FUNCTIONS OF L^{p}-MULTIPLIERS II

Satoru Igari

(Received September 19, 1973)

1. Introduction. Let G be a locally compact abelian group and Γ be the dual to G. Let $1 \leqq p \leqq \infty$. A function ϕ on Γ is called L^{p} multiplier if for every f in $L^{p}(G)$ there exists a function g in $L^{p}(G)$ such that $\phi \hat{f}=\hat{g}$, where \hat{f} denotes the Fourier transform of f. In this case g will be denoted by $T_{\phi} f$. The set of all L^{p}-multipliers will be written by $M_{p}(\Gamma)$ and the norm of ϕ in $M_{p}(\Gamma)$ is defined by

$$
\|\phi\|_{M_{p}(r)}=\sup \left\{\left\|T_{\phi} f\right\|_{L^{p}(G)} ;\|f\|_{L^{p}(G)} \leqq 1\right\}
$$

$M_{p}(\Gamma)$ is a unitary commutative Banach algebra with the product of pointwise multiplication. In the previous paper [3] we have proved the following: Let Γ be a locally compact non-compact abelian group. Assume $1 \leqq p<2$ and Φ is a function in $[-1,1]$. Then $\Phi(\phi) \in M_{p}(\Gamma)$ for all ϕ in $M_{1}(\Gamma)$ whose range is contained in $[-1,1]$, if and only if Φ is extended to an entire function.

This theorem does not hold if Γ is compact, which is due to WienerLévy theorem. In this paper we restrict our attension to the case when $G=Z$, the integer group. The dual to Z will be denoted by T or $[0,1)$. Put $m_{p}(T)=M_{p}(T) \cap C(T)$, where $C(T)$ is the set of all continuous functions on T. $m_{p}(T)$ is a closed subalgebra of $M_{p}(T)$.

Our main object is to prove the following
Theorem 1. Assume $1<q \leqq p \cdot<2$ and Φ is a function in $[-1,1]$. Then $\Phi(\phi) \in M_{p}(T)$ for all ϕ in $M_{q}(T)$ whose range is contained in [-1, 1], if and only if Φ is extended to an entire function.

THEOREM 2. Let $1<p<2$ and O be any non-empty open set in the real line R. Then there exists a function ϕ in $M_{p}(R)$ such that $\phi \geqq 1$ in O and $1 / \phi$ restricted in O is not contained in the restriction of $M_{p}(R)$ in 0 .
2. The multiplier $\exp i \theta(\xi)$. In the following we put $m_{j}=2^{2^{j}}, j=$ $0,1,2, \cdots$. Define a function in T by $\theta(\xi)=m_{j+1} \xi$ for $\xi \in\left[m_{j}^{-1} / 2, m_{j}^{-1}\right]$ and $=0$ outside $\cup\left[m_{j}^{-1} / 2, m_{j}^{-1}\right]$.

Theorem 3. $\exp 2 \pi i t \theta(\xi) \in M_{q}(T)$ for every $1<q<\infty$ and the norm
is uniformly bounded in $1 \leqq|t| \leqq 2$.
Let k be a function in R such that $\hat{k}(\xi)=\int_{-\infty}^{\infty} k(x) e^{2 \pi i \xi x} d x \in C^{\infty}(R)$, the support of \hat{k} is contained in $(1 / 4,5 / 4), \hat{k}(\xi)=1$ in $(1 / 2,1)$ and $\int_{-\infty}^{\infty} \xi \hat{k}(\xi) d \xi=0$. Then we have

$$
\begin{equation*}
k(x)=O\left(x^{-3}\right), \quad k^{\prime}(x)=O\left(x^{-3}\right) \text { as } x \rightarrow \infty \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
k(x)=O(1), \quad k^{\prime}(x)=O(x) \quad \text { as } x \rightarrow 0 \tag{2.2}
\end{equation*}
$$

For non-negative integer s not of the form 2^{j} define

$$
k_{s}(x)=\int_{-\infty}^{\infty} \hat{k}\left(2^{s} \xi\right) \exp 2 \pi i x \xi d \xi
$$

and

$$
k_{2} j(x)=\int_{-\infty}^{\infty} \hat{k}\left(m_{j} \xi\right) \exp 2 \pi i\left(x-m_{j+1} t\right) \xi d \xi
$$

Lemma 1. We have

$$
\sum_{|n|>2^{M+2}}\left(\sum_{s=0}^{\infty}\left|k_{s}(n-m)-k_{s}(n)\right|^{2}\right)^{1 / 2}<c
$$

for all $1 \leqq|t| \leqq 2$ and $|m|<2^{M}, M=1,2,3, \cdots$, where c is a constant not depending on t and M^{11}.

Proof. To simplify the notations we put $k_{2}{ }^{j}=k_{j}^{*}$ and prove that

$$
\begin{equation*}
\sum_{|n|>2^{M}+2}\left(\sum_{j=0}^{\infty}\left|k_{j}^{*}(n-m)-k_{j}^{*}(n)\right|^{2}\right)^{1 / 2}<c \tag{2.3}
\end{equation*}
$$

for $t=1$.
Since $k_{j}^{*}(x)=m_{j}^{-1} k\left(m_{j}^{-1} x-m_{j}\right)$, we get, by (2.1) and (2.2),

$$
\left|k_{j}^{*}(n-m)-k_{j}^{*}(n)\right| \leqq\left\{\begin{array}{l}
c m_{j}^{-3}\left|n-\eta m-m_{j+1}\right||m| \tag{2.4}\\
c m_{j}\left|n-\eta m-m_{j+1}\right|^{-3}|m|
\end{array}\right.
$$

where $0 \leqq \eta \leqq 1$ and

$$
\left|k_{j}^{*}(n)\right| \leqq\left\{\begin{array}{l}
c m_{j}^{-1} \tag{2.5}\\
c m_{j}^{2}\left|n-m_{j+1}\right|^{-3}
\end{array}\right.
$$

Let N be a smallest integer such that $2^{M+1}<m_{N+1}$. Put

$$
I(N)=\left\{n ; 2^{M+2}<|n| \leqq m_{N+2}\right\}
$$

and

$$
I(k)=\left\{n ; m_{k+1}<|n| \leqq m_{k+2}\right\} \text { for } k>N
$$

[^0]Suppose that $n \in I(k)$. Then $\left|n-\eta m-m_{j+1}\right| \leqq|n| / 2$ for $0 \leqq j<k$ and $>m_{j+2} / 2$ for $j>k+1$. Note that

$$
\begin{equation*}
\left(\sum_{j=0}^{\infty}\left|k_{j}^{*}(n-m)-k_{j}^{*}(n)\right|^{2}\right)^{1 / 2} \leqq \sum_{j=0}^{\infty}\left|k_{j}^{*}(n-m)-k_{j}^{*}(n)\right| . \tag{2.6}
\end{equation*}
$$

Thus if $n \in I(k)$, by (2.4) and (2.5) the left hand side of (2.6) is bounded by

$$
\begin{align*}
c \sum_{j=0}^{k-1} \frac{m_{j}}{n^{3}}|m| & +c \sum_{j=k}^{k+1} \min \left(m_{j}^{-3}\left|n-\eta m-m_{j+1}\right|, \frac{m_{j}}{\left|n-\eta m-m_{j+1}\right|^{3}}\right)|m| \tag{2.7}\\
& +c \sum_{j=k+2}^{\infty} \frac{1}{m_{j}^{4}} .
\end{align*}
$$

Therefore

$$
\begin{align*}
\sum_{n \in I(k)} & \left(\sum_{j=0}^{\infty}\left|k_{j}^{*}(n-m)-k_{j}^{*}(n)\right|^{2}\right)^{1 / 2} \tag{2.8}\\
& \leqq c \sum_{j=0}^{k-1} \frac{m_{j}}{m_{k+2}^{2}}|m|+c \sum_{j=k}^{k+1}\left(m_{j}^{-3} \cdot m_{j}^{2}+m_{j} \cdot m_{j}^{-2}\right)|m|+\sum_{j=k+2}^{\infty} \frac{m_{k+2}}{m_{j}^{4}} \\
& \leqq c|m| m_{k+1}^{-1}+c|m| m_{k}^{-1}+c m_{k+2}^{-3} \leqq c|m| m_{k}^{-1}
\end{align*}
$$

for $k>N$. If $k=N$, we replace the second term of (2.7) by $c \sum_{j=N}^{N+1} \sum_{y=0}^{1}$ $\min \left(m_{j}^{-1}, m_{j}^{2}\left|n-m_{j+1}\right|^{-3}\right)$. Then we get, by the same way,

$$
\begin{equation*}
\sum_{n \in I(N)}^{\infty}\left(\sum_{j=0}^{\infty}\left|k_{j}^{*}(n-m)-k_{j}^{*}(n)\right|^{2}\right)^{1 / 2} \leqq c|m| m_{N+1}^{-1}+c+c m_{N+1}^{-3}<c \tag{2.9}
\end{equation*}
$$

Therefore the left hand side of (2.3) is bounded by $c+c \sum_{k>N}|m| m_{k}^{-1} \leqq$ $c+c|m| m_{N+1}^{-1}<c$.

To prove our lemma it remains to show

$$
\begin{equation*}
\sum_{|m|>2^{M+2}}\left(\sum_{s}^{\prime}\left|k_{s}(n-m)-k_{s}(n)\right|^{2}\right)^{1 / 2}<c, \quad|m|<2^{M} \tag{2.10}
\end{equation*}
$$

where the summation Σ^{\prime} runs over all s not of the form 2^{j}. This is proved by the similar way to the above and it will be simpler. Actually (2.10) is given in S. Igari [2], so that we omit the proof.

Proof of Theorem 3. We use the following two facts whose proof is given, for example, in S. Igari [2].

Let H be the Hilbert space of square summable sequences on nonnegative integers. Assume $1<q<\infty$. For H-valued $L^{q}(Z)$-function $f=\left\{f_{j}\right\}$ define $T f=\left\{T_{j} f\right\}$ by $\left(T_{j} f\right)^{\wedge}(\xi)=\chi_{I_{j}}(\xi) \hat{f}_{j}(\xi)$, where $\hat{f}_{j}(\xi)=\sum_{n=-\infty}^{\infty} f_{j}(n) e^{2 \pi i n \xi}$ and $\chi_{I_{j}}$ is the characteristic function of the interval I_{j} in T. Then we have

$$
\begin{equation*}
\|T f\|_{L^{q}(Z, H)} \leqq A_{q}\|f\|_{L^{q}(Z, H)} \tag{2.11}
\end{equation*}
$$

where A_{q} is a constant which does not depend on the choice of $\left\{I_{j}\right\}$ and f.
For $f \in L^{q}(Z)$ define $\Delta(f)=\left\{U_{j}(f)\right\}$ by

$$
\left(U_{j} f\right)^{\wedge}(\xi)=\chi_{\left[2^{\left.-j-1,2^{-j}\right]}\right.}(\xi) \hat{f}(\xi)
$$

Then

$$
\begin{equation*}
A_{q}^{\prime}\|f\|_{L^{q}(Z)} \leqq\|\Delta(f)\|_{L^{q}(Z, H)} \leqq A_{q}^{\prime \prime}\|f\|_{L^{q^{(Z)}}} \tag{2.12}
\end{equation*}
$$

where constant A_{q}^{\prime} and $A_{q}^{\prime \prime}$ depend only on q.
Put $K=\left(k_{0}, k_{1}, k_{2}, \cdots\right)$. Then the mapping $f \rightarrow K * f$ of $L^{q}(Z)$ to $L^{q}(Z, H)$ is bounded, by the argument of [2] with Lemma 1 , that is,

$$
\begin{equation*}
\|K * f\|_{L^{q}(Z, H)} \leqq c_{q}\|f\|_{L^{q}(Z)} \tag{2.13}
\end{equation*}
$$

Apply (2.11) and then (2.10) to (2.13). Then we get

$$
\begin{aligned}
\left\|T_{\exp 2 \pi i t} f\right\|_{L^{q}(Z)} & \leqq A_{q}^{-1}\left\|\Delta\left(T_{\exp 2 \pi i t \theta} f\right)\right\|_{L^{q}(Z, H)} \\
& \leqq A_{q}^{\prime-1} A_{q}\|K * f\|_{L^{q_{(Z, H)}}} \leqq A_{q}^{\prime-1} A_{q} c_{q}\|f\|_{L^{q_{(Z)}}},
\end{aligned}
$$

which implies Theorem 3.
3. Proof of Theorem 1. We prove the sufficiency. The necessity is obvious. Let $1<q \leqq p<2$. Remark that $M_{1}(T)=A_{1}(T) \subset M_{q}(T)$ and $M_{p}(T) \subset A_{p}(T)$, where $A_{p}(T)$ is the set of Fourier transforms of functions in $L^{p}(Z)$. Thus by the theorem of W. Rudin [7], Φ is extended to an analytic function in a neighborhood of $[-1,1]$. We may assume that $\Phi(0)=0$ and Φ is periodic with period 1 considering $\Phi(\sin 2 \pi x)$ and $\Phi(\varepsilon \sin 2 \pi x), 0<\varepsilon<1$.

Lemma 2. (1) (K. de Leeuw [1]) Let $1 \leqq r \leqq 2$ and $\phi \in M_{r}(T)$. If $\tilde{\phi}$ is the periodic extension of ϕ, then

$$
\begin{equation*}
\|\phi\|_{M_{r}(T)}=\|\tilde{\phi}\|_{M_{r^{\prime}}(R)} \tag{3.1}
\end{equation*}
$$

(2) ([1] and S. Igari [3]) If $\psi \in M_{r}(R)$ and ψ is regulated, then

$$
\begin{equation*}
\|\psi\|_{M_{r^{\prime}}(R)} \geqq\|\psi(\varepsilon n)\|_{M_{r^{\prime}}(Z)} \tag{3.2}
\end{equation*}
$$

for every $\varepsilon>0$. If, furthermore, ψ is continuous almost everywhere,

$$
\begin{equation*}
\|\psi\|_{M_{r^{\prime}}(R)}=\lim _{\varepsilon \rightarrow 0}\|\psi(\varepsilon n)\|_{M_{r^{\prime}}(Z)} \tag{3.3}
\end{equation*}
$$

Lemma 3 (J.-P. Kahane and W. Rudin [5]). For a given sequence $\left\{n_{j}\right\}$ of positive integers, there exist $\left\{\nu_{j}\right\}$ and $\left\{\mu_{j}\right\}$ of positive integers satisfying:

$$
\begin{equation*}
m_{i_{j}} / 2 \nu_{j}<-n_{j}+\mu_{j}<n_{j}+\mu_{j}<m_{i_{j}} / \nu_{j}<m_{i_{j+1}} / 2 \nu_{j+1} \tag{3.4}
\end{equation*}
$$

$j=1,2,3, \cdots$ for some $0<i_{1}<i_{2}<\cdots$. Thus the sets

$$
S_{j}=\left\{m=\nu_{j}\left(n+\mu_{j}\right) ;|n| \leqq n_{j}\right\}
$$

are mutually disjoint.
For every continuous function g in T such that supp $\hat{g} \subset \bigcup S_{j}$, we have

$$
\begin{equation*}
\|g\|_{\infty} \leqq \sum_{j=1}^{\infty}\left\|\sum_{m \in S_{i}} \hat{g}(m) e^{2 \pi i m x}\right\|_{\infty} \leqq 2\|g\|_{\infty} . \tag{3.5}
\end{equation*}
$$

Lemma 4. For every $s>1$ there is a constant c_{s} such that

$$
\|\Phi(\phi)\|_{M_{p}(T)}<c_{s}
$$

for every real valued function ϕ in $M_{1}(T)$ satisfying $\|\phi\|_{M_{1}(T)}<s$.
Proof. Fix $s>1$. If the lemma were false for s, there exists a sequence $\left\{\phi_{j}\right\}$ in $M_{1}(T)$ such that

$$
\left\|\phi_{j}\right\|_{M_{1}(T)}<s, \quad \text { range of } \phi \subset R \text { and }\left\|\Phi\left(\dot{\phi}_{j}\right)\right\|_{M_{p}(T)}>j
$$

for $j=1,2,3, \cdots$.
Let $\tilde{\phi}_{j}$ be the periodic extention of ϕ_{j} with period 1 . Then by Lemma 2, there is $\varepsilon_{j}>0$ such that

$$
\left\|\tilde{\phi}_{j}\left(\varepsilon_{j} n\right)\right\|_{M_{1}(Z)}<s \quad \text { and } \quad\left\|\Phi\left(\tilde{\phi}_{j}\left(\varepsilon_{j} n\right)\right)\right\|_{M_{p}(Z)}>j
$$

Let $\quad V_{a}(\xi)=2 \Delta_{2 a}(\xi)-\Delta_{a}(\xi)$, where $\quad \Delta_{a}(\xi)=\max (1-|\xi| / a, 0)$. Then $\left\|V_{a}\right\|_{M_{1}(R)} \leqq 3$ for all $a>0$. Thus if $a_{j}>0$ is sufficiently large and $\psi_{j}(n)=V_{a_{j}}(n) \tilde{\phi}_{j}\left(\varepsilon_{j} n\right)$, then

$$
\begin{equation*}
\left\|\psi_{j}\right\|_{M_{1}(Z)}<3 s \quad \text { and } \quad\left\|\Phi\left(\psi_{j}\right)\right\|_{M_{p}(Z)}>j \tag{3.6}
\end{equation*}
$$

Pick n_{j} so that $2 a_{j}<n_{j}$. Choose ν_{j} and μ_{j}, and define S_{j} by Lemma 3. Put $X=\left\{f \in C(T) ; \operatorname{supp} \hat{f} \subset \bigcup_{j=1}^{\infty} S_{j}\right\}$. Then X is a closed subspace of $C(T)$. If $T f=\sum_{j=1}^{\infty} \sum_{m \in S_{j}} \psi_{j}(n) \hat{f}(m), m=\nu_{j}\left(n+\mu_{j}\right)$,

$$
|T f| \leqq \sum_{j=1}^{\infty} \mid \sum_{m \in S_{j}} \psi_{j}(n) \widehat{f}(m) e^{2 \pi i m \xi}\left\|_{\infty} \leqq 6 s\right\| f \|_{\infty}
$$

applying Lemma 3. Since T is extended to a bounded linear functional on $C(T)$, there is a bounded Borel measure μ on T such that

$$
T f=\int_{0}^{1} f d \bar{\mu}
$$

for $f \in X$. In particular $\hat{\mu}(m)=\psi_{j}(n), m=\nu_{j}\left(n+\mu_{j}\right)$.
Put $\phi(\xi)=\Re \hat{}\left(\hat{\bar{\mu}}(\xi) e^{-2 \pi i \xi}\right.$. Since $\phi(\theta(\xi))=\Re \mathrm{e} \int_{0}^{1} e^{-2 \pi i \theta(\xi)(x+1)} d \bar{\mu}(x)$,

$$
\|\phi(\theta)\|_{M_{q}(T)} \leqq \int_{0}^{1} \sup _{1 \leqq t \leq 2}\left\|e^{-2 \pi i t \theta}\right\|_{M_{q}(T)}|d \mu|(x)<\infty
$$

Now put $(\Phi \circ \phi \circ \tilde{\theta})^{*}(\xi)=[\Phi \circ \phi \circ \tilde{\theta}(\xi+0)+\Phi \circ \phi \circ \tilde{\theta}(\xi-0)] / 2$ if ξ is not integer and $=\Phi(\mathfrak{R e} \hat{\mu}(0))$ otherwise, where $f \circ g$ denotes the composition function $f(g(\cdot))$. Then $(\Phi \circ \phi \circ \tilde{\theta})^{*}$ is regulated. In fact put $u_{j}(\xi)=m_{j}^{-1} \chi_{j}(\xi)$, where χ_{j} is the characteristic function of the interval $\left(-1 / 2 m_{j}, 1 / 2 m_{j}\right)$. Then it is not hard to prove that $u_{j} *(\Phi \circ \phi \circ \tilde{\theta})^{*}(\xi) \rightarrow(\Phi \circ \phi \circ \tilde{\theta})^{*}(\xi)$ for every ξ. Thus by the assumption and Lemma 2,

$$
\begin{align*}
& \|(\Phi \circ \phi \circ \tilde{\theta}) *(a(n+b))\|_{M_{p}(Z)} \leqq\|(\Phi \circ \phi \circ \tilde{\theta})(a(\xi+b))\|_{M_{p}(R)} \tag{3.7}\\
= & \|(\Phi \circ \phi \circ \tilde{\theta})(\xi)\|_{M_{p}(R)}=\|\Phi \circ \phi \circ \theta\|_{M_{p}(T)}<\infty
\end{align*}
$$

for every a and b.
Choose a and b so that $a=\nu_{j} m_{i_{j}+1}^{-1}$ and $b=\mu_{j}$. Then $\theta(a(n+b))=$ $\nu_{j}\left(n+\mu_{j}\right)$ for $|n|<n_{j}$. Remark that $\theta(a(\xi+b))$ has no point of discontinuity in $|\xi| \leqq n_{j}$. Thus $\phi \circ \theta(a(n+b))=\psi_{j}(n)$ for $|n|<n_{j}$. Thus by (3.6) and M. Riesz theorem the left hand side of (3.7) is arbitrarily large. The contradiction implies the lemma.

Lemma 5 ([3], cf. [7]). If $p \neq 2$,

$$
\sup \left\{\left\|e^{i \psi}\right\|_{M_{p}(T)} ;\|\psi\|_{M_{1}(T)}<s, \text { range of } \psi \subset R\right\}>A e^{B s},
$$

where A and B are constants independent on s.
Proof of Theorem 1. If $\hat{\Phi}(n)$ is the n-th Fourier coefficient of Φ, then

$$
\hat{\Phi}(n) e^{2 \pi i n \phi}=\int_{0}^{1} \Phi(x+\phi) e^{-2 \pi i n x} d x
$$

Taking supremum over real valued ϕ such that $\|\phi\|_{M_{1}(T)}<s$, we get $|\hat{\Phi}(n)| A e^{2 \pi B|n| s} \leqq c_{s+1}$, which proves the theorem.
4. Corollaries of Theorem 1. By the well-known argument we get the following corollaries of Theorem 1 (cf. S. Igari [3] or Y. Katznelson [6]).

Corollary 1. Assume $p \neq 1,2$. Then there exists ϕ in $M_{p}(T)$ such that $\phi \geqq 1$ on T but $1 / \phi \notin M_{p}(T)$.

Corollary 2. If $p \neq 1,2$, then the Banach algebra $M_{p}(T)$ is asymmetric and not regular.

Proof of Theorem 2. We may assume that $O=(0,1)$. Take ϕ possessing the properties of Corollary 1. Then the periodic extension $\tilde{\phi}$ of ϕ satisfies the conditions, in fact, otherwise, $1 / \tilde{\phi} \cdot \chi_{[0,1)} \in M_{p}(R)$. Thus $1 / \tilde{\phi} \in M_{p}(T)$ by a theorem of M. Jodeit, Jr. [4].
5. Remarks. (1) In Theorem 1 we cannot replace $M_{q}(T)$ by $m_{q}(T)$, if $q<p<2$. In fact if $\phi \in m_{q}(T)$

$$
\left\|\phi-F_{j} * \phi\right\|_{M_{p}(T)} \leqq\left\|\dot{\phi}-F_{j} * \phi\right\|_{M_{q}(T)}^{1-\theta}\left\|\phi-F_{j} * \phi\right\|_{\infty}^{\theta}
$$

where $1 / p=(1-\theta) / q+\theta / 2$ and F_{j} is the Fejér kernel. Since the first term of the right hand side is bounded by $\left(2\|\phi\|_{M_{q}(T)}\right)^{1-\theta}$ and the second term tends to zero as $n \rightarrow \infty, \phi$ is approximated by polynomials. Let h be a non-trivial homomorphism on $M_{p}(T)$. Then there is a point t in T such that $h(\psi)=\psi(t)$ for all polynomials ψ. Thus the range of Gelfand transform of ϕ on the maximal ideal space of $M_{p}(T)$ coinsides with $\phi(T)$.

Therefore for the continuous multipliers the possibility of Theorem 1 comes into question only if $p=q$.
(2) Corollary 1 does not hold for $p=1$ and 2. The former case is due to N . Wiener and the latter to O . Toeplitz.

References

[1] K. De Leeuw, On L^{p}-multipliers, Ann. of Math., 81 (1965), 364-378.
[2] S. Igari, On the decomposition theorems of Fourier transforms with weighted norms, Tôhoku Math. J., 15 (1963), 6-36.
[3] S. Igari, Functions of L^{p}-multipliers, Tôhoku Math. J., 21 (1969), 304-320.
[4] M. Jodeit, Jr., Restrictions and extensions of Fourier multipliers, Studia Math., 34 (1970), 215-226.
[5] J.-P. Kahane and W. Rudin, Caractérisation des fonctions qui opèrent sur les coefficients de Fourier-Stieltjes, C. R. Acad. Sci. Paris, 247 (1958), 773-775.
[6] Y. Katznelson, An Introduction to Harmonic Analysis, John Wiley \& Sons, Inc., 1968.
[7] W. Rudin, A strong converse of the Wiener-Lévy theorem, Canad. J. Math., 14 (1962), 694-701.

Mathematical Institute
Tôhoku University, Sendai, Japan

[^0]: 1) c will be different in each occasion.
