Tôhoku Math. Journ. 26 (1974), 423-430.

ON AUTOMORPHISM GROUPS OF II₁-FACTORS

Shôichirô Sakai*

(Received August 20, 1973)

1. Introduction. In the present paper, we shall study groups of *-automorphisms on II₁-factors, using various topologies.

One of the main purposes is to attack the problem whether every II_{i} -factor has outer *-automorphisms. In [7], we proved that the symmetry on $M \otimes M$ is outer for every non-atomic factor M; therefore, it is very plausible that every II_{i} -factor may have outer *-automorphisms.

Now let M be a II_1 -factor with the separable predual. Let C(M)(resp. H(M) and T(M)) be the set of all central (resp. hyper-central and trivial-central) sequences in M. If $H(M) \subseteq C(M)$, then by McDuff's theorem [2], M is *-isomorphic to $M \otimes U$, where U is the hyperfinite II_1 -factor, so that M has outer *-automorphisms.

Among other things, we shall show that if $T(M) \subseteq C(M)$, then M has outer *-automorphisms (Corollary 7).

2. Theorems. Let M be a W^* -algebra, and let $A^*(M)$ be the group of all *-automorphisms on M. Let B(M) be the Banach algebra of all bounded linear operators on M and let M_* be the predual of M. By the standard theory of Banach spaces, B(M) is the dual Banach space of $M \bigotimes_{\tau} M_*$, where γ is the greatest cross norm. We shall consider the topology $\sigma(B(M), M \bigotimes_{\tau} M_*)$ on $A^*(M)$. We call this topology on $A^*(M)$ the weak *-topology and denote it by w^* .

PROPOSITION 1. Suppose that a directed set (ρ_{α}) of elements in $A^*(M)$ converges to $\rho_0 \in A^*(M)$ in the w*-topology; then for any $a \in M$, $(\rho_{\alpha}(a))$ converges to $\rho_0(a)$ in the $s(M, M_*)$ -topology.

PROOF. Let M_* be the set of all normal positive linear functionals on M; then for $\varphi \in M_*$,

$$\begin{split} & arphi((
ho_{lpha}(a) -
ho_0(a))^*(
ho_{lpha}(a) -
ho_0(a))) = arphi(
ho_{lpha}(a^*a) +
ho_0(a^*a) -
ho_{lpha}(a^*)
ho_0(a) \ & -
ho_0(a^*)
ho_0(a)) o arphi(
ho_0(a^*a) +
ho_0(a^*a) -
ho_0(a^*)
ho_0(a) -
ho_0(a^*)
ho_0(a)) = 0 \; . \ & ext{Similarly,} \end{split}$$

$$\varphi((\rho_{\alpha}(a) - \rho_{0}(a))(\rho_{\alpha}(a) - \rho_{0}(a))^{*}) \rightarrow 0.$$

*) This research is supported by National Science Foundation.

This completes the proof.

Let $I^*(M)$ be the subgroup of all inner *-automorphisms on M; then it is a normal subgroup of $A^*(M)$. Henceforward we shall assume that M is a II₁-factor and let τ be the unique tracial state on M. Define a scalar product $(\ ,\)$ in M as follows: $(a, b) = \tau(b^*a)$ $(a, b \in M)$. Let \mathscr{H}_{τ} be the completion of M with respect to this scalar product and denote the norm of \mathscr{H}_{τ} by $|| \cdot ||_2$. For $\rho \in A^*(M)$, $\tau(\rho(a)) = \tau(a)(a \in M)$ and so the mapping $a \to \rho(a)$ will define a unitary operator $U(\rho)$ on \mathscr{H}_{τ} such that $U(\rho)a = \rho(a)(a \in M)$. Then the mapping $\rho \to U(\rho)$ is a unitary representation of the group $A^*(M)$, when $A^*(M)$ is considered as a discrete group. Since $U(\rho)bU(\rho^{-1})a = U(\rho)b\rho^{-1}(a) = \rho(b\rho^{-1}(a)) = \rho(b)a$, $U(\rho)bU(\rho^{-1}) = \rho(b)$ $(a, b \in M)$.

PROPOSITION 2. The mapping $\rho \to U(\rho)$ of $A^*(M)$ with the w^{*}-topology into $B^u(\mathfrak{F}_{\tau})$ with the strong operator topology is homeomorphic, where $B^u(\mathfrak{F}_{\tau})$ is the group of all unitary elements in $B(\mathfrak{F}_{\tau})$.

PROOF. Suppose that (ρ_{α}) converges to ρ_0 in the w^* -topology; then by Proposition 1, $||\rho_{\alpha}(a) - \rho_0(a)||_2 \rightarrow 0$ for $a \in M$. Therefore, $(U(\rho_{\alpha}))$ converges to $U(\rho_0)$ strongly. Conversely suppose that $(U(\rho_{\alpha}))$ converges to $U(\rho_0)$ strongly; then $((\rho_{\alpha}(a) - \rho_0(a))b, b) \rightarrow 0$ for $a, b \in M$. Since $(\rho_{\alpha}(a))$ is uniformly bounded, this implies that (ρ_{α}) converges to ρ_0 in the w^* topology. This completes the proof.

PROPOSITION 3. $\{U(\rho) \mid \rho \in A^*(M)\}$ is closed in $B^*(\mathfrak{F})$ with respect to the strong operator topology.

PROOF. Suppose that $\{U(\rho_{\alpha})\}$ converges to v in $B^{u}(\mathscr{H}_{\tau})$; then $U(\rho_{\alpha})bU(\rho_{\alpha}^{-1}) \rightarrow vbv^{*}(b \in M)$ (strongly), for $U(\rho_{\alpha}) \rightarrow v$ (strongly) implies $U(\rho_{\alpha})^{*} \rightarrow v^{*}$ (strongly), since $U(\rho_{\alpha})$ and v are unitary, and the multiplication is jointly strongly continuous on bounded spheres of $B(\mathscr{H}_{\tau})$. It is easily seen that the mapping $b \rightarrow vbv^{*}(b \in M)$ is an automorphism on M. This completes the proof.

Now let $\overline{A^*(M)}^w$ be the w^* -closure of $A^*(M)$ in B(M). It is an interesting problem to investigate mappings belonging to $\overline{A^*(M)}^w$. For example, if M is asymptotically abelian, then it contains the \natural -mapping $a \to \tau(a) 1 \ (a \in M) \ ([5])$. If M is inner asymptotically abelian, then $\overline{I^*(M)}^w$ contains the \natural -mapping ([8]). $\overline{A^*(M)}^w$ may contain another important class of mappings "into-*-isomorphisms". We shall show an example of Π_1 -factors having this property.

EXAMPLE. Let \mathcal{H} be a Hilbert space and let $\mathfrak{A}(\mathcal{H})$ be the canonical

424

AUTOMORPHISM GROUPS OF II1-FACTORS

anti-commutation relation algebra (the C A R algebra) over \mathscr{H} ([3]); then $\mathfrak{A}(\mathscr{H})$ is a uniformly hyperfinite C*-algebra of $\{2, 4, 8, \cdots\}$. Let u be a unitary operator on \mathscr{H} ; then u will define a *-automorphism ρ^u of $\mathfrak{A}(\mathscr{H})$ by the relation $\rho^u(a(f)) = a(u(f))$ for $f \in \mathscr{H}$, where $f \to a(f)$ is a linear mapping, from \mathscr{H} into $\mathfrak{A}(\mathscr{H})$ such that $\{a(f), a(g)\}_+ = 0, \{a(f)^*, a(g)\}_+ = (g, f)$ for $g, f \in \mathscr{H}$. Now let (u_n) be a sequence of unitary operators on \mathscr{H} such that it converges strongly to an isometry v such that $vv^* < 1_{\mathscr{H}}$, and let τ be the unique tracial state on $\mathfrak{A}(\mathscr{H})$. Since v is an isometry of \mathscr{H} into \mathscr{H} , it will define a *-isomorphism ρ^v of $\mathfrak{A}(\mathscr{H})$ into $\mathfrak{A}(\mathscr{H})$, by the relation $\rho^v(a(f)) = a(v(f))$ for $f \in \mathscr{H}$. Since $\tau(a(f)^*a(g)) = 1/2(g, f)$, $||\rho^{u_n}(a(f)) - \rho^v(a(f))||_2 = (1/\sqrt{2})||a(u_n(f)) - a(v(f))||_2 = (1/\sqrt{2})||u_n(f) - v(f)||_2 \to 0 (n \to \infty)$. Hence $\rho^{u_n}(a(f_1)a(f_2)\cdots a(f_n)) \to \rho^v(a(f_1)a(f_2)\cdots a(f_n))$ (strongly) on \mathscr{H}_τ . This implies that (ρ^{u_n}) converges to an into-*-isomorphism ρ^v in the w^* -topology.

PROBLEM 1. Can we conclude that $\overline{A^*(M)}^{w}$ contains "into-*-isomorphisms" for all II₁-factors M?

If we use the strong *-operator topology, then $B^{*}(\mathscr{H}_{\tau})$ is a complete topological group, so that by Proposition 2, $\{U(\rho) \mid \rho \in A^{*}(M)\}$ is also a complete topological group; therefore by identifying $A^{*}(M)$ with $\{U(\rho) \mid \rho \in A^{*}(M)\}$, we can introduce a complete topological group structure into $A^{*}(M)$. We shall call this topological structure of $A^{*}(M)$ the strong *-topology of $A^{*}(M)$ and is denoted by s^{*} . It is clear that the s^{*} -topology is stronger than the w^{*} -topology. If M has the separable predual, then $B^{*}(\mathscr{H}_{\tau})$ is a separable complete metric group with respect to the strong *-operator topology; hence $A^{*}(M)$ is a separable complete metric topological group.

THEOREM 4. Let M be the hyperfinite II_1 -factor; then $I^*(M)$ is s^* -dense in $A^*(M)$.

PROOF. Take a uniformly hyperfinite C*-subalgebra \mathfrak{A} of M such that \mathfrak{A} is σ -dense in M. For $\rho \in A^*(M)$, the restriction of ρ to \mathfrak{A} will give a *-isomorphism of \mathfrak{A} onto $\rho(\mathfrak{A})$. Hence by Powers' theorem [4], there is a unitary element u in M such that $u^*\rho(\mathfrak{A})u = \mathfrak{A}$. Now put $\rho'(x) = u^*\rho(x)u$ $(x \in \mathfrak{A})$. Then ρ' is a *-automorphism of \mathfrak{A} . Suppose that $\mathfrak{A} =$ the uniform closure of $\bigcup_{n=1}^{\infty} \mathfrak{A}_n$, where \mathfrak{A}_n is a type I_{i_n} -factor $(i_n < +\infty)$, $\mathfrak{A}_n \subset \mathfrak{A}_{n+1}$ $(n = 1, 2, \cdots)$ and $1 \in \mathfrak{A}_n$ $(n = 1, 2, \cdots)$. For \mathfrak{A}_n , let $\{e_{i_j}^n \mid i, j = 1, 2, \cdots, i_n\}$ be a matrix unit of \mathfrak{A}_n ; then for $\varepsilon > 0$, there is an \mathfrak{A}_m and a finite family of elements $\{a_{i_j} \mid i, j = 1, 2, \cdots, i_n\}$ in \mathfrak{A}_m such that $n \leq m$ and $|| \rho'(e_{i_j}^n) - a_{i_j} || < \varepsilon (i, j = 1, 2, \cdots, i_n)$. Then there is a matrix unit $(f_{i_j} \mid i, j = 1, 2, \cdots, i_n)$ in \mathfrak{A}_m and a positive number $\delta > 0$ such

that $||\rho'(e_{ij}^n) - f_{ij}|| < \delta$, where $\delta \to 0$, when $\varepsilon \to 0$ ([1]).

Let $\mathfrak{A}_m = \mathfrak{A}_n \otimes (\mathfrak{A}'_n \cap \mathfrak{A}_m)$, and let \mathfrak{B} be the C^* -subalgebra of \mathfrak{A} generated by $\{f_{ij} \mid i, j = 1, 2, \dots, i_n\}$; put $\mathfrak{A}_m = \mathfrak{B} \otimes (\mathfrak{B}' \cap \mathfrak{A}_m)$ and $\zeta_1(e_{ij}^n) = f_{ij}$ $(i, j = 1, 2, \dots, i_n)$. Then ζ_1 can be uniquely extended to a *-isomorphism, denoted again by ζ_1 , of \mathfrak{A}_n onto \mathfrak{B} . Let ζ_2 be a *-isomorphism of $(\mathfrak{A}'_n \cap \mathfrak{A}_m)$ onto $(\mathfrak{B}' \cap \mathfrak{A}_m)$; then $\zeta_1 \otimes \zeta_2$ will define a *-automorphism of \mathfrak{A}_m onto \mathfrak{A}_m . Since \mathfrak{A}_m is a type I-factor, every automorphism of it is inner; hence there is a unitary element v in such that $\zeta_1 \otimes \zeta_2(x) = v^*xv$ for $x \in \mathfrak{A}_m$.

$$\|
ho'(e_{ij}^{n})-v^{*}e_{ij}^{n}v\,\|\leq\delta$$
 (i, $j=1,\,2,\,\cdots,\,i_{n}$).

Hence,

$$egin{aligned} &\|\,
ho(e^n_{ij})-uv^*e^n_{ij}vu^*\,\|=\|\,u^*
ho(e^n_{ij})u-v^*e_{ij}v\,\|\ &=\|\,
ho'(e^n_{ij})-v^*e^n_{ij}v\,\|<\delta\qquad(i,\,j=1,\,2,\,\cdots,\,i_n)\ . \end{aligned}$$

From this, we can easily conclude that for $a_1, a_2, \dots, a_m \in \mathfrak{A}$,

$$\inf_{\zeta \in I^*(M), 1 \leq j \leq m} || \rho(a_j) - \zeta(a_j) || = 0$$

and so we can easily conclude that for $\xi_1, \xi_2, \dots, \xi_m \in \mathcal{H}_{\tau}$,

$$\inf_{j \in J^*(M), 1 \le i \le m} || (U(\rho) - U(\zeta))\xi_j || = 0.$$

This implies that there is a sequence (ρ_n) in $I^*(M)$ such that $U(\rho_n)$ $U(\rho)$ (strongly) and so $U(\rho_n)^* \to U(\rho)^*$ (strongly). This completes the proof.

THEOREM 5. Suppose that M is a II_1 -factor with the separable predual and T(M) = C(M). Then the set $\{U(\rho) \mid \rho \in I^*(M)\}$ is complete with respect to the strong operator topology. In particular, $I^*(M)$ is complete with respect to the s^{*}-topology and $I^*(M)$ is closed in $A^*(M)$ with respect to the w^{*}-topology and s^{*}-topology respectively.

PROOF. Let (ρ_n) be a Cauchy sequence of inner *-automorphisms on M. Put $\rho_n(a) = u_n^* a u_n(a \in M)$, where u_n are unitary in M. Then,

 $||u_n^*au_n - u_m^*au_m||_2 = ||au_nu_m^* - u_nu_m^*a||_2 = ||[a, u_nu_m^*]||_2 \to 0 \quad (m, n \to \infty) .$ Since T(M) = C(M), $||u_nu_m^* - \tau(u_nu_m^*)\mathbf{1}||_2 \to 0 \quad (n, m \to \infty).$

$$||u_n u_m^* - \tau(u_n u_m^*) 1||_2 = ||u_n - \tau(u_n u_m^*) u_m||_2 \rightarrow 0 \ (n, \ m \rightarrow \infty) \ .$$

Since $||u_n u_m^*||_2 = 1$, $|\tau(u_n u_m^*)| \to 1$ and so there is a double sequence of complex numbers $(\mu_{n,m})$ with $|\mu_{n,m}| = 1$ such that $||u_n - \mu_{n,m} u_m||_2 \to 0$ $(n, m \to \infty)$. We can choose a subsequence (n_j) of (n) such that

$$\sum_{j=1}^{\infty} \|u_{n_j} - \mu_{n_j, n_{j+1}} \cdot u_{n_{j+1}}\|_2 < +\infty$$
 .

426

By induction, we shall define a sequence of unitary elements (v_j) in M. Put $v_1 = u_{n_1}$; suppose that (v_i) $(i \leq j)$ are defined; then take a complex number $\lambda_{j+1}(|\lambda_{j+1}| = 1)$ such that $\inf_{|\lambda|=1} ||v_j - \lambda u_{n_{j+1}}||_2 = ||v_j - \lambda_{j+1}u_{n_{j+1}}||_2$ and define $v_{j+1} = \lambda_{j+1}u_{n_{j+1}}$. Let $j \geq k$; then

$$\begin{split} || v_{j} - v_{k} ||_{2} &\leq \sum_{i=1}^{j-k} || v_{k+i} - v_{k+i-1} ||_{2} = \sum_{i=1}^{j-k} || v_{k+i-1} - \lambda_{k+i} u_{n_{k+i}} ||_{2} \\ &\leq \sum_{i=1}^{j-k} || v_{k+i-1} - \mu_{n_{k+i-1}, n_{k+i}} \lambda_{k+i-1} u_{n_{k+i}} || \\ &= \sum_{i=1}^{j-k} || u_{k+i-1} - \mu_{n_{k+i-1}, n_{k+i}} u_{n_{k+i}} ||_{2} \to 0 \qquad (j, k \to \infty) \;. \end{split}$$

Therefore, there is an isometry v belonging to M such that $||v_n - v||_2 \rightarrow 0$. Since M is finite, v is unitary. Moreover,

$$||v_j^*av_j - v^*av||_2 = ||u_{n_j}^*au_{n_j} - v^*av||_2 \rightarrow 0 \ (a \in M) \ .$$

 $||u_m^*au_m - u_{n_j}^*au_{n_j}||_2 + ||u_{n_j}^*au_{n_j} - v^*av||_2 \rightarrow 0 \ (m \rightarrow \infty, n_j \ge m) \ .$

This completes the proof.

REMARK 1. This theorem implies that a sequence of inner *-automorphisms on a II₁-factor M satisfying T(M) = C(M) can not approach to an into-*-isomorphism on M in the w^* -topology. In fact, suppose that a sequence (ρ_n) of inner *-automorphisms on M converges to an into- *isomorphism ρ in the w^* -topology; then $U(\rho)a = \rho(a)$ $(a \in M)$ will define an isometry of \mathscr{H}_{τ} into \mathscr{H}_{τ} . Since $(U(\rho_n)a, b) = (\rho_n(a), b) = \tau(b^*\rho_n(a)) \to (\rho(a), b)$ $(a, b \in M)$ and $||\rho_n(a)||_2^2 = (\rho_n(a), \rho_n(a)) = \tau(\rho_n(a^*a)) \to \tau(\rho(a^*a)) = \tau(\rho(a)^*\rho(a)) =$ $||\rho(a)||_2^2, ||U(\rho_n)a - U(\rho)a||_2 \to 0$ $(n \to \infty)$. Therefore, $\{U(\rho_n)\}$ is a Cauchy sequence in the strong operator topology.

Next we shall show the converse of Theorem 5 to be true.

THEOREM 6. Suppose that M is a II_1 -factor with the separable predual. If $I^*(M)$ is closed in $A^*(M)$ with respect to the s^{*}-topology, then T(M) = C(M).

PROOF. It is easily seen that if every central sequence of unitary elements in M is trivial, then T(M) = C(M) ([2]). Suppose that $I^*(M)$ is s^* -closed in $A^*(M)$. Then $I^*(M)$ is a separable complete metric topological group with respect to the s^* -topology. Let M^u be the group of all unitary elements in M. For $u, v \in M^u$, we shall define a metric d(u, v) as follows; $d(u, v) = ||u - v||_2$. This is equivalent to the s^* topology on M^u , for M is finite. Hence M^u is a separable complete metric topological group. For $u \in M^u$, define $\rho_u(a) = uau^*$ $(a \in M)$; then ρ_u is an inner *-automorphism on M. Consider a group homomorphism

 $\Phi: u \to \rho_u$ of M^u onto $I^*(M)$. Then clearly Φ is a continuous mapping of M^{u} with the s^{*}-topology onto $I^{*}(M)$ with the s^{*}-topology. Hence the kernel K of Φ is closed in M^* and so the quotient group M^*/K is again a topological group with the second countability axiom, and the canonical isomorphism $\tilde{\varphi}$ of M^u/K onto $I^*(M)$ defined by φ is continuous. Let (a_n) be a set of elements in M^u which is s^* -dense in M^u . For an arbitrary positive number ε , let V_{ε} be the set of elements in M^{u} such that $V_{\varepsilon} = \{u \mid d(1, u) < \varepsilon, u \in M^u\}$. Since $d(xa, ya) = ||(x - y)a||_2 = ||x - y||_2$ for $a, x, y \in M^u$, $V_{\varepsilon}a_n = \{w \mid d(a_n, w) < \varepsilon, w \in M^u\}$. Clearly $\bigcup_{n=1}^{\infty} V_{\varepsilon}a_n = M^u$ and so $\bigcup_{n=1}^{\infty} \Phi(V_{\varepsilon}a_n) = \bigcup_{n=1}^{\infty} \Phi(V_{\varepsilon}) \Phi(a_n) = I^*(M)$. Since $I^*(M)$ is a complete metric space, it is of the second category. Hence $\Phi(V_{\epsilon}a_{n_{\epsilon}})$ is not nowhere dense for some n_0 . Hence the s^{*}-closure $\overline{\Phi(V_{\epsilon})\Phi(a_{n_0})}$ of $\Phi(V_{\epsilon})\Phi(a_{n_0})$ contains an open set. Since $\overline{\varphi(V_{\varepsilon})}\overline{\varphi(a_{n_0})} = \overline{\varphi(V_{\varepsilon})}\overline{\varphi(a_{n_0})}$, $\overline{\varphi(V_{\varepsilon})}$ contains an open set. For V_{ε} there is a V_{ε_1} such that $V_{\varepsilon_1}V_{\varepsilon_1} \subset V_{\varepsilon}$. Since $V_{\varepsilon_1} = V_{\varepsilon_1}^{-1}$, $\overline{\varPhi(V_{\epsilon_1})}\,\overline{\varPhi(V_{\epsilon_1})}$ contains an open set containing the unit 1. Since $\overline{\varPhi(V_{\epsilon_1})}\,\overline{\varPhi(V_{\epsilon_1})}\subset$ $\overline{\Phi(V_{*})}, \overline{\Phi(V_{*})}$ contains an open set G containing the unit. Let $\rho_{v} \in G$; then there is a sequence (u_n) in V_{ε} such that $\rho_{u_n} \rightarrow \rho_v(s^*)$. Therefore, $|| u_n^* a u_n - p_v(s^*)|$ $v^*av \mid|_2 \to 0 \ (n \to \infty)$. Since $u_n \in V_{\varepsilon}$, $||u_n - 1||_2 < \varepsilon$; hence for $a \in M^u$,

 $||u_n^*au_n - v^*av||_2 = ||(u_nv^*)^*a(u_nv) - a||_2 = ||a(u_nv^*) - (u_nv^*)a||_2 \rightarrow 0$. Therefore,

$$\begin{aligned} || av^* - v^*a ||_2 &= || a(1 - u_n)v^* - (1 - u_n)v^*a + au_nv^* - u_nv^*a ||_2 \\ &\leq || a(1 - u_n)v^* - (1 - u_n)v^*a ||_2 + || au_nv^* - u_nv^*a ||_2 \\ &\leq 2|| a || || 1 - u_n ||_2 + || au_nv^* - u_nv^*a ||_2 \leq 2\varepsilon + || au_nv^* - u_nv^*a ||_2 \end{aligned}$$

Hence $||av^* - v^*a||_2 \leq 2\varepsilon$. Therefore, $||av^*a^* - v^*||_2 \leq 2\varepsilon$ for $a \in M^u$. Hence $||\tau(v^*)1 - v^*||_2 \leq 2\varepsilon$ and $||\tau(v)1 - v||_2 \leq 2\varepsilon$. Since

$$egin{aligned} &\| au(v)\mathbf{1} - v \, \|_2^2 = au((v^* - \overline{ au(v)}\mathbf{1})(v - au(v)\mathbf{1})) \ &= au(\mathbf{1} + | au(v) |^2\mathbf{1} - | au(v) |^2\mathbf{1} - | au(v) |^2\mathbf{1}) = (\mathbf{1} - | au(v) |^2) \leq 4arepsilon^2 \ , \ &\left\| rac{ au(v)\mathbf{1}}{| au(v) |} - v
ight\|_2^2 = \mathbf{1} + \mathbf{1} - | au(v) | - | au(v) | = 2(\mathbf{1} - | au(v) |) \ &= 2(\mathbf{1} - | au(v) |^2)/\mathbf{1} + | au(v) | \leq 8arepsilon^2 \ . \end{aligned}$$

Hence $\inf_{|\lambda|=1} d(v, \lambda 1) < 3\varepsilon$. This implies that $\tilde{\varphi}^{-1}$ is continuous; hence $\tilde{\varphi}$ is homeomorphic. Especially, if $\rho_{v_n} \to \rho_1(s^*)$ $(v_n \in M^*)$, then there is a sequence of complex numbers (λ_n) with $|\lambda_n| = 1$ such that $d(v_n, \lambda_n 1) = ||v_n - \lambda_n 1||_2 \to 0$. If (w_n) is a central sequence of unitary elements in M, then $||[x, w_n]||_2 = ||xw_n - w_n x||_2 = ||w_n^* x w_n - x||_2 \to 0 (n \to \infty)$ and $||w_n x w_n^* - x||_2 = ||x - w_n^* x w_n||_2$; hence $\rho_{w_n} \to \rho_1(s^*)$. Therefore, we have T(M) = C(M). This completes the proof.

COROLLARY 7. If $T(M) \subseteq C(M)$ for a II_1 -factor M with the separable predual, then M has outer *-automorphisms belonging to the s*-closure of $I^*(M)$.

Now let $\overline{I^*(M)}$ be the s*-closure of $I^*(M)$ in $A^*(M)$. Since $I^*(M)$ is a normal subgroup of $A^*(M)$, $\overline{I^*(M)}$ is also a normal subgroup of $A^*(M)$. Let Π be the group of all finite permutations of all positive integers N onto itself, and let $U(\Pi)$ be the II₁-factor generated by the left regular representation; then by Theorem 4, $I^*(U(\Pi)) \subseteq \overline{I^*(U(\Pi))} =$ $A^*(U(\Pi))$. Next let G_2 be the free group of two generators; then by Theorem 5, $I^*(U(G_2)) = \overline{I^*(U(G_2))}$. Moreover, it is well known that $I^*(U(G_2)) \subseteq A^*(U(G_2))$. Now we shall show the following theorem.

THEOREM 8. There are three II_1 -factors M_1 , M_2 , M_3 such that

1. $I^*(M_1) \subseteq \overline{I^*(M_1)} = A^*(M_1);$

2. $I^*(M_2) = \overline{I^*(M_2)} \subsetneq A^*(M_2);$

3. $I^*(M_3) \subseteq I^*(M_3) \subseteq A^*(M_3)$.

PROOF. It is enough to show the 3. Let $\Gamma_j = G_2 (j = 1, 2, \cdots)$; then $U(\sum_{j=1}^{\infty} \bigoplus \Gamma_j)$ is asymptotically abelian ([5]), but by Zeller-Meier's theorem it is not inner asymptotically abelian ([8]). Let (ρ_n) be a sequence of *-automorphisms on $U(\sum_{j=1}^{\infty} \bigoplus \Gamma_j)$ such that $|| [\rho_n(a), b] ||_2 \rightarrow 0$ $(a, b \in U(\sum_{j=1}^{\infty} \bigoplus \Gamma_j))$. Now suppose that $\overline{I^*(U(\sum_{j=1}^{\infty} \bigoplus \Gamma_j))} = A^*(U(\sum_{j=1}^{\infty} \bigoplus \Gamma_j))$. Then for each ρ_n , there is a sequence of inner *-automorphisms $\{\zeta_{n,m}\}$ on $U(\sum_{j=1}^{\infty} \bigoplus \Gamma_j)$ such that

$$||\zeta_{n,m}(x) - \rho_n(x)||_2 \rightarrow 0 \ \left(m \rightarrow \infty, x \in U\left(\sum_{j=1}^{\infty} \bigoplus \Gamma_j\right)\right).$$

Let $\{x_i \mid i = 1, 2, \cdots\}$ be a subset of $U(\sum_{j=1}^{\infty} \bigoplus \Gamma_j)$ which is dense in $l^2(\sum_{j=1}^{\infty} \bigoplus \Gamma_j)$. For each positive integer k, there is a positive integer m_k such that $||\zeta_{n,m}(x_i) - \rho_n(x_i)||_2 < 1/k$ for all $m \ge m_k$ and $n = 1, 2, \cdots, k$, $i = 1, 2, \cdots, k$. We may assume that $m_k \le m_{k+1}$. Put $\gamma_k = \zeta_{k,m_k}$; then we can easily see

$$egin{aligned} &\|[\gamma_k(a),\,b]\,\|_2 \leq \|\,[\gamma_k(a)\,-
ho_k(a),\,b]\,\|_2 + \|\,[
ho_k(a),\,b]\,\|_2 \ &\leq 2 \|\,b\,\|\,\|\,\gamma_k(a)\,-
ho_k(a)\,\|_2 + \|\,[
ho_k(a),\,b]\,\|_2 o 0 \ &\left(a,\,b\in\,U\Bigl(\sum\limits_{j=1}^\infty\oplus\Gamma_j\Bigr)
ight). \end{aligned}$$

This implies that $U(\sum_{j=1}^{\infty} \oplus \Gamma_j)$ is inner asymptotically abelian, a contradiction. Hence $\overline{I^*(U(\sum_{j=1}^{\infty} \oplus \Gamma_j))} \subseteq A^*(U(\sum_{j=1}^{\infty} \oplus \Gamma_j))$. On the other hand, $T(U(\sum_{j=1}^{\infty} \oplus \Gamma_j)) \subseteq C(U(\sum_{j=1}^{\infty} \oplus \Gamma_j))$ and so $I^*(U(\sum_{j=1}^{\infty} \oplus \Gamma_j)) \subseteq \overline{I^*(U(\sum_{j=1}^{\infty} \oplus \Gamma_j))}$ by Theorem 6. This completes the proof. Finally we shall state some problems. Let Q(M) be the w^* -closed convex subset of B(M) generated by $A^*(M)$. Then it is easily seen that Q(M) can be identified with the weakly closed convex subset of $B(\mathscr{H}_{\tau})$ generated by $\{U(\rho) \mid \rho \in A^*(M)\}$. Under this identification, the w^* -topology on Q(M) is equivalent to the weak operator topology. Therefore, if Mhas the separable predual, Q(M) is a compact metric space with the w^* topology; hence we can apply the Choquet theory to Q(M). Therefore, it is an interesting question to determine extreme points in Q(M). It is clear that all *-automorphisms and all into-*-isomorphisms belonging to Q(M) are extreme. Are there other extreme points in Q(M)? Let φ be a state on M and consider a positive linear mapping Ψ of M into M as follows: $\Psi(a) = \varphi(a)1$ for $a \in M$. Then it is easily seen that Ψ belongs to Q(M) if and only if $\varphi = \tau$.

Let N be a W*-subalgebra of M; then there is the unique canonical conditional expectation P of M onto N such that $\tau(P(a)x) = \tau(ax)$ for $a \in M$ and $x \in N$. If $N = M \cap (N' \cap M)'$, then it is easily seen that P belongs to Q(M). Can we conclude that P belongs to Q(M) without the assumption $N = M \cap (N' \cap M)'$? If Q(M) contains an into-*-isomorphism, then by the standard theory of locally convex spaces $\overline{A^*(M)^w}$ contains it. Therefore, if $I^*(M) = A^*(M)$, then Q(M) can not contain an into-*automorphism, by Theorems 5 and 6. Hence it is a quite interesting question whether Q(M) contains an into-*-isomorphism for every II_1 -factor M.

In conclusion, we notice that much part of this paper can be extended to infinite factors with minor modifications.

References

- J. GLIMM, On a certain class of operator algebras, Trans. Amer. Math. Soc., 95 (1960), 216-244.
- [2] D. MCDUFF, Central sequences and the hyperfinite factor, Proc. London Math. Soc., 21 (1970), 443-461.
- [3] R. POWERS, Dissertation.
- [4] R. POWERS, Representations of uniformly hyperfinite algebras and the associated von Neumann algebras, Ann. of Math., 86 (1967), 138-171.
- [5] S. SAKAI, Asymptotically abelian II₁-factors, Publ. Res. Inst. Sci., 4 (1968), 299-307.
- [6] S. SAKAI, C*-algebras and W*-algebras, Springer-Verlag, 1971.
- [7] S. SAKAI, Automorphisms and tensor products of operator algebras, to appear in American Journal of Mathematics.

[8] G. ZELLER-MEIER, Deux autres facteurs de type II₁, Invent. Math., 17 (1969), 235-242.

UNIVERSITY OF PENNSYLVANIA AND TÔHOKU UNIVERSITY