A CHARACTERIZATION OF BIPOLAR MINIMAL SURFACES IN S^{4}

Katsuei Kenmotsu

(Received November 21, 1973)

1. Introduction. There is a generalized Clifford surface on any odd dimensional unit sphere, which is the image of a minimal immersion of R^{2} [5]. It is an interesting problem to study minimal immersions of a torus into an even dimensional sphere. As such an example, we know the Lawson's bipolar surface of a torus [7]. It is a minimal immersion of a torus into a 4-dimensional unit sphere. Let $S^{n} \subset R^{n+1}$ be an n dimensional unit sphere and M an oriented Riemannian 2-manifold. Let $x: M \rightarrow S^{3}$ be a minimal immersion. The associated Gauss map $x^{*}: M \rightarrow$ S^{3} is defined pointwise as the image of the unit normal in S^{3} translated to the origin of R^{4}. We view each map as R^{4}-valued and define $\tilde{x}: M \rightarrow$ $S^{6} \subset R^{6}$ by $\tilde{x}=x \wedge x^{*}$. (We identify $\Lambda^{2} R^{4}$ with R^{6}.) This mapping induces a non-singular metric on M of the form $d \widetilde{s}^{2}=(2-K) d s^{2}$, where K is the Gaussian curvature for the metric induced by x. It is easy to see that \tilde{x} is also a minimal immersion of M into S^{5} by the calculation of the Laplacian of \widetilde{x} [7]. Following Lawson, we shall call this surface the bipolar surface of $x: M \rightarrow S^{3}$. He has shown that the bipolar surface of the minimal torus, $\tau_{m, k}$, is contained in an $S^{4} \subset S^{5}$ where none of the images lies in an $S^{3} \subset S^{4}$. His proof depends heavily on the last theorem of W. Y. Hsiang and H. B. Lawson, Jr [4].

The purpose of this paper is to calculate the local invariants of the bipolar surface by means of the local terminologies of x, and we can show the bipolar surface of a torus is not an R-surface. I think that this is the first example of surfaces which are not R-surfaces (cf. [10]). As a byproduct, we obtain a very elementary proof of the above Lawson's result. At last, we give a characterization of the bipolar minimal surface in S^{4}. Our results are stated in the Theorems $1,2,3$ and 4.

In this paper, we use freely the concept and the elementary results of higher fundamental forms of \tilde{x} [5].
2. Frames on the bipolar surface. Since $\S \S 2,3$ and 4 are a local theory, we assume that the minimal immersion x of M is not totally geodesic at every point of M. The 2nd fundamental tensor $h_{i j}$ has different
eigenvalues at each point of M. Let $e_{i}, i=1,2$, be local tangent unit vector fields on M such that the 2nd fundamental tensor field is diagonalized. We denote the eigenvalue corresponding to the e_{1} by h. The Gauss equation is, then, represented by

$$
\begin{equation*}
1+h^{2}=2-K \tag{2.1}
\end{equation*}
$$

Let $\left\{w_{i}\right\}$ be the dual basis of $\left\{e_{i}\right\}$ and w_{12} the connection form on M for x. By the Codazzi equations and the definition of the covariant derivatives, we obtain

$$
\begin{equation*}
d h+i\left(2 h w_{12}\right)=\left(h_{; 1}+i h_{;}\right)\left(w_{1}-i w_{2}\right), \tag{2.2}
\end{equation*}
$$

where the semi-colon is the covariant derivatives of $h_{i j}$ and $h_{i 1}=h_{11: 1}, h_{i 2}=$ $h_{11 ; 2}$. Let e_{3} be the unit normal vector field of x and $\tilde{x}=x \wedge e_{3}$. Let

$$
\begin{equation*}
\widetilde{e}_{1}=\frac{(-1)}{\sqrt{2-K}}\left(h x+e_{3}\right) \wedge e_{1}, \quad \widetilde{e}_{2}=\frac{1}{\sqrt{2-K}}\left(h x-e_{3}\right) \wedge e_{2} \tag{2.3}
\end{equation*}
$$

where we remark that e_{i} and e_{3} are considered as maps of M into S^{3} in R^{4}. The local frame field $\left\{\widetilde{e}_{i}\right\}$ is tangent to $\widetilde{x}(M)$ and we have $d \tilde{x}=$ $\sum_{i} \widetilde{w}_{i} \tilde{e}_{i}$, where $\widetilde{w}_{i}=\sqrt{2-K} w_{i}$.

We define unit normal vector (local) fields $\widetilde{e}_{\alpha}, 3 \leqq \alpha, \beta \leqq 5$, of \widetilde{x} in S^{5} as follows:

$$
\begin{align*}
& x \wedge e_{1}=\frac{1}{\sqrt{2-K}}\left(\widetilde{e}_{3}-h \widetilde{e}_{1}\right), \quad x \wedge e_{2}=\frac{1}{\sqrt{2-K}}\left(\widetilde{e}_{4}+h \widetilde{e}_{2}\right) \tag{2.4}\\
& e_{1} \wedge e_{2}=\widetilde{e}_{8}
\end{align*}
$$

Then $\left\{\tilde{x}, \tilde{e}_{i}, \tilde{e}_{\alpha}\right\}$ is an orthonormal frame field on $\widetilde{x}(M)$ in $S^{s} \subset R^{6}$ and we have

$$
\begin{equation*}
e_{1} \wedge e_{3}=\frac{1}{\sqrt{2-\bar{K}}}\left(h \widetilde{e}_{3}+\widetilde{e}_{1}\right), \quad e_{2} \wedge e_{3}=\frac{1}{\sqrt{2-K}}\left(-h \widetilde{e}_{4}+\widetilde{e}_{2}\right) \tag{2.5}
\end{equation*}
$$

3. Formulae for $d \widetilde{e}_{i}$. We wish to calculate the $d \widetilde{e}_{i}$. Let $\langle\cdot, \cdot\rangle$ be the inner product of R^{4}. Since we have $\left\langle d e_{i}, x\right\rangle=-w_{i}$, by virtue of (2.3), (2.4) and (2.5), we get

$$
\begin{align*}
d \widetilde{e}_{1}= & -\sqrt{2-K} w_{1} \tilde{x}+\frac{1-h^{2}}{1+h^{2}} w_{12} \widetilde{e}_{2}-\frac{1}{2-K} d h \widetilde{e}_{3} \tag{3.1}\\
& -\frac{2 h}{2-K} w_{12} \widetilde{e}_{4}+\frac{2 h}{\sqrt{2-K}} w_{2} \widetilde{e}_{5}
\end{align*}
$$

By the same method, we have

$$
\begin{align*}
d \widetilde{e}_{2}= & -\sqrt{2-K} w_{2} \tilde{x}-\frac{1-h^{2}}{1+h^{2}} w_{12} \widetilde{e}_{1}-\frac{2 h}{2-K} w_{12} \widetilde{e}_{3} \tag{3.2}\\
& +\frac{1}{2-K} d h \widetilde{e}_{4}+\frac{2 h}{\sqrt{2-K}} w_{1} \widetilde{e}_{5} .
\end{align*}
$$

Thus we have

$$
\begin{array}{ll}
\tilde{w}_{14}=\tilde{w}_{23}=\frac{-2 h}{2-K} w_{12}, & \tilde{w}_{15}=\frac{2 h}{2-K} \tilde{w}_{2} \\
\tilde{w}_{24}=-\tilde{w}_{13}=\frac{d h}{2-K}, & \tilde{w}_{25}=\frac{2 h}{2-K} \tilde{w}_{1} \tag{3.4}
\end{array}
$$

In particular we get

$$
\begin{equation*}
\tilde{h}_{311}=-\tilde{h}_{412}, \tilde{h}_{411}=\tilde{h}_{312}, \tilde{h}_{511}=0 \tag{3.5}
\end{equation*}
$$

(3.3) and (3.4) show that \tilde{x} is a minimal immersion.

We set

$$
\begin{equation*}
\sigma^{2}=\sum_{\alpha} \tilde{h}_{\alpha 11}^{2} \quad \text { and } \quad \tau^{2}=\sum_{\beta} \tilde{h}_{\beta 12}^{2} \tag{3.6}
\end{equation*}
$$

By (3.4) and (3.5), we can verify

$$
\begin{equation*}
\sigma^{2}=\frac{1}{(2-K)^{3}}\left(h_{i 1}^{2}+h_{: 2}^{2}\right) \quad \text { and } \quad \tau^{2}=\sigma^{2}+\frac{4 h^{2}}{\left(1+h^{2}\right)^{2}} \tag{3.7}
\end{equation*}
$$

We remark that σ^{2} and τ^{2} are invariants of $x(M)$. By (2.1) and (2.2), $\sigma=0$ at $p \in M$ if and only if $d K=0$ at $p \in M$. We know that by (3.5), we have also

$$
\begin{equation*}
\widetilde{K}_{(2)}=\sigma^{2}+\tau^{2}, \widetilde{N}_{(2)}=\sigma^{2} \tau^{2} \quad \text { and } \quad \tilde{f}_{(2)}=\left(\tau^{2}-\sigma^{2}\right)^{2} \tag{3.8}
\end{equation*}
$$

(See [5] for the definitions of the above invariants of \tilde{x}.) We remark that we have $\tilde{f}_{(2)} \leqq 1$ since h^{2} is real in the second formula of (3.7). Since the immersion x is not totally geodesic at any point of M, we have $\tau^{2}>$ 0 on M and $\tilde{f}_{(2)}>0$ on $\widetilde{x}(M)$.
$\tilde{N}_{(2)}=0$ on $\widetilde{x}(M)$ if and only if $\sigma^{2}=0$ on $x(M)$. Therefore, $\tilde{N}_{(2)}=0$ on $\widetilde{x}(M)$ if and only if $d K=0$ on $x(M)$. By an Otsuki's lemma [8, p. 96] or [5, Lemma 2], if $\tilde{N}_{(2)} \equiv 0$, then $\widetilde{x}(M)$ is contained in a 3-dimensional space of constant curvature 1 in S^{5}.

Next, taking the exterior derivative of the first formula in (2.4), we have

$$
\begin{equation*}
\widetilde{w}_{34}=\widetilde{w}_{12}=\frac{1-h^{2}}{1+h^{2}} w_{12}, \quad \widetilde{w}_{35}=-\left(\frac{1-h^{2}}{1+h^{2}}\right) \widetilde{w}_{2} \tag{3.9}
\end{equation*}
$$

By the similar way, we have

$$
\begin{equation*}
\widetilde{w}_{45}=\frac{1-h^{2}}{1+h^{2}} \widetilde{w}_{1} \tag{3.10}
\end{equation*}
$$

Summarizing up these result, we have
TheOrem 1. Let $x: M \rightarrow S^{3}$ be an isometric minimal immersion of an oriented Riemannian 2-manifold into S^{3}. Let \tilde{x} be the bipolar surface of x. We assume that x is not totally geodesic at any point of M. Then \tilde{x} is a minimal immersion of M into S^{5}. \tilde{x} is not totally geodesic on M and $0<\widetilde{f}_{(2)} \leqq 1$ on $\widetilde{x}(M)$.
$\widetilde{x}(M)$ is contained in a 3-dimensional space of constant curvature 1 in S^{5} if and only if the Gaussian curvature by the induced metric of x is constant on M.

Remark. By a Lawson's result [6], such a K takes only the values 0 or 1.
4. 3rd fundamental form of \widetilde{x}. From now on we shall assume $\sigma \neq 0$ on M. We wish to study the 3 rd fundamental form of \widetilde{x}. Let

$$
\begin{equation*}
e_{3}^{*}=\frac{1}{\sigma} \sum_{\alpha} \tilde{h}_{\alpha 11} \widetilde{e}_{\alpha}, \quad e_{4}^{*}=\frac{1}{\tau} \sum_{\alpha} \widetilde{h}_{\alpha 12} \widetilde{e}_{\alpha} . \tag{4.1}
\end{equation*}
$$

(3.5) implies that unit normal vector local fields e_{3}^{*} and e_{4}^{*} are orthogonal. Since we have

$$
\sigma e_{3}^{*}+i \tau e_{4}^{*}=\left(\widetilde{h}_{311}+i \widetilde{h}_{312}\right)\left(\widetilde{e}_{3}-i \widetilde{e}_{4}\right)+i \widetilde{h}_{512} \widetilde{e}_{5}
$$

we obtain, by (3.5),
(4.2) $d\left(\widetilde{e}_{1}+i \widetilde{e}_{2}\right)=-\left(\widetilde{w}_{1}+i \widetilde{w}_{2}\right) \tilde{x}-i \widetilde{w}_{12}\left(\widetilde{e}_{1}+i \widetilde{e}_{2}\right)+\left(\widetilde{w}_{1}-i \widetilde{w}_{2}\right)\left(\sigma e_{3}^{*}+i \tau e_{4}^{*}\right)$.

We define a unit normal local vector field e_{5}^{*} by

$$
\begin{equation*}
e_{5}^{*}=\frac{1}{\sigma}\left\{\tilde{h}_{512} e_{4}^{*}-\tau \widetilde{e}_{5}\right\} \tag{4.3}
\end{equation*}
$$

We can then verify that e_{5}^{*} is orthogonal to e_{3}^{*} and e_{4}^{*}. The formula (4.2) implies

$$
\begin{align*}
& w_{13}^{*}=\sigma \tilde{w}_{1}, w_{14}^{*}=\tau \tilde{w}_{2}, w_{i 5}^{*}=0, i=1,2, \tag{4.4}\\
& w_{23}^{*}=-\sigma \tilde{w}_{2}, w_{24}^{*}=\tau \widetilde{w}_{1}
\end{align*}
$$

The 2nd osculating space is, then, spanned by e_{3}^{*} and e_{4}^{*}. We have, taking the exterior derivatives of $w_{i 5}^{*}=0$,

$$
\begin{align*}
& \widetilde{D} h_{511}^{*}=\sigma w_{35}^{*}=h_{511,1}^{*} \widetilde{w}_{1}+h_{511,2}^{*} \widetilde{w}_{2}, \\
& \widetilde{D} h_{512}^{*}=\tau w_{45}^{*}=h_{51,2}^{*} \widetilde{w}_{1}-h_{51,1}^{*} \tilde{w}_{2}, \tag{4.5}
\end{align*}
$$

where $h_{b i j k}^{*}=h_{b i j, k}^{*}$ are the 3 rd fundamental tensors of \tilde{x} (see [5]) and \tilde{D}
is the covariant differential operator of the van der Waerden-Bortolotti for the immersion $\widetilde{x}: M \rightarrow S^{5}$. Thus $\widetilde{D} h_{b i j}^{*}=0$ is equivalent to $w_{35}^{*}=0$. As the 3rd order invariant $\widetilde{K}_{(3)}$ is defined by $\widetilde{K}_{(3)}=\left(h_{5111}^{*}\right)^{2}+\left(h_{5112}^{*}\right)^{2}, \widetilde{K}_{(3)}=$ 0 is equivalent to $w_{35}^{*}=0$. Therefore, we shall represent w_{35}^{*} by means of the terminologies of x. At first we find

$$
\begin{equation*}
\sum_{\alpha=3}^{4} \widetilde{h}_{\alpha 11} d \widetilde{e}_{\alpha}=-\tau \widetilde{w}_{12} e_{4}^{*}+\left\{\text { terms of } \widetilde{e}_{i}\right\} \tag{4.6}
\end{equation*}
$$

We prove (4.6) as follows: By (3.5), the left hand side of (4.6) is equal to $-\widetilde{h}_{412} d \widetilde{e}_{3}+\widetilde{h}_{312} d \widetilde{e}_{4}$. We have, by (3.3), (3.5) and (3.9),

$$
\begin{equation*}
\frac{1-h^{2}}{1+h^{2}}\left(\widetilde{h}_{411} \widetilde{w}_{1}-\widetilde{h}_{311} \widetilde{w}_{2}\right)=-\widetilde{h}_{512} \widetilde{w}_{12} \tag{4.7}
\end{equation*}
$$

From (3.5), (3.9), (3.10) and (4.7), (4.6) follows.
By virtue of (3.5) and the latter half of (4.1), we have

$$
\begin{equation*}
d\left(\frac{\tilde{h}_{311}}{\sigma}\right) \widetilde{e}_{3}+d\left(\frac{\widetilde{h}_{411}}{\sigma}\right) \widetilde{e}_{4}=\sigma^{-3} \tau \Phi\left(\tau e_{4}^{*}-\tilde{h}_{512} \widetilde{e}_{5}\right), \tag{4.8}
\end{equation*}
$$

where $\Phi=\tau^{-1}\left(\widetilde{h}_{322} d \widetilde{h}_{311}-\widetilde{h}_{311} d \widetilde{h}_{312}\right)$. Thus we get from (4.6) and (4.8),

$$
\begin{equation*}
\sigma w_{34}^{*}=-\tau \tilde{w}_{12}+\Phi \quad \text { and } \quad \sigma w_{35}^{*}=\frac{2 h}{\sigma(2-K)} \Phi \tag{4.9}
\end{equation*}
$$

As we have

$$
\tilde{h}_{311}=-\left(1+h^{2}\right)^{-3 / 2} h_{; 1} \quad \text { and } \quad \tilde{h}_{312}=-\left(1+h^{2}\right)^{-3 / 2} h_{i 2},
$$

we get

$$
\begin{equation*}
\Phi=\frac{1}{\tau\left(1+h^{2}\right)^{3}}\left(h_{; 2} d h_{; 1}-h_{; 1} d h_{; 2}\right) . \tag{4.10}
\end{equation*}
$$

We shall state the properties of $\widetilde{K}_{(3)}$ in the following form.
Theorem 2. Let M be an oriented Riemannian 2-manifold and let $x: M \rightarrow S^{3}$ be an isometric minimal immersion with $\sigma \neq 0$ on M and not totally geodesic at any point of M. Let $\left\{e_{i}\right\}$ be the local principal vector fields of x. Then the 3 rd fundamental form of \tilde{x} is given by (4.9) and (4.10).
$\widetilde{K}_{(3)}=0$ on $\widetilde{x}(M)$ if and only if $e_{1}(h): e_{2}(h)$ is constant on the each domain of definition.
5. The case of $\tau_{m, k}$. As an application, we shall study the bipolar surface $\tilde{\tau}_{m, k}$ of a minimal torus, $\tau_{m, k}$. The $\tau_{m, k}(m \geqq k \geqq 1)$ is defined by the image of the doubly periodic immersion $\Psi: R^{2} \rightarrow S^{3}$ given by
(5.1) $\Psi\left(x_{1}, x_{2}\right)=\left(\cos m x_{1} \cos x_{2}, \sin m x_{1} \cos x_{2}, \cos k x_{1} \sin x_{2}, \sin k x_{1} \sin x_{2}\right)$.

Then the first fundamental form of $\tau_{m, k}$ is

$$
\begin{equation*}
\sum_{i, j} g_{i j} d x_{i} d x_{j}=g^{2}\left(x_{2}\right) d x_{1}^{2}+d x_{2}^{2} \tag{5.2}
\end{equation*}
$$

where $g^{2}\left(x_{2}\right)=m^{2} \cos ^{2} x_{2}+k^{2} \sin ^{2} x_{2}$.
The vector-valued second fundamental form can be expressed as

$$
\begin{equation*}
B_{i j}=\Psi_{i j}-\sum_{k}<\Psi_{i j}, f_{k}>f_{k}+g_{i j} \Psi \tag{5.3}
\end{equation*}
$$

where $f_{1}=g\left(x_{2}\right)^{-1} \Psi_{1}, f_{2}=\Psi_{2}, \Psi_{i}=\partial \Psi / \partial x_{i}$ and $\Psi_{i j}=\partial^{2} \Psi / \partial x_{i} \partial x_{j}$.
It is easily verified that $B_{11}=B_{22}=0$ and

$$
\begin{equation*}
B_{12}=m k g\left(x_{2}\right)^{-1} e_{3}, \tag{5.4}
\end{equation*}
$$

where

$$
\begin{aligned}
e_{3}= & g\left(x_{2}\right)^{-1}\left(k \sin m x_{1} \sin x_{2},-k \cos m x_{1} \sin x_{2},\right. \\
& \left.-m \sin k x_{1} \cos x_{2}, m \cos k x_{1} \cos x_{2}\right)
\end{aligned}
$$

is the unit normal vector field of $\tau_{m, k}$. Since (x_{1}, x_{2}) is the global coordinates of $\tau_{m, k}, e_{3}$ is also globally defined on $\tau_{m, k}$. We have, then, $B_{12} \neq 0$ on the $\tau_{m, k}$. This shows that $\tau_{m, k}$ is not totally geodesic at any point of the surface. Then, by the Gauss equation, we have

$$
\begin{equation*}
K=1-m^{2} k^{2} g\left(x_{2}\right)^{-2} \tag{5.5}
\end{equation*}
$$

It follows from the Theorem 1 that the bipolar surface of $\tau_{m, k}$ has $\widetilde{N}_{(2)} \equiv$ 0 if and only if $m=k$. When the case of $m>k \geqq 1$, we have $\widetilde{N}_{(2)} \neq 0$ except the points $\left(x_{1},(s / 2) \pi\right)$ with $s=0,1,2,3$, but we shall show $\widetilde{K}_{(3)}=0$ on the $\widetilde{\tau}_{m, k}^{0} \equiv \widetilde{\tau}_{m, k}-\left\{\left(x_{1},(s / 2) \pi\right)\right\}$: We set $e_{1}=2^{-1 / 2}\left(f_{1}+f_{2}\right), e_{2}=2^{-1 / 2}\left(f_{1}-\right.$ f_{2}). We denote the 2 nd fundamental tensor for the above vectors $e_{i}, h_{i j}$. We then have $h_{11}=-h_{22}=h$ and $h_{12}=0$, where $h=m k g\left(x_{2}\right)^{-1}$ and h is the globally defined function on the $\tau_{m, k}$. Since we have $w_{1}=2^{-1 / 2}\left(g\left(x_{2}\right) d x_{1}+\right.$ $d x_{2}$) and $w_{2}=2^{-1 / 2}\left(g\left(x_{2}\right) d x_{1}-d x_{2}\right)$, we can verify

$$
\begin{gather*}
h_{i 1}+h_{; 2}=0 \tag{5.6}\\
h_{; 1}=\frac{m k\left(m^{2}-k^{2}\right) \sin 2 x_{2}}{2 \sqrt{2} g\left(x_{2}\right)^{3}} \tag{5.7}
\end{gather*}
$$

The formula (5.6) leads to $\widetilde{K}_{(3)}=0$ on $\widetilde{\tau}_{m, k}^{0}$ by Theorem 2. Therefore, by the Otsuki's lemma [8, p. 96] or [5, Lemma 2], $\widetilde{\tau}_{m, k}^{0}$ is contained in a 4dimensional space of constant curvature in S^{5}.

Moreover, we shall prove the following Lawson's result by an elementary way.

Theorem 3. [7]. The bipolar surface $\tilde{\tau}_{m, k}$ of the minimal torus $\tau_{m, k}$ with $m>k$ is contained in an $S^{4} \subset S^{5}$ where none of the images lies
in an $S^{s} \subset S^{4}$.
Proof. From (3.4) and (5.6), we have

$$
\begin{equation*}
\tilde{h}_{312}=\tilde{h}_{412}=(2-K)^{-3 / 2} h_{i 1}, \widetilde{h}_{311}=-\widetilde{h}_{411}=-(2-K)^{-3 / 2} h_{; 1} . \tag{5.8}
\end{equation*}
$$

By virtue of the second formula of (5.8), we can define the following orthonormal vector fields e_{α}^{*} which are normal vector fields on $\tilde{\tau}_{m, k}$:

$$
\begin{align*}
& e_{3}^{*}=\frac{1}{\sqrt{2}}\left(\widetilde{e}_{3}-\widetilde{e}_{4}\right) \\
& e_{4}^{*}=\frac{1}{\tau}\left(\sum_{\alpha} \tilde{h}_{\alpha 12} \widetilde{e}_{\alpha}\right) \tag{5.9}\\
& e_{5}^{*}=\frac{-1}{\sqrt{2 \cdot \tau}}\left(\widetilde{h}_{512}\left(\widetilde{e}_{3}+\widetilde{e}_{4}\right)+2 \widetilde{h}_{311} \widetilde{e}_{5}\right)
\end{align*}
$$

We remark that vector fields (5.9) are globally defined on $\tilde{\tau}_{m, k}$: By definition (x_{1}, x_{2}) is a global coordinates of $\tau_{m, k}$ and e_{1}, e_{2}, e_{3} are the globally defined field. Since the function h is defined globally on the surface, \widetilde{e}_{α} are also globally defined on $\tilde{\tau}_{m, k}$. By (3.3) and (5.8), $\widetilde{h}_{\alpha i j}$ are also defined globally on the $\tilde{\tau}_{m, k}$.

We shall show $d e_{5}^{*}=0$ on $\tilde{\tau}_{m, k}$: Since we have $w_{5 i}^{*}=-\left\langle e_{5}^{*}, d \widetilde{e}_{i}\right\rangle$, making use of (5.8), we have $w_{b i}^{*}=0$. From (3.9), (3.10), (4.7) and (5.8), we have $w_{53}^{*}=0$. By (5.8), we get $w_{41}^{*}=-\tau \widetilde{w}_{2}$ and $w_{42}^{*}=-\tau \widetilde{w}_{1}$. Taking the exterior derivatives of $w_{s i}^{*}=0$ and making use of the above results, we get $w_{54}^{*}=0$. Thus we have shown $d e_{5}^{*}=0$ on $\tilde{\tau}_{m, k}$, and so e_{5}^{*} is the constant vector in R^{6}. It follows that the bipolar surface of the $\tau_{m, k}$ is contained in an $S^{5} \cap \pi$, where π is the hyperplane which is orthogonal to e_{b}^{*}. Since we have $\left\langle\tilde{x}, e_{5}^{*}\right\rangle=0$, we get $S^{4}=S^{5} \cap \pi$, i.e., the radius of $S^{5} \cap \pi$ is 1 . This proves Theorem 3.
6. Characterization of the bipolar surface. Let (M, \widetilde{g}) be a 2 -dimensional Riemannian manifold with the metric \widetilde{g} and let $\widetilde{x}:(M, \widetilde{g}) \rightarrow M^{4}(1)$ be an isometric minimal immersion of (M, \widetilde{g}) into a 4 -dimensional space of constant curvature 1 . In this case, we have $\widetilde{f}_{(2)}=\widetilde{K}_{(2)}^{2}-4 \widetilde{N}_{(2)}$, where $2 \widetilde{K}_{(2)}$ is the square of the length of the 2 nd fundamental tensor and $4 \widetilde{N}_{(2)}$ is the square of the normal curvature of \tilde{x}. If $\tilde{f}_{(2)}=0$ on M, such a surface is called an R-surface and has studied by many mathematicians, for instance, Borůvka [2], Wong [10]. Recently S. S. Chern has proved that the minimal immersion of a 2 -sphere in $M^{4}(1)$ is the R-surface and characterized such an immersion completely by a rational curve in $P^{4}(C)$, ([3] or cf. Barbosa [1]). Following Wong, the surface with $\widetilde{f}_{(2)} \neq 0$ is called a general minimal surface. By Theorems 1 and $3, \tilde{\tau}_{m k}$ is the general type.

In this section we study a general minimal surface with $0<\tilde{f}_{(2)}<1$ on M. Since $\tilde{f}_{(2)}>0$ on M, \tilde{x} is not totally geodesic on M. Therefore, we can assume that the 2 nd fundamental tensors, $\widetilde{h}_{\alpha i j}, 3 \leqq \alpha, \beta \leqq 4$, of \tilde{x} has of the forms,

$$
\begin{align*}
& \widetilde{w}_{13}+i \widetilde{w}_{23}=\widetilde{h}_{31}\left(\widetilde{w}_{1}-i \widetilde{w}_{2}\right) \tag{6.1}\\
& \widetilde{w}_{14}+i \widetilde{w}_{24}=i \widetilde{h}_{412}\left(\widetilde{w}_{1}-i \widetilde{w}_{2}\right)
\end{align*}
$$

and we have

$$
\begin{equation*}
\tilde{f}_{(2)}=\left(\widetilde{h}_{412}^{2}-\widetilde{h}_{311}^{2}\right)^{2}, \widetilde{N}_{(2)}=\widetilde{h}_{311}^{2} \widetilde{h}_{412}^{2}=\frac{1}{4} N^{2} \tag{6.2}
\end{equation*}
$$

where N is the normal curvature of \widetilde{w}_{34}, i.e., $d \widetilde{w}_{34}=-N \widetilde{w}_{1} \wedge \widetilde{w}_{2}$. We call the above defined system of (local) vector fields the adapted frame on (M, \widetilde{g}). We remark that such the adapted frame is uniquely determined up to isometries of the ambiant space, if N is not vanish.

Proposition. Let $\tilde{x}:(M, \widetilde{g}) \rightarrow M^{4}(1)$ be an isometric minimal immersion with $0<\tilde{f}_{(2)}<1$. Suppose that the immersion satisfies,

$$
\begin{equation*}
\frac{3}{2} N \widetilde{D} \widetilde{h}_{312}+\left(2 \widetilde{h}_{311}^{2}+\widetilde{h}_{412}^{2}\right) \widetilde{D} \widetilde{h}_{411}=0 \tag{6.3}
\end{equation*}
$$

We define a function h on M as follows:

$$
\begin{equation*}
\left(\frac{4 h^{2}}{\left(1+h^{2}\right)^{2}}\right)^{2}=\tilde{f}_{(2)}, \tag{6.4}
\end{equation*}
$$

and we set

$$
\begin{align*}
g_{i j} & =\frac{1}{1+h^{2}} \widetilde{g}_{i j} \tag{6.5}\\
h_{11}=-h_{22} & =h \quad \text { and } \quad h_{12}=0 \tag{6.6}
\end{align*}
$$

Then there exists an isometric minimal imbedding x_{U} of a neighborhood U of any fixed point in (M, g) into a 3-dimensional space of constant curvature 1 such that (6.6) is the second fundamental tensor for x_{U}.

For a proof of Proposition, we shall need the following Lemmas 6.1 and 6.2. We treat only the case of $\widetilde{h}_{412}^{2}-\widetilde{h}_{311}^{2}>0$. In the other case we can get the same conclusions by the similar way.

Lemma 6.1. Under the same hypothesis and notations as Proposition we have

$$
\begin{equation*}
w_{12}=\frac{1+h^{2}}{1-h^{2}} \widetilde{w}_{12}, \tag{6.7}
\end{equation*}
$$

where w_{12} is the connection form of (M, g).
Proof of Lemma 6.1. By (6.5), the basic forms on (M, g) are represented by

$$
\begin{equation*}
w_{i}=\frac{1}{\sqrt{1+h^{2}}} \tilde{w}_{i} \tag{6.8}
\end{equation*}
$$

Taking the exterior derivatives of (6.8), we have

$$
\begin{equation*}
\left\{\frac{h}{1+h^{2}} d h+i\left(w_{12}-\widetilde{w}_{12}\right)\right\} \wedge\left(\widetilde{w}_{1}-i \widetilde{w}_{2}\right)=0 \tag{6.9}
\end{equation*}
$$

By $0<\tilde{f}_{(2)}<1$, we have $\left(1-h^{2}\right)^{2}>0$. Taking the exterior derivative of (6.4), we get

$$
\begin{equation*}
\frac{h}{1+h^{2}} d h=\frac{\left(1+h^{2}\right)^{2}}{4\left(1-h^{2}\right)} \sum_{i} f_{i} \tilde{w}_{i} \tag{6.10}
\end{equation*}
$$

where

$$
f_{i}=\tilde{h}_{412} \tilde{h}_{412, i}-\tilde{h}_{311} \tilde{h}_{311, i}
$$

where "," denotes the covariant derivative for $\widetilde{g}_{i j}$. By (6.9) and (6.10), we have

$$
\begin{equation*}
w_{12}=\widetilde{w}_{12}+\frac{\left(1+h^{2}\right)^{2}}{4\left(1-h^{2}\right)}\left(-\widetilde{h}_{412} \widetilde{D} \tilde{h}_{411}-\widetilde{h}_{311} \widetilde{D} \widetilde{h}_{312}\right) \tag{6.11}
\end{equation*}
$$

where \widetilde{D} is the covariant differential operator of the van der WaerdenBortolotti for the isometric immersion $\widetilde{x}:(M, \widetilde{g}) \rightarrow M^{4}(1)$ and consider $\left\{\widetilde{h}_{\alpha i j}\right\}$ as the components of the 2nd fundamental form of this immersion. On the other hand, we know

$$
\begin{equation*}
\tilde{D} \tilde{h}_{411}=-2 \widetilde{h}_{412} \widetilde{w}_{12}+\tilde{h}_{311} \widetilde{w}_{34} \quad \text { and } \quad \tilde{D} \widetilde{h}_{312}=2 \widetilde{h}_{311} \tilde{w}_{12}-\tilde{h}_{412} \tilde{w}_{34} \tag{6.12}
\end{equation*}
$$

By (6.11) and (6.12), Lemma 6.1 follows.
q.e.d.

Making use of the Lemma 6.1, we can show the "Codazzi equation" for $h_{i j}$: By (6.8), (6.9) and Lemma 6.1, we have

$$
\begin{equation*}
\left(d h+i\left(2 h w_{12}\right)\right) \wedge\left(w_{1}-i w_{2}\right)=0 \tag{6.13}
\end{equation*}
$$

Let D denote the covariant differentiation for $g_{i j}$ and its derivatives ";". Since we can see, by (6.6),

$$
\begin{equation*}
D h_{11}=d h \quad \text { and } \quad D h_{12}=2 h w_{12}, \tag{6.14}
\end{equation*}
$$

(6.13) is equivalent to

$$
\begin{equation*}
\left(D h_{11}+i D h_{12}\right) \wedge\left(w_{1}-i w_{2}\right)=0 \tag{6.15}
\end{equation*}
$$

The formula (6.15) implies

$$
\begin{equation*}
h_{11 ; 2}=h_{12 ; 1}, h_{12 ; 2}+h_{11 ; 1}=0 . \tag{6.16}
\end{equation*}
$$

By (6.6), (6.16) is equivalent to $h_{i j ; k}=h_{i k ; j}$. This proves the Codazzi equation for $h_{i j}$. We remark that we do not use (6.3) for the proof of the Codazzi equation for $h_{i j}$. The hypothesis (6.3) is essential in the following Lemma 6.2.

Lemma 6.2. Under the same assumptions as Proposition, we have

$$
\begin{equation*}
\widetilde{h}_{311}^{2}=\frac{h_{11 ; 1}^{2}+h_{11 ; 2}^{2}}{\left(1+h^{2}\right)^{3}} \tag{6.17}
\end{equation*}
$$

Proof of Lemma 6.2. By the Gauss equation of \tilde{x}, we know

$$
\begin{equation*}
\widetilde{h}_{311}^{2}+\widetilde{h}_{412}^{2}=1-\widetilde{K}, \tag{6.18}
\end{equation*}
$$

where \widetilde{K} denotes the Gaussian curvature of (M, \tilde{g}). By (6.4) and (6.18), we get

$$
\begin{equation*}
2 \widetilde{h}_{311}^{2}=\frac{\left(1-h^{2}\right)^{2}}{\left(1+h^{2}\right)^{2}}-\widetilde{K} \tag{6.19}
\end{equation*}
$$

By (6.10) we have

$$
\begin{equation*}
\frac{h}{\left(1+h^{2}\right)^{3 / 2}} h_{11 ; i}=\frac{\left(1+h^{2}\right)^{2}}{4\left(1-h^{2}\right)} f_{i} . \tag{6.20}
\end{equation*}
$$

And we get

$$
\begin{equation*}
\frac{h_{11 ; 1}^{2}+h_{11 ; 2}^{2}}{\left(1+h^{2}\right)^{3}}=\frac{\left(1+h^{2}\right)^{4}}{16 h^{2}\left(1-h^{2}\right)}\left(f_{1}^{2}+f_{2}^{2}\right) \tag{6.21}
\end{equation*}
$$

By (6.12), we have a formula:

$$
\begin{align*}
& 3 \widetilde{h}_{311} \widetilde{h}_{412} \widetilde{D}^{D} \widetilde{h}_{312}+\left(2 \widetilde{h}_{311}^{2}+\widetilde{h}_{412}^{2}\right) \widetilde{D}_{411} \tag{6.22}\\
& \quad=2\left(\widetilde{h}_{311}^{2}-\widetilde{h}_{412}^{2}\right)\left(\widetilde{h}_{311} \widetilde{w}_{34}+\widetilde{h}_{412} \widetilde{w}_{12}\right) .
\end{align*}
$$

By (6.3), (6.12) and (6.22), we get

$$
\begin{equation*}
\widetilde{D} \widetilde{h}_{411}=-3 \widetilde{h}_{412} \widetilde{w}_{12} \tag{6.23}
\end{equation*}
$$

We remark that under the condition $\tilde{f}_{(2)}>0$, (6.3) is equivalent to the condition

$$
\begin{equation*}
\tilde{h}_{311} \tilde{w}_{34}=-\widetilde{h}_{412} \widetilde{w}_{12} . \tag{6.24}
\end{equation*}
$$

The other formula equivalent to (6.3) is

$$
\begin{equation*}
\left(2 \widetilde{h}_{311}^{2}+\widetilde{h}_{412}^{2}\right) \widetilde{h}_{412, i}=3 \widetilde{h}_{311} \widetilde{h}_{412} \tilde{h}_{311 i} \tag{6.3}
\end{equation*}
$$

Taking the exterior derivatives of (6.24), we get

$$
\begin{equation*}
\left(\tilde{h}_{311} d \tilde{h}_{412}-\tilde{h}_{412} d \tilde{h}_{311}\right) \wedge \tilde{w}_{12}=\tilde{h}_{311} \tilde{h}_{412}\left(2 \tilde{h}_{311}^{2}+\tilde{K}\right) \tilde{w}_{1} \wedge \tilde{w}_{2} \tag{6.25}
\end{equation*}
$$

By (6.3)' and (6.23), (6.25) is reduced in the following formula,

$$
\begin{equation*}
\widetilde{h}_{412,1}^{2}+\widetilde{h}_{412,2}^{2}=\frac{9 \widetilde{h}_{31}^{2} \widetilde{h}_{412}^{2}}{\widetilde{h}_{412}^{2}-\widetilde{h}_{311}^{2}}\left(2 \widetilde{h}_{311}^{2}+\widetilde{K}\right) \tag{6.26}
\end{equation*}
$$

By (6.3)', we have

$$
f_{1}^{2}+f_{2}^{2}=\frac{4}{9} \frac{\left(\widetilde{h}_{412}^{2}-\widetilde{h}_{311}^{2}\right)^{2}}{\widetilde{h}_{412}^{2}}\left(\widetilde{h}_{412,1}^{2}+\widetilde{h}_{412,2}^{2}\right)
$$

By (6.19), (6.21), (6.26) and the above formula, Lemma 6.2 follows.
q.e.d.

Proof of Proposition. We have shown the "Codazzi equation" of $h_{i j}$. We shall show the "Gauss equation", that is,

$$
\begin{equation*}
h^{2}=1-K \tag{6.27}
\end{equation*}
$$

where K is the Gaussian curvature of (M, g). We shall prove (6.27) as follows: Taking the exterior derivative of (6.7), we have
(6.28) $\quad-K w_{1} \wedge w_{2}=\frac{2}{\left(1-h^{2}\right)\left(1+h^{2}\right)} D h_{11} \wedge D h_{12}-\frac{\left(1+h^{2}\right)^{2}}{1-h^{2}} \widetilde{K} w_{1} \wedge w_{2}$.

Therefore we have

$$
\begin{aligned}
K & =\frac{2\left(1+h^{2}\right)^{2}}{1-h^{2}}\left(\frac{h_{11 ; 1}^{2}+h_{11 ; 2}^{2}}{\left(1+h^{2}\right)^{3}}\right)+\frac{\left(1+h^{2}\right)^{2}}{1-h^{2}}\left(1-\widetilde{h}_{311}^{2}-\widetilde{h}_{412}^{2}\right) \\
& =\frac{\left(1+h^{2}\right)^{2}}{1-h^{2}}\left(2 \widetilde{h}_{311}^{2}+1-\widetilde{h}_{311}^{2}-\widetilde{h}_{412}^{2}\right) \\
& =1-h^{2}
\end{aligned}
$$

From the fundamental theorem for the surface theory (cf. [9]), the Proposition follows.
q.e.d.

Lemma 6.3. Let $\tilde{x}: M \rightarrow S^{4}$ be an isometric minimal immersion. Under the condition (6.3), the following conditions are equivalent:
(1) $\tilde{h}_{412,1}: \widetilde{h}_{412,2}=$ constant,
(2) $\tilde{h}_{311,1}: \tilde{h}_{311,2}=$ constant,
(3) $h_{; 1}: h_{; 2}=$ constant.

Proof. From (6.3)' and (6.10), Lemma 6.3 follows.
q.e.d.

Thus we have a converse version of the Theorem 2.
Theorem 4. Let (M, \tilde{g}) be a 2-dimensional Riemannian manifold and let $\tilde{x}:(M, \widetilde{g}) \rightarrow S^{4}$ be an isometric minimal immersion with $0<\widetilde{f}_{(2)}<$ 1. Suppose that, for the adapted frame,

$$
\frac{3}{2} N \widetilde{D} \widetilde{h}_{312}+\left(2 \widetilde{h}_{311}^{2}+\widetilde{h}_{412}^{2}\right) \widetilde{D} \widetilde{h}_{411}=0, \quad \text { and }
$$

$\tilde{h}_{412,1}: \tilde{h}_{412,2}=$ constant on the each domain of definition. Then the image of M under \tilde{x} is locally the bipolar surface of a minimal surface in S^{3}.

Proof. Theorem 4 follows from the Proposition and the results in § 4.

Remark. Let M be a torus. Then the Riemann-Roch's theorem implies that $\tilde{f}_{(2)}=0$ on M or $\tilde{f}_{(2)}>0$ on M. (See [3] or [5].)

References

[1] L. Barbosa, On minimal immersions of S^{2} in $S^{2 m}, \mathrm{PhD}$. thesis at Berkeley, 1972.
[2] O. Borưvka, Sur une classe de surfaces minima plongees dans un espace à quatre dimensions à courbure constante, Bull. International de l'Acad. Tech. des Sci., Prague, 29 (1928), 256-277.
[3] S. S. Chern, On minimal spheres in the four sphere, Academia Scinica, (1970), 137-150.
[4] W. Y. Hsiang and H. B. Lawson, Jr, Minimal submanifolds of low cohomogeneity, J. Diff. Geo., 5 (1971), 1-38.
[5] K. Kenmotsu, On compact minimal surfaces with non-negative Gaussian curvature in a space of constant curvature, 1, 11, to appear in Tôhoku M. J..
[6] H. B. Lawson, Jr, Local rigidity theorems for minimal hypersurfaces, Ann. of Math., 89 (1969), 187-197.
[7] H. B. Lawson, Jr, Complete minimal surfaces in S^{3}, Ann. of Math., 92 (1970), 335-374.
[8] T. OTSUKI, Minimal submanifolds with m-index 2 and generalized Veronese surfaces, J. Math. Soc. of Japan, 24 (1972), 89-122.
[9] S. SASAKI, A proof of the fundamental theorem of hypersurfaces in a space form, Tensor, N. S., 24 (1972), 363-373.
[10] Y. C. Wong, Contributions to the theory of surfaces in a 4-space of constant curvature, Trans. A. M. S., 59 (1946), 467-507.

Department of Mathematics

College of General Education, TôHoku University

