A CHARACTERIZATION OF METRIC SPHERES IN HYPERBOLIC SPACE BY MORSE THEORY

THOMAS E. CECIL

(Received July 16, 1973)

0. Introduction. Let M^n be a differentiable manifold of class C^{∞} . By a Morse function f on M^n , we mean a differentiable function f on M^n having only non-degenerate critical points. A well-known topological result of Reeb states that if M^n is compact and there is a Morse function f on M^n having exactly 2 critical points, then M^n is homeomorphic to an n-sphere, S^n (see, for example, [3], p. 25).

In a recent paper, [4], Nomizu and Rodriguez found a geometric characterization of a Euclidean n-sphere $S^n \subset R^{n+p}$ in terms of the critical point behavior of a certain class of functions L_p , $p \in R^{n+p}$, on M^n . In that case, if $p \in R^{n+p}$, $x \in M^n$, then $L_p(x) = (d(x, p))^2$, where d is the Euclidean distance function.

Nomizu and Rodriguez proved that if M^n $(n \ge 2)$ is a connected, complete Riemannian manifold isometrically immersed in R^{n+p} such that every Morse function of the form L_p , $p \in R^{n+p}$, has index 0 or n at any of its critical points, then M^n is embedded as a Euclidean subspace, R^n , or a Euclidean n-sphere, S^n . This result includes the following: if M^n is compact such that every Morse function of the form L_p has exactly 2 critical points, then $M^n = S^n$.

In this paper, we prove results analogous to those of Nomizu and Rodriguez for a submanifold M^n of hyperbolic space, H^{n+p} , the spaceform of constant sectional curvature -1.

For $p \in H^{n+p}$, $x \in M^n$, we define the function $L_p(x)$ to be the distance in H^{n+p} from p to x. We then define the concept of a focal point of (M^n, x) and prove an Index Theorem for L_p which states that the index of L_p at a non-degenerate critical point x is equal to the number of focal points of (M^n, x) on the geodesic in H^{n+p} from x to p.

In section 2, we prove that a metric sphere $S^n \subset H^{n+p}$ can be characterized by the condition that every Morse function of the form L_p , $p \in H^{n+p}$, has exactly 2 critical points.

In section 3, we give an example which shows that a result analo-

This research was partially supported by NSF grant GP 28419 A1.

gous to that of Nomizu and Rodriguez for the non-compact case cannot be proven. More explicitly, we exhibit a complete surface $M^2 \subset H^3$ which is not umbilic on which every Morse function of the type L_p has index 0 at any of its critical points.

The author would like to express his sincere gratitude to his adviser, Katsumi Nomizu, for his assistance in this work.

1. The functions L_p and the index theorem. We will use the following representation of hyperbolic space H^m (for more detail, see [2], vol. II, p. 268). Consider R^{m+1} with a natural basis e_0, e_1, \dots, e_m and a non-degenerate quadratic form H defined by

$$H(x, y) = -x^0 y^0 + \sum_{k=1}^m x^k y^k$$
 for $x = \sum_{k=0}^m x^k e_k$ and $y = \sum_{k=0}^m y^k e_k$.

Then H^m is the hypersurface

$$\{x \in R^{m+1} \mid H(x, x) = -1, x^{\scriptscriptstyle 0} \geqq 1\}$$
 ,

on which g, the restriction of H, is a positive definite metric of constant sectional curvature -1.

Let M^n be a connected, Riemannian manifold, and let f be an isometric immersion of M^n into H^{n+p} . We first define the following class of functions on H^{n+p} ; for p, q in H^{n+p}

$$L_p(q) \equiv d(p, q)$$
 ,

the distance in H^{n+p} from p to q. If we use the above representation of H^{n+p} , then we have

$$L_p(q) = \cosh^{-1}(-H(p, q))$$
.

For $p \in H^{n+p}$, $x \in M^n$, we define $L_p(x) = L_p(f(x))$. If $p \notin f(M^n)$, then the restriction of L_p to M^n is a differentiable function on M^n . From this point on, we will only consider L_p such that $p \notin f(M^n)$.

We now proceed to develop the concept of focal point and prove an Index Theorem for L_p . Let $N(M^n)$ denote the normal bundle of M^n . Any point of $N(M^n)$ can be represented as $(u, r\xi)$ where $u \in M^n$, $r \in R$, and ξ is a unit length vector in $T_u^{\perp}(M^n)$, the normal space to M^n at u.

We define $\gamma(u, \xi, r)$, $-\infty < r < \infty$, to be the geodesic in H^{n+p} parametrized by arc-length parameter r such that

$$\gamma(u, \xi, 0) = u$$
 and $\vec{\gamma}(u, \xi, 0) = \xi$.

Let U be a local co-ordinate neighborhood of M^n with co-ordinates u^1, \dots, u^n . Then, in terms of the co-ordinates x^0, \dots, x^{n+p} in R^{n+p+1} , the immersion f(U) can be represented by the vector-valued function

$$x(u^1, \dots, u^n) = (x^0(u^1, \dots, u^n), \dots, x^{n+p}(u^1, \dots, u^n))$$
.

In terms of this representation, the geodesic $\gamma(u, \xi, r)$ is given by

$$\gamma(u, \xi, r) = (\cosh r)x(u) + (\sinh r)\xi.$$

We define a map F from $N(M^n)$ to H^{n+p} by

$$F(u, r\xi) = \gamma(u, \xi, r)$$
.

As in the Euclidean case, the concept of focal point is defined in terms of the degeneracy of F_* , the Jacobian of F.

DEFINITION. A point $p \in H^{n+p}$ is called a focal point of (M^n, u) of multiplicity ν if $p = F(u, r\xi)$ and F_* has nullity $\nu > 0$ at $(u, r\xi) \in N(M^n)$. (We say p is a focal point of M^n if p is a focal point of (M^n, u) for some $u \in M^n$.)

For $\xi \in T_u^{\perp}(M^n)$, A_{ξ} denotes the symmetric endomorphism of $T_u(M^n)$ corresponding to the second fundamental form of M^n at u in the direction of ξ . The following proposition identifies the focal points of M^n .

PROPOSITION 1. A point $p \in H^{n+p}$ is a focal point of (M^n, y) of multiplicity v > 0 if and only if

$$p = F(y, r\xi)$$
 and $\coth r = k$

where k is an eigenvalue of A_{ε} of multiplicity ν .

PROOF. Fix $(y, r\xi) \in N(M^n)$, and let U be a co-ordinate chart of M^n with co-ordinates u^1, \dots, u^n such that $y \in U$. Then N(U) can be considered as $U \times R^p$. We now examine the nullity of F_* at $(y, r\xi)$.

We first assume $r \neq 0$. Choose ξ_1, \dots, ξ_p orthonormal normal vector fields on U such that $\xi_1(y) = \xi$. Let $\beta \in T_u^{\perp}(U)$ for some $u \in U$. Then we can write

$$eta=\mu\!\!\left(\sqrt{1-\sum\limits_{j=2}^p(t^j)^2}\xi_{_1}+t^2\xi_{_2}+\cdots+t^p\xi_{_p}
ight) \;\; ext{where} \ 0 \leq \mu < \infty \;\;\; ext{and} \;\;\; \sum\limits_{j=2}^p(t^j)^2 \leq 1 \;.$$

The t^j are the direction cosines of β , and $\mu = ||\beta||$. The coordinates $(u^1, \dots, u^n, \mu, t^2, \dots, t^p)$ are local co-ordinates on N(U). For any j, we compute from the definition of F that,

$$\left.F_*\!\!\left(\!rac{\partial}{\partial t^j}
ight)
ight|_{(y,\,rarepsilon)}=\left.ec{\eta}(t^j)
ight|_{t^{j}=0}$$

where the curve $\eta(t^j)$ is defined by

$$\eta(t^j) = (\cosh r)x(y) + (\sinh r)(\sqrt{1 - (t^j)^2}\xi_i(y) + t^j\xi_i(y)).$$

Then,

$$\left.ec{\eta}(t^j)
ight|_{t^j=0}=(\sinh\,r)\xi_j(y)
eq 0\,\, ext{and thus,}\,\,\left.F_*\!\!\left(rac{\partial}{\partial t^j}
ight)
ight|_{(y,\,rarepsilon)}
eq 0\,\,.$$

Similarly,

$$F_*\Bigl(rac{\partial}{\partial\mu}\Bigr)\Bigr|_{(y,\,r\xi)}=ec{\eta}(\mu)\Bigr|_{\mu=r}\quad ext{where}\;\;\eta(\mu)=(\cosh\mu)x(y)+(\sinh\mu)\xi_{\scriptscriptstyle 1}(y)\;.$$

Then

 $\vec{\eta}(\mu)=(\sinh\mu)x(y)+(\cosh\mu)\xi_{\scriptscriptstyle 1}(y) \ \ {
m and} \ \ ||\,\vec{\eta}(\mu)\,||=1 \ \ {
m for all} \ \ \mu$. In particular,

$$ec{\eta}(\mu)igg|_{\mu=r}=F_*\!\!\left(\!rac{\partial}{\partial\mu}
ight)\!igg|_{(y,\,r\xi)}
eq 0$$
 .

In fact, the above calculations show that if

$$V=a_i\!\!\left(rac{\partial}{\partial\mu}
ight)+\sum\limits_{j=2}^pa_j\!\!\left(rac{\partial}{\partial t^j}
ight)\!\!\in T_{(y,rarepsilon)}\!\!(N\!(U))$$
 ,

then $F_*(V) = 0$ only if V = 0. If we let

$$X=\sum\limits_{j=1}^{n}b_{j}\!\!\left(\!rac{\partial}{\partial u^{j}}\!
ight)\!\!\in T_{(y,rarepsilon)}(N\!(U))$$
 ,

we shall soon compute $F_*(X)$. That computation and the above will show that

$$F_*(X+V)=0$$
 only if $V=0$.

(We remark that if r = 0, we must choose a slightly different co-ordinate system to obtain the same result.)

Thus to find a vector $X \in T_{(y,r\xi)}(N(U))$ such that $F_*(X)$ vanishes, we must concern ourselves with vectors of the form

$$X=\sum\limits_{j=1}^{n}b_{j}\!\!\left(rac{\partial}{\partial u^{j}}
ight)$$
 .

It is convenient to let $Y \in T_{\nu}(U)$ such that

$$X = (Y, 0)$$

when we consider $T_{(y,r\xi)}(N(U))$ as $T_y(M^n) \oplus R^p$. To facilitate the calculation of $F_*(X)$, we assume that the vector field ξ_1 defined above has been chosen so that $\nabla_Y^{\perp}\xi_1=0$, where ∇^{\perp} is the connection in the normal bundle induced by $\widetilde{\nabla}$, the covariant derivative in H^{n+p} . From

the definition of F we compute using the vector representation,

(1)
$$F_*(X) = F_*(Y, 0) = \tilde{p}_Y(\cosh r)x + (\sinh r)\xi_1$$
$$= (\cosh r)\tilde{p}_Yx + (\sinh r)\tilde{p}_Y\xi_1 = (\cosh r)Y + (\sinh r)\tilde{p}_Y\xi_1.$$

However,

$$ilde{\mathcal{P}}_{Y}\xi_{1}=-A_{arepsilon_{1}}Y+\mathcal{V}_{Y}{}^{\perp}\xi_{1}$$
 .

Since we have chosen ξ_1 so that

$${\mathcal V}_Y{}^{\perp}\xi_1=0$$
 and $\xi_1(y)=\xi$ we have $ilde{\mathcal P}_Y\xi_1=-A_\xi Y$.

Thus (1) becomes

$$F_*(X) = F_*(Y, 0) = (\cosh r)Y - (\sinh r)A_{\xi}Y$$
,

and we see that $F_*(Y, 0)$ vanishes if and only if

$$\coth r = k$$
,

where k is an eigenvalue of A_{ε} and Y is an eigenvector of k. This shows that if coth r has multiplicity $\nu > 0$ as an eigenvalue of A_{ε} , then there is a ν -dimensional subspace of $T_{(\nu,r_{\varepsilon})}(N(U))$ on which F_* vanishes. Thus in that case, $p = F(y, r_{\varepsilon})$ is a focal point of multiplicity ν . q.e.d.

Next for $p \in H^{n+p}$, we want to examine the critical points on M^n of the function L_p . We will find an expression for the index of L_p at a non-degenerate critical point y of L_p . This and Proposition 1 yield an Index Theorem for L_p which states that the index of L_p at y equals the number of focal points on the geodesic in H^{n+p} from f(y) to p. The following proposition characterizes the critical points of L_p on M^n .

PROPOSITION 2. Let $p \in H^{n+p}$ and $x_0 \in M^n$ such that $f(x_0) \neq p$.

- (i) x_0 is a critical point of L_p if and only if $p = F(x_0, r\xi)$ for ξ a unit vector in $T_{x_0}^{\perp}(M^n)$.
- (ii) x_0 is a degenerate critical point of L_p if and only if $\coth r = k$ for k an eigenvalue of A_{ε} .
- (iii) If x_0 is a non-degenerate critical point of L_p , then the index of L_p at x_0 is equal to the number of eigenvalues k_i of A_{ε} such that

$$k_i > \coth r$$
.

Here each k_i is counted with its multiplicity.

PROOF. For $x \in M^n$ and U a sufficiently small neighborhood of x, we may identify U with its image $f(U) \subset H^{n+p}$. Then using the vector representation of L_p , we compute the derivative of L_p . Fix $x_0 \in M^n$, and let X be a differentiable vector field on U. Then

$$(2)$$
 $XL_p(x) = X \cosh^{-1}(-H(x, p))$ $= rac{-1}{(H(x, p)^2 - 1)^{1/2}} H(D_x x, p) = rac{-1}{(H(x, p)^2 - 1)^{1/2}} H(X, p)$,

where D is the Euclidean covariant derivative in R^{n+p+1} .

For the fixed point $x_0 \in U$, there is a unique unit-length vector $\beta \in T_{x_0}(H^{n+p})$ such that

$$(3) p = (\cosh r)x_0 + (\sinh r)\beta \text{where} r = L_p(x_0).$$

From (2) and (3) we have

(4)
$$XL_{p}(x_{0}) = \frac{-1}{(H(x_{0}, p)^{2} - 1)^{1/2}} (\sinh r)H(X, \beta),$$

since $H(X, x_0) = 0$ because $X \in T_{x_0}(H^{n+p})$.

From (4) we see that x_0 is a critical point of L_p if and only if $H(X, \beta) = 0$ for all $X \in T_{x_0}(M^n)$; that is, if and only if $\beta \in T_{x_0}^{\perp}(M^n)$, and thus $p = F(x_0, r\beta)$. This proves (i).

Now let $p = F(x_0, r\xi)$; we calculate the Hessian of L_p at x_0 . Let X, Y be differentiable vector fields on U. Then for $x \in U$, we have

(2)
$$XL_{p}(x) = \frac{-1}{(H(x, p)^{2} - 1)^{1/2}}H(X, p).$$

Then since $H(X_{x_0}, p) = 0$, we have

$$(5) egin{aligned} YXL_p(x_0) &= rac{-1}{(H(x,\;p)^2-1)^{1/2}}Y(H(X,\;p)) \Big|_{x_0} \ &= rac{-1}{(H(x,\;p)^2-1)^{1/2}}H(D_YX,\;p) \Big|_{x_0} \,. \end{aligned}$$

From knowledge of the embedding of H^{n+p} in R^{n+p+1} , we know that for $x \in U$,

$$(6) D_{Y}X|_{x} = \tilde{\gamma}_{Y}X|_{x} + H(X, Y)x$$

and

(7)
$$\tilde{\mathcal{P}}_{Y}X = \mathcal{P}_{Y}X + \alpha(X, Y)$$

for $\alpha(X, Y)$ the second fundamental form of M^n in H^{n+p} , and for V the covariant derivative in M^n . Now (3), (6), (7) yield

(8)
$$H(D_{Y}X, p)|_{x_{0}} = \sinh rH(\alpha(X, Y), \xi) - \cosh rH(X, Y)$$

$$= \sinh rH(A_{\xi}X, Y) - \cosh rH(X, Y)$$

$$= H((\sinh rA_{\xi} - \cosh rI)X, Y)$$

where I is the identity endomorphism on $T_{x_0}(M^n)$.

We note that

 $H(x_0, p)^2 = \cosh^2 r$ and thus $(H(x_0, p)^2 - 1)^{1/2} = \sinh r$.

The above equation and (8) imply that we can re-write (5) as

(9)
$$YXL_{p}(x_{0}) = H((-A_{\xi} + \coth rI)X, Y)|_{x_{0}}.$$

From this expression for the terms of the Hessian of L_p at x_0 , we conclude that x_0 is a degenerate critical point of L_p if and only if

$$coth r = k$$

for k an eigenvalue of A_{ξ} , proving (ii).

The index of L_p at x_0 is defined as the number of negative eigenvalues of the Hessian of L_p at x_0 . We see from (9) that if $\coth r$ is not an eigenvalue of A_{ε} , then the index of L_p at x_0 equals the number of eigenvalues k_{ε} of A_{ε} , counted with their multiplicities, such that

$$k_i > \coth r$$
.

This proves (iii) and completes the proof of Proposition 2. q.e.d.

Propositions 1 and 2 yield immediately the Index Theorem for L_p .

THEOREM 1. (Index Theorem for L_p) For $p \in H^{n+p}$, the index of L_p at a non-degenerate critical point $x \in M^n$ is equal to the number of focal points of (M^n, x) which lie on the geodesic in H^{n+p} from f(x) to p. Each focal point is counted with its multiplicity.

2. A characterization of metric spheres in terms of the functions L_p . We now proceed to prove the main result of this paper which we state as follows.

THEOREM 2. Let M^n be a connected, compact, differentiable manifold immersed in H^{n+p} . If every Morse function of the form L_p , $p \in H^{n+p}$, has exactly 2 critical points, then M^n is embedded as a metric sphere, S^n .

In the above statement, the notation "metric sphere" means the following. There exists a totally geodesic (n+1)-dimensional submanifold $H^{n+1} \subset H^{n+p}$, a point $q \in H^{n+1}$, and $c \in R$, such that

$$S^n = \{y \in H^{n+1} \mid d(q, y) = c\}$$
.

In the remainder of this section, we assume M^n satisfies the hypotheses of Theorem 2. We first consider the set T,

$$T = \{ p \in H^{n+p} \mid p \text{ is not a focal point of } M^n \}$$
.

By Sard's Theorem, T is dense in H^{n+p} (see [3], p. 36). Propositions 1 and 2 show that L_p is a Morse function if and only if $p \in T$. Using

these facts, we can prove the following proposition. With minor changes, the proof is identical to the proof of the corresponding proposition for submanifolds of R^m proven by Nomizu and Rodriguez ([4], p. 199). Hence, we omit the proof here.

PROPOSITION 3. Let $p \in H^{n+p}$, and assume that L_p has a non-degenerate critical point at $x \in M^n$ of index j. Then, there is a point $q \in H^{n+p}$ such that L_q is a Morse function which has a critical point $z \in M^n$ of index j (q and z may be chosen as close to p and x, respectively, as desired).

To prove Theorem 2 we will proceed in the following way. Let f be the immersion of M^n into H^{n+p} . We will show that f is umbilic. Then it is known that a compact umbilical submanifold of H^{n+p} must be a metric sphere S^n . The proof of this fact is very similar to Cartan's argument for submanifolds of R^m (see [1], p. 231).

We first prove the following result.

PROPOSITION 4. Let $x \in M^n$ and suppose there is a unit length vector $\xi \in T_x^{\perp}(M^n)$ such that A_{ξ} has an eigenvalue whose absolute value is greater than 1. Then, $A_{\xi} = \lambda I$ for $\lambda \in R$.

PROOF. Let λ be the eigenvalue of A_{ε} with largest absolute value. We know from the hypothesis that

$$|\lambda| > 1$$
.

We may assume $\lambda > 1$; for if $\lambda < -1$, then we simply prove the proposition is true for $A_{-\xi}$ which has an eigenvalue $-\lambda > 1$. This will, of course, also prove the result for A_{ξ} .

Take r > 0 such that

$$\mu < \coth r < \lambda$$

where μ is the second largest positive eigenvalue of A_{ε} . If no such μ exists, we simply insist that

$$1 < \coth r < \lambda$$
.

By Proposition 2, we know that for $p = F(x, r\xi)$, L_p has a non-degenerate critical point at x. Also by Proposition 2, the index of L_p at x is equal to the multiplicity, say j, of the eigenvalue λ . If L_p is a Morse function, then the hypothesis of Theorem 2 imply that j = n, since we know j > 0. If L_p is not a Morse function, we know by Proposition 3 that there is a point $q \in H^{n+p}$, such that L_q is a Morse function having a critical point of index j. Again we conclude j = n. Thus λ is an eigenvalue of multiplicity n, and so $A_{\xi} = \lambda I$. q.e.d.

We remark that unlike the case for submanifolds of R^m , we cannot conclude immediately that f is an umbilical immersion because of the

needed requirement in Proposition 4 that A_{ε} must have an eigenvalue whose absolute value is greater than 1. Thus, further reasoning is necessary; the following proposition extends Proposition 4 to a local neighborhood U of x. This proposition is the key to overcoming the above-mentioned difficulties.

PROPOSITION 5. Let $x \in M^n$ and suppose there is a unit length vector $\sigma \in T^{\perp}_x(M^n)$, such that A_{σ} has an eigenvalue whose absolute value is greater than 1. Then there is a neighborhood U of x in M^n such that f is umbilical on U and such that the second fundamental form $\alpha(X, Y)$ does not vanish on U.

PROOF. Let V be a co-ordinate neighborhood of x and let ξ_1, \dots, ξ_p be orthonormal normal vector fields on V such that $\xi_1(x) = \pm \sigma$; the sign is chosen so that $A_{\xi_1(x)}$ has an eigenvalue $\beta > 1$.

Since the eigenvalues of A_{ε_1} are continuous, there is a neighborhood U of x, U is contained in V, such that for any $u \in U$, $A_{\varepsilon_1(u)}$ has an eigenvalue which is greater than 1. Thus $\alpha(X, Y)$ does not vanish on U.

We fix an arbitrary point $u \in U$. By Proposition 4 we know $A_{\xi_1(u)} = cI$ for some c > 1. Hence if the codimension p = 1, the proof is complete.

Assume p>1. For the fixed $u\in U$, we define a function λ on $T_u^\perp(M^n)$ as follows. For any $\xi\in T_u^\perp(M^n)$, $\lambda(\xi)$ is the largest eigenvalue of A_{ξ} . We know λ is a continuous function on $T_u^\perp(M^n)$. Thus there is a neighborhood N of $\xi_1(u)$ in $T_u^\perp(M^n)$ such that $\lambda(\xi)>1$ if $\xi\in N$. By Proposition 4, $A_{\xi}=\lambda(\xi)I$ if $\xi\in N$. Since N is open, we know that for each j there is a unit length vector $\xi\in N$ such that

$$\xi = a\xi_1 + b\xi_j$$
 for some $a, b > 0$ such that $a^2 + b^2 = 1$.

We know

$$(10) A_{\xi} = \lambda(\xi)I$$

but we have

$$A_{\varepsilon} = A_{a\varepsilon_1 + b\varepsilon_j} = aA_{\varepsilon_1} + bA_{\varepsilon_j}.$$

Now $A_{\xi_1} = \lambda(\xi_1)I$ and thus (10) and (11) give

$$A_{\epsilon_j} = rac{\left[\lambda(\xi) - a\lambda(\xi_1)
ight]}{h} I$$
 .

Thus all the eigenvalues of A_{ε_j} are the same, and we are justified in writing

$$A_{{f e}_j} = \lambda({f e}_j) I \qquad 1 \leq j \leq p$$
 .

Then if $c_j \in R$, $1 \le j \le p$, we have

$$A_{\Sigma^c j^{\xi} j} = \sum_{i=1}^p c_i A_{\xi_j} = \sum_{j=1}^p c_j (\lambda(\xi_j) I) = \sum_{j=1}^p (c_j \lambda(\xi_j)) I$$
 .

Hence,

$$\lambda\left(\sum_{j=1}^p c_j \xi_j\right) = \sum_{j=1}^p c_j \lambda(\xi_j)$$
 ,

and λ is a linear function on $T_u^{\perp}(M^n)$.

We have shown that for each $u \in U$, there is a linear function $\lambda(\xi)$ on $T_u^{\perp}(M^n)$ such that $A_{\xi} = \lambda(\xi)I$ for any $\xi \in T_u^{\perp}(M^n)$. This means that f is umbilical on U, and the proof is complete. q.e.d.

The following remark can be proven by methods similar to those employed by Cartan ([1], p.231); the proof is essentially the proper use of Codazzi's equation and is omitted here.

REMARK 1. Let U be a neighborhood of M^n on which the second fundamental form $\alpha(X, Y)$ does not vanish, and such that f is umbilical on U. Then the mean curvature vector η has constant length on U.

The following proposition and Proposition 5 will show that f is an umbilical immersion on M^n .

PROPOSITION 6. The mean curvature vector η has constant length $||\eta|| > 1$ on M^n .

PROOF. Let $p \in H^{n+p}$ such that L_p is a Morse function. Since M^n is compact, there exists $x \in M^n$ such that L_p has a non-degenerate maximum at x. Hence the index of L_p at x is equal to n.

From Proposition 2, we know there exists r>0 and a unit-length normal $\xi\in T^\perp_x(M^n)$ such that $p=F(x,\,r\xi)$, and we know $A_\xi=cI$ where c>1. Proposition 5 implies that there is a linear function λ on $T^\perp_x(M^n)$ such that $A_\sigma=\lambda(\sigma)I$ for any $\sigma\in T^\perp_x(M^n)$.

Let ξ_1, \dots, ξ_p be an orthonormal basis for $T^1_x(M^n)$ such that $\xi_1 = \xi$. Then

$$\eta(x) = \sum_{j=1}^p \frac{(\operatorname{trace} A_{\xi_j})}{n} \xi_j = \sum_{j=1}^p \frac{n \lambda(\xi_j)}{n} \xi_j = \sum_{j=1}^p \lambda(\xi_j) \xi_j$$

and so $A_{\eta(x)} = (\sum_{j=1}^{p} \lambda^{2}(\xi_{j}))I$.

Since $A_{\eta(x)} = g(\eta(x), \eta(x))I$, we conclude that

$$||\eta(x)||^2=\sum\limits_{j=1}^p\lambda^{\scriptscriptstyle 2}(\xi_j)\geqq\lambda^{\scriptscriptstyle 2}(\xi_{\scriptscriptstyle 1})>1$$
 .

Let $\beta = ||\eta(x)||$ and let

$$S = \{u \in M^n \mid || \eta(u) || = \beta\}.$$

Since $||\eta||$ is continuous on M^n , we know S is closed. However, Proposition 5 and Remark 1 imply that S is open. Since $x \in S$, $S \neq \emptyset$, and the connectedness of M^n implies $S = M^n$. Thus we have $||\eta|| = \beta > 1$ on M^n .

Now Propositions 5 and 6 imply that f is an umbilical immersion of M^n . As we remarked earlier, a compact umbilical M^n immersed H^{n+p} must be a metric sphere S^n , and the proof of Theorem 2 is complete.

3. A remark on the non-compact case. In this section, we note that a result corresponding to that of Nomizu and Rodriguez for the non-compact case does not hold. That is, let M^n be a connected, complete Riemannian manifold isometrically immersed in H^{n+p} . Assume that every Morse function of the form L_p , $p \in H^{n+p}$, has index 0 or n at any of its critical points. Then we cannot conclude that M^n is an umbilical submanifold of H^{n+p} .

The reason why the method of Nomizu and Rodriguez cannot be applied is that there may not be any focal points on the geodesic $\gamma(x,\,\xi,\,r)$ for some $x\in M^n$ and ξ a unit length vector in $T_x^\perp(M^n)$. In fact, this occurs if $|k_i|<1$ for every eigenvalue k_i of A_ξ . Without the existence of a focal point on $\gamma(x,\,\xi,\,r)$, we cannot use the Index Theorem to prove $A_\xi=\lambda I$.

We supply here a simple example of a non-umbilic, complete surface M^2 embedded in H^3 such that every Morse function of the form L_p has index 0 at any of its critical points.

As before, we represent H^3 as a hypersurface of R^4 ; then the surface M^2 is defined by the global parametrization y(s,t) as follows. Consider λ , μ such that $0 < \lambda < 1$ and $\mu = (1 - \lambda^2)^{1/2}$, then

$$y(s, t) = \frac{1}{\mu}(\cosh(\mu t)\cosh s, \lambda \cosh s, \sinh(\mu t)\cosh s, \mu \sinh s)$$
.

Geometrically, M^2 is a cylinder in H^3 over the curve

$$\gamma(t) = \frac{1}{\mu}(\cosh{(\mu t)}, \lambda, \sinh{(\mu t)}, 0)$$

which has constant curvature λ .

BIBLIOGRAPHY

- E. CARTAN, Leçons sur la geometrie des espaces de Riemann, deuxieme edition, Gauthier-Villars, Paris, 1946.
- [2] S. KOBAYASHI AND K. NOMIZU, Foundations of Differential Geometry, Vol. I-II, John Wiley and Sons, Inc., New York, 1963, 1969.
- [3] J. MILNOR, Morse Theory, Ann. of Math. Studies, No. 51, Princeton University Press, 1963.
- [4] K. Nomizu and L. Rodriguez, Umbilical submanifolds and Morse functions, Nagoya Math. J., 48 (1972), 197-201.

DEPARTMENT OF MATHEMATICS VASSAR COLLEGE

