CUT LOCI IN RIEMANNIAN MANIFOLDS

V. Ozols

(Received March 7, 1973)

1. Introduction. In this paper we study the structure of the cut locus $C(p)$ of a point p in a Riemannian manifold M, in the complement of the set $Q_{0}(p)$ of points conjugate to p along a minimizing geodesic. The principal tool is a vector field constructed as follows: Let $V \subset T_{p} M$ be an open subset on which $\exp _{p}$ is a diffeomorphism onto an open set in M. For each $X \in V$ let $\gamma_{X}(t)=\exp _{p} t X$ be the geodesic from p in the direction of X; and for each t such that $t X \in V$, let $Y_{\text {exp }_{p} t X}$ be the tangent to γ_{X} at t having length equal to the length of the segment of γ_{X} going from p to $\exp _{p} t X$. Using the vector fields Y obtained in this way we are able to apply differential methods to the study of the cut locus away from $Q_{0}(p)$.

The main results are: (i) A description of $C(p)-Q_{0}(p)$ locally as an intersection of a finite number of smooth $(n-1)$-dimensional manifolds and finitely many open sets given by smooth inequalities ($n=\operatorname{dim} M$). (ii) For real analytic manifolds, a triangulation theorem for open subsets of $C(p)-Q_{0}(p)$ whose closure is disjoint from $Q_{0}(p)$. This second result is a consequence of a theorem of Łojasiewicz [3] on the triangulability of semi-analytic sets.

Also, we give a description of what happens to the cut locus when taking quotients by groups Γ of isometries which act properly discontinuously (and freely). We show that if Δ_{p} is the fundamental domain of Γ centered at $p, E_{p}=M-C(p)$, and if $\pi: M \rightarrow M / \Gamma$ is the projection, then $C(\pi p)=\pi\left(\partial\left(\Delta_{p} \cap E_{p}\right)\right)$.
2. Local structure of the cut locus. Let M be a complete C^{∞} Riemannian manifold of dimension $n,\langle\cdots, \cdots\rangle$ the Riemannian inner product, and $\|\cdots\|$ the associated norm. For each $p \in M$, $\exp _{p}: T_{p} M \rightarrow M$ denotes the exponential map, $C(p)$ the cut locus of p in M, and $Q(p)$ the first conjugate locus of p in M. Let $\widetilde{C}(p)$ and $\widetilde{Q}(p)$ be the corresponding loci in $T_{p} M$, and let $\widetilde{Q}_{0}(p)=\widetilde{C}(p) \cap \widetilde{Q}(p)$. Then define $Q_{0}(p)=\exp _{p} \widetilde{Q}_{0}(p)$; so $Q_{0}(p)$ is the set of all points which are conjugate to p along some minimizing geodesic. It is easy to see that all of these sets are closed.

For each $X \in T_{p} M$, we will identify $T_{X}\left(T_{p} M\right)$ with $T_{p} M$ in the usual way. If $X \in T_{p} M$ and $\exp _{p}$ is non-singular at X, then let $V \subset T_{p} M$ be an
open set about X on which $\exp _{p}$ is a diffeomorphism onto an open set in M; and define a vector field Y on $\exp _{p} V$ by: $Y_{q}=\left(\exp _{p}\right)_{*}(Z)$ for all $q \in$ $\exp _{p} V$, where $q=\exp _{p} Z, Z \in V$. Then Y is a C^{∞} vector field on $\exp _{p} V$.

Definition 2.1. $\quad Y$ is the distance vector field determined by p and V.
Alternatively, Y can be described as the field of tangents to the geodesics $\gamma_{Z}: t \mapsto \exp _{p} t Z$, as Z ranges over V, which have length at each $\exp _{p} t Z$ equal to the length of the segment of γ_{Z} from p to $\exp _{p} t Z$.

Lemma 2.2. For each $q \in \exp _{p} V$ and each $X_{q} \in T_{q} M$,

$$
X_{q}\|Y\|=\left\langle X_{q}, Y_{q}\right\rangle /\left\langle Y_{q}, Y_{q}\right\rangle^{1 / 2} \quad \text { if } \quad\left\|Y_{q}\right\| \neq 0
$$

Proof. Let $q=\exp _{p} Z, Z \in V$; and let $X_{0}=\left(\exp _{p^{*}}\right)^{-1} X_{q}$. Define a variation of the geodesic $\gamma_{Z}: t \mapsto \exp _{p} t Z$ by: $Q(t, s)=\exp _{p}\left[t\left((Z /\|Z\|)+s X_{0}\right)\right]$. This is a one-parameter family of geodesics emanating from p which are all parameterized proportionally to arc-length, so the longitudinal curves have parallel tangent vector fields. For $s=0, t$ is arc-length. Let $L(s)=$ $\int_{0}^{a}\langle T, T\rangle^{1 / 2} d t$ where $Q_{*}(\partial / \partial t)=T$ and $a=\left\|Y_{q}\right\|(=$ constant). By the formula for first variation of arc-length and the fact that $Q_{*}(\partial / \partial s)=0$ when $t=$ $0, s=0$, we get $L^{\prime}(0)=\left\langle X_{q}, T_{q}\right\rangle=\left\langle X_{q}, Y_{q}\right\rangle\left\langle Y_{q}, Y_{q}\right\rangle^{-1 / 2}$. Since $L^{\prime}(0)=$ $X_{q}\|Y\|$, the result follows.
q.e.d.

Suppose $r \in C(p)-Q_{0}(p)$, and $\lambda=\rho(p, r)$ where $\rho(p, r)$ is the Riemannian distance. Then there are at least two minimizing geodesics from p to r, so $\exp _{p}^{-1}(r) \cap S_{\lambda}(0)$ has at least two elements. (Here, $S_{\lambda}(0)=\{X \in$ $\left.T_{p} M \mid\|X\|=\lambda\right\}$). If $\left\{X_{i}\right\}$ is a sequence of infinitely many vectors in $\exp _{p}^{-1}(r) \cap S_{\lambda}(0)$, then there is a convergent subsequence which we again denote by $\left\{X_{i}\right\}$. If $X_{i} \rightarrow X_{0}$ as $i \rightarrow \infty$, then $X_{0} \in \exp _{p}^{-1}(r) \cap S_{k}(0)$ is a conjugate point of p contrary to hypothesis. Therefore $\exp _{p}^{-1}(r) \cap S_{\lambda}(0)$ is a finite set which we denote by $\left\{X_{i} \mid 1 \leqq i \leqq k_{p}(r)\right\} . k_{p}(r)$ is the number of distinct minimizing geodesics from p to r. For each $i=1, \cdots, k_{p}(r)$, let U_{i}^{r} be an open set about X_{i} such that $\exp _{p}: U_{i}^{r} \rightarrow M$ is a diffeomorphism onto an open set about r. We may assume that $\exp _{p}\left(U_{i}^{r}\right)=U_{r}$ for all i, where U_{r} is a fixed convex normal neighborhood of r.

Suppose there is a sequence $q_{j} \in U_{r}$ converging to r having a sequence of minimizing geodesics $\gamma_{j}(t)=\exp _{p}\left(t X^{q_{j}}\left\|\mid X^{q_{j}}\right\|\right)$ which satisfy the following conditions: (i) $X^{q_{j}} \in T_{p} M,\left\|X^{q_{j}}\right\|=\rho\left(p, q_{j}\right)$, (ii) $0 \leqq t \leqq \rho\left(p, q_{j}\right)$, (iii) $\exp _{p} X^{q_{j}}=$ q_{j}, (iv) $X^{q_{j}} \notin\left\{U_{i}^{r} \mid 1 \leqq i \leqq k_{p}(r)\right\}$ for all j. Then by choosing subsequences if necessary, we may assume that $X^{q_{j}} \rightarrow X^{r} \in S_{\lambda}(0)$. But then X^{r} is one of the X_{i}, so the vectors $X^{q_{j}}$ eventually lie in U_{i}^{r} contrary to hypothesis. Therefore, by shrinking U_{r} if necessary (and also shrinking the U_{i}^{r} so $\exp _{p} U_{i}^{r}=U_{r}$ still holds for all i), we may assume that every minimizing
geodesic from p to a point of U_{r} has the form $t \rightarrow \exp _{p}(t Z /\|Z\|)$ for some $Z \in U_{i}^{r}, 1 \leqq i \leqq k_{p}(r)$. This implies that if we follow through the above constructions for each point $q \in C(p) \cap U_{r}$, then $k_{p}(q) \leqq k_{p}(r)$. Since $C(p)-$ $Q_{0}(p)$ is open in $C(p), k_{p}: C(p)-Q_{0}(p) \rightarrow Z^{+}$is upper semi-continuous.

For each $r \in C(p)-Q_{0}(p)$ let $\left\{Y_{i}^{r} \mid 1 \leqq i \leqq k_{p}(r)\right\}$ be the set of distance vector fields on U_{r} determined by p and the open sets $U_{i}^{r} \subset T_{p} M$. Then $\left\|\left(Y_{i}^{r}\right)_{r}\right\|=\rho(p, r)$ for all i; and the vectors $\left(Y_{i}^{r}\right)_{r}$ are distinct since if two coincided then their geodesics would coincide, implying that the corresponding X_{i} coincide. Therefore, the vectors $\left(Y_{i}^{r}\right)_{r}$ are either pairwise independent, or certain pairs occur as negatives of each other. We may assume, by shrinking U_{r} further if necessary, that throughout U_{r} the vectors Y_{i}^{r} are either pairwise independent or certain pairs occur as negative multiples of each other (where the numbers in the multiples may be restricted to lie as near -1 as we like by choosing U_{r} sufficiently small).

Define functions

$$
g_{i j}^{r}(q)=\left\|\left(Y_{i}^{r}\right)_{q}\right\|-\left\|\left(Y_{j}^{r}\right)_{q}\right\|, 1 \leqq i, j \leqq k_{p}(r) .
$$

These are C^{∞} functions on $U_{r}-\{p\}$, and clearly $g_{i j}^{r}=-g_{j i}^{r}$ for all i, j. For each pair $i \neq j$, let:

$$
\begin{aligned}
K_{i j}^{r} & =\left\{q \in U_{r} \mid g_{i j}^{r}(q)=0\right\} \\
H_{i j}^{r} & =\left\{q \in U_{r} \mid g_{i j}^{r}(q)>0\right\} \\
C_{i j}^{r} & =K_{i j}^{r} \cap\left(\bigcap\left\{\bar{H}_{i i}^{r} \mid 1 \leqq l \leqq k_{p}(r)\right\}\right) .
\end{aligned}
$$

Proposition 2.3. $C(p) \cap U_{r}=\bigcup\left\{C_{i j}^{r} \mid i<j\right\}$.
Proof. If $q \in C(p) \cap U_{r}$ then since $U_{r} \subset M-Q_{0}(p)$, it follows that there are at least two minimizing geodesics from p to q. If Y_{i}^{r}, Y_{j}^{r} are the corresponding distance vector fields then $\rho(p, q)=\left\|\left(Y_{i}^{r}\right)_{q}\right\|=\left\|\left(Y_{j}^{r}\right)_{q}\right\|$, and all other geodesics from p to q, have length $\geqq \rho(p, q)$. This proves that $q \in C_{i j}^{r}$. Conversely, if $g_{i_{1} i_{2}}(q)=0$ for $i_{1} \neq i_{2}$, and $g_{i i_{1}}(q) \geqq 0$ for all $1 \leqq i \leqq k_{p}(r)$, then $\left\|\left(Y_{i_{1}}^{r}\right)_{q}\right\|=\rho(p, q)$ since this is the shortest of the $\left(Y_{i}^{r}\right)_{q}$ and one of them must have length $\rho(p, q)$. The geodesics corresponding to $Y_{i_{1}}^{r}, Y_{i_{2}}^{r}$ are distinct and minimizing so $q \in C(p)$.
q.e.d.

Proposition 2.4. For each pair $i \neq j$, the set $K_{i j}^{r}$ is a smooth submanifold of dimension $n-1$.

Proof. Let $q \in K_{i j}^{r}$ and $X_{q} \in T_{q} M$ any vector. Then

$$
\left.X_{q} g_{i j}^{r}=X_{q}\left\|Y_{i}^{r}\right\|-X_{q} \| Y_{j}^{r}\right)\|=\|\left(Y_{i}^{r}\right)_{q} \|^{-1}\left\langle X_{q},\left(Y_{i}^{r}\right)_{q}-\left(Y_{j}^{r}\right)_{q}\right\rangle .
$$

Since $\left(Y_{i}^{r}\right)_{q} \neq\left(Y_{j}^{r}\right)_{q}$, there is $X_{q} \in T_{q} M$ such that $\left\langle X_{q},\left(Y_{i}^{r}\right)_{q}-\left(Y_{j}^{r}\right)_{q}\right\rangle \neq 0$ so $g_{i j}^{r}: U_{r} \rightarrow \boldsymbol{R}^{1}$ has maximal rank at q. The result then follows from the
implicit function theorem.
q.e.d.

REMARK 2.5. $T_{q} K_{i j}^{r}=\left(\left(Y_{i}^{r}\right)_{q}-\left(Y_{j}^{r}\right)_{q}\right)^{\perp}$ since the right side is the kernel of $d g_{i j}^{r}$ at q.

Proposition 2.6. If $q \in K_{i_{1} j}^{r} \cap K_{i_{2} j}^{r}-Q_{0}(p)$, for $i_{1} \neq i_{2}, j \neq i_{1}, i_{2}$, then the intersection is transverse at q.

Proof. Let $Y_{j}^{r}, Y_{i_{1}}^{r}, Y_{i_{2}}^{r}$ be the distance vector fields determined by $U_{j}^{r}, U_{i_{1}}^{r}, U_{i_{2}}^{r}$. Then they all have the same length at q. If they span a three-dimensional space at q, then the vectors $\left(Y_{j}^{r}\right)_{q},\left(Y_{i_{1}}^{r}\right)_{q}-\left(Y_{j}^{r}\right)_{q},\left(Y_{i_{2}}^{r}\right)_{q}-$ $\left(Y_{j}^{r}\right)_{q}$ also span a three-dimensional space. Therefore $\left(\left(Y_{i_{1}}^{r}\right)_{q}-\left(Y_{j}^{r}\right)_{q}\right)^{\perp}$ and $\left(\left(Y_{i_{2}}^{r}\right)_{q}-\left(Y_{j}^{r}\right)_{q}\right)^{\perp}$ are transverse. If $\left(Y_{j}^{r}\right)_{q},\left(Y_{i_{1}}^{r}\right)_{q},\left(Y_{i_{2}}^{r}\right)_{q}$, span a two-dimensional space then two of the vectors are negatives of each other and the third is independent of both. If $\left(Y_{j}^{r}\right)_{q}=-\left(Y_{i_{1}}^{r}\right)_{q}$ then $\left(Y_{i_{1}}^{r}\right)_{q}-\left(Y_{j}^{r}\right)_{q}=$ $-2\left(Y_{j}^{r}\right)_{q}$ and $\left(Y_{i_{2}}^{r}\right)_{q}-\left(Y_{j}^{r}\right)_{q}$ are independent so their normal spaces are transverse. The same argument applies if $\left(Y_{i_{2}}^{r}\right)_{q}=-\left(Y_{i_{1}}^{r}\right)_{q}$. If $\left(Y_{i_{2}}^{r}\right)_{q}=-\left(Y_{i_{1}}^{r}\right)_{q}$, then $\left(Y_{j}^{r}\right)_{q}$ is independent of both others so $\left(Y_{i_{1}}^{r}\right)_{q}-\left(Y_{j}^{r}\right)_{q}$ and $\left(Y_{i_{2}}^{r}\right)_{q}-\left(Y_{j}^{r}\right)_{q}=$ $\left.-\left(\left(Y_{i_{1}}^{r}\right)_{q}\right)+\left(Y_{j}^{r}\right)_{q}\right)$ are independent.
q.e.d.

Remark. It is not clear whether higher numbers of intersections are transverse, or whether intersections $K_{i_{1} j_{1}}^{r} \cap K_{i_{2} j_{2}}^{r}$ are transverse if all the indices $i_{1}, j_{1}, i_{2}, j_{2}$ are distinct.

All the previous constructions obviously carry over to the case of a real analytic Riemannian manifold with an analytic metric. In particular, the functions: $g_{i j}^{r}: U_{r} \rightarrow R^{1}$ are analytic.

Suppose M is a real analytic manifold, and $S \subset M$ is a subset. If $U \subset M$ is any open subset, and if f_{1}, \cdots, f_{k} are real-valued functions defined on U, then we say that S is described in U by the functions f_{1}, \cdots, f_{k} if $S \cap U$ is a finite union of finite intersections of sets of the form: $\left\{x \in U \mid f_{i}(x)>0\right\}$ or $\left\{x \in U \mid f_{i}(x)=0\right\}$.

A subset $S \subset M$ is semi-analytic if and only if for each point $x \in M$ (not necessarily in S) there is an open set $U_{x} \subset M$ about x, and a finite set of real-analytic functions f_{1}, \cdots, f_{k} defined on U_{x} such that S is described in U_{x} by these functions.

Then we have:
Theorem 2.7. Every relatively open subset V of $C(p)-Q_{0}(p)$ whose closure in M is disjoint from $Q_{0}(p)$ lies in an open semi-analytic subset of $C(p)-Q_{0}(p)$.

Proof. Cover $Q_{0}(p)$ by a locally finite collection $\left\{B_{\alpha}\right\}$ of closed metric balls having centers q_{α} and radii r_{α}, such that (i) $\bar{V} \cap\left(\bigcup_{\alpha} B_{\alpha}\right)=\varnothing$, (ii)
$Q_{0}(p) \subset \bigcup_{\alpha}\left(B_{\alpha}^{0}\right)$, where B_{α}^{0} is the interior of B_{α}. Let $S=C(p)-\left(\bigcup_{\alpha} B_{\alpha}\right)$, so $\bar{S} \subset C(p)-Q_{0}(p)$. Define functions $h_{\alpha}: M \rightarrow \boldsymbol{R}^{1}$ by $h_{\alpha}(q)=\rho\left(q_{\alpha}, q\right)-r_{\alpha}$. Then $S=\left\{q \in C(p) \mid h_{\alpha}(q)>0\right.$, all $\left.\alpha\right\}$. Now if $r \in \bar{S}$, then let the open set U_{r} and the functions $g_{i j}^{r}$ be constructed as before. By shrinking U_{r} if necessary we may assume it meets only a finite number of the balls B_{α}. Then the functions $g_{i j}^{r}$ together with those h_{α} such that $U_{r} \cap B_{\alpha} \neq \varnothing$, describe S in U_{r}. If $r \notin \bar{S}$ there is an open set U about r disjoint from S, so any non-zero constant describes S in U.
q.e.d.

Corollary 2.8. If M is a complete real analytic Riemannian manifold and $V \subset C(p)-Q_{0}(p)$ is a relatively open subset whose closure in M is disjoint from $Q_{0}(p)$, then V lies in an open subset of $C(p)-Q_{0}(p)$ which has an analytic triangulation.

Proof. This is an immediate consequence of Theorem (2.7) and a theorem of S. Łojasiewicz ([3]). q.e.d.

Remark 2.9. Łojasiewicz also showed ([4]) that a semi-analytic set has a Whitney stratification.

Corollary 2.10. In an analytic manifold, if $C(p) \cap Q_{0}(p)=\varnothing$ then $C(p)$ is a semi-analytic set and is therefore stratifiable and triangulable.

Remark 2.11. (1) If we assume that the sets $K_{i j}^{r}$, and all their intersections, are transverse to each other in $C(p)-Q_{0}(p)$, then $C(p) \cap U_{r}$ is a finite union of C^{∞} submanifolds of U_{r}. It is easy to see that the conditions for a Whitney stratification are then satisfied. It is not known, however, whether this implies triangulability. (2) In [8], A. Weinstein proved that if M is a compact C^{∞} manifold not homeomorphic to S^{2} then M has a Riemannian metric and a point p such that $\widetilde{C}(p) \cap \widetilde{Q}(p)=\varnothing$. This implies that $C(p) \cap Q_{0}(p)=\varnothing$ so our local structure theorems (Propositions $2.3-2.6$) for $C(p)$ apply to all of $C(p)$. The same result holds in the real analytic case.
3. Cut loci and Riemannian coverings. Next we will consider the relation between the cut locus $C(p)$ of a point $p \in M$ and the cut locus $C(\pi p)$ of $\pi p \in M / \Gamma$, where Γ is a group of isometries of M acting properly discontinuously, and $\pi: M \rightarrow M / \Gamma$ is the Riemannian covering projection. (There seems to be some disparity in the use of the term "properly discontinuous". We have followed the definition in Spanier [7]: Γ is properly discontinuous if for each $p \in M$ there is an open set U about p such that if $g U \cap g^{\prime} U \neq \varnothing$ for any two $g, g^{\prime} \in \Gamma$ then $\left.g=g^{\prime}\right)$.

Definition 3.1.
(i) For each pair of points $p, q \in M$ with $p \neq q$ let

$$
\begin{aligned}
& H_{p, q}=\{r \in M \mid \rho(p, r)<\rho(q, r)\} \\
& A_{p, q}=\{r \in M \mid \rho(p, r)=\rho(q, r)\}=A_{q, p} .
\end{aligned}
$$

(ii) If Γ is a group of isometries acting properly discontinuously on M, let

$$
\Delta_{p}=\bigcap\left\{H_{p, g p} \mid g \in \Gamma, g \neq e\right\}
$$

Δ_{p} is the normal fundamental domain of Γ centered at p.
The following facts about these sets are well-known (see for example, H. Busemann [1]).

Proposition 3.2.
(1) $H_{p, q}, \Delta_{p}$ are open and star-like with respect to p (i.e. they contain all minimizing geodesic segments from p to any of their points);
(2) Every geodesic segment emanating from p which minimizes arclength between its end-points intersects $\partial \Delta_{p}$ in at most one point;
(3) $g \Delta_{p}=\Delta_{g p}$ for all $g \in \Gamma$, and $g_{1} \Delta_{p} \cap g_{2} \Delta_{p}=\varnothing$ if $g_{1} \neq g_{2}$;
(4) $\bigcup\left\{\bar{\Lambda}_{g p} \mid g \in \Gamma\right\}=M$;
(5) The collection of sets $\bar{\Delta}_{g p}$ is locally finite;
(6) Γ is generated by the positive powers of those $g \in \Gamma$ such that $\bar{\Delta}_{p} \cap \bar{\Delta}_{g p} \neq \varnothing$;
(7) Let $E_{\pi_{p}}=M / \Gamma-C(\pi p)$. Then $E_{\pi_{p}} \subset \pi \Delta_{p}$.

Suppose $g \in \Gamma, g \neq e$, and $q \in A_{p, g p}-(C(p) \cap C(g p))$. Then there are unique minimizing geodesics γ_{1}, γ_{2} from p to $q, g p$ to q respectively. Let X_{1}, X_{2} be tangent vectors to γ_{1}, γ_{2} at $p, g p$ such that $\left\|X_{1}\right\|=\left\|X_{2}\right\|=$ $\rho(p, q)$; and let U_{1}, U_{2} be open sets about X_{1}, X_{2} on which $\exp _{p}, \exp _{g p}$ are diffeomorphisms onto open subsets of M. Let Y_{1}, Y_{2} be the distance vector fields determined by these objects. We may assume that $U=\exp _{p} U_{1}=$ $\exp _{g p} U_{2}$, and U is so small that $U \cap(C(p) \cup C(g p))=\varnothing$. Since $p \neq g p$, it follows that $\left(Y_{1}\right)_{q} \neq\left(Y_{2}\right)_{q}$ so by the same argument as in Proposition 2.4, we see that the set $\left\{r \in U \mid\left\|\left(Y_{1}\right)_{r}\right\|=\left\|\left(Y_{2}\right)_{r}\right\|\right\}$ is a smooth submanifold of dimension $n-1$, with tangent space $\left(\left(Y_{1}\right)_{r}-\left(Y_{2}\right)_{r}\right)^{\perp}$ at r. Since

$$
\left\|\left(Y_{2}\right)_{r}\right\|=\rho(g p, r),
$$

this submanifold is $A_{p, q_{p}} \cap U$. Summarizing:
Proposition 3.3. For each $p \in M$ and each $g \in \Gamma, g \neq e, A_{p, q p}-(C(p) \cup$ $C(g p))$ is a smooth submanifold of dimension $n-1$, having tangent space $\left(\left(Y_{1}\right)_{q}-\left(Y_{2}\right)_{q}\right)^{\perp}$ at each q.

It is easy to see that for each $g \neq e$, we have the disjoint union: $M=A_{p, g_{p}} \cup H_{p, g_{p}} \cup H_{g p, p}$. Since $\Delta_{p}=\bigcap\left\{H_{p, g_{p}} \mid g \neq e\right\}$ and the $\Delta_{g p}$ are locally finite, it follows that $\overline{J_{p}}=\bigcap\left\{A_{p, g_{p}} \cup H_{p, g_{p}} \mid g \neq e\right\}$.

Proposition 3.4. For each $g \neq e, \overline{\Delta_{p}} \cap \overline{\Delta_{g p}} \subset A_{p, g p}$.
Proof. Let γ_{1}, γ_{2} be minimizing geodesics from p to q and $g p$ to q, where $q \in \bar{\Delta}_{p} \cap \bar{\Delta}_{g p}$. Suppose $\rho(p, q)<\rho(g p, q)$. Then all points q^{\prime} on γ_{2} sufficiently near q also satisfy $\rho\left(p, q^{\prime}\right)<\rho\left(g p, q^{\prime}\right)$. But we must have $q^{\prime} \in \Delta_{g p}$, which is a contradiction. The opposite inequality is proved impossible by the same argument.
q.e.d.

Proposition 3.5.

$$
\begin{aligned}
\partial \Delta_{p} & =\bigcup\left\{\bar{\Lambda}_{p} \cap \bar{\Delta}_{g p} \mid g \neq e\right\} \\
& =\bigcup\left\{\partial \Delta_{p} \cap \partial \Delta_{g p} \mid g \neq e\right\}
\end{aligned}
$$

and these unions are locally finite.
Proof. Local finiteness follows from Proposition (3.2) (5), and $\bar{J}_{p} \cap$ $\bar{\Delta}_{g p} \subset \partial \Delta_{p}$ is clear if $g \neq e$. Suppose $q \in \partial \Delta_{p}$ and U is an open set about q which meets only finitely many $\bar{\Delta}_{g p}$. Since q is a boundary point, there is a sequence $q_{i} \in M-\bar{\Delta}_{p}$ converging to q. We may assume this lies in U, and then by choosing a subsequence if necessary we may assume that $q_{i} \in \bar{\Delta}_{g p}$ for some fixed $g \neq e$. Then $q \in \bar{J}_{g p} \cap \bar{\Delta}_{p}$. q.e.d.

Let $g_{0} \neq e$ be fixed. Then by the same argument as in Proposition (3.2) (1), one sees that $\bigcap\left\{H_{p, g p} \mid g \neq e, g_{0}\right\}$ is an open set about p. Denote by int $\left(\bar{\Lambda}_{p} \cap \bar{\Delta}_{g_{p}}\right)$ the set $A_{p, g_{p}} \cap\left[\bigcap\left\{H_{p, g^{\prime} p} \mid g^{\prime} \neq e, g\right\}\right]$. We will call these the faces of Δ_{p}. The following is easy to verify:

Proposition 3.6. $\quad \bar{\Delta}_{p} \cap \bar{\Delta}_{g p}=A_{p, g_{p}} \cap\left[\bigcap\left\{\bar{H}_{p, g^{\prime} p} \mid g^{\prime} \neq e, g\right\}\right]$ and $\bar{\Delta}_{p} \cap \bar{\Delta}_{g p}$ is the closure of $\operatorname{int}\left(\bar{\Delta}_{p} \cap \bar{\Delta}_{g p}\right)$.

Proposition 3.7. For each $g \neq e$, int $\left(\bar{\Delta}_{p} \cap \bar{\Delta}_{g p}\right)-(C(p) \cup C(g p))$ is either empty or a smooth submanifold of dimension $n-1$.

Proposition 3.8. If $q \in A_{p, g_{p}} \cap A_{p, g^{\prime} p}-\left(C(p) \cup C(g p) \cup C\left(g^{\prime} p\right)\right)$ then the intersection is transverse at q.

Proof. The proof is the same as the proof of Proposition 2.6.
q.e.d.

Corollary 3.9. If $q \in \operatorname{int}\left(\bar{\Lambda}_{p} \cap \bar{\Delta}_{g p}\right) \cap \operatorname{int}\left(\bar{\Delta}_{p} \cap \bar{\Delta}_{g^{\prime} p}\right)$ and

$$
q \notin C(p) \cup C(g p) \cup C\left(g^{\prime} p\right), e \neq g \neq g^{\prime} \neq e
$$

then in a neighborhood of q, int $\left(\bar{\Lambda}_{p} \cap \bar{\Delta}_{g p}\right) \cap \operatorname{int}\left(\bar{\Lambda}_{p} \cap \bar{\Delta}_{g^{\prime} p}\right)$ is a smooth ($n-2$)-dimensional submanifold.

For each $p \in M$, let $E_{p}=M-C(p)$. It is well-known ([2], [8]) that E_{p} is a cell diffeomorphic to an open cell in \boldsymbol{R}^{n}. Note that $\partial E_{p}=C(p)$; and

$$
\partial\left(\Lambda_{p} \cap E_{p}\right)=\left(\partial \Delta_{p} \cap E_{p}\right) \cup\left(\Lambda_{p} \cap C(p)\right) \cup\left(\partial \Delta_{p} \cap C(p)\right) .
$$

PRoposition 3.10. $C(\pi p)=\pi\left(\partial\left(\Delta_{p} \cap E_{p}\right)\right)$.
Proof. If $q \in \partial \Delta_{p} \cap E_{p}$ then there is a (unique) minimizing geodesic γ from p to q. If $q \in \bar{\Delta}_{p} \cap \bar{\Delta}_{g p}, g \neq e$, let γ^{\prime} be a minimizing geodesic from $g p$ to q. Then $\pi \gamma$ and $\pi \gamma^{\prime}$ are minimizing geodesics from πp to πq; but we cannot have $\pi \gamma=\pi \gamma^{\prime}$ since then we would have $g \gamma=\gamma^{\prime}$ so that $g q=$ q, and $g \neq e$ has no fixed points. Therefore $\pi q \in C(\pi p)$. If $q \in \Delta_{p} \cap C(p)$ then since $\pi: \Delta_{p} \rightarrow M / \Gamma$ is an isometry onto an open subset, $\pi(q) \in C(\pi p)$. If $q \in \partial \Delta_{p} \cap C(p)$ then either: (i) q is conjugate to p along a minimizing geodesic, so the same holds for πq and πp; or (ii) there are two distinct minimizing geodesics from p to q, so the same is true for $\pi(p)$ and $\pi(q)$. This proves that $\pi\left(\partial\left(\Lambda_{p} \cap E_{p}\right)\right) \subset C(\pi p)$. Conversely, by Proposition (3.2) (7), we have $E_{\pi_{p}} \subset \pi\left(\Delta_{p}\right)$. If $\bar{q} \in C(\pi p) \cap \pi\left(\Delta_{p}\right)$ then since $\pi: \Delta_{p} \rightarrow M / \Gamma$ is an isometry onto an open set, there is $q \in C(p) \cap \Delta_{p}$ with $\bar{q}=\pi(q)$ (see this by lifting geodesics from πp to \bar{q} up to $M)$. If $\bar{q} \in C(\pi p) \cap \pi\left(\partial \Delta_{p}\right)$, then $\bar{q}=\pi q$ for some $q \in \partial \Delta_{p}=\left(\partial \Delta_{p} \cap C(p)\right) \cup\left(\partial \Delta_{p} \cap E_{p}\right)$. Thus $C(\pi p) \subset \pi\left(\partial\left(\Delta_{p} \cap E_{p}\right)\right)$. q.e.d.

Corollary 3.11. If $\bar{\Delta}_{p} \subset E_{p}$ then $C(\pi p)=\pi\left(\partial \Delta_{p}\right)$.
Corollary 3.12. If $\bar{\Delta}_{p} \subset E_{p}$ then the faces int $\left(\bar{\Lambda}_{p} \cap \bar{\Delta}_{g p}\right)$ and "edges"
 and $n-2$ respectively.

Proof. In view of the previous propositions, it suffices to show that the points q in these faces and edges lie outside the cut loci involved. But since $C(g p)=g C(p)$, it follows that if $\bar{\Delta}_{p} \subset E_{p}$ then $\bar{\Delta}_{g p} \subset E_{g p}$ for all $g \in \Gamma$.
q.e.d.

References

[1] H. Busemann, The Geometry of Geodesics, Academic Press, New York, 1955.
[2] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, v. II, Interscience Publishers, New York, 1969.
[3] S. Łojasiewicz, Triangulation of semi-analytic sets, Ann. Scu. Norm. Sup. Pisa, Sc. Fis. Mat. Ser. 3, 18 (1964) 449-474.
[4] S. Łojasiewicz, Ensembles semi-analytiques. Lecture Notes, I. H. E. S. (Bures-sur-Yvette), 1965.
[5] S. B. Myers, Connections between differential geometry and topology, Duke Math. J. 1 (1935), 376-391; ibid., 2 (1936), 95-102.
[6] H. Poincaré, Sur les lignes geodesiques des surfaces convexes, Trans. Amer. Math. Soc. 5 (1905), 237-274.
[7] E. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
[8] A. Weinstein, The cut locus and conjugate locus of a Riemannian manifold, Ann. of Math. 87 (1968), 29-41.
[9] J. H. C. Whitehead, On the covering of a complete space by the geodesics through a point, Ann. of Math. 36 (1935), 679-704.
[10] H. Whitney, Local properties of analytic varieties, In Differential and Combinatorial Topology (ed. S. S. Cairns), Princeton University Press, 1965, 205-244.

University of Washington, Seattle

