xχs Y. Then,
for each (P, /(P)) e ff, there is a neighborhood XP X ̂  ?P of (P, /(P))
in J5Γχ sy such that there are holomorphic isomorphisms

such that the diagrams

ηp: XP—>UpX

ξp: ΫP -+ WP x

JL -- ^

and

x SP

and

->WPx Sf

proj

are commutative, where UP and ll'p are open sets in Cd and Cr respec-
tively. Sp is an open neighborhood of o in S. Let SP be an open
neighborhood of o in S such that SP^SP. Let Z7P and TFP be open sub-
sets of Up and WP respectively such that UP c UP and TFP c ΐFP. We put
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Xp = η-pl(UP x Sp) and

YP = &(WP x Sp) .

Taking UP and UP sufficiently small, we may assume that

f(η-p\UP x o)) c ξpl(WP x o) and

fΨΛUp x o)) c ξpl(WP x o) .

We may assume that there are coordinate systems

(ZP) = (dp, • • - , 4) and

(Wp) = (W[p9 •• ,Wr

P)

in Up and WP respectively such that

Up = {ZP e Up I I ZP I < 1} and

WP = [wpe ffp\\wp\ <!} .

Now we cover Γf by {XP XSp FP}PβF. We choose a finite subcovering

ί X Ypjie
sPi

We put

Di = UPi ,

^ - UP. ,

T7. = Wp. and

We put

iel

Let Ω be an ambient space of S with a coordinate system

(s) = (s\ . . . ,s f c ).

Let fl be an open subset of Ω such that Ω^Ω. We may assume that

fl = {seΩ\ \s\ < 1} .

We assume that o is the origin of Ω. We put

S' = §ΠΩ.

We may assume that
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We put

-Σi = ^(1^x50,
Xi = m\ϋt x s) ,
Y. = fr(Wt x S') and

Ϋ< = ϊϊWi x §) .

Then it is clear that {-SΓJiβ/, {^Jie/, {^he/ and {ΓJ ΐe/ satisfy above con-
ditions (l)-(6).

Henceforth, we identify η?( Ui x o), -η^Φi x o), f Γ( ̂  x o) and fr1^* x o)
with I/i, Z7<, TF; and Wi respectively.

Now, we consider maps

Vik = vffilm- Vk(Xi n -x*) -» %(-x< n -?*) ,
ft* - ftfr1: «*(?< n yt) - ft( ?< n ?t) .

% and ζik can be written as

%*(«*, s) = (ί/<*(«*, β), s) and
ft*(w*, β) = (hik(wk, s), s) ,

where

gih: ηk(%t Π ̂ 4) ~> J7, and

We want to extend %fc and ft* to ambient spaces of ηk(Xi ΓΊ Jffc) and
f t(Yi Π Yk) respectively.

Let P be a point of ί/i ΓΊ £7*. Then it is clear that there is an open
neighborhood UP x SP of %(P) in ηk(X* Π )̂ such that

( 1 ) Sp = ΩPn S' where βp is a polydisc in Cfc contained in Ω with
the center o and

( 2 ) C/p is an open neighborhood of P in V contained in U i f t U k .
We cover ηk(Ui Π C/^) by open sets {UP x SP}P in rjk(Xi n Xfc) having

above conditions (1) and (2). We choose a finite subcovering

from {Up x SP}P, where ϋi = UPλ, Sλ = SPλ = flλ n S' and fl, = βPr Then
{t^h^i.—.β covers C/i n £4. Let £?0 be a polydisc in Ck with the center o, the
origin, contained in Π^ Ω* We put S0 = Ω0 n S'. We may assume that
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Ω0 = { s e Ω \ \s\ <εj

for a positive number ε0, 0 < ε0 < 1.
The proofs of Lemmas 3.1 and 3.2 below are similar to those of

Lemma 3.1 and 3.2 of [9] respectively, so we omit them.

LEMMA 3.1. There is a Stein open set U0 of Uk such that

c7,n t/^cD cUiϋic^n ϋk.
LEMMA 3.2. Let U0 be the open set of Uk in Lemma 3.1. Let S0 be

sufficiently small. Then

%(ϋn-aζ b )n(^χs β )cσ;xs β .
Now, it is clear that

U0x So^n&nX,).

U0 x S0 is a closed sub variety of U0 x Ω0, which is Stein. Thus the map

ηik: U0 x S0 -+ ϋ* x S0

is extended to a holomorphic map

ηik: U0x Ω0-+UiX Ω0 .

The extended map ηik is written as follows:

?)ik(Zk, s) = (gik(zk, s), s),

where

gik: U0 x Ω0 -* Z7<

is an extension of the map gik above.

In a similar way, we can find a Stein open set W0 of Wk such that

WiΠW^WodWiΠWu,
W0 x SoCLξ^ΫiΠ Ϋk) and
ξk(Yin Yk)n(wk x S0)c:w0 x S 0 .

W0 x S0 is a closed subvariety of W0 x.Ω09 which is Stein. Hence the
map

£**: W0 x S0 — Wt x S0

is extended to a holomorphic map

ξik: W0 x Ω0 ~> W< x Ω0 .

The extended map ξik is written as follows:
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ξik(Wk, S) = '(hik(wk, 8), 8)

where

hίk: W0 x Ω0 -> Wt

is an extension of the map hik above.
Let e, 0 < e < 1, be a positive number. We put

I/S = fee ϋi| | s<| <1 - e} and

TP; = {w4e TΓ4 | w,\ <l- e} .

LEMMA 3.3. If e is sufficiently small, then {Ul}iel and {Wi}ίel cover
V and f(V) respectively.

PROOF. We prove the first half. The second half is shown in a
similar way. We assume the converse. Let

1 > e, > e2 > > 0

be a sequence of positive numbers converging to 0. We put

An = V-\JUl«, n = l,2, •.• .
i e /

Then Au, n = 1, 2, , are non-empty, compact and satisfy

Λ D A => .

Hence

n An ^ 0 .
n

On the other hand,

n An = n (v- u ϋj ) = n (rw- u^}
n % \ ie I / % \ i /

= n (n (v- c/ϊ o) = n (^- ϋi) = 0 ,
i \ w / ί

a contradiction. q.e.d.

LEMMA 3.4. If e is sufficiently small, then

/or eαcfe i e /.

PROOF. We assume the converse. Let

1 > e, > e2 > > 0

be a sequence of positive numbers converging to 0. We put
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W» n f(U<) , n = 1, 2

Then An, n = 1,2, , are non-empty compact subsets of Wι. Since

we have

Π ̂  φ 0 .n

On the other hand,

n An = (n (wt - w»)n /wo = 0 ,
n \ n /

a contradiction. q.e.d.

Let e and e', 0 < e < e' < 1, be small positive numbers satisfying
Lemmas 3.3 and 3.4.

For any positive number ε with 0 < ε < ε0, we put

Ωε = {s e Ω \ \ s \ < ε} and

sε = Ωε n s' .
The proofs of Lemmas 3.5, 3.6, and 3.7 below are similar to those of Lemma
3.3, 3.4, and 3.5 of [9] respectively, so we omit them.

LEMMA 3.5. There is a small positive number ε (independent of indices
in I) with 0 < ε < ε0 such that if s e Ωε, then gik(zk, s) (resp. hik(wk, s)) is
defined and is a point of U^resp. Wi) for all zk£ E7J Π Uk (resp. for all
wke W\nWh).

LEMMA 3.6. There is a small positive number ε (independent of
indices in I) with 0 < ε < ε0 such that if s e Sε, then

ηk

l(zk, s) e X, Π Xk

(resp. ξkl(wk, s) e Yt n Yk) for all zkeUlΠ Uk (resp. for all wkeWlΓi Wk).

LEMMA 3.7. There is a small positive number ε (independent of
indices in I) with 0 < ε < ε0 such that if s e Sε and if

ηk

l(zk, s) e XI' n Xk ,

then zke Uί Π Uk.

The set U0 in Lemma 3.1 and the set WQ above depend on the indices
i and k. On the other hand, we may assume that ε0 is independent of
indices, for the set I of indices is a finite set. Hence we may assume
that Ω0 and S0 are independent of indices. We write
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U0 = UQ(ik} and

"0 — ^O(ϊA ) >

whenever we want to distinguish them. ηjk(U0(ij) x Ω0) and ξjk(W0(is) x
Ω0) are open sets of U0(jk] x Ω0 and W0(ίk) x Ω0 respectively, and contain
Ui Π Uj ΓΊ Uk and Wi Π Ws n Wk respectively. The proof of the following
Lemma is similar to that of Lemma 3.7 of [9], so we omit it.

LEMMA 3.8. There is a small positive number ε (independent of
indices in I) with 0 < ε < ε0 such that if s e Ωε, then

(1) ( z k , 8 ) e i f t i ( U 0 ( t ί ) x Ω0)
for all zk e Z7, Γ) Uά ΓΊ Uk,

(iγ (wk,s)eξ7t(W0(iJ} xΩ0)
for all wke W, Π Wfn Wk,

(2) gik(zk,s)eUl'*n
for all zk e U\ Π U] n Z7fc,

(2)' Aα(w4, s) e Wl12 Π TFJ"

/or all wkeWlΠWjΓ\ Wk, where

Wl12 = {w,e Wt\ w<\ < 1 - e/2} .

Let A be a compact subset of Wk. Let ε be a small positive number.
We regard Wk as a polydisc

in Cr. We consider a subset

Ae = {it;fc + xk\wke A and | a?A | ̂  ε}

of Cr, where the summation is taken in Cr. Aε is compact, for the summa-
tion is a continuous operation. Since the proof of the following lemma
is straightforward, we omit it.

LEMMA 3.9. There is a small positive number ε such that Aε c Wk.

Since f(Ut) is a compact subset of Wl, f(U,) Π f ( U k ) is a compact
subset of Wl Π TFlb, which is open in Wk. By Lemma 3.9, there is a small
positive number ε such that

Since the proof of the following lemma is straightforward, we omit it.

LEMMA 3.10. There is a small positive number ε (independent of
indices in I) such that
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(f(ut) n f(uk)).c:Wi n Wac wk .
4. The linear map σ. We use the same notations as §3. Henceforth,

we assume that Sc Ω is a neat imbedding of S at o, [3], Thus fc is equal
to the dimension of the Zariski tangent space T0S at o. We assume that
S is defined in Ω as common zeros of holomorphic functions

βι(«), •••, em(s) .

It is easy to see that
(1) ea(o) = 0, a = 1, •••, ra,
(2) (3ββ/3β')(o) - 0, α - 1, , m, β = 1, - , k.
In §3, we extended the maps

fyk = Wklm U0 x S0 — > Ut x So cmd

£« = £*£r:TPo x S.-+TF, x S.

to

37,*: U0 x Ω0-+Ui x Ω0 and

ξtk:W0xΩ0-+fftx Ω0.

The extended maps ηik and ί<fc were written as

^α( ,̂ s) = (gik(zk, s), s) α^d

f <fc(wtf 8) - (λ<fc(wfc, β), «)

LEMMA 4.1. Lβί zk and wk be points of Ut n C/!b α^cί Wt n TFfc respec-
tively. Then the matrices

kf o) ,

k, o) ,

(dhik/dwk)(wk, o) and

(dhik/ds)(wk, o)

are independent how to extend maps f]ik and ξik.

PROOF. We show that (dhikfds)(wk, o) is independent how to extend
the map ξik. Others can be shown in similar ways. In a neighborhood
of (wk9 o) in W0 x ΩQ, another extension of ξik is written as follows:

wt = h'ik(wk, s) = hik(wk, s) + Σ α?fc(wfc> s)ea(s)
α=l

where a?k, a = 1, , m, are vector valued holomorphic functions in the
neighborhood. Hence

(dh'ik!ds)(wk, o) = (dhik/ds)(wk, o)
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+ Σ (da"ίklds)(wk, o)eα(o)
α=l

+ Σ aa

ίk(wk, o)(dea/ds)(o)

k, o)

by (1) and (2) above. q.e.d.

Now, / maps Ui into Wi9 Using the local coordinates, it is expressed
by the equations

w* = /*(«<), i e I ,

where /< is a vector valued holomorphic function on Ϊ7,.
Let z£ be a point of Z7< ΓΊ Z7, Γ) E4 Then there are neighborhoods A

of (4, o) in U0(jk] x Ω0 and B of (fk(z°k), o) in W0(yfc) x £?0 and vector valued
holomorphic functions

b*(zk, .β), α = 1, , m and

C"(WA, s),a = l, •••, m

on A and 5 respectively such that Ί)tfΓ)jk and ί^f J fc are defined on A and
5 respectively and such that

m

( 3 ) gik(zk, s) = 0iΛfe(zfc, s), β) + Σ δαfe, s)ββ(s)
α=l

for all (zk, s) e A and
m

( 4 ) A<fc(wΛ, s) = hί3 (hjk(wk, s), s) + Σ ββ(wA, β)e«(s)
α=l

for all (wfc, s) 6 -B.

LEMMA 4.2. Lei z°k be a point of Ui Γ) Z7,- Π ί7fc. Then

(dhtk/dwt)(fkφk), o)

= (dhv/dwMfW), o)(dhjk/dwk)(fk(2fk), o)

where z°j = gjk(z°k, o).

PROOF. We differentiate (4) with respect to wk at (fk(z?k), o). Since
hjk(fk(zk), o) = fj(Zj), we obtain the above equality by (1). q.e.d.

The holomorphic vector bundle on V defined by the transition matrices
{(dhik/dwk)(fk(zk), o)} is nothing but the induced bundle f*TW of the
holomorphic tangent bundle TW over /.

LEMMA 4.3. Let z°k be a point of Ui Γ) U3 ΓΊ Uk. Then

(dhik/ds)(fk(z°k), o) = (3Λ<y/38)(/Λ*J), o)

X2?X o)(dhίk/d8)(fk(zi), o) ,
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where z} = gjk(z°k, o).

PROOF. We differentiate (4) with respect to s at (fk(z°k), o) and obtain
the above equality by (1) and (2). q.e.d.

LEMMA 4.4. Let zl be a point of 17, ΓΊ Z7, Π Uk. Then

(dgik/ds)(zl o) = (dgtίld8)(sfif o)

+ (dg<jldZi)(q, o)(dgjk/ds)(zl, o)

where z°a = gίk(z°k, o).

PROOF. We differentiate (3) with respect to s at (zl, o) and obtain
the above equality by (1) and (2). q.e.d.

LEMMA 4.5. Let z°k be a point of Ut ΓΊ Us Π Uk. Then

, o)

)(^9 o)

, o)(a/,/3^)(^ )(3 ,̂/3s)(4, o)

where z\ = gik(z°k, o) and z} = gjk(z°k, o).

PROOF. fi9 i e 7, must satisfy the following compatibility conditions:

s, o))

for all Zj e Ut Π ί/y. Differentiating the equation with respect to jsy at z°j9

we obtain

Hence

dβKq, o)
, o)

o)(dgjk/ds)(z°k, o)

J, o)

by Lemma 4.4. q.e.d.

We put F = f*TW. Then Lemma 4.3 and Lemma 4.5 show that

ί(3A»/3β)(/t(«.), o) - (dftldzt)(zt)(dg»lte)(z>, o)}

is an element of (̂F, | |), (the space of 1-cocycles denned in §2), where
zkε Ul Π Ut and 21 = gtt(zk, o). This follows from the fact that
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is estimated by sup {( /<(«<) 1 1^6 Z7J, (< 1). Hence we can define a con-
tinuous linear map

by

σ(a)M = Σ a>"[(dh«ld**)(f
a=l

ds'Kzt, o)]

for Zi e ε/U Π Z7Λ, where zfc = 0rMOs,, o) and α = Σ*=1

REMARK. We write 0"(a)a(zO instead of writing ^(α)α(^) following
the definition of | | in §2.

5. Proof of Theorem 1. We use the same notations as in §3 and §4.
/ maps Ui into W\. Using the local coordinates, it is expressed by the
equations

w< = ffa) , i 6 / .

Then the vector valued holomorphic functions ft, ί e I, must satisfy the
following compatibility conditions:

hik(fk(zk), o) = fi(gik(zk, o))

for all zke Ui Γ) Ϊ7Λ. As in §4, we put F = /*ΓT7, the induced bundle
over / of the holomorphic tangent bundle TW. Let T0S be the Zariski
tangent space to S at o. We consider the product

C°(F,\ | )x T0S,

where C"(F, | |) is the Banach space introduced in §2. We introduce a
norm | | in C°(F, \ |) x T0S as follows:

for (95, s) e C°(1P, | |) x T0S, where |β| = maxα \aa\, s = Σ«=ι αα(3/3sα)0. Then
C°(F, I I) x T0S is a Banach space. We identify Ω with an open set of
T0S by

(α1, , a") e Ω — Σ αα(3/3s«)0 6 Γ0S .
α=l

Let /' be a holomorphic map of π~l(s) into μ~l(s) for a point s e S'
such that

for all ie I. We express the map /' by the equations
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Wi = ffa) , i e I ,

using the isomorphisms

ifcXi-tUi x S' and

fciYi-'TP, x S' .

Then the vector valued holomorphic functions f\ satisfy fi(Ui) c TΓίβ We
write

where φt is a vector valued holomorphic function on Ut. We regard φ =
{Φi}ίel as an element of C*(F9 \ |). We associate to /' an element fa, s)e
C°(F, I I) x T0S where s e S' c Ω c T0S. Then it is clear that fa, s) must
satisfy the following compatibility conditions:

(1) seS' and
( 2 ) MΛfe) + Φk(*k), s) = fi(gίk(zk, s)) + φt(gik(zk9 s)) for

(zk, s) 6 ηk(Xt Π -Xi) Π π~\s) and (/fcfe) + φh(zt), s) e ίfc( Γ, Π Γfc) Π ̂ (s) .

Conversely, if an element fa, s) e C\F, \ |) x T0S satisfies | fa, s) | < ε,
(where ε satisfies Lemma 3.9 for A = fk( Uk) for each k e /), and satisfies
the conditions (1) and (2) above, then the equations

Wi = fi(*i) = /*(««) + Λ(«i) ,

for zte Ui and is /, define a holomorphic map /' of π^(s) into μ^s). By
Lemma 3.9, /' satisfies

f'(τr\s) Π -Σ,) c JM-^) Π Yt, i e I .

Henceforth, let ε, 0 < ε < 1, be a small positive number satisfying
Lemma 3.5— Lemma 3.8, Lemma 3.9 for A = ft( Uk) for each fc e I, and
Lemma 3.10. Let Bε be the open ε-ball of C°(F, \ |) with the center 0.
Let Ωs be the open ε-ball of T0S with the center o. We put S£ = S' Π ̂ e.
We assume that S' is defined in Ω as common zeros of holomorphic
functions

βι(s), •••, em(s) .

We define a holomorphic map

e:Ω-+Cm

by

Φ) = (βι(β), •••, e*(β))

Then
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Sε = ( s e Ω ε \ e ( s ) = 0} .

Now we define a map

K:B.xΩ.-+Cl(F,\ |)

by

K(Φ, *)<*(*<) = MΛ(*») + &(**), *)

for s, e U\ Π C4, where zfc = gki(zt, o). Then jBΓ(0, o) = 0. If s* e Z7i Π Z7*
and s 6 £?£, then #αfe, s) is defined and is a point of I/i by Lemma 3.5.
Hence fi(gik(zk, s)) and Φi(gik(zk, s)) are defined. On the other hand, fk(zk) +
φk(zk)e W\ Π W* for zke U\ Π Uk by Lemma 3.10. Hence hik(fk(zk) + φk(zk),
s) is defined and is a point of W* by Lemma 3.5. Moreover, it is clear
that

\K(φ,8)\<2 + 6

if \(φ, s)\ <ε. Thus K maps Bε x Ωε into &(F, \ |).
Let

, I I) x T0S->T0S

be the canonical projection. We put

M1 = {(φ,s)eBε x Ωε\K(φ,s) = 0}

and

M = {(φ, s) e Bε x Ωε I K(ψ, s) = 0, eβ(ψ, s) = e(s) = 0}

Now we take an element (φ, s)eBε x Ω£ which satisfies the compati-
bility conditions (1) and (2) above. Let zt be any fixed point of U\ Π Uk.
Let zk = gki(Zi, o). By Lemma 3.6, (zk, s) e ηk(Xi Π Xk). By Lemma 3.10
and Lemma 3.6, (fk(zk) + φk(zk\ s)^ζk(Yi Π Yk). Hence, by (2),

k(zt) = 0 .

Since zt e U\ Π C4 is arbitrary,

s) = 0 .

Hence (φ, s) e Λf . Conversely, let (φ, s) e M. (1) of the compatibility condi-
tions is automatically satisfied. Let zk be a point of Uk. We assume that
(zk, s) e ηk(Xΐ Π Xί) and (fk(zk) + .̂(̂ ), s) e ξk(YΪ n Γj')- Then, by Lemma
3.7, ^ 6 U\ Π Z7fc. Since ίΓ(̂  s) = 0,
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MΛfo) + Φk(zk), s) = ft(gtk(zk, s)) + Φt(gtk(zk, *))

Hence the equations

for ^e Z7f and ie7, define a holomorphic map /' of π~l(s) into μ~l(8).
Thus, by the principle of analytic continuation, equations

for Zi 6 E/i and i e I, define /'. Hence (φ, s) satisfies (2) of the compatibility
conditions. Thus the problem is reduced to analyze the set M.

PROPOSITION 5.1. Let ε be sufficiently small. Then

K:BεxΩε-+σ(F,\ I)

is an analytic map and

K'(0, o) = d + σ: C°(F, | |) x T0S->σ(F, \ |)

where δ and σ are the continuous linear maps defined in §2 and §4
respectively and d + σ is defined by

(δ + σ)(φ, s) = δφ + σs

fvr(ψ,8)eσ>(F,\ | ) x T0S.

PROOF. The proof of the first half is similar to that of Lemma 3.4
of [8], so we we omit it. We prove the second half. Let o(φ, s) be some
function of φ and s (and zt) such that

\o(Φ,8)\l\(φ,8)\-+o

as \(Φ, s)\ — >0. Let ^e U\ Π Uk. We put zk = gki(zί9 o). Then

8)tk(zt) = K(φ, s)M - K(Q, o)M

= (dhik/dwk)(fk(zk), o)φk(zk) + (dhitld8)(fk(zk), o)s

k, o))} - φt(zt) + o(φ, s)
= (dhtk/dwk)(fk(zk), o)φk(zk) + (dhik/d8)(fk(zk), o)s

,, o)s

, o)s - φt(zt) + o(φ, s).

Since

is estimated by \φ\, we may put
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Hence

K(Φ, *)«(**) = (*Φ)M + (Shik/ds)(fk(zk)9 o)s

- (dfi/dzt)(Zt)(dgik/ds)(zk, o)s + o(φ, s)

= (δφ)tk(Zt) + (σ8)ik(zt) + o(φ, s) .

Hence

K(φ, s) ±= δφ + σs + o(φ, s) .

q.e.d.

Now we define a map

L: B£ x Ωε — C°(̂ , I |) x T0S

by

L(φ, s) = (φ + E0BAK(ψ, s) - E0δψ, s)

where E0, B, A, and δ are the continuous linear maps defined in §2. Then
L is analytic by Proposition 5.1. We have L(0, o) = (0, o) and

+ E0BΛδ - EQδ E0BAσ\

E0Bσ\

0 1 / .

(We note that BAδ = δ and Aσ = σ.) Thus L'(0, o) is a continuous linear
isomorphism. Hence, by the inverse mapping theorem, there are a small
positive number s', an open neighborhood U of (0, o) in Bε x Ωε and an
analytic isomorphism Φ of Bε, x βε, onto ZJsuch that L\U = Φ"1. We put

ϊ\ - LW Π IT) and
/rr

Then M1Γ\U= Φ(T,) and M Π U = Φ(T).

LEMMA 5.1. 7\ c (lί0(F, | |) n B..) x Ω.,.

PROOF. Let (φ, s) e Mί n fΛ Then

L(0, s) = (?5 + E»BΛK(φ, s) -

= (φ- Etδφ, s) .

We have

δ(φ - E,δφ) = δφ - δφ = 0 . q.e.d.
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COROLLARY 1. ϊ\ = {(£, s) e (H\F, \ |) n Bs.) x Ωc, \ KΦ(ζ, s) = 0}.

COROLLARY 2. T = {(ξ, s) e (H\F, \ |) n Bs,) x Sε, | KΦ(ξ, s) = 0}.

Corollary 1 follows from the definition of Mt and Lemma 5.1. Corollary 2
follows from Corollary 1.

Now let (ζ, s) e (H°(F, \ |) n Bε.) x Ω,,. We put (φ, s) = Φ(ξ, s). Then

0 = δξ = 8(φ + E,BΛK(φ, s) - Etδφ)

= BΛK(φ, s) = BΛKΦ(ξ, s) .

Hence

KΦ(ζ, s) = HΛKΦ(ξ, s) + BΛKΦ(ξ, s) + Eί8KΦ(ζ, s)

= HΛKΦ(ξ, s) + EβKΦtf, s)

where ίί and £?! are the continuous linear maps defined in §2.

PROPOSITION 5.2. Let ε' be sufficiently small. Then

T = {(ξ, s) e (H°(F, I I) Π B,) x S.. \ HΛKΦ(ξ, s) = 0}.

PROOF. The proof is almost similar to that of Lemma 3.6 of [8].
Only what we have to note are the following two points.

(A) By (2) of Lemma 3.8, if (φ, s) e Bs x Ωε, then

e C7|'2 n Uf

if zk = gki(zt, 0)6 σ j n ϋ j n ϋ *.
(B) For (φ, s) e B, x Ωε, we put

R\K(φ, s), 95, s) = {R\K(φ, s), φ, s)ljk] e C\F, \ |)

R\K(φ, s), φ, «)««(*,) = ^X/XCί) + φ&,\ s)

- MMΛfe) + &(**), s), s)
«),»(«,)

where z, = flr^fo, o), 2ft = ^^(2^ o) and FiX^,-) = (Shi}ldw,)(fj(z3), o). Then,
for s e Sε,

R\K(φ, s), 54, β)4ft(Z<) - M

- 'fi(ffu(ζj, s)) - hlk(fk(zk) + φk(zk\ s)

+ /,(!/«»(«», s)) + FtfaWφ, s)jk(z3) .

The rest goes pararell to the proof of Lemma 3.6 of [8]. q.e.d.

COROLLARY. // ίP(F, F) = 0, then
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T - (H\F, I I) n 5.,) x S. .

Now, for each t = (f , s) e T, we put

«(ί) - (0(0, 6(0) -

Then

φ:T->C°(F,\ I) and

b:T-+S

are analytic maps. The map 6 is actually the projection map

t = (ξ,8)-+8.

If we write

Φ(t) = [Φfa, ί)}«β/ ,

then it is easy to see that

φt: Ui x T-*Cr

is a holomorphic map. We define a holomorphic map

E:b*X-+ δ*F

be the equations

w< = /i(O + Φt(zif t), for ^ 6 Z7<f and ί = ί .

Then (Ϊ7, T, b) is a family of holomorphic maps of (X, π, S) into ( Y9 μ, S)
and satisfies

- (̂0,0) = / •

We show that (E, Γ, 6) is a maximal family. Let t0 = (ξ0, s0) be a
point of T. Let (G, /2, fc) be a family of holomorphic maps of (X, π, S)
into (Y, μ, S) with a point r0 such that h(r0) = s0 and

Grβ = ̂ rπ:-^)-^-^).

The map Gro = Eto is defined by the equations

w< = Λfe) + Φi(*i, ί.)

for ^e Z7<. Then it is easy to see that, there are a neighborhood R'
of r0, an ambient space R' of .R' and a vector valued holomorphic function
α^i on Z7i x Λ' such that, for each fixed r e 5', Gr is defined by equations

Wi = ft(zt) + 0X^, ίβ) + fife, r) ,

for 3,6 U^ We put
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φfa, r) = φt(zi9 t0) + ψtfa, r) and

Φ'(r) = {Φfa, r)}t9l

for r e R'. We extend the map h to R'. Then

(Φ'(r),hJr))eC'(F,\ \)xΩ.

We note that

(Φ'(r.), h(τ0}) = Φ(t.) .

It is easy to see that φf is an analytic map of R' into C°(F, \ |).
We may assume that

(Φ'(r),h(r))eU=Φ(Bε, x β.,)

for all r e R'. Let r e Jϊ'. Since the equations

Wi = Φi(*t, r) ,

for Zi e Ut, define a holomorphic map of π~*(h(r)) into μ~\h(r)\ (φ'(r), h(r)) e
C7Π M for each r e #'. Hence L(^'(r), fe(r)) e Γ for each reR'. We put

Mr) - L(φ'(r), h(r))

for reR'. Then & is a holomorphic map of ίZ' into T. We note that
k(r0) = LΦ(t0) = t0. We have

Φ(k(r)) = (φ'(r\ h(r)) .

Hence h = bk and φ' = φk. From these identities, we have

Gr = Ek(r] .π-\h(r))->μ-\h(r))

for all reR'. Thus (E, T, 6) is a maximal family.
This completes the proof of Theorem 1.

REMARK. Among maximal families, our maximal family (E, T, b) is a
special one. It is so called effectively parametrized. In other words, the
map k with properties

h = bk and

G^E^'.π-WrV^μ-Wr)),

for all r e R', is uniquely determined.

Appendix of §5. Extensions of holomorphic maps.

DEFINITION. Let V be a compact complex manifold. Let W be a
complex manifold. Let / be a holomorphic map of V into W. f is
said to be extendable if and only if, for any families (X, π, S) and (Y,
μ, S) of compact complex manifolds and of complex manifolds respectively
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with a point o e S such that π~~\o) = V and μ~\ό) = W, there are a neigh-
borhood U of o in S and a holomorphic map if of π~l(U) into μ~~l(U)
such that

( 1 ) the diagram

is commutative and
(2) H\V=f.

The following theorem is essentially due to Kodaira (Theorem 1, [4]).
See also §6 of [9].

THEOREM. Let V be a compact complex manifold. Let W be a complex
manifold. Let f be a holomorphic map of V into W. Let f*TW be the
induced bondle over f of the holomorphic tangent bundle TW of W. If
H\V, /*ΓT7) = 0, then f is extendable.

PROOF. Let (X, π, S) and (Y, μ, S) be families of compact complex
manifolds and of complex manifolds with a point oeS such that π"1^) —
V and μ~~l(o) = W. Let (E, T, b) be the maximal family of holomorphic
maps of ( X, π, S) into ( Y, μ, S) constructed in § 5 with respect to /. If
ίP(F, F) = 0, where F = f*TW, then

T = (H\F, I I) Π B.,) x S.,

by the corollary of Proposition 5.2. We define a map

r s., - T
by

3(8) = (0, e) .

Then j is a holomorphic injection. Using the notations in §5, we define a
holomorphic map

Hiir^SJ-pr^S.,)

by the equations

Wi = ft(Zi) + Φifa, j(8))

for (zif s)e Ui x Sβ>. Then H satisfies the requirement. q.e.d.

6. Theorem 2, Theorem 3 and their proofs. Let F be a compact
complex manifold. Let W be a complex manifold. We denote by H(V9
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W) the set of all holomorphic maps of V into W.

THEOREM 2. Let (X, π, S) and (F, μ, S) be families of compact com-
plex manifolds and of complex manifolds respectively. We assume that
X and Y satisfy the second axiom of countability. Then the disjoint
union

admits an analytic space structure such that
( 1 ) (H, λ, S) is a complex fiber space where

is the canonical projection and
(2) the map

XXH
S

defined by

is holomorphic, where

XXH={(P,f)eXx H\π(P) =

the fiber product of X and H over S.

The proof of Theorem 2 below is essentially due to that of Theorem
2 of [8]. Let (X, π, S) and (Y, μ, S) be as above. Let o be a point of
S. Let / be a holomorphic map of π~\o) into μ~l(o). Let (E, T, b) be
the maximal family of holomorphic maps of (X, π, S) into (Y, μ, S) con-
structed in § 5 with respect to /. By the construction of (E, T, b) in § 5,
for any two different point tj. and t2 of T, the corresponding maps

and

are different, (even if bfa) = b(tz)). Thus there is a unique injective map

T — H

defined by

t — > Et .

We take this map as a local chart around / e H. Using the maximality
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of (E, T, b) and Remark at the end of § 5, these local charts patch up to
give a (locally finite dimensional) analytic space structure in H. We have
to show that the underlying topological space of H is a Hausdorff space.

Since X and Y are locally compact and satisfy the second axiom of
countability by the assumption, they are metrizable. We denote by d
and d' metrics in X and Y respectively. Let / and g be two elements
of H. We define a distance

, 0)

by

2 ( f , g ) = sup inf {d(P, Q) + d'(f(P),
Peτr-lU(/)) Qejr-lU(fir))

+ sup inf {d(P, Q) + d'(f(P), g(Q))} .

LEMMA 6.1. d is a metric in H.

PROOF. It is easy to check that d satisfies the three axioms for
metric. q.e.d.

LEMMA 6.2. Let (E, T, b) be a family of holomorphic maps of (X, π,
S) into (Y", μ, S). Let t0 be a point of T. Then d(Et, Eto) is a continuous
function of te T.

PROOF. It suffices to prove that

3(Et,Eto)-*Q as ί->ίβ.

It is known [7] that there are an open neighborhood T' of t0 in T and
a continuous retraction

such that Rt = R \ (b*π)~l(t) is a C°°-diffeomorphism of (b*π)~l(t) onto (b*π)~\t0)
for each t e T. We fix a point ί 6 T. We identify (δ*^)-1^) and (δ*^)-1^)
with 7t~\b(t)) and π~l(b(t0)) respectively in a canonical way (§1). Then
Rt is regarded as a diίfeomorphism of π~\b(t)) onto π~l(b(t0)). We have

inf {d(P, Q) + d'(Et(P), Eto(Q))}
Qe*-l(δ(ίβ))

^ d(P, Rt(P)) + d'(Et(P), Et£Rt(P)))

for any point Pe π~l(b(t}). Hence

sup inf {d(P, Q) + d'(Et(P), Et.(Q))}
P6ff-l(6(ί)) Qejc-l(δ(ίβ))

^ sup {d(P, J?f(P)) + d'(^(P), Ett(Bt(P)))} .
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In a similar way, we get

sup inf [d(P, Q) + d'(Et(P), Ett(Q))}
Qeπ-l(6« 0 )) Peτr-l(6(ί))

^ sup {d(Q, Rϊ1®)) + d'WRϊ1®)), Ett(Q))} .
Qeτr-l(6( ί 0 ))

Thus

fc, Eto) ^ 2 sup {d(P, Rt(P)) + d'W), tfίβ(Λt(P)))} .
P6JΓ-l(6( ί ) )

Now it suffices to show that

sup [<KP, Rt(P)) + d'(Et(P), Eto(Rt(P)))} -> 0
Peτr-l(δ(ί))

as t—>t0. We assume the converse. Then there are a positive number
ε, a sequence {tn}n=ί>2>... of points of T" converging to ίβ and a sequence
{Pn}n=ι,2,... of points of X such that Pwe π~*(b(tJi), n = 1, 2, , and

dίP., ΛJP.)) + d'(Etn(Pn\ Eto(Rtn(Pn))) ^ e

for n = 1, 2, . Since each fiber π"1^), s e S, is compact, we may assume
that {Pn}»=i,2... converges to a point Pe π~l(b(tQ)). Then

ε ^ d(Pf Λ4β(P)) + ci'(^β(P), Eio(Rto(P)))

= d(P, P) + d

a contradiction. q.e.d.

Let (H, d) be the metric space H with the metric d introduced above.
Lemma 6.2 asserts that the identity map

is a continuous map. Since (H, d) is a Hausdorff space, H is also a Haus-
dorff space.

Next we prove (1) of Theorem 2. The map

is sur jective, for H(π~\s), μ"1^)) contains constant maps for any s e S.
In order to prove that λ is holomorphic, it is enough to prove it locally.
Let o be a point of S. Let / be a holomorphic map of π~\o) into μ~l(ό).
Let (£/, T, 6) be the maximal family of holomorphic maps of (X, π, S)
into ( Y", μ, S) constructed in § 5 with respect to /. Then it is clear that
λ is locally given by the map b which is holomorphic.

Finally we prove (2) of Theorem 2. It is enough to prove it locally.
Let o, / and (E, T, b) be as above. E is a holomorphic map of δ* X =
XXST into b*Y= Yχs T. It is written as
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E(P, t) = (Et(P), t)

for (P, ί) with π(P) = 6(ί), where ^ is the holomorphic map of π~l(b(t))
into μ~l(b(t)) corresponding to ί. Et(P) is holomorphic in (P, ί), (see §5).
It is clear that Et(P) is the local expression of the map in (2) of Theorem
2. This completes the proof of Theorem 2.

THEOREM 3. Let (X, π, S) and (Y, μ, S) be as in Theorem 2. Then
there is a maximal family (G, H, λ) of holomorphic maps of (X, π, S) into
(Y9 μ, S) with the following universal property: for any family (M, R, h)
of holomorphic maps of (X, π, S) into (Y, μ, S), there is a unique holo-
morphic map k of R into H such that

( 1 ) λ& = h and

( 2 ) Mr = Gk(r}: ιr\h(r)) -> μ~l(h(r)) for all reR.

PROOF. Let H and λ be as in Theorem 2. Let / be an element of
H. Let (E, T, b) be the maximal family of holomorphic maps of (X, π, S)
into ( Y, μ, S) constructed in § 5 with respect to /. E is a holomorphic
map of b*X into 6* Y. We took the map

te T~+EteH

as a local chart around /. The canonical projection λ was locally given
by b. We define a holomorphic map

by G = E on b*X = (λ* X) \ T. It is clear that G is well defined and has
the universal property above. q.e.d.

7. Theorem 4 and its proof.

THEOREM 4. Let (X, π, S) and (Y, μ, S) be families of compact complex
manifolds. Let (Z, τ, S) be a family of complex manifolds. We assume
that X, Y, and Z satisfy the second axiom of countability . Let

H(X, Y;S) = ]lH(π~ί(s),μ-ί(s)),
set f

H(Y, Z;S) = H Hiμ-^s), (̂β)) and
se S

H(X,

be the analytic spaces whose analytic structures are introduced by Theorem
2. Let \χγ, \γz, and \xz be the canonical projections of H(X, Y S), H( Y, Z] S),
and H(X, Z\ S) respectively onto S. Then the map

H(X, Y; S) X H(Y, Z; S) — H(X, Z] S)
S
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defined by

(f, fir) — Sf ,

for (f, g) with λxr(/) = \γz(g), is holomorphic.

Let o be a point of S. We put V = π~l(o), W = μ~\o) and N = τ^(o).
Then V and PΓ are compact. Let

f:V-+W and
g .W — N

be holomorphic maps. Then similar arguments to those in §3 show that
there are finite sets I and A and families of open sets {Xi)ieι and {Xt}ieι
of -Γ, {Γ4}4iJ, {ΓJίeJ) {Γ.U., and {Fα}αeA of Y and {Z4}4.Λ {£4}4.ft {Z4}ββ^ and
{ZalaeA of ^ satisfying the following conditions (l)-(7).

( 1 ) Xi c Xt, Yt c Yi and ̂  c Z< for each iel and Γα c Γα and ̂ α c
Za for each α e A,

( 2 ) {JΓ4}(.Λ {Γf}4βJ, {Z4}4βί, {Yt}iel U {Γβ}β.^ and {Z4}4tl U {Z.}atA cover
V, f ( V ) , gf(V\ W and g(W) respectively,

( 3 ) Ya Π /(F) = 0 for each aeA,
( 4 ) there are an open neighborhood <§ of o and holomorphic iso-

morphisms
iίt:Xt-*Utx S,
ξ,: Ϋt-^WiXS,

ζa:Ϋa^WaxS,

ζ4: ̂  -» N{ x S and

ζα:^α-»JVαx,§

such that diagrams

— -- » ̂  x S

S

Ϋa -- - -- » Wa X S

S
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>N{xS

and
S

Cα
+fta X S

are commutative for each i e / and for each α e A, where Ut, ie I, are
open sets in Cd(d = dim V), Wf, iel, and Wa, aeA, are open sets in Cr(r =
dim W), and N{, ίe I and JVα, aeA, are open sets in C"(q = dim AT),

(5) there are an open neighborhood S' of o with S' c S and open
subsets C/ί, W{, Wa, Nt, and ^Vα of Ut, Wit Wa, N{, and Na respectively such
that Z7, c C/i, TΓi c Wίt Wa c flζ, JVi c N<, and ΛΓα c Na and such that

γa = ς^
Z{ = CrW* x S') and

^ = CrW x so ,
for each i e I and for each a e A,

( 6 ) there are coordinate systems

(O = 04 -' ,zί),
(wt) = (w\,

(wa) = (wl

a,

(?/«) = (l/i, •••, l/ί) and

n t/i, W<f

such that
Γ0 JVα, and β respectively, where S c β is a neat imbedding,

Wa\\wa\

and
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(7) /0?r W x °)) ε ίΓ W x o) ,

f(πl(ϋt x o)) c irW x o) ,
flr(£rW x o)) c Cr'W x o),
g(ξTl(Wi x o)) c CrW x o) ,

. x o)) c ζ-'(tfβ x o) and

x o)) c ζ~l(Na x o)

for each ie I and for each a e A.
Henceforth, we identify ^'(t/i x o), T)?(Ui x o), £rW* x °X fΓW x o),

fcW x o), ξ~\Wa x o), ζΓ'W x o), CrXtf, x o), ζ-'W, x o) and &(Na x o)
with ϋi, U{, Wt, W(, Wa, Wa, N{, Nίr Na and Na respectively.

We put

Ω = { s e Ω \ \ s \ <!} .

Then S' = S Π Ω.
Let e, 0 < e < 1, be a positive number. We put

C/Ί = {24 e U, 1 1 a, | < 1 - e] etc. .

Then, by Lemmas 3.3 and 3.4, taking e sufficiently small, we may assume
that

(8) {ϋ$}<βlf {Wl}ίel, {N$ίel, {W$ίeI\J{W<a}aeΛand{Nί}ίeI\J {N°α}αeA cover
V, f(V), gf(V), W, and g(W) respectively and

( 9 ) f(Ut)c Wl, g( Wt) c Nl, and g( Wα) c N°α for each ΐ e / and for
each α e A.

We put F= f*TW and G = g*TN. Let C^F, | |) and C»(G, | |) be
the Banach spaces defined in §2 with respect to coverings {Ut}ίel of V and
Wh.j U {Wα}αeA of TΓ respectively.

Now we express the map / by the equations

Wi = /i(Zi)

for Zi e Ut and i e /. We also express the map g by the equations

I/* = &(«><) and

for Wi e TF<, ΐ e I, and wα e Wα, αe A. Let s be a point of S'. Let

/': jr^β) -» jtr^e) and

<7'://-<(S)-τ-'(S)

be holomorphic maps such that
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g'(μ-\s) Π Γ,) c τ~l(s) n Zt and

g'(μ-\s) Π Γ.) c τ-^s) Π Za

for each i e J and for each α e A. We express the map /' by the equations

w< - /K*«)

for 2( e Ut, i e 7, using the isomorphisms

77;: Xt->UiX S' and

^Yi- 'TPixS ' .

We express the map g' by the equations

Vt = 9i(Wi) and
l/« = ffά(wα)

for W j e Wίf i e I, and wa e Wa, aeA, using the isomorphisms

ζ,: Z,-^N(x S' and

ζα:^α->^αxS'.

Then the vector valued holomorphic functions /{, g\, and fifά satisfy

f'<(Ut)cWt,
Ni and

We write

/< = /* + &,
ff< = Λ + ψ i and

ffά = ffa + ψ a

for each ίe I and for each ae A. We consider elements

ί* = {ί*ί}ίe/eC°(F, I I) and

t = {fλβzU{t«WeC">(G, I I ) .

In §5, we have associated to /' and g',

(φ,s)eC°(F,\ | )x T0S and

respectively. Now the holomorphic map
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satisfies

g'f(π-l(s) Π X) c τ-'(s) Π Zt

for each i e I. The map g'f is expressed by the equations

for Z; e E/i, i e /, using the isomorphisms

i'.Xi-^UiXS' and

The vector valued holomorphic function gfί/ί satisfies

We put

for each i e I. Then

for 3j e Z7<, ί e I. We consider the element

i t . I ,

where ίί= (gf)*TN = f*G and C7°( f̂ | |) is the Banach space defined in
§2 with respect to the covering {Z7i}iel of V. In |5, we have associated
to the map g'f

(K,s)eC"(H,\ | )x T0S.

Let e, 0 < ε < 1, be a small positive number satisfying Lemmas 3.5-
3.10 with respect to all pairs

ίYω,

/ U {Γβ}β.Λ {Z^,z U {Zβ},.A) and

(Lemma 3.9 for A = fk(Uk) for all fee I, etc.). Let £ε(.F)(resp. B.(G)) be
the open ε-ball in C°(F, \ |)(resp. C°(G, | |)) with the center the origin.
We define a norm | | in C\F, \ |) x C\G, \ |) by

for (φ, t) e C°(F, | |) x C\G, \ |). Then C\F, \ |) x C°(G, | |) is a Banach
space and Be(F) x Bε(G) is the open ε-ball in C\F, \ |) x C°(G, 1 |) with
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the center (0, 0).
We define a map

by

κ(φ,

for zέ eUitίe I. Then «(0, 0) = 0

LEMMA 7.1. Let ε < e/2.

is an analytic map.

PROOF. We show that for any affine line L in C\F, \ |) x C°(G, 1 |),
Λ: is an analytic map of L Π (.B.CF) x 5s((τ)) into C°(fl; | |). This implies
that the map

κ:B.(F)xB.(G)-+σ(H,\ |)

is analytic, (see e.g., Proposition 2 of [2]). We take a point fa", ψ ") e
L Π (B,(F) x B,(G)). Then L is written as

for teC where fa1, f l) e C°(F, | |) x C"(G, \ |). We may assume that fa1,
irl)eBe(F) x £ε(G) and L(f)eBε(F) x 5e(G) for all ίe/ί, where

Λ = {teC| | ί | <!}.

Now

(̂ (ί)),̂ ) = gt(ft(zt) + φ<Az{) + tφXzJ)

+ #?(«*) +

for z4 e f/i, ί 6 /, and ί e 4. We put

) and
Cίίλί̂ ) = if KΛ(^) + #?(««) + <#i(«i))

We put

B(ϊ) = {B(t)t}ttl and

C(t) =
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We show that B(t) is an analytic map of Δ into C\H, \ |). Similar argu-
ments show that A(t) and C(t) are analytic.
We put

Wi = /fa) + Φlfa)

and

x = X(t) = tφKzt) .

By (9) above,

I /,(*,) | < l - β

for all zte Uit Hence

| W 4 | < l _ β + .l = l-!

by the assumption that ε < e/2. By Cauchy's estimate,

- f " ' * ' = D(x)
f-* /

if I w< I < 1 — β/2 and | a? | < e/2, where Σ is extended over all non-negative
integers with ^ + + yr ^ 1 and < means that the absolute values
of the coefficients of ψl(Wi + x) — ψl(Wi) in the formal power series in
xl9

 9

 9Xr are less than those of the corresponding coefficients of D(x).
Hence

for Zi e t/i, i e /. Thus

B(ί) - 5(0) < E(t) .

E(t) converges absolutely for tsΔ. This shows that B(t) is an analytic
map of Δ into C°(H9 \ |). q.e.d.

Let ε < e/2. Let £?e be the open ε-ball of T0S with the center o.
We put Sε = S' Π Ωε. By Lemma 7.1, the map

x B.(G) x βε — C°(fζ | |) x Ωε

defined by

is an analytic map, where Bβ(F) x Bε(G) x βε is the open ε-ball in the
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Banach space C\F, | |) x C"(G, \ |) x T0S with the center the origin. Let

K/. Be(F) x Ωe - C\F, I I) ,

Kg: B.(G) xΩc-+ V(G, \ |) and

Kβf:B.(H)xΩt-+Cί(Hi\ |)

be the maps defined in §5 with respect to /, g, and gf respectively. Let
ε be sufficiently small. Then Kf, Ka, and Kgf are analytic by Proposition
5.1. We put

M, = ((φ, a) 6 B.(F) x Sε I Kf(Φ, β) = 0} ,

Mg = {(f , β) 6 B.(G) x S. I K,(+, s) = 0} and

M.f = {(K, s) 6 B.(H) x S.\K,ΛK, s) = 0} .

Now the set

C = (C\F, I I) x TaS) X (C°(G, I |) x T0S)
T0S

x(C°(G, I | )x Γ0S)|3^s'}

is a closed subspace of the Banach space (C°(̂ , | |) x T0S) x (C°(G, | 1) x
T0S) and is isomorphic to the Banach space

C\F9 I I) x C°(G, I I) x T0S

by the map

r ((Φ, s\ (t, s)) - (#, t, s) .
The open ε-ball

Cε = (Bε(F) x Ω.) X (B.(G) x Ω.)
Ωε

in C with the center the origin contains Mf XSεMg. By the definition
of κf ίc maps j(Mf XSε Mg) into Mgf.

Let

x Ωε, -> ϋ> c 5e(.P) x fl. ,

Φg: Bε,(G) x ΩE, ̂ Ugd Bε(G) x Ωε and

Φβf: Bε,(H) x Ω., — Ugfc:Bε(H) x Ωε

be the analytic isomorphisms defined in §5 with respect to /, g and gf
respectively. We may assume that K maps ^(C Γ) ( Z7/ x Z/J) into t/^/.

Let Tf, Tg, and Γff/ be the analytic spaces defined in § 5 with respect
to /, g, and gf respectively. Then, by the definitions of Tf, Tg, and Taf,
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Φg(Tg) = M, n Ug and

Φgf(Tgf) = Mβf Π ϋ.f.

Now we define a holomorphic map

c:TfXTg->Tsf
Sy

by

Then the map

#(Jξ Γ; S) X H( Γ, Z; S) -> #(X, Z; S) ,
S

defined by

(/, )̂ -̂  ̂ /

for (/, ^f) with λxr(/) = λFZ(g), is locally given by the map c. This com-
pletes the proof of Theorem 4.

In order to prove Main Theorem, we will need the following lemma.

LEMMA 7.2. The derivative κ'(Q, 0) at (0, 0) of the analytic map K
in Lemma 7.1 is given by

*'(o, o)fo, t) = (f*J,)Φ + /V
/or (0, f)e C'CF, I I) x C\G, \ |

)) is a matrix operating on the vector φi(z$), and

(/*f)i(**) = ti(/«(«i)) > /or «ι 6 J7<f i 6 I .

PROOF. We note that κ(0, 0) = 0. Now, for 24 6 Ut,

where o(?5, -f ) is some function of ($5, ψ ) (and of zt 6 ϋi) such that

IΦ, Ψ ) l / l ( Λ t ) l - * o
as |(^, f) |— 0. Since /t(«t)e PΓ| for zte Ut by (9) above,
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is estimated by \ψ\. Hence we may put

(dψt/dwMffcMφfa) = o(φ, t)

Thus

*(Φ, ΊίOiCO = (dgi/dwMffcMφfa) + ih(/,(s«)) + o(φ, f ) .

q.e.d.

8. Proof of Main Theorem. Let (X, π, S) and (Γ, μ, S) be families
of compact complex manifolds. We assume that S satisfies the second
axiom of countability. Since (X, π, S) and (Y, μ, S) are topological fiber
bundles (see e.g., [7]), X and Y satisfy the second axiom of countability.
By Theorem 2,

seS

admits an analytic space structure such that (H, λ, S) is a complex fiber
space where

\:H-+ S

is the canonical projection. Let sεS. We denote by /(nr^s), μ-1(s)) the
set of all holomorphic isomorphisms of π^s) onto μ'^s). (It may be empty.)

LEMMA 8.1. The disjoint union

I = H I(ir\8), μ, ~
seS

is an open subset of H.

PROOF. Let o be a point of S. We put as before V = π~l(o) and
W — μ~l(o). Let / be a holomorphic isomorphism of Fonto W. Let (E,
T, b) be the maximal family of holomorphic maps of ( X, π, S) into ( Yf μ, S)
constructed in §5 with respect to /. We use the notations in §5. For te
T, Et is a holomorphic map of π~\b(t)) into μ~l(b(t)). In particular, E(Q>0} =
/. We write 0 instead of (0, o) to simplify the notation. We show that
there is an open neighborhood Tr of 0 in Γ such that, for each ί e T",
Et is a holomorphic isomorphism of ττ~1(6(ί)) onto Ά^ί&ί*))- Since Γ gives
a local chart in H, this proves the lemma.

The map

is given by the equations

Wi = fi(

t = t ,
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for (zif t) 6 Ui x T. Its Jacobian matrix at (zi9 0) is

/(3/ι/3*i)(*«) (3Λ/3ί)(*«, 0)\

I 0 1 / •

It is non-singular. Noting that F is compact, this implies that there is
an open neighborhood T' of 0 in T such that

E: (b*π)~l(Tf) — (b*μ)

is a local isomorphism. In particular, Et is a local isomorphism of π~\b(t))
into ^"W)) for each ίe T'.

Next we show that Et is sur jective for each ί e Γ' provided T" is
sufficiently small. Since F is compact, the number of connected com-
ponents of V is finite. We arrange them as follows:

V ' Vy i, , y m

Since / is a holomorphic isomorphism of V onto W, connected components
of W are

On the other hand, it is known [7] that there are an open neighborhood
T' of 0 in T and a continuous retraction

such that Rlt = R, \ (6*ττ)-1(t) is a C°°-diίf eomorphism of (δ*^)-1^) = π~l(b(t))
onto V for each 1 6 T". Hence π~l(b(t)) has m connected components

In a similar way, there is a continuous retraction

such that R2t = Rs\(b* μ)~\t) is a C~-diff eomorphism of μ~l(b(t)} onto W
for each ίe 2". Hence μ~\b(t)) has m connected components

We may assume that 2" is connected. Then we show that connected
components of (δ*Jr)-'(T') and (b*μ)-^T') are

JΓ. = U Vβ(t)f α = 1, ...,m
ίeT 7 '

and

YΛ=\JWa(t),a = l, - m
t&T'

respectively. We note that the map
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defined by

RAP) = (RAP), δ*τr(P)) ,

for Pe(b*π)~l(T'), is a homeomorphism, as is easily seen. In order to
show that Xa is connected, it is enough to show that any point Pe Va(t)
is connected to Rίt(P)e Va by a curve in Xa. Let c(τ) be a continuous
curve in T' such that c(0) = ί and c(l) — 0. Then the curve

d(τ) = £rl(Λlf(

belongs in JΓα and cZ(0) = P and cZ(l) = Rlt(P) Hence JΓα is connected.
We show that any points P e Xa and Q e Xβ, a Φ β, can not be connected
by a curve in (6*τr)~1(ϊ7') If it is s°> then the above argument shows
that some points Pe Va and Qe Vβ, a Φ β, is connected by a curve d(τ)
in (b*π)~l(T'). Then P and Q are connected by the curve R,(d(τ)) in V,
a contradiction. Hence Xa, a = 1, •••, m are connected components of
(b*π)~l(T'). In a similar way, we see that Ya, a — 1, , m are connected
components of (b*μ)~l(T'). Now we take T" sufficiently small so that Et

is a local isomorphism of π"1^)) into μ~l(b(t)) for each ί e T". Then
j&t(yα(ί)) coincides with a connected component of ^(bfy)) for each te T"
and for each α. Since Et(z) = £?(«, ί) is holomorphic (and hence continuous)
in both variables, Et(Va(t)) and f(Va) = Wa belong to the same connected
component Ya of (δ'WW Thus ^(^(0) = Wa(t). This shows that ̂
is surjective for each t e T".

Finally we show that Et is in jective for each t e T" provided Γ' is
sufficiently small. We assume the converse. Then there are a sequence
{tn} in T' converging to 0 and a sequence of pairs of different points
ί(P.f Q.)}.-ι.., . of τrl(6(t.)) such that Jg?ίm(P,) - ̂ (Q.), Λ = lf 2, - - - . Since
7Γ is a proper map, we may assume that

V and

as n-^ + oo. Then /(P) - /(Q) so that P = Q. Since

E: (6*τr)-1(r) -̂  (δ'jwJ-XΓO

is a local isomorphism, there is an open neighborhood X' of P in (δ*?!)
such that E is an isomorphism on X'. If π is sufficiently large, Pn and
QΛ belong to X'.
Thus

.̂(Q.) - E(Q.)
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implies that Pn = Qn, a contradiction. q.e.d.

Let (X, π, S) be a family of compact complex manifolds. We assume
that S satisfies the second axiom of countability. Then, by Lemma 8.1,

A = Π Aut
seS

is an open subset of the analytic space

seS

Hence A is an analytic space. The canonical projection

λ: A-+S

is holomorphic by Theorem 2. For each s e S, Aut (π"1^)) contains the
identity map 78. Hence λ is surjective. This shows (1) of Main Theorem.

XXSA is an open subset of XχsH. By Theorem 2, the map

XXSA-+ X

defined by

(P, /) - f ( P ) ,

where π(P) = λ(/), is holomorphic. This shows (2) of Main Theorem.
Now, we show (3) of Main Theorem. Let o be a point of S. Let I0

be the identity map of V — π~\o). We review the considerations in §3-§5
replacing /, (Y, μ, S\ (wt), hik and ξt in §3 to I0, (X, π, S), (zt), gik and ηt

respectively. We may assume that open sets Wt and W€ in §3 satisfy

UtcWtcUtc Wt

in the present case. We may also assume that

Wi = { z i ^ U i \ \ z i \ <l + β'}

and

Wl = fee ϋ i l l z Λ <1 + β' - e}

where e and β' are small positive numbers such that 0 < e < ef < 1. The
holomorphic vector bundle F in §4 becomes ΓF(the holomorphic tangent
bundle) in the present case. Now let s e S' and let /' be a holomorphic
map of π~\s) into itself. We assume that

Γ(π~\s) Π Xt) c τr*(8) Π F,

where Xt = ητl(Ut x S') and Yi = η^(Wi x S'). Then /' is expressed
locally as vector valued holomorphic functions /ί(z<), zte Ut. We put
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Φifa) = /<(«*) ~ *i and

# = {fcUeC°(Ff I I ) .

We have associated (φ, s)eC°(Ff \ |) x T0S to /' in §5.
Now we assume that /' = 7S, the identity map of π"1^). Then the

local expression /<(£*) of /' must be the identity function: fi(zt) = zt.
Hence the corresponding φ must be zero. We use the notations in §5.
We put

M={(φ,s)eBε xSε\K(φ,s) = 0} .

Then the above consideration shows that

(0, β) e M

for all seSε. On the other hand, the map L in §5 was defined by

L(Φ, *) = (Φ + E0BΛK(φ, s) - E0δφ, s) .

Thus

L(0, s) = (0 + E0BΛK(Q, s) - E0δO, s) = (0, s) .

Hence the set

{(0,8)e(H*(F\ \)ΓίB.,) xS.,\8eS.,}

is contained in

r - {(f,.s) G (#°CF, i i) n *.,) x SAHΛKΦ(ζ, s) = o}.
Each (0, s)e ϊ7, seSε,, corresponds to the identity map J8 of π"1^). The
map

seSe, — (0, s)e Γ

is holomorphic. The proof of Lemma 8.1 shows that there is an open
neighborhood T' of (0, o) in T such that Tr gives a local chart in A
around /„. This proves (3) of Main Theorem.

Finally we prove (4) of Main Theorem.

LEMMA 8.2. Let (X, π, S) be a family of compact complex manifolds.
We assume that S satisfies the second axiom of countability. Let

A = Π Aut (π-^s))
seS

be the analytic space whose analytic space structure is introduced above.
Then the map

feA^f^eA

is holomorphic.
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PROOF. Let o be a point of S. Let / be an automorphism of V —
π~l(o). We replace / and g in the proof of Theorem 4 to f~l and /
respectively. Thus, in the present case, we replace (Z, τ, S), (yl) and ζ<
to (-X", π, S), fa), and iji respectively. We may assume that the open sets
Ni and Nt in §7 satisfy

in the present case. We may assume that

Nt = KG ϋillztl <l + e'}

and

2Srj = {^e^||24 | <l + β'-e}

where e and e' are small positive numbers such that 0 < β < e' < 1. We
note that the set A of indices in §7 is empty in the present case. Now
we put

h = Γ1 .
Let s be a point of S'. Let h' and /' be holomorphic maps of JTT^S)
into itself such that

A'ίJT^β) Π Jζ) c TT-^S) Π Y, and

f\ιr\8) Π ΓO c π-'(s) Π Z,

where Zt — ifc^Nt x S') We express the maps h' and /' by the equations

wt = hf(zt) ,

for z 4e Ut, and

* i ,

for w f e TF<, respectively. We write

Λ ί = ht + Φi and

/ί = Λ + t*
We consider the elements

Φ = {Φ*}t,ιeC°(G,\ I) and

* = {*«}«./ e C"(F, I I)

where G = h*TV = (f~γTV and ί7 = /*ΓF.
As in §7, We associate

(φ,s)eC°(G, I | )x Γ0S and
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to h' and /' respectively. Then the composition f'h' corresponds to

(*, s) 6 Cm I |)x T,S

where H = TV and K — {/cjie/ where

for z(e Ui. We define a map

κ:Bε(G)x B.(F)-<?(Ht

by

for Z j G ί/i. By Lemma 7.1, K is analytic, provided s is sufficiently small.
By Lemma 7.2,

κ'(Q, Q)(φ, +) = (h*Jf)φ + h*<ϊ ,

for (φ, f)e C\G, \ |) x C°(F, \ |), where

for 2 ;e Z7< and

for 2{e t/i. We consider an analytic map

β: 5.(G) x B.(F) - C°(ίΓ, | |) x

defined by

β(φ, IT) = (K(φ, f ), f ) .

Then

J h

It is easy to see that

h*Jf:C*(G,\ \)

is a continuous linear isomorphism. Hence /3'(0, 0) is a continuous linear
isomorphism. By the inverse mapping theorem, there are a small positive
number ε', an open neighborhood U of (0, 0) in B£(G) x Bε(F) and an
analytic isomorphism

a:B.,(H) x Bε,(

such that β\U = cΓ1. We write
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Then the map

is an analytic map. Hence the map

(f , β) e B.,(F) x Ωε, - (7(0, f ), β) 6 B.(G) x Ωt,

is analytic, where Ωt, is the open ε'-ball in T0S with the center o. Now
it is clear that if (ψ, s) e Bε,(F) x Sβ, corresponds to an automorphism /' of
π'^s), then (τ(0, ψ), s) corresponds to (/O"1. Let Γ/ and T/-i be the analytic
spaces constructed in §5 with respect to / and h = f~l respectively. Let
Φf and I//-1 be the analytic maps defined in § 5 with respect to / and f~l

respectively. The proof of Lemma 8.1 shows that if we take a sufficiently
small open neighborhood T' of (0, o) in Tf, then each t = (ξ, s) e T'
corresponds to an automorphism Et of π~1(s). We put Φf(t) = Of, s).
Then the above argument shows that L/-ι(7(0, ψ), s) belongs to Tf-ι and
corresponds to Erl Now the map

r — Tf-ι
defined by

t = (ξ, s) -^ Of, s) - Z,,-ι(7(Of * ), s)

is holomorphic. This proves Lemma 8.2. q.e.d.

Now, AXSA is an open subset of HXSH. Hence Theorem 4 and
Lemma 8.2 imply (4) of Main Theorem.
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