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ON THE AVERAGES OF FOURIER-STIELTJES COEFFICIENTS
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Let m be a finite Borel measure (or, more generally, a pseudo-
measure) on [ — π, TΓ]. If m ~ (l/2)α0 + ΣΓ α* cos wα + ΣΓ δ* sin nx, m has
a canonical decomposition into an even measure μ and an odd measure
v defined by μ ~ (l/2)α0 + ΣΓ an cos nx, v ~ ΣΓ bn sin nx. We shall as-
sume for convenience α0 = 0 and m{0} = 0. We consider the arithmetic
means of the coefficients {an} and {bn}. Let

and the formal series operation H be defined by
oo oo

(1) H{m) ~ Σ An cos ^x + Σ B% sin πα; .

The operator jff* adjoint to H is defined for formal series by

(2) H*(m) - Σ ^* cos rcα? + Σ Bi sin ̂ α;
l lwhere A* = Σ~ (»i/i) and J5* = Σ " Φj/j). The adjoint coefficients do not

exist for all pseudo-measures or even measures. However, if
oo

Σ K sin nx ~ fe L^-π, π),

the Bt surely exist ([16], p. 59).
The conjugates of (1) and (2) are

(Γ) H(m) = (H(m))~ ~ Σ -4» sin rac — Σ #» cos ̂ a;

and

(2') H*(m) = ((iP)(m))~ - Σ A: sin nx-^Bt cos πα .
% = 1 71 = 1

The operator H was first studied by Hardy [3], who showed that for
1 < P < oo, H (/) is the Fourier series of a function in Lp(—πf π) if fe
Lp(—π, π). H* was studied by Bellman [1], Kawata [7], and Sunouchi [13]
who showed that Hardy's theorem was true if H it replaced by H*.
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Since conjugation maps Lp onto itself, the corresponding results for H and
H* are immediate. For spaces not closed under the conjugation operator,
however, the Fourier character of H and H* is more delicate, and there
is a failure of symmetry between even and odd measures.

We shall give conditions on m for the series in (1) and (2) and (1')
and (2') to belong to various classes of functions. The integrability of
these series depends on the behavior of m in a neighborhood of 0. We
shall show among other results:

THEOREM A. If m satisfies

[ (logJLXd\m\(x)< ~ ,
J-*V \x\ /

with a > 0, then if m is even

H(m) e L(log+L)«, H(m) e LGog+L)*"1

H*(m) e L(log+L)a-\ H*{m) e L(log+L)α"2

whenever the exponent of Iog+L is nonnegative, and if m is odd

H(m) e L(log+L)α, H(m) e L(\og+L)a

H*(m) e L(\og+L)a-\ H*(m) e L(\og+L)a

whenever the exponent of \og+L is nonnegative. Whenever the range
space is L, these results are the best possible in the sense that if m is
positive on [0, TΓ], the condition is also necessary.

From the results in Theorem A we use the adjoint relation to obtain
results on the growth of the iϊ-functions at the origin which, in many
cases, are also best possible. Our results extend, complement, and improve
the results of Goes [3], Loo [10], and others [14], [8]. We shall also give
sufficient conditions for the H series to represent functions in the Lorentz
space Λpq [11], [5]. We have

THEOREM B. Let 1 ^ p < °°, 1 ^ # ^ <*>.

(i) If m satisfies

( 0 ) [ t-^fd\m\(t)< co, 1 + 1 = 1 ,
J - * p p

H{m), H*(m), and their conjugates are in every Λvq, 1 ^ q 5g oo. In par-
ticular, condition (0) is sufficient for H(m), H*(m), and their conjugates
to be in Λ(p, 1).

(ii) If f 6 Λpq and, in particular, if f is in weak Lp, then

and VH*(f)e L» .
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The result (i) improves Petersen's results [12] for Λpq when q = 1,

since Γ t~llP'f(t)dt < oo implies feΛ(p,l) ([16], vol. II, p. 124). Fur-

thermore, we may use interpolation theorems to infer Petersen's and also

Hardy's and Bellman's and Kawata's theorems from (i). Both (i) and (ii)

give improvements on some results of Izumi [6]. Theorems A and B as

other related theorems will be proved in the theorems and lemmas below.
We begin by writing the ίf-operators as integral operators generated

by kernels K{x, t).
We note that

An = — Γ Dn(t)dμ(t) = — [' S m n t dμ(t) + — — Γ cos ntdμ(t) ,
πn J-« πn J-2 tan ί/2 πn 2 J-* r y '

Bn = J L Γ Dn(t)dv(t) - — Γ 1 " ^^dvit) + — -ί Γ sin nt dp ,
ππ J-τ rπ J-* 2 tan ί/2 TΓ̂  2 J-^

where JD%(ί) = Σ?=o cos i£ is the Dirichlet kernel and DJt) is its conjugate
([16], 5.2, p. 50). Therefore, if χt(x) is the characteristic function of

[~\t\,\t\],

,9t , / o l ( Γ
-f 12 tan t/2| VJ-

c o s

s i n

= ̂ - Γ (Γ2π J-ΛJ-* 2 tan

So that, formally, the series (1) is the Fourier series of the function
H(m) defined by

dm(t) and the above integrals may be regarded as func-

tion valued integrals, improper around t = 0 or, for each fixed x as the

integrals

( dμ(t) and sgn (x) [ dv(t)
Jm>ι.ι|2tant/2| W Jι*ι>ι ι2 tant/2 W
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which are finite for x Φ 0. From (3) we immediately obtain for the
adjoint transformation H*

The last term is obtained by observing that the operation m - > F is a
skew symmetrc multiplication operation.

It is immediately verifiable from the definition of H that H(m) =
{H{m))~. Thus, H(m) = H(m), we obtain from (3)

( 5 ) H(m)(x) = -L\ [ —l——χt(χ)dμ(t)
2π U-χ |2tanί/2 |

Γ 9 f S . J s g n (x)χt(x)]~dv(t) - F(x)
J-*2tanί/2

which is valid whenever the function valued integrals in (3) and (5) con-
verge in normed space because conjugation is a closed operator. We
observe that the equation ίϊ(m) = H(m) implies by taking adjoints

dr = (Hint,))* = (H*(md)~ = S*(md

Therefore (iϊ*)~ is the adjoint of H, so we have from (5)

-* |2 tanί/2|

Our first theorem gives sufficient conditions for the function valued
integrals in (3) and (4) to exist in some Banach spaces.

THEOREM 1. Let m be a finite Borel measure on [ — π, π] and Tt and
T*, i = 0, 1, be the mutually adjoint integral transforms of m defined by

( 7) Tt(m)(x) = ττ(sgn

ί/2 J-

Let a ^ 0 and

φa{u) = ^(log + u)a .

Then if

f ^ UΦm{t)
-π 2 tan t 2

i = 0 1
(sgn x)%(x)dmι(x) .
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(8) \"
\w\

we have

(9) \" φa(\ TMΨDdx < oo , if a ^ 0 ,

(10) Γ ^ f l 2?(m)(ί)|)d< < - , if a ̂  1 .
J-7Γ

S π

d\m\ —
—π

1. Since φa(u) is a convex increasing function of u on [0, oo), we may-
apply Jensen's inequality to the absolute values of the quantities in (7)
and obtain

^ t ( | Tfm(t)I) ^ Γ i»J l o/.M lfe(g)VImI(») .
J-π \ 12 tan t/2| /12 tan

Integrating these inequalities and applying Fubini's theorem, we obtain

(11)

Evaluating the inner integrals, we obtain for the first

Γ φί E χt(x))dx
}-* V|2tanί/2ΓV V

= [ Ξ f i o g + V d α (log
3-«|2tanί/2|\ |2tanί/2|/ V & \t\

as ί —• 0, and for the second

Ξ V d α - (logJL

Using these estimates in (11), we see that (9) and (10) hold because of (8).
We designate by Stfa the Orlicz space of those functions / on
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[-7Γ, π] satisfying \ φa(\f(x)\)dx< oo ([16], p. 170) and by ̂ a(l/x), the space

of those measures m on [ — π, π] satisfying I log (π/\ x \ )d \ m | (x) < c>o.
J — 7 Γ

J*fa(l/x) shall denoto the subset of ^C(l/#) consisting of absolutely con-
tinuous measures. We note that £fx = L log+ L and £f0 = L.

THEOREM 2. (a) The condition m e ̂ fa(ί/x) is sufficient for H(m) e
£?a and H{m) e Sfa-γ. When a = 1, this condition is also necessary for
H(m) e L if m is even and positive.

(b) The condition m e ̂ ^(1/α;) is sufficient for H*(m) e £fa-u a ^ 1.
// a = 1 and the even and odd parts of m are positive, the condition is
also necessary.

(c) The condition m e ̂ C(l/#) is sufficient for ίϊ*(m) e J^_2, a ^ 2.
If a = 2 and m is even and positive, the condition is also necessary.

PROOF. For (a) we apply Theorem 1 to the decomposition (3) of H{m)
and observe that since F{x) is in L2 (it is actually exponentially inte-
grable), it is in £fa for all a. Therefore, H(m) e £?a which implies H(m) e
£fa-ι by ([16], p. 296). To prove the sufficiency parts of (b) and (c), we
apply Theorem 1 to the decomposition (4) and argue as in (a). To prove
the necessity part in (b) we note the order of the evaluation in (12),
and that if μ and v are positive in [0, π], we have that H*(m) is essen-
tially positive for t ^ 0, for by (4),

H*(m)(ί) = H*(μ)(t) + H*(p)(t)

-« 12 tan ί/21 ^-^2 tan ί/2

with F(t) e L2. Hence the first two terms can be rewritten f or t ^ 0 as

Γ t(x)d\m\
2 t a n ί / 2 V ' ' I

Thus, by Fubini's theorem,

\Ή*(m)(t)dt = [([ —±—χt(x)d\m\(x))dt+[\F(t)\dt
Jo Jo\J-ir2 tan ί/2 / J»

if m M ( l / » ) so that Jϊ*(m)g L[-ττ, 7r].
We postpone the proofs of the necessity parts of (a) and (c). (See

Theorem 4(a).)

REMARKS. The results for H for a = 1 in (a) are an improvement
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on Loo's Theorems 3 and 4 [10]. For a = 1, the sufficiency part of (b)
is Loo's Theorems 5 and 6. The necessity part shows that his results
are best possible. The result for 3 in part (c) is a considerable improve-
ment on Loo's Theorems 7 and 8. Kinukawa and Igari [8] have remarked
that in case m is odd, the condition m e ^f(l/x) is sufficient for H*(m) e L.

We turn now to some dual results. We recall that the topological
dual of Llog+L is the exponentially integrable functions exp(L) ([9],
p. 217). That of £fJXIn) is L^.

THEOREM 3. If h e exp (L),

(a) 1

(b)

log π/\ x I

1
log2 π/\ x

-H*(h)eL«

-Ή(h) 6 £„

(c)

(d)

log JΓ/| x

1

-H*(h) e !-„

log2 π/| a; |

(e) // h is odd, the results (c) and (d) are best possible, but not if
h is even.

(f) If h is even or odd, the results (a) and (b) are best possible.

PROOF. By Theorem 2(a), iJ(/OeLlog+L if
the closed graph theorem, H must satisfy

. Thus, by

log-^1 Ms
\x\

If = 1,

I f* I fir

-B||Λ IUpw ^ \ H(h1)(x)h(x)dx = \

-if
Therefore,

1
log- τr

H*(h)\ = sup

-.logjr/|ί|

-*logπ/|ί|
fH*(h)(tMt) log-f- dί> HλilUl(i/.)=l}
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This proves (a). The proofs of (b), (c), and (d) are similar.
It is known that H and H* map even L^ into L^ [14], [8], (see also

Theorem 4 below). We consider the 2π periodic odd function g defined
by g(t) = (l/2)(ττ — t),te [—π, π). Since g ~ ΣΓ (sin nt)/n and

g = log
|2sinί/2| '

H{g){x) = H(g)(x)

" ^ l o g 2 sin —
2

and

n2

2 sin — cos nt

- 1
t

log xdx + 0(1) = log - i- + 0(1) ,

which shows that (c) and (d) are best possible for odd h.
To prove (f), we note that the g above is even and exponentially

integrable, and that from the proof of (e), we have

and

H(g) = H{g) = log2-^- + 0(1) .

For odd h let h(t) = sr̂ έ) = sgntg(t). Then flr^ί) is odd and exponentially
integrable. From (3) and (4), we obtain

H{gι){x) = sgn xH{g){x) + 0(1)

and

REMARKS, (d) is Loo's Theorem 15 [10]. It has been observed by
Wang [15] that H(g) = log21/ί. (c) implies Loo's Theorems 11 and 12.

Theorem 1 gave estimates for H(m) and H*(m) which do not depend
on the evenness or oddness of m so that the results in Theorem 2 con-
cerning H(m) and H*(m) do not distinguish between even and odd m.
However, if m is specialized to even or odd in some cases considerably
improved results can be obtained for H(m) and ίϊ*(m). Our method will
be to make estimates of the conjugate kernels appearing in (5). Ex-
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plicitly, these are

1 Ύ(x

| 2 t a n ί / 2 Γ t v
π |2tanί/2|

log sin((s + t)/2)
sin ((a; - t/)2)

sin2 x/2

= Kx(xf t) ,

/ sgna / Λ~ = JL 1 l o ς r

V 2 tan ί/2 Λ t V V TΓ 2 tan t/2

LEMMA 1. Lβί a be a nonnegative integer,

fir π

(a) I I KJ&, t)\dx ~ log —
J—π t

(b) Γ ^(1^(0?, t)|)dt - O f log
J-JΓ \

S JΓ /

^β(| K2(x, t) \)dx = 01 log
- j r \

(d)

sin2 ί/2 - sin2 x/2
= JSΓ,(a?f ί ) .

When a = 0, the estimates in (a) and (d) are the best possible. For the
proof of Lemma 1, we shall need

LEMMA 2. With a > 0 and a a nonnegative integer, let

ha{a) = Γ"
J2 u2vl - a2u2

then ha(a) = 0(1) as a —> 0.

PROOF. Let v = at6. The integral ha(a) then becomes

1 ) Γ
a/ J1/1/21/I -

Since

a 2a

we see by induction that the first integral in the square brackets is
O(l/α). Since the second is also, we have the required result.

PROOF OF LEMMA 1. Since Kx and K2 are either even or odd in each
variable, we may in each case assume that (x, t) is in the first quadrant
and perform integrations of φa(\Kt\) over the interval [0, π].

(a) We make the substitution u — tan ί/2 cot x/2 = a cot x/2 in the
integral in (a) and obtain
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\'\Kι(x,t)\dx=±\"\og
Jo π Jo u-1 a2 + u2

S 1/2A C2 foo

+ + = Jl + Λ + Λ ,
0 Jl/24 J2

having been chosen so that

(14) and

A ^ u log

A ^ — log
u

u + 1

+ 1
u - 1

A, if u > 2

^ if u < - .

By using (14) we can easily see that J2 = 0(1), J3 = 0(1), and

o α 2

(b) If we make the substitution u — cot a /2 tan ί/2 = a tan ί/2 and
expand the a power,

K(\ Ki{x, t) \)dt

= 1 r^logϋ±l|(log+(^-llog
2ττ Jo u u — 1 |V \ 27Γ u

« + a

1 f °° 1

^ - - l o g
7Γ Jo U

- 1
log J L i log

2π it

- 1 1/ α2 + α2

% + 1
- 1

I V^ 1 Σ cjt - O (log (a))'-* = O ( l o g l )

since by using (14), we see

Jo U
w + 1
« - 1

• log — log u + 1
u-1

du

= Γ'2 + Γ + Γ = o(i) + 0(1) + o(i).
Jo Jl/2 J2

(c) If we substitute u = (sin #/2)/(sin ί/2) = (sin x/2)/a and proceed
as before, we obtain

\*φa(\K2(x,t)\)dx
Jo

β-ίfl/O
log

1 - u2i
log

1 - u2

VI - a2u2
-du

a-i
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But

Jo Jo j2 τ / 1 — α2/4 Jo J2 %2 τ / 1 — Λ 2

where /c(̂ 6) is integrable over [0, 2] and B, Bγ are such that B/u2 <L
log I u2/(l - u2) I ̂  Bi/^2 if M > 2. The first integral is 0(1) and the second
is 0(1) by Lemma 2.

(d) Substitute u = (sin £/2)/(sin x/2) = (sin t/2)/a in the integral. Since
the integrand is uniformly integrable on [0, 2] for small a, we obtain

(15) Γ|K2(x, t)\dt = 0(1) + Γ l | log I u2 - 11| dy s ( l o g ! ) ' .
Jo J2 % \ a,/

THEOREM 4. Lei α ^ 0.

(a) If m is even and positive, the conditions m e ^C(l/#), m e ^f2(l/x)
are necessary for H(m) e L and ϊϊ*(m) e L, respectively.

(log I π/w \)ad I m | is sufficient

for H(m) e L(log+L)" and H*(m) e L(log+ L)\

PROOF. TO prove the sufficiency part (b), apply Jensen's inequality
and Fubini's theorem to the appropriate expression in equation (5) or
(6) and use Lemma 1 (b) and (c). (Cf. the proof of Theorem 1.) The
necessity part (a) also follows from Lemma 1 (a) and (d), and the fact
that Kγ and K2 are positive in the first quadrant. (Cf. the proof of the
necessity part of Theorem 2(b).)

COROLLARY 1. (a) If f is an even bounded function, &{f) and 3*(f)
are bounded functions.

(b) If f is even and exponentially integrable, (I/logπ/\x\)H*(f) and
(I/logπ/\x\)H(f) are bounded.

PROOF, (a) is proved by Theorem 4(b) with a — 0 and a simple duality
argument. For (b) use Theorem 4(b) with a = 1, and the argument of
Theorem 3.

Theorems 2 and 4 prove Theorem A.

REMARKS. The result for H(m) with a - 0 and m odd was obtained
by Kinukawa and Igari [8] for functions and by G. Goes [3] for measures.
After completing the research for this paper, the author discovered
that the result for ίϊ*(m) with a — 0 and m odd was an unpublished
result of G. Goes who obtained it using sequence space techniques and
announced it in 1970 in colloquia at the University of Chicago and Illinois
Institute of Technology. Corollary l(a) is the result of Turan [14] and
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Kinukawa and Igari [8]. Part (b) improves and supplements Theorem
3 (c), (d), and (e) for even functions. This corollary may be compared
with Loo's Theorems 12 and 17 [10], which it improves.

We now consider sufficient conditions for H(m) and H*(mΐ) to belong
to the Lorentz space Λpq. The Lorentz space Λpq, p, q ;> 1, is the collec-
tion of all measurable / on [ — π, π] such that | | / | | £ g < <*> where, denoting
the nondecreasing rearrangement of | / | by /*([5], p. 253),

||/||?,=

SUP tllpf*{t)
ί0

i L Y / f f if 0 < ί 9 <
t J

if 0 < p ^

We shall use well known results about these spaces, all of which can
be found in Hunt's monograph [5],

To prove Theorem B we need two lemmas.

LEMMA 3. Let 1 ^ p < oo, 1 ^ q <, oo, and

then \\Ft(t)\\tpq ~ J5r1/P' where 1/p' + 1/p = 1.

PROOF. For fixed t,

\Ft(x,t)\* =
2 tan t/2 |2tanί/2|-

since, as functions of x,\Fi(x,t)\ and | (1/(2 tan (ί/2))χ[0 2ί](α;) | are equi-
distributed and the latter is nonincreasing over [0, oo) and is thus its own
nonincreasing rearrangement and also that of the equi-distributed Fi(x, t).
Therefore, for q < oo,

2|tanί/2|
Q_[2t

χq!P-Λίlq

 =

• pU J 2|tanί/2|
= (2tyι*

2|tanί/2|

When q = °°, we have

1
- sup χ [ 0,χ[0, 2 ί ](α;)α; ^

2 I tan ί/21 2 tan t/2
LEMMA 4. Lei G^x) = ̂ (a?, t) where Ft is as in Lemma 3 (Then
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Gi(x) is a function of t for each x ) . Then if 1 ^ p < oofl <^ q <^ o o ,

\\G<(x)\\*.q = OW'1*'.

PROOF. For fixed x and g < oo

' ^ ( a ; ' f ) l ^ 2 t a n ( 2 N X ( t )

Therefore,

= Γ(^-2biri- r- (y-2\x\yι* γ < r r- ̂  γ

= (0(1) + (2|α;|)(^)-9)1/? = 0(1) + 0(| a^1'*-1) - Od^l"1^) .

When q = oo, note that for the function #(#, £) = ί1/p/(21 x \ + ί) (which is
uniformly close to ί1/p|JF<|*), we have \\g(x, •JIU = 0(|α;|-1/p').

We can now prove Theorem B.

PROOF. We recall the decompositions (3), (4) of H{m), H*(m). We

note that the third term is in every Λpq since F(x) = \ dm (t) e L M c Λpq

so that F(x) e Λpq. Also, the first and second terms m(3) may be written
as

πH(m)(x) - —F(x) = 2 (V0(a>, t)dμ(t) + 2 ['F^X, t)dv(t)
2 Jo Jo

= 21im (\*F0(t)dμ(t) + \*Fffldv

where we regard the last integrals as improper (at zero) Λpq valued
integrals. Each of these integrals converges in ΛPq because for ε2 > elf

we have, for example,1

[F0(t)dμ(t) - \ FQ(t)dμ(t)\\ - \\[ΛF0(t)dμ(t)

£ B\S)\F0(t)\\;qd\μ\(t) £ BX\-^'d\μ\{t) < η

if ex and ε2 are sufficiently small by Lemma 3 and the hypotheses on m.
Thus, the integral exists in ΛPq. Therefore, H(m) e ΛPq and, hence, also
H(m) e Λpq. A similar argument using Lemma 4 proves the result for

+ The symbol || \\pq represents the Banach space norm of Λpq for which we have
\\pq^B\\ \\U ([5] p. 258).
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H*. This proves B(i). B(ii) now follows by a duality argument.

REMARKS. C. Georgakis [2] has given a necessary and sufficient
condition on even m ~ Σϊ=i an cos nx for Σ~=i Ά» s ί n wa? t° represent an
integrable function. Our criterion, which has been proved necessary
only for positive even m, is different and may be useful in some appli-
cations where it is easier to verify.
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