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Introduction. Let (M, g), or simply M, be a Riemannian n-manifold
with Riemannian metric g. Throughout this paper manifolds under consid-
eration are always assumed to be connected and smooth unless otherwise
stated. M is called conformally flat if each point of M has a neighbor-
hood where there exists a conformal diίfeomorphism onto an open subset
in a Euclidean space. It is well-known that every Riemannian 2-manifold
is conformally flat because of the existence of isothermal coordinates.

In this paper, we shall study conformally flat ^-manifolds, n > 3,
which are also isometrically immersed in a Euclidean (n + l)-space as
complete hypersurfaces, and determine the global form of such hyper-
surfaces under the following additional assumption:

( * ) The Riemannian structure of (M, g) and the isometric immersion
under consideration are both analytic.

In fact, we prove the following theorem, which is the main result
of this paper.

THEOREM. Let (M, g) be an analytic complete conformally flat Rieman-
nian n-manifold, n > 3, and f: M—>En+1 an analytic isometric immersion
of M into a Euclidean (n + ϊ)-space En+1. Then f(M) is one of the following
forms:

( i ) a flat hypersurface {i.e., a Euclidean n-space En, or a cylinder
En~ι x 7 built over an analytic plane curve 7).

(ii) a tube {see §1, for definition', e.g., a Riemannian product
manifold Sn~ι x Eι).

(iii) a surface of revolution (e.g., a Euclidean n-sphere Sn).

It should be remarked that the corresponding local result is true
without completeness of M and without analyticity condition (*) [1, 4, 5],
Roughly speaking, a general conformally flat hypersurface is obtained by
smoothly glueing together pieces of hypersurfaces of the above three
types, although arbitrary glueing is clearly not possible. Our additional
assumption (*) makes it quite impossible to glue these pieces together.

Finally, we remark that a similar theorem has been announced by
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Kulkarni [3] in the case where M is compact.

1. Preliminaries. In this section we recall some known results on
conformally flat hypersurfaces in a Euclidean space. For details see [4].

Let f:M~+En+1 be an isometric immersion of a (not necessarily
complete) Riemannian ^-manifold, n > 3, into a Euclidean (n + l)-space
En+1. In the following, when the argument is local in nature, we may
consider / as an imbedding and thus identify a point x e M with
fix) 6 En+ι.

Then the following has been known.

LEMMA 1 [1, 4, 5]. Let A be the second fundamental form of M, which
is considered as a symmetric linear transformation on each tangent space
of M. Then M is conformally flat if and only if at each point of M,
A is one of the following types:

( I ) A — XI, I' = the identity transformation.
(II) A has two distinct eigenvalues λ and μ of multiplicity n — 1

and 1 respectively.

The proof of this lemma is done by a straightforward calculation.
A point of M is called an umbilical point if the second fundamental

form A takes the form (I) at the point. Otherwise we call the point a
non-umbilical point.

For further studying, we choose a local field of orthonormal frames
eA in En+ι such that, restricted to M, the vectors et and en are tangent
to M (and consequently, en+1 is normal to M), where and throughout the
rest of this paper, we agree on the following ranges of indices:

1 ^ A, B, C, ^ n + 1 ,

l ^ i f j , k , ^ n — 1 .

With respect to the frame field chosen above, let ωA and ωAB be the field
of dual frames and connection forms respectively. We restrict these forms
to M. Then we have

o)n+1 = 0 .

Now we assume that M is conformally flat. Then, on a (sufficiently
small) neighborhood of a non-umbilical point, we can choose the above
frame field eA in such a way that

due to Lemma 1 together with the continuity of the second fundamental
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form. Here λ as well as μ is a smooth function on the neighborhood.
For later convenience, we call such a frame field an adapted frame field
around a non-umbilical point.

Then we have

LEMMA 2 [4]. With respect to each adapted frame field around a
non-umbilical point, the following hold'.

(i) ωin= [l/(λ - /OKλ.ω, + ftαO,
(ii) λy = 0 and Xnμd = 0 for all j ,

where we have put
dx = ^ λ ^ i + Xnωn ,

dμ = Σi^t^i + PnO*

For the proof of Lemma 2, see the literature.
Before going into the proof of the main theorem, we shall explain

some examples of conformally flat hyper surf aces in a Euclidean space.
First, let 7 be an arbitrary smooth curve in En+1. Then the total

space of the normal sphere bundle of 7 with (sufficiently small) fixed
radius is, by definition, a tube. As is easily seen by Lemma 1, a tube
is a conformally flat hypersurface in En+1.

Another example is a surface of revolution. Let S be the envelope
of a one-parameter family of hyperspheres in En+1. S is called a surface
of revolution if on a straight line there lies the locus of centers of hyper-
spheres of the family. From Lemma 1, we see that S is a conformally flat
hypersurface in En+1. Note that a Euclidean ^-sphere Sn is a special type
of such hypersurfaces.

2. Proof of the main theorem. Let f:M—+En+1 be an analytic
isometric immersion of an analytic complete conformally flat Riemannian
^-manifold (Λf, g), n > 3, into a Euclidean (n + l)-space En+ί. In the
following, we always assume that M is simply connected. This assumption
does cause no loss of generality of our argument. In fact, take the
universal Riemannian covering manifold π: M* —> M of M. Then M* is
also an analytic complete conformally flat Riemannian manifold, and
/* = foπ is an analytic isometric immersion of M* into En+1. Moreover,
we have f(M) = f*(M*).

For later use, we put

^ — {x e MI x is an umbilical point} ,

and

= {xe M\x is a non-umbilical point} .
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Then ^ is closed in Λf, and Λ^ is open in M, owing to the continuity
of the second fundamental form.

First we divide the proof into the following two cases.

CASE I. ^ has an interior point.
Then the second fundamental form A of M takes the form

(1) A = λl, X is a real number ,

on a non-empty open subset of M. Note that M admits an analytic field
en+1 of unit normal vectors defined on M due to the simple connectedness
of M. Thus both sides of the equation (1) are analytic tensor fields defined
globally on M. Hence we have A = XI on M.

Consequently f(M) is either a Euclidean n-space En or a Euclidean
^-sphere Sn according to whether λ is zero or not.

CASE II. ^ has no interior point.
Then the set of non-umbilical points of M is dense in M, i.e., M =

Cl ̂ V, the closure of ^Vl Around each point of Λ^ we take an adapted
frame field eA so that

(2) ωitn+1 = Xωi9

( 3 ) ωn>n+1 = μωn ,

as seen in §1. Here remark that X and μ are both analytic functions
defined on ^V~ by virtue of the simple connectedness of M. Then from
Lemma 2 (ii), with respect to each adapted frame field, we have Xnμ3- = 0
for all j. Hence on ^f~ there can be the following three cases:

(A) For each adapted frame field, Xn as well as μά for all j vanishes
identically.

(B) For some adapted frame field, there exists a point p e Λ^ such
that μj(p) Φ 0 for some j.

(C) For some adapted frame field, there exists a point p e ^ such
that Xn(p) Φ 0.

REMARK. Note that these three cases cover every possibility on ^Vl
Moreover, in the course of the proof, it will turn out that (B) and (C)
cannot hold simultaneously.

First we consider

CASE II-A. For each adapted frame field, Xn as well as μά for
all j vanishes identically.

In this case, since dX = X XjCOj + Xncon = 0 at each point of ^ 7 λ is
constant on each connected component of ~4^ and hence on a dense subset
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itself by continuity of λ. Furthermore, from Lemma 2(i), we have

(4) ωin = 0,

for each adapted frame field. Consequently, taking exterior differentiation
of (4), we get

( 5 ) Xμ = 0 on

If λ is a non-zero constant, then from (5), μ must vanish identically
on ^K Therefore, ^V is a closed subset of Jkf, which is also a non-empty
open subset of M. Thus ^K coincides with M by connectedness of M.
Hence we can conclude that f(M) is of the form

S"-1 x E1 ,

the Riemannian product of a Euclidean (n — l)-sphere S^"1 and a straight
line E\

In case λ vanishes identically on ^Y\ we see immediately from the
equation of Gauss that M is flat on ΛΊ Then M itself is flat on account
of the continuity of the Riemannian curvature tensor field, which is in
fact an analytic tensor field on M. Thus, by a theorem of Hartman [2],
f(M) is a cylinder built over an analytic plane curve 7, i.e., of the form
E*'1 x 7.

CASE II-B. For some adapted frame field, there exists a point p e
such that μj{p) Φ 0 for some j.

First, choose and fix such an adapted frame field eA and such a point
*>V as well. Then, with respect to the eA, we have an open connected

neighborhood V of p0 in ^V such that μά never vanishes on V. Since
we have λΛ/^ = 0 on V from Lemma 2 (ii), λw must vanish identically on
V. Hence λ is constant on V because λ, always vanishes. Consequently
it is observed that λ is constant on the connected component Λ^ of p0

of ~4^ by analyticity of λ.
If λ vanishes identically on Λ^9 then M is flat on ^ ς . Therefore,

M itself is flat because of the analyticity of the Riemannian curvature
tensor field. Thus f(M) is cylindrical over an analytic plane curve as
seen in the previous case.

So from now on we assume that λ is a non-zero constant on the
component Λl of ^Yl Furthermore, we may assume λ > 0 on ^Vl by
replacing the unit normal vector field en+1 with —en+1 if necessary.

From Lemma 2 (i), we have for each adapted frame field on

(6) ωin =
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because Xn vanishes identically on Λl.
Taking exterior differentiation of (6), we get, with respect to each

adapted frame field on ^ J , the following partial differential equation for
each i:

( 7) (λ - μ)μu + 2(μiγ + (λ - μfXμ = 0 ,

where we have put

Let Mn~ι(p) denote the maximal integral submanifold through p e
of the distribution defined by the space spanned by the principal vectors
corresponding to λ. Then Mn~ι{p) is a totally geodesic submanifold of M,
since (6) holds for each adapted frame field on Λϊ (cf. [4]). Therefore,
we can restrict the above differential equation (7) to each geodesic of M
issuing from p e ^4^ and tangent to Λf*""1^) at p. Then along the geodesic
we get the following ordinary differential equation

(8) (λ - μ)-ξE + 2(ψ) + (λ - μfXμ = 0 ,
as \as /

where s is the arc length from p.
Putting φ = l/(λ — μ), (8) reduces to

(9) -4^- + λ V - λ = 0.

as

By solving (9), we get

(10) φ — a cos λs + b sin Xs + 1/λ ,

where a and b are some constants of integration. Thus we obtain

(11) λ — μ = l/(a cos Xs + b sin Xs + 1/λ) ,

from which we have

(Λ9\ a — λ(α cos Xs + b sin Xs)
a cos Xs + 6 sin Xs + 1/λ

It is immediately verified from (11) that there does not exist any
umbilical point on each geodesic issuing from p e Λl and tangent to
Mn~1{p) at p as well.

Furthermore, we have

LEMMA 3. In this case, M is umbilic free, i.e., there exists no um-
bilical point on M.

PROOF. It suffices to show that ^Vl is a closed subset of M, since
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is a non-empty open subset of a connected M. For this purpose, let
p0 be a point on d^Vl, the boundary of ΛΊ, and {pn} a sequence of points
of Λ^ converging to p0: lim^-^p, = p0. Let 7Λ be a geodesic issuing from
pn whose initial vector coincides with the vector et(pn) for a fixed i.

Note that Ίn always belongs to ^ , since there is no umbilical
point on Ύn as remarked just before the lemma. Furthermore, it follows
from (12) that for each n there exists a point qn on 7n for which μ(qn) =
0 holds.

Since M, is complete, we may assert that the sequence {7j and the
sequence {qn} converge respectively to 70, a geodesic issuing from pQ, and
q0, a point on 70, by choosing respective subsequences suitably if necessary.
Then we have μ(qQ) = lim^^ μ(qn) = 0 by continuity of μ, and hence qQ e
Λϊ. Furthermore, since τ0 = lim,^ 7», 70 is tangent to Mn~x{q^ at go-
Therefore, the remark just before the lemma implies that p0 belongs to.

This completes the proof. q.e.d.

REMARK. In this case, λ = constant > μ holds everywhere on M In
fact, we assume the contrary. Namely, assume that μ > X = constant > 0
holds everywhere. From (12), along any geodesic in M, we have

μ =
Va% + δ2 sin (λs + Φ) + 1/λ '

where sin Φ = a\Va2 + δ2, cos Φ = bjVa2 + δ2, a and δ are certain constants,
and s is the arc length from some point on the geodesic in question. Hence,
if μ does not change its sign, μ must be zero, since s can take all real
numbers. This is a contradiction.

PROPOSITION 4. // M is of CASE II-B with λ = constant > 0, then
f(M) is a tube.

PROOF. Define a mapping C:M-+En+1 by

(13) C(p) = f(p) + (l/λK+10>), p 6 M,

which is evidently well-defined. Then we have

(14) dC = Σ o>t ® «i + ω* <8> e* + (1/X)den+1

noticing (2), (3) and the constancy of λ. This shows that the image of
C can be parametrized by the canonical parameter of some integral curve
of en, that is, the image is a curve in En+\ which is also denoted by C.
Furthermore, the curve C is regular because λ > μ everywhere. Since λ
is a positive constant, it is not difficult to see from these facts that
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f(M) is nothing but the total space of the normal sphere bundle of the
curve C with radius 1/λ. Therefore f(M) is a tube. q.e.d.

Finally we deal with

CASE II-C. For some adapted frame field, there exists a point
p e ^V such that Xn(p) Φ 0.

In this case, we may further assume that μs does vanish identically
for each adapted frame field. In fact, otherwise Case II-C reduces to
Case II-B so that λ is constant on M. This is a contradiction.

REMARK. Thus, from Lemma 2(i), we have for each adapted frame
field

(15) ωin = [λΛ/(λ - μ)]ωt ,

from which we get

dωn = 0 .

Therefore, for each adapted frame field, we can locally put ωn = ds,
where s is the canonical parameter of some integral curve (which is in
fact a geodesic segment) of en.

We set

0 } .

Note that ^Y*' is dense in *Λ~ and hence in M as well, i.e., M =
because λ is a non-constant analytic function.

We define a mapping C: Λr' -> JSίn+1 by

(16) C(p) = f(p) + (l/X)(p)en+1(p), p

which is obviously well-defined. Then we have

(17) dC = Σ ωi ® et + °>n ® en

where the prime denotes the differentiation with respect to s. This
shows, by the same argument as in Case II-B, that the image of C is
a union of regular curves in En+1, which is also denoted by C.

Since, for each adapted frame field, λy as well as μ3- does vanish
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identically for all j, we can easily observe that ^V' and hence its closure
M itself are (possibly a part of) the envelope of a one-parameter family
of hyperspheres in En+\ and the curve C is nothing but (possibly a part
of) the locus of centers of such hyperspheres (cf. [4]).

Now we prove

LEMMA 5. Each component of C is a segment in En+1.

PROOF. We put

ξ = dCJds = [(λ - μ)/X]en + (l/\)'en+1 .

It suffices to show that at each point of C, two vectors £ and dξ/ds are
parallel. By making use of (15), we see

(18) dξ = (^Ji^ωn <g> en + (A) V (x) en+

+ (x

On the other hand, taking exterior differentiation of (15), we get

(19) (-^—) ~ ί-^-) ~ V = 0 ,
\X — μJ \X — μ/

from which we obtain the following relation

because (19) and (20) are both equivalent to

(21) λ"(λ - μ) - λ'(2λ' - μ') - Xμ(X - μ)2 = 0 .

Here the relation (20) shows that at each point of C, two vectors ξ
and dξ/ds are parallel. This completes the proof. q.e.d.

Consequently, we have

PROPOSITION 6. // M is of CASE II-C, then f(M) is a surface
of revolution.

PROOF. We have only to prove that the curve C lies on a straight
line. However, it is almost obvious now, since f{M) is an analytic hyper-
surface in En+1, and the set ^V*' is dense in M, i.e., M = C\<yKr. q.e.d.

REMARK. It should be noted here that f(M) is called a surface of
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revolution in the following sense: f(M) is obtained by the analytic glueing
of some surfaces of revolution defined in §1 such that each of the loci
of their centers lies on the same straight line.

Summerizing the above results, we arrive at

THEOREM 7. Let (M, g) be an analytic complete conformally flat
Riemannian n-manifoldf n > 3, and f:M—>En+1 an analytic isometric
immersion of M into a Euclidean (n + l)-space. Then f{M) is one of
the following: (i) a flat hyper surf ace, (ii) a tube and (iii) a surface of
revolution.
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