Tôhoku Math. Journ. 26 (1974), 325-332.

ON APPROXIMATELY FINITE ALGEBRAS

YOSHINORI HAGA

(Received March 12, 1973)

1. Introduction. The notion of the approximately finite (hyperfinite) factors on separable Hilbert space was first introduced by Murray and von Neumann [9; Chapter IV]. These are factors of type II₁ which can be suitably approximated by finite dimensional subalgebras. Four kinds of approximate finiteness were given ([9; Def. 4.1.1, 4.3.1, 4.5.2, and 4.6.1]) and it was shown that all of them are equivalent to each other (Theorem XII). We list here two of them, the approximate finiteness (A) and (B).

DEFINITION 1. A factor \mathscr{A} of type II₁ is approximately finite if, for each $\varepsilon > 0$ and each finite set A_1, \dots, A_m of operators in \mathscr{A} , there exists an $n = n(A_1, \dots, A_m, \varepsilon)$ such that for every $q \ge n$ there exists a subfactor of type I_q of \mathscr{A} containing elements B_1, \dots, B_m with $[[B_i - A_i]] < \varepsilon$ for $i = 1, \dots, m$, where $[[\cdot]]$ denotes the trace norm in \mathscr{A} .

DEFINITION 2. A factor \mathscr{A} of type II₁ is approximately finite if, for each $\varepsilon > 0$ and each finite set A_1, \dots, A_m of operators in \mathscr{A} , there exists a finite dimensional *-subalgebra \mathscr{B} of \mathscr{A} containing elements B_1, \dots, B_m such that $[[B_i - A_i]] < \varepsilon$ for $i = 1, \dots, m$.

Now, a finite dimensional *-subalgebra \mathscr{B} is of type I but not of general center. Also in other definitions the sub-algebras \mathscr{B} which approximate \mathscr{A} are required to be factors or of finite dimension. The first purpose of this paper is to show that in Definition 2 the subalgebra \mathscr{B} need not be finite dimensional but only to be of type I (Theorem 1). This result is generalized from the factor case to the case of general center. The notion of approximate finiteness was generalized by Misonou [8] and Widom [12] to the case of von Neumann algebra \mathscr{A} of general center. In this case the type I subalgebra \mathscr{B} which approximates \mathscr{A} is required to have the same center as \mathscr{A} . We shall show that it suffices to require that the center of \mathscr{B} contains the center of \mathscr{A} (Theorem 2). This justifies the definition of approximate finiteness by Golodets [5; Def. 3.1.1]. An application of Theorem 2 will be shown in the last section.

2. Preliminaries. Our main tool is the reduction theory of von

Neumann algebras. Let \mathscr{B} be a von Neumann algebra on a separable Hilbert space \mathscr{H} . Then there exists a complete separable metric space Λ , a finite positive Borel measure μ on Λ , a measurable family of Hilbert spaces $\mathscr{H}(\lambda), \lambda \in \Lambda$, and a measurable family of factors $\mathscr{B}(\lambda)$ on $\mathscr{H}(\lambda)$ such that

$$\mathscr{H} = \int_{A}^{\oplus} \mathscr{H}(\lambda) d\mu(\lambda) \quad ext{and} \quad \mathscr{B} = \int_{A}^{\oplus} \mathscr{B}(\lambda) d\mu(\lambda)$$

([10; Cor. I. 5.10]). This setup describes the central, direct integral decomposition of \mathscr{B} .

If \mathscr{B} is of type I, each $\mathscr{B}(\lambda)$ is a factor of type I for μ -almost all $\lambda \in \Lambda$. Put

$$\Lambda_n = \{\lambda \in \Lambda \,|\, \mathscr{B}(\lambda) \text{ is of type } I_n\}$$

for $1 \leq n \leq \infty$. Then $\mathscr{B}_n = \int_{A_n}^{\oplus} \mathscr{B}(\lambda) d\mu(\lambda)$ is a von Neumann algebra of type I_n on $\mathscr{H}_n = \int_{A_n}^{\oplus} \mathscr{H}(\lambda) d\mu(\lambda)$ and $\mathscr{B} = \sum_{1 \leq n \leq \infty} \bigoplus \mathscr{B}_n$ ([1; III. 3.1]). Each operator $B = \int_{A_n}^{\oplus} B(\lambda) d\mu(\lambda)$ in \mathscr{B}_n may be regarded as an operator in \mathscr{B} defined by $B = \int_{A}^{\oplus} B(\lambda) d\mu(\lambda)$ where $B(\lambda) = 0$ for $\lambda \notin A_n$. Hence, if a faithful normal trace τ is given in \mathscr{B} , the trace norm [[B]] = $\tau(B^*B)^{1/2}$ for B in \mathscr{B}_n will mean always that of B as an element of \mathscr{B} .

LEMMA 1. Let \mathscr{B} be a von Neumann algebra of type $I_n(n < \infty)$ with finite faithful normal trace τ . Then, for each operator B in \mathscr{B} and each $\varepsilon > 0$, there exists a finite dimensional *-subalgebra \mathscr{C} of \mathscr{B} and an operator C in \mathscr{C} such that $[[C - B]] < \varepsilon$.

PROOF. Let $\mathscr{B} = \int_{A}^{\oplus} \mathscr{B}(\lambda) d\mu(\lambda)$ be the central decomposition of \mathscr{B} , each $\mathscr{B}(\lambda)$ hence being a factor of type I_n . So far as algebraic properties concern, we may and do assume that each $\mathscr{B}(\lambda)$ acts on an *n*-dimensional Hilbert space \mathscr{H}_n (cf. [11; Theorem 3]). Let

$$B = \int_{\Lambda}^{\oplus} B(\lambda) d\mu(\lambda)$$

be the decomposition of the operator *B*. Then $\mathscr{B}(\lambda)$ is a μ -measurable operator-valued function on Λ ([10; p. 19]), i.e., $B(\lambda)\xi(\lambda)$ is a μ -measurable vector-valued function (cf. [2; Def. III. 2.10]) for each $\xi(\lambda)$ in the direct integral Hilbert space $\mathscr{H} = \int_{\Lambda}^{\oplus} \mathscr{H}(\lambda) d\mu(\lambda), \ \mathscr{H}(\lambda) = \mathscr{H}_n$. Hence ([2; III. 2.7]) there exists a sequence of μ -simple vector-valued functions $\eta_k(\lambda)$ ($k = 1, 2, \cdots$) such that, for each $\varepsilon > 0$,

APPROXIMATELY FINITE ALGEBRAS

$$\mu\{\lambda \in A \mid ||B(\lambda)\xi(\lambda) - \eta_k(\lambda)|| > \varepsilon\}
ightarrow 0$$

as $k \to \infty$. Let $\{\xi_p\}_{1 \le p \le n}$ be a fixed basis of \mathscr{H}_n . Then we may choose sequences of vector-valued functions $\{\eta_{p,k}(\lambda)\}_{k=1,2,\dots}$ $(p = 1, \dots, n)$ such that

$$||B(\lambda)\xi_p - \eta_{p,k}(\lambda)|| \to 0 \qquad (k \to \infty)$$

in μ -measure. Clearly we may assume the functions $||\eta_{p,k}(\lambda)||$ to be uniformly bounded. Define the operator-valued functions $B_k(\lambda)$ by

$$B_k(\lambda)\xi_p = \eta_{p,k}(\lambda)$$
.

Then we see easily that $B_k(\lambda)$ are well-defined and bounded, that $B_k(\lambda)\xi$ converges to $B(\lambda)\xi$ in μ -measure for each $\xi \in \mathscr{H}_n$ and that each $B_k(\lambda)\xi$ is μ -simple for each $\xi \in \mathscr{H}_n$ since $B_k(\lambda)\xi_p$ are μ -simple. Hence each $B_k(\lambda)$ is a μ -simple function and the direct integral operator

$$B_k = \int_{\Lambda}^{\oplus} B_k(\lambda) d\mu(\lambda) \qquad (k = 1, 2, \cdots)$$

is clearly in \mathscr{B} . By the uniform boundedness of $||\eta_{p,k}(\lambda)||$ we see that

 $\sup_k ||B_k|| < \infty$

and hence that B_k converges strongly to B ([10; Lemma I. 3.6]). Therefore, if we put $C = B_k$ for sufficiently large k, we see that

$$[[C-B]] < \varepsilon$$

([9; Lemma 1.3.2]).

Now the function $C(\lambda) = B_k(\lambda)$ takes a finite number of values, say, $C^{(1)}, \dots, C^{(r)}$ and the set

$$\Lambda_j = \{\lambda \in \Lambda \,|\, C(\lambda) = C^{(j)} \,|\, (j = 1, \, \cdots, \, r)\}$$

are all measurable. Since the von Neumann algebra generated by $C^{(j)}$ on $\int_{A_j}^{\oplus} \mathscr{H}(\lambda) d\mu(\lambda)$ has a finite linear basis composed of matrix units, the von Neumann algebra \mathscr{C} generated by

$$C = \sum_{j=1}^{r} \bigoplus \int_{A_j}^{\oplus} C(\lambda) d\mu(\lambda)$$

is also a finite dimensional subalgebra of *B*.

COROLLARY. Let \mathscr{B} be a type I_n subalgebra of a factor \mathscr{A} of type I_1 and B_1, \dots, B_m a finite set of operators in \mathscr{B} . Then, for each $\varepsilon > 0$, there exists a finite dimensional *-subalgebra \mathscr{C} of \mathscr{B} containing elements C_1, \dots, C_m such that

$$[[C_i - B_i]] < \varepsilon$$
 $(i = 1, \dots, m)$.

Y. HAGA

PROOF. According to the above lemma, there exists for each operator B_i an operator $C_i = \int_{A}^{\oplus} C_i(\lambda) d\mu(\lambda)$ such that $[[C_i - B_i]] < \varepsilon$, where each $C_i(\lambda)$ takes only a finite number of values $C_i^{(1)}, \dots, C_i^{(r_i)}$. Then, for any sequence $\{j_i\}$ $(i = 1, \dots, m; 1 \leq j_i \leq r_i)$, the set

$$\Lambda_{j_1 \dots j_m} = \{ \lambda \in \Lambda \, | \, C_i(\lambda) = C_i^{(j_i)} \quad \text{for} \quad 1 \leq i \leq m \}$$

is measurable and we see that each von Neumann algebra generated by $C_{i}^{(j_i)}(i=1,\dots,m)$ on $\int_{A_{j_1,\dots,j_m}}^{\oplus} \mathscr{H}(\lambda)d\mu(\lambda)$ is of finite dimension by the same argument as in Lemma 1. Therefore, the von Neumann algebra generated by $C_i = \int_{A}^{\oplus} C_i(\lambda)d\mu(\lambda)$ $(i=1,\dots,m)$ is a finite dimensional subalgebra of \mathscr{B} .

3. Approximate finiteness. First we prove that in Definition 2 the algebra \mathscr{B} need only to be of type I.

THEOREM 1. Let \mathscr{A} be a factor of type II₁. If, for each $\varepsilon > 0$ and each finite set A_1, \dots, A_m of operators in \mathscr{A} , there exists a subalgebra \mathscr{B} of type I (not necessarily a factor) containing elements B_1, \dots, B_m such that $[[B_i - A_i]] < \varepsilon$ for $i = 1, \dots, m$, then \mathscr{A} is approximately finite.

PROOF. If we show the existence of a finite dimensional *-subalgebra \mathscr{C} of \mathscr{A} and operators C_1, \dots, C_m in \mathscr{C} such that $[[C_i - B_i]] < \varepsilon$, then, combining with the assumption, we see that $[[C_i - A_i]] < 2\varepsilon$ $(i = 1, \dots, m)$ and hence that \mathscr{A} is an approximately finite factor by Definition 2.

Let $\mathscr{B} = \int_{\Lambda}^{\oplus} \mathscr{B}(\lambda) d\mu(\lambda)$ be the central, direct integral decomposition of \mathscr{B} . Put

$$\Lambda_n = \{\lambda \in \Lambda \mid \mathscr{B}(\lambda) \text{ is a } I_n \text{-factor} \}$$

and

$$\Lambda_n = \Lambda - \bigcup_{k=1}^n \Lambda_k$$
.

Since \mathscr{B} is finite and of type I, we have, for each $\varepsilon < 0$,

$$\mu(A_s) < arepsilon/2 \left(\sup_i ||B_i||
ight)$$

for sufficiently large s, where $B_i(1 \le i \le m)$ are given operators. For each operator $B_i = \int_{a}^{\oplus} B_i(\lambda) d\mu(\lambda)$, put

$$B_{i,n} = \int_{\Lambda_n}^{\oplus} B_i(\lambda) d\mu(\lambda) \; .$$

Then, for each von Neumann algebra

328

APPROXIMATELY FINITE ALGEBRAS

$$\mathscr{B}_n = \int_{A_n}^{\oplus} \mathscr{B}(\lambda) d\mu(\lambda) \quad \text{on} \quad \mathscr{H}_{A_n} = \int_{A_n}^{\oplus} \mathscr{H}(\lambda) d\mu(\lambda)$$

 $(n = 1, \dots, s)$, there exists by the above corollary a finite dimensional *-subalgebra \mathcal{C}_n containing operators $C_{1,n}, \dots, C_{m,n}$ such that

$$[[C_{i,n}-B_{i,n}]] .$$

On the residual Hilbert space $\mathscr{H}_{\widetilde{\lambda}_s} = \int_{\widetilde{\lambda}_s}^{\oplus} \mathscr{H}(\lambda) d\mu(\lambda)$ we define $\widetilde{\mathscr{C}}_s$ to be the von Neumann algebra composed of only scalar multiples of the identity operator on $\mathscr{H}_{\widetilde{\lambda}_s}$. Then the direct sum

$$\mathscr{C} = \left(\sum_{n=1}^{s} \bigoplus \mathscr{C}_{n}\right) \bigoplus \widetilde{\mathscr{C}}_{s}$$

is clearly of finite dimension. Put $C_i = (\sum_{n=1}^{s} \bigoplus C_{i,n}) \bigoplus 0$. Since

$$\left[\left[\left[\int_{\widetilde{\mathcal{I}}_s}^{\oplus} B_i(\lambda) d\mu(\lambda)
ight]
ight] \leq \mathrm{ess.} \sup_{\lambda \in \widetilde{\mathcal{I}}_s} \left\| B_i(\lambda)
ight\| \mu(\widetilde{\mathcal{A}}_s) \ < \|B_i\| \cdot arepsilon/2 \sup_i \|B_i\| \leq arepsilon/2$$

we have

$$egin{aligned} & [[C_i-B_i]] = \sum\limits_{n=1}^s \left[[C_{i,n}-B_{i,n}]
ight] + \left\lfloor \left\lfloor \int_{\widetilde{eta}_s}^\oplus B_i(\lambda) d\, \mu(\lambda)
ight
floor
ight
floor \ & < s \cdot arepsilon/2s \, + \, arepsilon/2 \, = \, arepsilon \ . \end{aligned}$$

This completes the proof of the theorem.

Next we generalize this theorem to the case of general center. Hereafter \mathscr{A} denotes a von Neumann algebra of type II_1 with a faithful normal trace τ . For $A \in \mathscr{A}$, define the trace norm $[[A]] = \tau (A^*A)^{1/2}$.

DEFINITION 3. \mathscr{A} is called approximately finite if, for each $\varepsilon > 0$ and each finite set of operators A_1, \dots, A_m , there exists a type I subalgebra \mathscr{B} of \mathscr{A} with center $\mathscr{X}_{\mathscr{A}}$ identical with the center $\mathscr{X}_{\mathscr{A}}$ of \mathscr{A} and a sequence of operators B_1, \dots, B_m in \mathscr{B} such that $[[A_i - B_i]] < \varepsilon$ $(i = 1, \dots, m)$.

In the terminology of Widom [11], this is approximate finiteness (A2). The condition $\mathscr{X}_{\mathscr{I}} = \mathscr{X}_{\mathscr{P}}$ has also been required in [8; Def. 3.1]. Recently, Golodets [5] has defined approximately finite algebra as the von Neumann algebra satisfying the conditions in Definition 3 but replacing $\mathscr{X}_{\mathscr{I}} = \mathscr{X}_{\mathscr{P}}$ by $\mathscr{X}_{\mathscr{I}} \subseteq \mathscr{X}_{\mathscr{P}}$. He has given no explicit proof of the equivalence of these two definitions. Our generalization is nothing but to show the validity of this replacement.

Y. HAGA

THEOREM 2. Let \mathscr{S} be a von Neumann algebra of type II_1 with a faithful normal trace τ . If, for each $\varepsilon > 0$ and each finite set A_1, \dots, A_m of operators in \mathscr{S} , there exists a subalgebra \mathscr{B} of type I with center $\mathscr{X}_{\mathscr{S}}$ containing the center $\mathscr{X}_{\mathscr{S}}$ of \mathscr{S} and operators B_1, \dots, B_m in \mathscr{B} such that $[[B_i - A_i]] < \varepsilon (i = 1, \dots, m)$, then \mathscr{S} is an approximately finite algebra.

PROOF. Let $\mathscr{A} = \int_{\Lambda}^{\oplus} \mathscr{A}(\lambda) d\mu(\lambda)$ be the central, direct integral decomposition of \mathscr{A} , each $\mathscr{A}(\lambda)$ being hence a II₁-factor for almost all $\lambda \in \Lambda$. Since $\mathscr{X}_{\mathscr{A}} \supseteq \mathscr{X}_{\mathscr{A}}, \mathscr{B}$ is decomposable as $\int_{\Lambda}^{\oplus} \mathscr{B}(\lambda) d\mu(\lambda)$ where each $\mathscr{B}(\lambda)$ is a subalgebra of type I of $\mathscr{A}(\lambda)$ ([10; Lemma I. 5.6 and Theorem I. 5.9]). The trace τ has the expression

$$au(A) = \int_A f(\lambda) au_\lambda(A(\lambda)) d\mu(\lambda)$$

for $A = \int_{\Lambda}^{\oplus} A(\lambda) d\mu(\lambda) \in \mathcal{A}$, where τ_{λ} is the normalized trace in $\mathcal{A}(\lambda)$ and $f(\lambda)$ is a function belonging to $L_1(\Lambda, \mu)$ and positive almost everywhere ([10; Theorem III. 1.13]). Then, for almost all $\lambda \in \Lambda$ and each $\varepsilon > 0$, there exist by the assumption operators B_1, \dots, B_m in \mathcal{B} such that

$$[[B_i(\lambda) - A_i(\lambda)]]_{\lambda} < \varepsilon$$

where $[[A(\lambda)]]_{\lambda} = \tau_{\lambda}(A(\lambda)^*A(\lambda))^{1/2}$. Therefore, almost all of the factors $\mathscr{N}(\lambda)$ are approximately finite by Theorem 1. Hence \mathscr{N} is isomorphic to the tensor product $\mathscr{K} \otimes \mathscr{M}_0$ of the center $\mathscr{K} = L^{\infty}(\Lambda, \mu)$ and an approximately finite factor \mathscr{M}_0 ([11; Theorem 3]). Since this is a von Neumann algebra generated by the simple functions in $L^{\infty}(\Lambda, \mu)$ and \mathscr{M}_0 , we may assume that each operator A_i given in the assumption is the direct integral of a μ -simple operator-valued function $A_i(\lambda)$ which takes a finite number of values, say, $A_i^{(j)} \in \mathscr{M}_0$ $(j = 1, \dots, r_i)$. Put

$$\Lambda_{j_1\cdots j_m} = \{\lambda \in \Lambda \,|\, A_i(\lambda) = A_i^{(j_i)} \ (i = 1, \ \cdots, \ m)\} \ .$$

According to Definition 1, for each (j_1, \dots, j_m) and each $\varepsilon > 0$, there exists an integer $n = n(j_1, \dots, j_m, \varepsilon)$ such that for every integer $q \ge n$ there exists a subfactor $\mathscr{C}_{j_1 \dots j_m}$ of type I_q of \mathscr{N}_0 containing elements $C_1^{(j_1)}, \dots, C_m^{(j_m)}$ with

$$[[C_i^{(j_i)} - A_i^{(j_i)}]]_{\lambda} < \varepsilon \quad (i = 1, \cdots, m; \lambda \in \Lambda_{j_1, \cdots, j_m}).$$

Taking the maximum of $n(j_1, \dots, j_m, \varepsilon)$ for all (j_1, \dots, j_m) , we may assume that n depends only on ε . Therefore, putting $\mathscr{C}(\lambda) = C_{j_1 \dots j_m}$ for $\lambda \in A_{j_1 \dots j_m}$, we get a measurable family $\{\mathscr{C}(\lambda)\}$ of type I factors. The

330

operator-valued functions $\mathscr{C}_i(\lambda)$ defined by

$$C_i(\lambda) = C_i^{(j_i)}$$
 for $\lambda \in \Lambda_{j_1 \dots j_m}$

 $(i = 1, \dots, m)$ are all measurable and the direct integral operators $C_i = \int_{A}^{\oplus} C_i(\lambda) d\mu(\lambda)$ clearly belongs to the type I algebra $C = \int_{A}^{\oplus} \mathscr{C}(\lambda) d\mu(\lambda)$ which has the same center as \mathscr{N} . Further,

$$egin{aligned} & \left[\left[C_i-A_i
ight]
ight] = \{ au[(C_i-A_i)^*(C_i-A_i)]\}^{1/2} \ & = \left\{\int_A f(\lambda) au_\lambda[(C_i(\lambda)-A_i(\lambda))^*(C_i(\lambda)-A_i(\lambda))]d\mu(\lambda)
ight\}^{1/2} \ & < arepsilon \left\{\int_A f(\lambda)d\mu(\lambda)
ight\}^{1/2} \quad (i=1,\,\cdots,\,m) \;. \end{aligned}$$

Thus \mathscr{C} is a type I subalgebra of \mathscr{A} with the same center as \mathscr{A} and contains operators C_1, \dots, C_m which approximate A_1, \dots, A_m . Therefore, \mathscr{A} is an approximately finite algebra.

4. An application. As an application of Theorem 2, we generalize a theorem of Dye [4; Cor. 6.1] which essentially shows the approximate finiteness of the cross product $G \otimes \mathscr{A}$ of an abelian von Neumann algebra \mathscr{A} by an approximately finite group G of its automorphisms. For the definition of the approximately finite group, see [3; Def. 5.1]. In his proof the approximation of $G \otimes \mathscr{A}$ by a type I subalgebra with center larger than that of $G \otimes \mathscr{A}$ is achieved rather easily and the proof is, for the most part, devoted to the discussion of the center of the type I subalgebra. We can slightly generalize this result as follows.

THEOREM 3. If \mathscr{A} is a finite von Neumann algebra of type I and G is a group of automorphisms of \mathscr{A} acting freely and approximately finite on the center of \mathscr{A} , then the cross product $G \otimes \mathscr{A}$ is approximately finite.

Some generalizations of Dye's results to the cross product have been investigated in [6] and [7]. According to [7; Theorem 4.10], we may follow the first paragraph of the proof of [4; Cor. 6.1] word for word. Then by Theorem 2 we get the conclusion of Theorem 3 without complicated discussion for the coincidence of the center of \mathcal{A} and that of type I subalgebra which approximates \mathcal{A} .

References

- [1] J. DIXMIER, Les algèbres d'opérateurs dans l'espace Hilbertien, Gauthier-Villars, Paris, 1957.
- [2] N. DUNFORD AND J. T. SCHWARTZ, Linear Operators, Part I, Interscience, New York, 1958.

Y. HAGA

- [3] H. A. DYE, On groups of measure preserving transformations I, Amer. J. Math., 81 (1959), 119-159.
- [4] —, On groups of measure preserving transformations II, Amer. J. Math., 85 (1963), 551-576.
- [5] V. JA. GOLODETS, Crossed products of von Neumann algebras, Uspekhi Mat. Nauk, 26 (1971), 3-50 (Russian).
- [6] Y. HAGA AND Z. TAKEDA, Correspondence between subgroups and subalgebras in a cross product von Neumann algebra, Tôhoku Math. J., 24 (1972), 167-190.
- Y. HAGA, On subalgebras of a cross product von Neumann algebra, Tôhoku Math. J., 25 (1973), 291-305.
- [8] Y. MISONOU, Generalized approximately finite W*-algebras, Tôhoku Math. J., 7 (1955), 192-205.
- [9] F. J. MURRAY AND J. VON NEUMANN, On rings of operators IV, Ann. Math., 44 (1943), 716-808.
- [10] J. T. SCHWARTZ, W*-Algebras, Gordon and Breach, New York, 1967.
- M. TAKESAKI, Remarks on the reduction theory of von Neumann algebras, Proc. Amer. Math Soc., 20 (1969), 434-438.
- [12] H. WIDOM, Approximately finite algebras, Trans. Amer. Math. Soc., 83 (1956), 275-280.

Faculty of Engineering Ibaragi University Hitachi, Japan.

332