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ON THE TOPOLOGY OF QUATERNION KAHLER MANIFOLDS
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0. Introduction. A 4ra-dimensional Riemannian manifold is called
a quaternion Kahler manifold if the holonomy group is contained in
Sp(m)-Sp(ΐ)( = Sp(m) x Sp(l)/{±1}). Recently, Ishihara [6] has given
a definition equivalent to that above for quaternion Kahler manifolds
and obtained many interesting results (cf. [1], [3] and [7]). We shall
adopt the definition given by Ishihara [6] and study quaternionic analogue
to Kahlerian pinching, which will be called quaternionic pinching.
Kraines [13], using some general results of Klingenberg [8], showed that
a compact quaternion Kahler manifold of dimension Am (m ^ 2) with
quaternionic pinching greater than 9/16 has the same integral cohomology
ring as the quaternionic projective space. On the other hand, Kobayashi
[10], using sphere theorem of Berger and Klingenberg, constructed a
principal circle bundle over a complete Kahler manifold with Kahlerian
pinching greater than 4/7 such that the universal covering space of the
bundle space is homeomorphic to a sphere and showed that the Kahler
manifold has the same homotopy type as the complex projective space.
We shall apply the method developed by Kobayashi to quaternion Kahler
manifolds.

In § 1, we give the definition of a quaternion Kahler manifold and
construct principal Sp(l)-bundle over it under certain topological con-
ditions which will be naturally satisfied if the quaternionic pinching
number is greater than 9/16. In § 2, we define a Riemannian metric in
the principal Sp(l)-boundle constructed above by a similar method as
that given in [10] and calculate its Riemannian curvature tensor. In
§ 3, using the structure equation obtained in § 2, we determine the
quaternionic pinching number such that the bundle space of the Sp(l)-
bundle has Riemannian pinching greater than 1/4 and prove

THEOREM. Let M be a complete quaternion Kahler manifold of
dimension 4m (m ^ 2) with quaternionic pinching greater than 10/13.
Then, πq(M) = πq(HPm) for all q.

1. Definitions and construction of principal Sp(l)-bundle. Let Hm

be the m-dimensional right module over quaternions H and {1, eu e2, e3}
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be the usual base of H over R. The symplectic group Sp(m) is defined
as the set of all endomorphisms of Hm which preserve the symplectic
product (p, q) = ΣΓ=i VΆi where p = (pu , pm) and g = (&, , tfm) e £Γm.
In particular, Sp(l) is the set of unit quaternions. Hence it is diffeomor-
phic to a 3-dimensional sphere S3 and its Lie algebra ap(l) is the set of
pure quaternions. It is well-known that there exists a homomorphism
/ of Sp(ϊ) onto SO(3) whose kernel is {±1} and the induced Lie algebra
isomorphism is given by

(1.1) f(μ) =

for μ = μa + μ2e2 + μ3ese$p(l).
Next, we shall define a quaternion Kahler manifold. Let FQ, GQ and

Ho be linear transformations represented by the right actions on Hm =
R4m by elf e2 and e3 respectively and Vo be the linear subspace of linear
transformations of R4m spanned by Fo, GQ and Ho. Then SO(3) acts
effectively on Fo in such a way that

(1.2) 8faF0 + μ2G0 + μJS0) = μLF0 + /«2G0 + μ3H0 /«β = Σ β β ^

where s = (sαiS) e SO(3). Let ikf be a connected 4m-dimensional Riemannian
manifold with metric g. M is called a quaternion Kahler manifold if there
is a subbundle V of the tensor bundle of type (1, 1) over M with standard
fiber Vo and structure group SO(β) such that the following conditions
(a) and (b) are satisfied (see [6]):

( a ) In any coordinate neighborhood U of M, there is a local base
{JP, G, H) of the bundle V, where F, G and H are tensor fields of type
(1, 1) in U such that each of F, G and H forms an almost Hermitian
structure together with g and they satisfy

F2 = G2 = H2= -I, FG=-GF = H,
( ' 3 ) GH= -HG = F, HF= -FH = G,

I being the identity tensor field of type (1, 1) in M.
( b ) If φ is a local cross-section of the bundle Vt then Vxφ is also

a local cross-section of V for any vector field X in ikf, where Γ denotes
the Riemannian connection of M.

Let A and Λo be the tensor fields of type (2, 2) in Λί and J24w defined
by

A = F®F + G(g)(τ + H(g)H, Ao = F0®F0 + G0(g)G0 + HQ(g)H0
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respectively. Then the condition (a) implies that A is globally defined
on M and (b) is equivalent to VA = 0 (cf. [6]).

The holonomy group of a 4m-dimensional quaternion Kahler manifold
M is contained in Sp(m)-Sp(l) and hence the structure group O(4m) of
the orthogonal frame bundle over M can be reduced to Sp(m) Sp(l)
(cf. [3] and [6]). The bundle space of the reduced bundle g with
structure group Sp(m) Sp(ϊ) consists of orthogonal frames with respect
to which the components of A coincide with that of AQ with respect to
the natural basis of Rim. It is easily verified that %/Sp(m) is a principal
bundle over M with structure group SO(3) and that the vector bundle
V stated in the definition of quaternion Kahler manifold is the associated
vector bundle of %/Sp(m) with standard fiber Vo.

Let M be a quaternion Kahler manifold of dimension 4m and P —
%/Sp(m) be the associated principal bundle of V with structure group
SO(3). By means of the condition (b), the Riemannian connection V
leaves the bundle V invariant. So, V induces naturally a connection
in V and hence induces a connection Γ in P. We now prove (cf. [5]).

PROPOSITION 1.1. // Z2-cohomology groups H\Mt Z2) and H\Mf Z2)
vanish, then there exists a principal bundle M over M with structure
group Sp(ϊ) such that P = jί?/{±l}.

PROOF. The exact sequence of groups

induces an exact sequence of the cohomology sets of M with coefficients
in the corresponding sheaves of germs of differentiable mappings

H\M, Z2) — Hι(M, Sp(l)) X H\Mt SO(3)) — H\M, Z2) .

By our assumption, we have H\M, Sp(l)) ** Hι(M9 SO(3)). On the
other hand, H\M, Sp(l)) and H\M, SO(3)) can be considered as sets of
principal bundles over M with structure groups Sp(ΐ) and SO(S) respec-
tively. Thus there is a principal bundle M over M with structure group
Sp(l) such that P = f(M) = M/{±1}. q.e.d.

Ίί'φ denotes the connection form of Γ in P, then we obtain

PROPOSITION 1.2. Let M be the principal Sp(l)-bundle such that
M/{±1} = P. Then there exists a connection Γ in M such that the con-
nection form ω of Γ is given by f*φ = f-ω, where f in the left hand
side is the bundle map f: M—+ P and f in the right hand side is the
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Lie algebra isomorphism /: &p(l) —»§o(3).

PROOF. Define ω by ω = f~\f*φ). Noting that / is an isomorphism
of Sp(ί) onto So(3) and f'1 ad (/(λ"1)) = ad (λ"1)/"1 for any λ e Sp(l), we
see that d> is a connection form in M such that f*φ — f-ω (for detail,
see [11] vol I, p. 82). q.e.d.

Let S(σ) be the sectional curvature of a quaternion Kahler manifold
M corresponding to a plane section σ. Taking a local base {F, G, H) of
F, we can set

(1.4) cos2 a{σ) = g(FX, Yf + g(GX, Yf + g(HX, Yf , 0 ^ a(σ) ^ -J

for each plane section σ, where X and Y are orthonormal vectors span-
ning σ. We can easily show that a(σ) is independent of the choice of
orthonormal vectors X and Y spanning a and the choice of a local base
{F, G, H} of V. Thus we say that the quaternionic pinching of M is
greater than δ(d > 0) if there is a positive number K such that

(1.5) 3K < 4S(σ)/(l + 3 cos2 a{σ)) ^ K

for any plane section σ. By normalizing metric, we may set K = 1 in
(1.5). Here we note that S(σ) = (1 + 3 cos2 α(σ))/4 for any σ if M is of
constant Q-sectional curvature 1 (see [6]). If the quaternionic pinching
of M is greater than <?, then the Riemannian pinching of M is greater
than δ/4.

2. Structure equations of the fibering π:M—*M. In this section,
we shall make use of the following convention on the range of indices:

U ^ A V ^ , 4 ̂  i, i, fc, I ^ 4m + 3 .

Let ikf be a 4m-dimensional quaternion Kahler manifold and suppose
t h a t there exists the principal Sp(l)-bundle M over M with projection
π considered in the preceding section. Since the connection form ω and
t h e curvature form Ω of the connection Γ in M take values in the Lie
algebra £p(l), they can be writ ten as

(2.1) ω = Σ coaea ,

(2.2) 0 = Σ0«β«,

where α>α and βα are 1-forms and 2-forms on M respectively. The
structure equation of the connection Γ is given by

(2.3) Ωγ = dω, + 2ω2 A ω3, Ω2 = dω2 + 2ω3 Λ ωx, Ω3 = dω3 + 2^! Λ ω2 .
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Now, we define a Riemannian metric g on M by

(2.4) g(X, Ϋ) = g(πX, πΫ) + aΨ Σ ωa(X)ωa(Ϋ)

for any tangent vectors X and Ϋ of M, where a and b are non-zero
real numbers which will be fixed in a moment. Then g is a Riemannian
metric tensor on M. We shall denote by v the Riemannian connection
defined by the metric tensor g and denote by <X, Ϋ} (resp. <X, F » the
inner product g(X, Ϋ) (resp. g{X, Y)) of vectors X and Y of iff (resp.
X and Y of Jlf).

Well, we shall give some properties of fundamental vector fields
and basic vector fields. The basic vector field X corresponding to a
vector field X in the base manifold M is the unique horizontal vector
field such that πX = X. Let h and v denote the projections of the
tangent spaces of M onto the horizontal and vertical subspaces respec-
tively. The following lemma is easily verified (see [14]).

LEMMA 2.1. // X (resp. Ϋ) is the basic vector field corresponding
to a vector field X (resp. Y) of M and μ* (resp. v*) is the fundamental
vector field corresponding to an element μ (resp. v) of §t>(l), then the
following properties hold:

(1) (XLΫ> = (X, Yyπf

(2) h[X, Ϋ] is the basic vector field corresponding to [X, Y],
( 3 ) hvi Ϋ is the basic vector field corresponding to Vx Yf

(4) [X,^*] = 0,
(5) [μ*, v*] is the fundamental vector field corresponding to [μ, v].

To calculate the Riemannian curvature tensor R of g at any fixed
point xe M, we shall take a special orthonormal frame field on a
neighborhood of x. Let X* be the fundamental vector field correspond-
ing to ejab for each a. Clearly, they are orthonormal vector fields
satisfying

(2.5) [x*, I;] = ΣQI;,

where Caβ

r = — Cβa

r and

(2.6) CJ = C2ΐϊ = C31

2 - 2/ab , Caβ

r = 0 otherwise .

Let Xif , X4m+3 be orthonormal vector fields in a neighborhood of
x = π(x) such that PΣiXj = 0 at x for any ί and j . The basic vector
fields Xi corresponding to Xt are orthonormal vector fields such that
PxtXj is vertical on the fiber passing through x for any i and j . There-
fore, we have local orthonormal frame field {X?, X2*, X3*, X , •••, Xm+s}
around x.
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First, we shall study the Riemannian connection p.

LEMMA 2.2. The components of the connection p with respect to
the orthonormal frame field taken above are given by

(1) iv *X* X*y = 1/2{TX* X*] X*} (p *X* Xs} = 0

(2) </7*Γxl'x/> = o, <rχ.°xt, £ > = -V2<XΛ \xi
/ Q \ /r7^ V* V*\ C\ /TΎ^ V* V \ 1 /O/ Y"* Γ V"
\ O ) \y χiΛ^a , Λ.β / — U, \y x^Λ a , -Λ.J/ — — X/^\-Λα , [-Af,

m α neighborhood of x.

PROOF. Using the standard formula

2(pxγ, zy - X(Ϋ, z) + Ϋ(Z, x) - z(x, Ϋ)
- <X, [?, Z]) + <f, [Z, X]) + <Z, [X,

for any vector fields X, Ϋ and Z, we shall prove this lemma. If we
note the Definition (2.4) of g and (5) given in Lemma 2.1, then we can
verify the first assertion by using the above formula for X— Xα*, Ϋ = Xjf
and Z = Xr*. The assertions (2), (3) and (4) follow similarly from the
above standard formula and Lemma 2.1. q.e.d.

REMARK. By (1) given in Lemma 2.2, we see that each fiber is
totally geodesic in the bundle space M.

LEMMA 2.3. // we set Ωaij = Ωa{Xu Xά), then we have

( 2 ) px*aXi = PxiXa = ab 2_j ΩaίjXj,

in a neighborhood of x.

PROOF. The first assertion follows immediately from (1) of Lemma
2.2. To prove (2) and (3), we use the structure equation (2.3). By (2),
(3) and (4) of Lemma 2.2, it suffices to show

abΩaij — ——\X<x 9 \X
2

which follows from

Ωaij = dωa(Xi, Xj) = —~-ωa([Xif X,])

q.e.d.

Next, we shall obtain the covariant derivative of Ωa.

LEMMA 2.4. // we set paΩβij = {px*Ωβ){Xif X5), then we obtain

(2.7) pJ3βij = -ab Σ ΨatιΩβιs ~ ΩβilΩal3) + Σ Caβ

rΩriS .
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PROOF. Exterior differentiating (2.3), we have

—dΩ1 = dω2 A co3 — ω2 A dωz, —dΩ2 = dω3 A o)ι — ωz A dωλ,2 2

—dΩ z = dω1 A o)2 — ω1 A dω2,
Lt

and using (2.3) once more, we obtain

—dΩ1 = Ω2 A cos - β>2 Λ Ω3, — dΩ2 = Ωz A coί — ω3 A Ω1 ,

—dΩ3 = Ωx A o)2 - ω1 A Ω2 .
Δ

We shall compare the values of the left hand side with those of the
right hand side of equations above for vectors X*, Xt and X5. For
example, the left hand side of the first equation is given by

Δ

= i-iFoQuj + ab
b

where we have used (2) of Lemma 2.3. On the other hand, the right
hand side of the first equation is given by

(Ω2 Λ ω 3 - cy2 Λ Ω,){XΪ, Xif Xj)

hω3(Xΐ)Ω2(Xif X3) - ω2(XaηΩ3(Xίf %)} \
o b

Thus we have

bΣWΩiu - ΩmΩaii) +
q.e.d.

We shall express the components of the curvature tensor R with
respect to the orthonormal frame {Xx*, X2*, X3*, X4, •• ,X4TO+3} in terms
of Ωa and the curvature tensor R of the base manifold M.

PROPOSITION 2.1. The components of the curvature tensor R with
respect to {Xf, X2*, X3*, Xif , Xim+3} are given at x by

(1) Raβrε = (l/aΨ)(δaεdβr - δβεδar),

( 2 ) Raβri = 0,
( 3 ) Raβij = -aΨ Σ (ΩailΩβU - ΩβilΩalj) + ab Σ Caβ

7Ωr
rΦ
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( 4 ) RaiM = aΨ Σ ΩajιΩβH + (oδ/2) Σ CafΏrφ

( 5 ) Ra(jk = -abPiΩajk,

( 6 ) Ri5kl = Rijkl - aΨ Σ (ΩatlΩaik ~ QaaQail ~ 2ΩaiίΩakl),

where &.fr. = &(X*t Xβ*)Xr*, *.*>, , £ „ « = <Λ(X4, Xi)Xh, X«>
(Pxfla)(X'}, Xk) Formulas (1), •••, (6) determine all components of R.

PROOF. By (1) of Lemma 2.3, we have

R(Xa*, Xβ*)X?

= Px'fx X* ~ Vxψx'X* ~ Pίχ"a,χy\X*

= i-[zβ , [xt, χn\ - j[χ?, [χ«*, χn\ - \[[χ*, χ?\, χ?\

Using Jacobi's identity, we obtain

R(x*, x?)x* = ~[[x:9 -Γ L X?\ .

from which we have

Raβrε = i.<[jr f x ; ] , [z. , z•]> = - ^ ( * « ^ - M a r ) .

i.e., the formula (1). Similarly, we obtain (2) by using the above result.
We have, from (2) of Lemma 2.3,

Fx*fχ*βXi = ab Σ (?«Ωβil)Xι + α2δ2 Σ ^aikQmXt

and, from (2.5),

Fez;* χj]-ίί — α ^ Σ Caβ
rΩrUXι .

Therefore, Λα̂ ϋ is given by

β β W = ab(paΩβij - pβΩaij) + aΨ Σ M w - M « w ) - <*& Σ Cβ/flr<i .

Substituting (2.7) in this equation, we obtain (3). The equation (4)
follows similarly from (2) of Lemma 2.3 and the fact that [X*f Xt] = 0.

Rank is given by

Raijk = (VxofxXi — Fx.Fx^Xj, Xk} .

We consider the right hand side at x where FJ.X,- is vertical. Since
<yXiXj, Xk} is constant on the fiber passing through x, we have

<?*./!&, χk> = x:<Fz^i9 χk> - <βzfr, Fχ*aχk> = o .

Thus we obtain

Rank = - (FxiPx^Xj, Xk> = -abΓiΩajk at x ,

which proves the equation (5).
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Using (3) of Lemma 2.1 and (3) of Lemma 2.3, we have

(VztVzjZ* Xι> = <yx.VXάXky Xι) π - α ^ Σ ^ A . ,

and taking account of (1), (2) and (3) of Lemma 2.1 and (3) of Lemma
2.3, we obtain

(yiztZflZto Xι> = -2aΨΣ,ΩaijΩakl + <F[Xi,Xj]Xk, Xt} π .

These equations imply (6). q.e.d.

Finally, we shall rewrite the equations obtained in Proposition 2.1
in terms of a local base of V, what are called the structure equations
of the fibering π: M—+ M. Let τ be a local cross-section of M defined
on a neighborhood U of x such that τ(x) = x and the differential map
of τ maps the tangent space of M at x onto the horizontal space at x.
For each point y of U, (f°τ)(y) e P can be considered as a linear map
from Vo to the fiber over y of V where / is the bundle map f: M-+ P.
If we set

= ({foτ)(y))(H0) ,

then {Ju J2, Js) is a local base of V defined on U satisfying the condition
(a) stated in § 1. Taking account of (1.1) and (1.2), we see that the
covariant derivatives of Ja are given by, for any X,

VXJ, = 2Θ3(X)J2 - 2Θ2{X)J3

(2.8) FXJ2 = -2Θ3(X)J1 + 2Θ1(X)J3

FXJ3 = 2Θ2(X)J1 - 2Θ1(X)J2

where θa = τ*ωα (α = 1, 2, 3). If we set θa = r*βα for a = 1, 2, 3, then
we have from (2.3)

(2.9) ©x = dθι + 2Θ2 /\θz, Θ2 = dθ2 + 20 3 Λ θx , Θ 3 = dθz + 2 ^ Λ θ2

(in detail, see [12]). By Berger [2], we know that a quaternion Kahler
manifold is an Eistein manifold. Thus we have

(2.10) Aθa(X, Y) = τzj^VΛ Y> for each a ,

where r is the scalar curvature of M (see [6]).

LEMMA 2.5. 1/ we set 1/6 = r/(16m(m + 2)) cmd Jαifc = (JaXJ9 Xk),

then we have

(2.11) gajk = ̂ λjajk on U
o

and ViΩaju = 0 at x.
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PROOF. Noting that hτ+Xj = X3 on U for each j , we obtain

Ωa(Xh Xk)τ{y) = i2a(r*X,, τ*XM)rW = (τ*Ωa)(Xi9 Xk)y

= Θa(Xj, Xk)y — 7-(JaXj, Xk}y
0

for any point ?/ of Ϊ7. Thus we have

{VχΏa){Xh Xk) = XrΩaiXj, Xk) = -jXrVaXs,

= - JWZ/JXJ, Xk> at x ,

because VXiXά = 0 at x. Since we have, for example,

VχJ, = 2UXi)J2 - 2θ2{Xi)Jz = 2(τ*ω3)(Xί)/2 - 2(τ*ω

= 2ω3(Xi)J2 - 2ω2(Xi)Js = 0 at x ,

we obtain /TM?̂ * = 0 at x. q.e.d.

In the sequel, we shall set 1/6 = r/(16m(m + 2)). By Lemma 2.5,
we can rewrite the equations in Proposition 2.1 in terms of Jaij.

PROPOSITION 2.2. The components of the curvature tensor R are
expressed by Rtjkι and Ja%j at x as follows:

( 1 ) Raβrε = (l/aΨ)(δaεdβr - δβε3ar),

( 2 ) RaβTj — Raijk = 0, '

( 3 ) Raβij — — a2 Σ (JailJβlj — JβilJalj) ~~ & Σ Caβ
TJrij,

( 4) Raίβj = a2 Σ Λϋ^K - α/2 Σ Cα// r i i,
( 5 ) Rijkl = Rijkl — d Σ {JailJajk Jaik^ajl 2JaijJakι),

3. Main theorem. As in the preceding section, we now assume that
M is a quaternion Kahler manifold of dimension 4m (m ^ 2) and that
there exists the principal Sp(l)-bundle M explained in § 1. By using
Proposition 2.2, we shall study the Riemannian pinching of the bundle
space M with metric g.

For arbitrary fixed point x of M, by taking local orthonormal frame
field {X*f X2*, X*, X4, •••, X4w+3} around x as in §2, we can identify the
tangent space of M at x with the Euclidean space i?*m+8 with usual
inner product <,>. Let RijH be a set of real numbers satisfying the
same algebraic conditions as the Riemannian curvature tensor. We
assume that indices A, B, C and D run over the range {1, , 4m + 3}
and let RABCD be a set of real numbers subject to the same algebraic
conditions as the Riemannian curvature tensor and satisfy (1) ~ (5) of
Proposition 2.2 where we put J1 = F, J2 = G and J3 = H. For each 2-dimen-
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sional subspace σ of Rim+\ we define S(σ) by S(σ) = ^RABCDXΛYBYCXD

where X = (XΛ) and Ϋ = (YA) form an orthonormal basis of σ. Clearly,
S(σ) is independent of the choice of X and Ϋ. Then S(σ) is given by

S(σ) =

+ Σ RairiX* Yi YrXι + Σ R«

+ Σ RiβπX* Yβ YrXι + Σ Ri

If we set X = ( X 0 and Y = (Γ*) (resp. ί = (Zα) and 37 = (Y«)), then
they are elements of Rim (resp. iϊ3) with usual inner product which
will be also denoted by <»>.' We now have

Σ&a».X"YβYrx° = -±j(\ϊ\Ίy\2-<ζ, VY),
a 0

Σ Ra}k;X
a Y1 Y"Xε = α211IΊ Γ | 2 ,

Σ ft^X* Γ' F>-Z! = a217121 X |2 ,

= -α2<f, 17XX,

Σ ^ H X 4 y r * z ! = Σ RiiuX* Y1 Ykxι

, Γ>2 + <fiX, Yγ + (HX, Γ>2} ,

where | X | = <X, X>1/2, | Γ | = <Γ, Γ>1'2, | ξ \ = <ί, ί>1/2-
and L = (ί1^2 - fV)<iZX, Γ> + (ίY - ξ3rfKFX, Γ> + (f^1 -
Therefore we have

PROPOSITION 3.1. If X and Ϋ are orthonormal vectors which span
a 2-dimensional subspace a of R4m+3 and X and Y (ξ and η) are Rin>(R3)-
components of X and Y, then S(σ) is given by

s(&) = -iiτ<lf I2 WI2 - < ^ > 2 ) + «2(lf I 2157 + IvI21 x\2

- 2<ff V><X, Y» + 6(y - rfL + Σ Riiu

- Sa\(FX, YY + (fiX, YY + (HX, Γ>2) .
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Let σ be a 2-dimensional subspace of Rim and let Z = (Z*) and
W = (W*) form an orthonormal basis for σ. Define S(σ) and a(σ) by

cos2 α(σ) - <2̂ Z, TΓ>2 + <GZ, T7>2 + <HZ, W)2 , 0 ^ α(σ) ̂  —
Δ

Then both of S(σ) and α(α") are independent of the choice of Z and W.

LEMMA 3.1. Let X and Y be elements of Rim. If X and Y are
linearly independent and span a 2-dimensional subspace σ of Rim, then
we have

(3.2) (FX, YY + <GX, YY + (HX, Γ>2 - (| X\2 \ Y\2 - <X, Γ>2) cos2 a(σ) .

PROOF. Set

z = x/\x\, w = (\ x\2 Y - <x, γyx)/{\ x\ (\ x\2 \ Y\2 - <x, r>2)i/2}.

Then Z and W form an orthonormal basis for σ and we have

<FX, YY = {FZ, WY(\ X\21 F | 2 - (X, YY) ,

(GX, YY = (GZ, WY(\X\2 \Y\2 - <X, YY) ,

(HX, YY = {HZ, WY(\ X\21 Y\2 - (X, YY) .

Therefore we obtain (3.2). q.e.d.

Let X and Ϋ be orthonormal vectors which span σ and let X and Y
(resp. ξ and rj) be JS4m(resp. i23)-parts of X and Ϋ respectively. Then
we have

(3.3) | X | 2 + | f | 2 = l , | F | 2 + | ^ | 2 - 1 , <X, Y) + <£, y) - 0 ,

from which,

(3.4) \X\2\Y\2 - <X, Γ>2 = 1 - \ξ I2 - M 2 + |f | 2 1 ^ | 2 - <ί, v>2.

The following proposition follows immediately from (3.1), (3.2), (3.3) and
(3.4):

PROPOSITION 3.2. (1) If X and Y are linearly dependent, then

(3.5) S(σ) = ( - L . - a2)(\ ξ\2\v\2- <£, ?>2) + α2.
\ a o *

(2) // X and Y are linearly independent and span a ^dimensional
subspace σ of Rim, then
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(3.6) S(σ) = ( - L - - 2α 2)( | ξ | 2 | v V - <ξ, V>*) + «2(l f I2 + IV I2)

— 3α2 cos2 a{σ)) .

Let α be a positive number not greater than 1/2 and assume that
S(σ) satisfies the inequality

(3.7) 4α2 ^ 4S(σ)/(l + 3 cos2 a(σ)) ^ 1

for any 2-dimensional subspace σ of JS4m.

LEMMA 3.2. The bound of 1/6 is given by

(3.8) α2 ̂  -f ^ 4"
o 4

where 1/b = r/(16m(m + 2)) αm£ r = Σi.y -βϊiϋ

PROOF. Let {ZJ be an orthonormal basis of Rim such that ^ m + g =
FZqf Z2m+g = GZq and Z3m+q = JHΓZ? for g = 1, , m. Then r is given by
r = Σ Ϊ ^ S(0tf) where σi5 are 2-dimensional subspaces spanned by Zt and
^ (ί ^ i) A straightforward computation shows (3.8). q.e.d.

Lemma 3.3. The bound of L is given by

(3.9) -\ζ\\η\\X\\Y\<LL^\ζ\\η\\X\\Y\.

PROOF. By Cauchy-Schwarz's inequality, we have

, r> 2 + <2ίx, r>2} = a e π ? I1 - <ef

Using (3.2), we obtain

u ^ a ξ i21 v i2 - <ί, ?>2xι ^ i 2 1 ^ i 2 - <χ, yy) cos2

 α(σ>
^ | ί | 2 | ^ Π X | 2 | F | 2 . q.e.d.

Using Proposition 3.2, Lemmas 3.2 and 3.3, we can show

PROPOSITION 3.3. Let a be any real number such that 1/12 ^ α2 ^ 1/4
and suppose that (3.7) holds for any ^-dimensional subspace of iϋ4m.
Let X and Y be Rim-parts of orthonormal vectors X and Ϋ which span
a 2-dimensional subspace σ of i?4m+3. If X and Y are linearly dependent,
then
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// X and Y span a 2-dimensional subspace σ of R4m, then

Aα* _ JL ^ S(σ) ̂  1 - 3α2 ,

where the following inequalities hold:

PROOF. We use the following inequalities:

1 ^ I ζ |21 η |2 - <£, ηy ^ 0 , 1 ̂  | X|21 F | 2 - (X, F>2 ̂  0 ,

- i - - α2 ̂  0 (Lemma 3.2), | £ 11 η \ \ X\ \ Y\ ̂  4"
a o 4

If X and Y are linearly dependent, then, from (3.5) and Lemma 3.2,
we have

If X and F span a 2-dimensional subspace σ of R4m, then we have

S(σ) - 3α2 cos2 α(σ) ^ a2 ,

S(σ) - 3α2 cos2 a(σ) ^ —{1 + 3(1 - 4α2) cos2 α(σ)} ^ 1 - 3α2 .
4

Using (3.6), we shall find a lower bound for S(σ). From Lemmas 3.2
and 3.3, we have

d«ΓlVI 2 - <f, VY) + «2(lf I2 + IVI2) + β ( y - α

+ (1 - I ξ I2 - I η p + I ξ Π ̂  |2 - <£, 7>»)(S(σ) - 3α2 cos2

- ( w ~ 2 α 2 ) ( l f |2'v |2 - <?> ̂ >2) + α2(l f |2 + ' v |2)" τ (

3/1

α - A .
2 8

Next, we shall find an upper bound for S(σ). By Lemmas 3.2 and 3.3,
we have



QUATERNION KAHLER MANIFOLDS 403

+ 1 v I2)4J
a o

(i ) - 3α 2 cos 2

^ (-ΏT - 2 α 2 )d f N v I2 - <ί, vY) + «2(l f I2 + I v I2)

4τ
Cb 0

( | ) I \η\ \X\ \Y\ + 1 - 3α2

( ) | 11^|( | | ) ( 1 - \y\J/2 + 1 - 3α2 .

If we set

c i = -ΊΓΓ ~ α ' ' C2 = 1 ~ 4α2 , c3 = -i- - α2 ,
α262 b

t = \ξ\>, s = \η\\

then we have

0 ^ ί ^ 1 , O ^ s ^ l , c ^ O , c 2 ^ 0 , c 3 ^ 0 ,

d — c2 ^ 0 .

The last inequality follows from 1 — 3α2 ̂  l/16α2. By simple calculus,
we see that the function

h(t, s) = cjs - φ + s - ts) + 6c3{ts(l - ί)(l - s)}1/2

attains the maximum value 0 at (0,0) in the square {(t, s) e R2; 0 ^ t, s ^ 1}.
Therefore we obtain

S(σ) ^ 1 - 3α2. q.e.d.

We must prove the following theorem to state our main Theorem
3.2.

THEOREM 3.1. Let M be a complete quaternion Kdhler manifold of
dimension 4m (m ;> 2) with quaternionic pinching greater than d. If
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δ ^ 9/16, then there exists a principal Sj)(l)-bundle M over M and a
Riemannian metric on M with Riemannian pinching greater than (5δ—S)/
(8-65).

PROOF. By Kraines [13], we see that M has the same integral cohomo-
logy ring as the quaternion protective space HPm. Since Hι{HPm, Z) = 0,
H2(HPm, Z) = 0 and H\HPm, Z) = 0, the exact cohomology sequence

H\Mt Z) — H\M, Z2) — H\M, Z) — H2(M, Z) — H2(M, Z2) — H\Mf Z)

implies H\My Z2) = H\Mf Z2) = 0. Thus, by Proposition 1.1, we see that
there exists a principal Sp(l)-bundle M over M such that M/{±1} = P.
Setting 4α2 = δ in Proposition 3.3, we have

-f-S _ 3 < S(σ) ^ 1 - ±j . q.e.d.
o o 4

THEOREM 3.2. Let M be a complete quaternion Kdhler manifold of
dimension Am (m ^ 2) with quaternionic pinching greater than 10/13.
Then πq(M) = πq(HPm) for all q.

PROOF. Theorem 3.1 implies that there exists a principal Sp(l)-bundle
M over M and a Riemannian metric on M with Riemannian pinching
greater than 1/4. M is simply connected by a theorem of Synge [16].
Using the exact homotopy sequence of the fibering S3-~>M—>M, we see
that M is also simply connected. Thus, by sphere theorem of Berger
and Klingenberg (cf. [4]), M is homeomorphic with a sphere S4m+3. Since
the fiber π~\x) & S3 is contractible in M to the point x e π~\x) leaving x
fixed, we have (cf. [15])

πq(M) ~ πUS*) + πg(Sim+3) (? ^ 2) .

We have also, from Hopf fibering S3 -> Sim+3 -> HPm,

πq(HP™) M πUS3) + πq(S^+3) (q ^ 1) .

These complete the proof. q.e.d.
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