
Tδhoku Math. Journ.
26(1974), 541-554.

POLAR DECOMPOSITION FOR ISOMORPHISMS
OF <7*-ALGEBRAS

Dedicated to Professor Masanori Fukamiya on his 60th birthday

TAKATERU OKAYASU

(Received September 14, 1973)

1. Introduction and preliminaries. In [8], it is shown in essence
that any isomorphism of von Neumann algebras is decomposed uniquely
as the product of a "^isomorphism and an automorphism implemented by
an invertible positive element. This statement bears a remarkable resem-
blance to the polar decomposition theorem for operators on Hubert spaces,
so we prefer to call it the polar decomposition theorem for isomorphisms
of von Neumann algebras.

But, the author thinks that this polar decomposition for isomorphisms
must be stated more tidily and more generaly; and, the main purposes
of this paper are to state it in a satisfactory fashion and to give an
application.

After introducing a concept of positivity along with that of self-
duality for automorphisms of C*-algebras, we shall state in § 7 the main
result: Any isomorphism of C*-algebras is decomposed uniquely as the
product of a *-isomorphism and a positive automorphism, and this
decomposition is norm-continuous. This seems to give an answer to
Kaplansky's proposal in [6] and must be of large practical importance
in investigations of automorphisms of C*-algebras and their groups.

Several interesting secondary results will be given, also. Particularly,
in the last section, characterizations of positive automorphisms will be
discussed.

When we study automorphisms of C*-algebras, we must take care of
their derivations. A derivation δ of a C*-algebra A means an operator
on A which satisfies the condition

δ(xy) = d(x)y + xδ(y) for x e A and y e A

an inner derivation of A means a derivation of the form

ada(x) = ax — xa for xe A ,

with a an element of A; and, if A acts on a Hubert space H, the spatial
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derivation implemented by an operator s on if means the derivation
ad s IA obtained by restricting to A the derivation ad s of B(H), the C*-
algebra of all bounded operators on if, where ad s(A) <ϋ A.

It is shown by Sakai in [11], and by Kadison in [5], that any deriva-
tion of a von Neumann algebra is inner. Moreover, it has been known
that many other C*-algebras than von Neumann algebras has this prop-
erty. In fact, in [12] Sakai showed this property for simple C*-algebras
with identities (see also [13] and [14]) and recently in [9] Olesen for
ATF*-algebras. This property for C*-algebras is so favorable for us,
then we agree to employ for convenience' sake

DEFINITION 1.1. If any derivation of a C*-algebra is inner, then we
say that it has the property (D).

It also is shown that any derivation of a C*-algebra acting on a
Hubert space is extended to a derivation of the von Neumann algebra
generated by the C*-algebra and hence it is spatial (see [5] and [11]).

The subsequent contents are: Spatial isomorphisms (§2), Canonical
representations (§3), Dual isomorphisms (§4), Inner automorphisms (§5),
Self-dual automorphisms and positive automorphisms (§6), Polar decomposi-
tion for isomorphisms (§ 7) and More on positive automorphisms (§ 8).

2. Spatial isomorphisms. Suppose that H and K are Hubert spaces,
s an invertible bounded operator from H onto K. Then the mapping

Ad s(x) = sxs'1 for x e B(H)

is an isomorphism of B(H) onto B{K). Suppose in addition that A is a
C*-algebra acting on if, B a C*-algebra acting on K which is just the
image of A under Ads. Then the restriction A d s \ A o i Ads to A is an
isomorphism of A onto B. If an isomorphism has this form, we say that
it is spatial.

The following theorem is to the effect that every spatial ^isomorphism
is implemented by some isometric operator:

THEOREM 2.1 (cf. Th. 1 in [8]). Let A be a C*-algebra acting on a
Hilbert space H, B a C*-algebra acting on a Hilbert space K and p a
spatial isomorphism of A onto B. Then, p is a ^-isomorphism if and
only if it is of the form

p = Ad u I A ,

where u is an isometric operator from H onto K.

PROOF. Only the necessity is important. Suppose that p is a spatial
*-isomorphism implemented by an invertible bounded operator s from H
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onto K. Then,

sx+s-1 = Ad s(x*) = (Ad 8(x))* = (sxs-1)* = (β*)-1^*** ,

and hence,

s*sx = xs*s

for each x in A. Thus, h = (s*s)1/2 commutes with each element of A
and therefore, putting u = s/r1, we have

Ad w(#) = uxu'1 = sh~ιxhs~ι = sα s"1 = Ad s(#)

for each sc in A. It is easy to see that w is an isometric operator and
the proof is completed.

3. Canonical representations. It is known that the quotient space
A/I of a C*-algebra A by a maximal left ideal I of A is a Hubert space
and the left regular representation φΣ of A on A/I is a ^representation
(see [4] and [15]). We denote by HA the Hubert space Σ Θ/ A/1 and by
Φ^ the *-representation Σ θ / P i which is necessarily faithful, where I
runs over the set £fA of all maximal left ideals of A. We call ΦA the
canonical representation of A and 12̂  the canonical representation space.

Suppose that p is an isomorphism of a C*-algebra A onto a C*-algebra
JB. We then call an isomorphism ΦBρΦT of ΦA(A) onto ΦB(-B) the c<m-
onical representation of /9. We are now going to see that it must be
spatial.

With IzJΪ?A, let us denote in the following by ίch->^7 the quotient
mapping of A onto A/I = Az.

LEMMA 3.1. (a) p(I) e SfB for each Ie £fA and the mapping
p(I) 6 Jί?B is one-to-one and onto; and

(b) p(xι)p{1) = ρ(x2)pm if a?i€ A, X2G A, l e ^ αnώ ( ^ = (α?2)j.

This lemma enables us to define for each 16 ^fA the operator s7 of
Aj onto ^ ( j , by

S/fe) = p(x)P(I)

w i t h a? i n A . F r o m

| | β / ( & 7 ) | | = i n f \\ρ(x) + ρ(xd\\ = \\p\\ i n f | | a ? + α J I = | | / o | | | | a ? i | | ,
Ϊ^J a; j_ e I

it follows that βz is bounded with norm less than or equal to \\p\\. There-
fore, so does the sum s of all s/s. Moreover, it turns out to be inver-
tible and satisfy the relation

φBp = Ad sΦA .
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In fact,

and hence for each a in A,

Now we can state

THEOREM 3.2 (Gardner's theorem). The canonical representation of
an isomorphism of C*-algebras is necessarily spatial. In fact, under
the foregoing notations,

ΦBpΦ? = Ad s\ΦA(A).

4. Dual isomorphisms. Given an isomorphism of C*-algebras, we
define its dual isomorphism as follows:

DEFINITION 4.1. Suppose that p is an isomorphism of a C*-algebra
A onto a C*-algebra B. Then we call the isomorphism p' of B onto A
defined by the relation

p ' i v Y = P ~ \ y * ) f o r y e B

the dual isomorphism of p.

It is easy to see the relations do')"1 = (p"1)', p" = p, \\ p'\\ = \\ p'11|
and (σp)f = pfσf with σ an isomorphism of B onto a C*-algebra.

It is meaningful for us to remark that p is a ^isomorphism if and
only if pfp is the identity automorphisms of A. This fact seems to sug-
gest us that ^isomorphisms behave like isometric operators.

If A acts on a Hubert space H, B on a Hubert space K and p is a
spatial isomorphism of A onto B implemented by an invertible bounded
operator s from H onto K, then we know that the dual isomorphism p'
of p is spatial implemented by s*, because for each y in B we have

Ad s*(y) = s*y(s*)~1 = (s~Vs)* = (Ad *)'(») .

5. Inner automorphisms. Suppose that A is a C*-algebra with iden-
tity and a an invertible element of A. Then the mapping

Ad a(x) = αccα"1 for α? € A

is an automorphism of A. We say that an automorphism of A is inner
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if it is written in this form.
The following lemmas are proved as in [8] by considering the left

and the right regular representations of A. Sp( ) denotes the spectrum
of ( ).

LEMMA 5.1. Let a be an invertίble element of a C*-algebra with
identity, then

Sp (Ad a) S Sp(a)Sp(a)~1 = {λμ~u. λ e Sp(a) and μ e Sp(a)} .

LEMMA 5.2. Let a be an element of a C*-algebra, then

Sp(ad a) S Sp(a) — Sp(a) = {λ — μ: λ e Sp(a) and μ e Sp(a)} .

In what follows, Log denotes the principal branch of the logarithm
on the plane slit along the negative half-axis.

LEMMA 5.3 (cf. [16]). Suppose that A is a C*-algebra with identity
and a an element of A. Then,

(a) Ad exp a = exp ad a and

(b) the negative half-axis does not pass through the spectrum of Ad a
and

Log Ad a = ad log a

provided that the spectrum of a lies in an open half-plane Ω whose
boundary is a line through the origin, where log is any branch of the
logarithm on Ω.

PROOF, (a) Define p(t) for each real t by

p(t) = Ad exp (ta) ,

then {p(t)} is a norm-continuous one-parameter group of automorphisms
of A and by the standard computations it is seen that its generator is
certainly ad a. Therefore we have for each t,

Ad exp (ta) = ρ(t) = exp (t ad a)

(see e.g. Chap. 9 of [3]) and in particular,

Ad exp a = p(l) — exp ad a .

(b) We can choose a suitable real number Θ such that | Θ + Im λ | <
π whenever λ e Sp(\og a). Then the negative half-axis does not pass
through the spectrum of b = (exp iθ)a. We can find by Lorch's theorem
(see e.g. [7]) a finite number of orthogonal idempotents ek's in the closed
subalgebra B of A generated by a and the identity 1 of A, satisfying
the relation
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Log b = ίθl + log a + 2πi Σ nkek ,
k

where nk's are non-zero integers. Suppose that f(ek) Φ 0 for some mul-
tiplicative functional / on B. Then f(ek) — 1 since

f(ek)(f(ek) - 1) = f(el) - f(ek) = f(ek) - f(ek) = 0 .

Thus for I Φ k,

f(ekel)=f(ek)f(el)=:0

and hence /(ez) = 0. Therefore,

/(Log 6) = ΐ0 + /(log α) + 2 τrwfc .
But this is impossible because both Sp(Log b) and Sp(iθl + log a) lie in
the strip {λ: | Im λ | < π}. It follows that f(ek) = 0 for every multiplica-
tive functional / on B. Since any idempotent in the radical must be
zero, ek = 0 and we conclude that

Log 6 = iθl + log a .

Put next c = Log b. Then 6 = exp c and by (a),

Ad a = Ad 6 = Ad exp c = exp ad c .

Thus by Lorch's theorem again, we have

Log Ad a = ad c + 2πi

where ε/s are orthogonal idempotents in the norm-closed algebra of
operators on A generated by adc and the identity operator on A and
mk's non-zero integers.

From Lemma 5.1 we know

Sp(Ad a) = Sp(Ad b) g Sp(b)Sp(b)'1 S C\"the negative half-axis" ,

where C is the plane, and hence,

Sp(Log Ad α) S {λ e C: I Im λ I < TΓ} .

On the other hand, from Lemma 5.2 we know

Sp(a,d c) S Sp(c) - Sp(c) S {λ e C: | Im λ | < π} .

Thus the arguments analogous to the foregoing apply to show

Log Ad α = ad c = ad log α .

Now the proof is completed.

A consequence of Lemma 5.3 is the following

THEOREM 5.4 (cf. Th. 3.5 in [2] and Th. 5 in [8]). Let A be α C*-
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algebra with identity, a an invertible element of A of which spectrum
lies in an open half-plane Ω whose boundary is a line through the origin
and S a closed subspace of A. If the inner automorphism implemented
by a leaves S invariant, then ad log a and, for any real t, Ad exp (t log a)
leave S invariant, where log denotes any branch of the logarithm on Ω.

PROOF. By Runge's theorem there exists a sequence {pn} of poly-
nomials which converges to Log uniformly on each compact set contain-
ing Sp(Aά a) and being contained in C\"the negative half-axis". Hence
{pn{Ad a)} norm-converges as n~>oo to Log Ad a which coincides with
ad log a by Lemma 5.3. Therefore, ad log a leaves S invariant because so
does each pn(Ad a).

We have for any t,

Ad exp (t log a) = exp (ad t log a) = exp (t ad log a)
by Lemma 5.3 again, so we conclude that Ad exp (t log a) leaves S in-
variant, completing the proof.

Another consequence of Lemma 5.3 is the next theorem which gives
a mild sufficient condition for a spatial automorphism of a C*-algebra
with property (D) to be inner.

LEMMA 5.5. A spatial derivation δ of a C*-algebra acting on a
Hilbert space is skew-adjoint, that is, satisfies

S(#*) = — <5(#)* for each element x

if and only if it is implemented by a self-adjoint operator; and this
operator can be found in the C*-algebra provided δ is inner.

The proof of this lemma is easy and omitted (see [8]).

THEOREM 5.6 (cf. Cor. 7 in [8]). Let A be a C*-subalgebra of a C*-
algebra B with identity, which contains the identity of B and has the
property (D). Let moreover a be an invertible element of B with spec-
trum in an open half-plane whose boundary is a line through the origin.
If the inner automorphism implemented by a leaves A invariant, then
Ada I A is an inner automorphism of A', and it is implemented by an
invertible positive element of A provided a is positive.

PROOF. It follows from Theorem 5.4 that Ad a \ A is an automorphism
of A and ad log a leaves A invariant, where log is a branch of the loga-
rithm on a domain containing Sp(a). Since A has the property (D),
there exists an element b in A such that ad log a \ A = ad b. Then Lemma
5.3 applies to obtain

Ad a\ A = exp ad b = Ad exp &



548 T. OKAYASU

and expδ is of course in A.
When a is positive, by Lemma 5.5, we can make the above 6 self-

adjoirLt; and hence exp b positive. Then the proof is completed.

6. Self-dual automorphisms and positive automorphisms. Here we
introduce the following

DEFINITION 6.1. An automorphism η of a C*-algebra is said to be
self-dual if η == rf, and positive if it is self-dual and its spectrum consists
of non-negative real numbers.

It is obvious from the comment in the last paragraph of §4 that a
spatial automorphism implemented by an invertible self-adjoint operator
is self-dual, and from Lemma 5.1 that an inner automorphism implemented
by an invertible positive element is positive.

LEMMA 6.2. Let τ be a bounded operator on a Banach space X and
S a closed subspace of X invariant under τ. If the spectrum of τ does
not separate the plane, then the spectrum of the restriction τ\S of τ to
S is contained in the spectrum of τ.

PROOF. Suppose SI is the norm-closed subalgebra of B{X), the alge-
bra of all bounded operators on X, generated by τ and the identity
operator c. Since any operator in 21 leaves S invariant and the restric-
tion ( ) IS of operators in SI to S is a homomorphism, the spectrum
Spn(τ) of τ with respect to SI contains the spectrum Sp(τ \ S) of τ \ S. On
the other hand, the spectrum Sp(τ) of τ coincides with Sp%(τ) because
Sp(τ) does not separate the plane (see Th. (1.6.13) in [10]). Then the
proof is completed.

Now the following is obvious:

LEMMA 6.3. Let A be a C*-subalgebra of a C*-algebra B. If η is a
self-dual automorphism of B which leaves A invariant and the restric-
tion f]\A of rj to A is an automorphism of A, then rj\ A is self-dual;
and it is positive provided rj is positive.

Suppose that p is an isomorphism of a C*-algebra A onto a C*-
algebra JB. Then, there is an invertible bounded operator s from HA

onto HB which satisfies

ΦBpΦ? = Ad s\ΦA(A).

Since

ΦAP'Φ-B1 = (ΦBPΦΊΎ - Ad s* I ΦB(B) ,

we have



ISOMORPHISMS OF C*-ALGEBRAS 549

= (Ads*\ΦB(B))(Aάs\ΦA(A))

= Ad s*s I ΦA(A) .

Thus, ΦAP'PΦA1 is a positive automorphism of ΦA(A) from Lemma 6.3,
and p'p is a positive automorphism of A.

From Theorem 5.4, Ad | s | leaves ΦA(A) invariant, where [ s \ = (s*s)1/2;
and from Lemma 6.3 its restriction to ΦA(A) is a positive automorphism
of ΦA(A). Hence Φj^Ad \s\\ ΦA{A))ΦA is a positive automorphism of A.
Since the square of this automorphism is p'p and (p'p)112, the square root
of p'p with spectrum in the open right half-plane, is uniquely determined
b y p f ρ , w e k n o w t h a t (p'p)112 i s ΦA'(Ad \s\\ ΦA{A))ΦA.

DEFINITION 6.4. Let p be an isomorphism of C*-algebras, then we
denote the automorphism (p'p)112 by | p | and it is called the absolute value
of p.

Through a lemma which is easily verified, we show that the square
root of a positive automorphism is also a positive automorphism.

LEMMA 6.5. Let p be an automorphism of a C*-algebra A. Then,
p is positive if and only if p = \p\, and if and only if its canonical
representation is implemented by an invertible positive operator on the
canonical representation space of A.

THEOREM 6.6. Let η be a positive automorphism of a C*-algebra A.
Then if12 is a unique positive automorphism of A whose square is ΎJ.

PROOF. With an invertible positive operator h on HA,

Φηφ-1 = Ad h I Φ(A) ,

where Φ = ΦA. From Theorem 5.4 and Lemma 6.3, Ad (h1'2) leaves Φ(A)
invariant and its restriction of Φ(A) is a positive automorphism of Φ{A).
Hence we have

ψ = A d (Λ

proving the theorem.

7. Polar decomposition for isomorphisms. We prove here for iso-
morphisms of C*-algebras the polar decomposition theorem:

THEOREM 7.1 (cf. Th. 8 in [8]). Any isomorphism p of a C*-algebra
A onto a C*-algebra B is written uniquely as

P = πη ,



550 T. OKAYASU

where π is a *-isomorphism of A onto B and Ύ] a positive automorphism
of A; and p is written uniquely as

P = ft^i ,

where r]1 is a positive automorphism of B and πγ a ^-isomorphism of A
onto B.

PROOF. Put η = \p\ and π = pψ1. Then the former is a positive
automorphism of A and the latter a ^isomorphism of A onto B because

π'π = rr^p'prp^ — ψ^rfψ1 = tA ,

where cA is the identity automorphism of A; and p = πη. Suppose next
that p = πoηo with π0 a ^isomorphism of A onto B and η0 a positive
automorphism of A. Then,

Therefore,

and hence

π0 = PVό1 = PVι = π

Now the first half of the conclusion is proved. By applying it to p~*
we show the rest and the proof is completed.

In what follows, we examine the norm-continuity of the decomposition.

LEMMA 7.2. Let X and Y be Banach spaces, then the inversion τ \-+
τ~ι under which each invertible bounded operator of X onto Y corresponds
its inverse is norm-bicontinuous.

The proof follows along the same line as a proof of the bicontinuity
of the inversion in Banach algebras (see [10]).

PROOF. Suppose that τ and σ are invertible bounded operators of
X onto Y and ε > 0. Since

τ-1 - σ'1 = -τ~\τ - σ)τ~' + (τ"1 - σ-χ)(τ - σ)τ~' ,

we have

and hence

Therefore, if \\τ - σ \\ < δ with
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then,

II r"1 -

= ε .

So, it follows that the mapping τ i—> τ~ι is norm-continuous. Thus it is
norm-bicontinuous and the proof is completed.

Iso (A, B) denotes the set of all isomorphisms of a C*-algebra A onto
a C*-algebra B, Iso* (A, B) the set of all ^isomorphisms of A onto B;
Aut (A) the set of all automorphisms of A and Aut+ (A) the set of all
positive automorphisms of A.

LEMMA 7.3. The mapping p\-* ρf from Iso (A, B) onto Iso (B, A),
where A and B are C*-algebras, is norm-bicontinuous.

The proof is immediate from Lemma 7.2 and the relation

\\P' - σ'\\ £\\p-1 - a-l\\ ^Up-^WWσ - pWWσ-1]]

for p e Iso (A, B) and σ e Iso (A, B).

LEMMA 7.4. // an analytic function f is applicable to an element a
of a Banach algebra B with identity, then there exists a positive number
δ such that f is applicable to every x in B with |1 x — a 11 < δ and the
mapping x \-+f(x) is continuous at a.

We say that an analytic function is applicable to an element of a
Banach algebra with identity if it is analytic on some bounded domain
containing the spectrum of the element.

PROOF. Suppose that / is analytic on a bounded domain Δ contain-
ing Sp(a). Then the continuity of spectra (see Th. (1.6.16) in [10]) makes
us find a positive number δ and a rectifiable Jordan contour Γ in Δ such
that Sp(x) is contained in the interior of Γ for every x in B with
II x — a || < δ. It follows that / is applicable to every such x.

Suppose next that a sequence {an}n^ converges to a as n —• c>o and
put α0 = a. Then {am}m^0 x Γ is compact and hence
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sup II ( o . - λe)"11| || (α - λβ)"11| | f(X) |
>̂0 d λΓ

p
0 and λe

where e denotes the identity of B. On the other hand, by the second

resolvent equation

(α — λe)" 1 — (an — Xe)~ι = — (an — λe)"" 1^ — α j ( α — λe)" 1, w >̂ 1 ,

we have t h e formula

/ ( α ) - f(an) = - - L . [ ( α , - λβ)- ι(α - O ( α - \e)-ιf(\)d\, n ^ l ,

implying the relation

\\f(a)-f(an)\\

^•J±-\\a-an || s u p || ( α m - λ β ) " 1 1 | || (a - λ β ) " 1 1 | | / ( λ ) \,n^l,
2TΓ mέlandief

with L the length of Γ. Thus we know that {f(an)} converges to /(α)
as n —• oo. Now the proof is completed.

From Lemmas 7.3 and 7.4 we have the following

LEMMA 7.5. The mapping p\-^\ρ\ from Iso {A, B) into Aut (A),
where A and B are C*-algebras, is norm-continuous.

In the sequel, we can show a theorem which asserts that Iso (A, B) is
norm-homeomorphic to Iso* (A, B) x Aut+ (A) and to Aut+ (B) x Iso* (A, J5).

THEOREM 7.6. Let A and B be C*-algebras. Then, the mapping
Iso {A, B)B p^ (π, rj) e Iso* (A, B) x Aut+ (A) such that p = πη is norm-
bicontinuous, and the mapping Iso (A,B)Bp\r-*(ηl9 πt) e Aut+ (B) x Iso* {A, B)
such that p = τj1π1 is norm-bicontinuous.

PROOF. The mapping p \-+ | p \ = η is norm-continuous from Lemma
7.5 and the mapping p h-> π = pψι is also norm-continuous from Lemma
7.2. So, the mapping p \-> (π, ή) is norm-continuous. Since it is trivial
that its inverse is norm-continuous, it is norm-bicontinuous. The rest is
similarly seen and the proof is completed.

8. More on positive automorphisms. In this section we show two
theorems which characterize positive automorphisms and clarify the rela-
tion of Theorem 7.1 to the original theorem in [8].

THEOREM 8.1. Suppose that A is a C*-subalgebra, with property
(D), of a C*-algebra B with identity and η an automorphism of A. Then,
in order that η is positive it is necessary and sufficient that there exists
an invertible positive element h in B such that
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7] = Ad h I A

and such an h can be found in A provided that A contains the identity
of B.

PROOF. Lemma 6.3 shows the sufficiency, so we show only the ne-
cessity. Assume first that A contains the identity 1 of B. Then from
Lemma 6.5, we can find an invertible positive operator h on the canonical
representation space HA of A such that

φ-ηφ-γ = Ad h I Φ(A) ,

where Φ denotes the canonical representation of A. Since Φ(A) has the
property (JD), it follows from Theorem 5.6 that ΦηΦ~ι is inner implemented
by an invertible positive element, and hence so does η.

Next assume that A does not contain 1. Then A + {λl} is a C*-
subalgebra of B. Suppose that δ is a derivation of A + {λl}. Then
g(l) = 0 is seen by a simple computation. Therefore, there exists an
element a in A such that

δ(x + λl) = δ(x) = ad a(x) = ad a(x + λl)

for each x in A and complex λ. We know thus that δ is inner and
A + {λl} has the property (D).

Define an automorphism 9} of A + {λl} by

9j(x + λl) = Ύ](x) + λl f or x e A and λ e C .

Then it is positive because Sp(η) = Sp(η) U {1}. Hence, we have rj =
Ad h I (A + {λl}), with h an invertible positive element of A + {λl}. It
follows that

-η = γj\A = Aάh\A ,

and the proof is completed.

LEMMA 8.2. Any skew-adjoint derivation of a C*-algebra A acting
on a Hilbert space H is implemented by a self-adjoint operator on H
contained in the von Neumann algebra Ά on H generated by A.

The proof is direct from Lemma 5.5.

THEOREM 8.3. Let Ύ] be an automorphism of a C*-algebra A and Φ
a faithful *-representation of A. Then, in order that rj is positive it is
necessary and sufficient that there exists a positive automorphism Ύ]1 of

the von Neumann algebra Φ{A) generated by Φ(A) such that

φη z=z -η^φ .
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PROOF. First we show the sufficiency. Since

VMA)) = Φ(y(A)) = Φ(A) ,

7]x I Φ(A) is an automorphism of Φ(A) and hence it is positive. Thus η =
Φ^rj^φ is a positive automorphism of A.

Next we show the necessity. We may assume that A acts on the
representation space of Φ and Φ is the identity representation. Put δ —
Log)?. Then, it is a skew-adjoint derivation of A. In fact, with an
invertible positive operator h on the canonical representation space,

ΦJΦj1 = (Log Ad h) I ΦA(A) = (ad Log h) \ ΦA{A) I

so, from Lemma 8.2, δ is implemented by a self-adjoint element k in A.
Hence

Ύ] = exp δ = exp ad k \ A = Ad exp k\A.

Now the proof is completed.

REFERENCES

[ I ] L. T. GARDNER, A note on isomorphisms of C*-algebras, Bull. Amer. Math. Soc, 70
(1964), 788-791.

[ 2 ] L. T. GARDNER, On isomorphisms of C*-algebras, Amer. J. Math., 87 (1965), 387-396.
[3] E. HILLE AND R. S. PHILLIPS, Functional Analysis and Semi-groups, Amer. Math. Colloq.

Publ. Vol. 31 (Rev. Ed.), Amer. Math. Soc, 1957.
[ 4 ] R. V. KADISON, Irreducible operator algebras, Proc. Nat. Acad. Soc, 43 (1957), 274-276.
[ 5 ] R. V. KADISON, Derivations of operator algebras, Ann. Math., 83 (1966), 280-293.
[ 6 ] I. KAPLANSKY, Algebraic and analytic aspects of operator algebras, Regional Conference

Ser. Math. No. 1, Amer. Math. Soc, 1970.
[ 7 ] E. R. LORCH, The theory of analytic functions in normed abelian vector rings, Trans.

Amer. Math. Soc, 54 (1943), 414-425.
[ 8 ] T. OKAYASU, A structure theorem of automorphisms of von Neumann algebras, Tόhoku

Math. J., 20 (1968), 199-206.
[ 9 ] D. OLESEN, Derivations of AW*-algebras are inner, Preprint.
[10] C. E. RICKART, General Theory of Banach Algebras, Univ. Ser. Higher. Math., D. Van

Nostrand, 1960.
[II] S. SAKAI, Derivations of T7*-algebras, Ann. Math., 83 (1966), 273-279.
[12] S. SAKAI, Derivations of simple C*-algebras, J. Functional Analysis, 2 (1968), 202-206.
[13] S. SAKAI, Derivations of simple C*-algebras II, Bull. Soc. Math. France, 99 (1971), 259-263.
[14] S. SAKAI, Derivations of simple C*-algebras III, Tόhoku Math. J., 23 (1971), 559-564.
[15] M. TAKESAKI, On the conjugate space of operator algebra, Tόhoku Math. J., 10 (1958),

194-203.
[16] G. ZELLER-MEIER, Sur les automorphisms des algebres de Banach, C. R. Acad. Sci.

Paris, 264 (1967), 1131-1132.

DEPARTMENT OF MATHEMATICS

COLLEGE OF GENERAL EDUCATION

TOHOKU UNIVERSITY

KAWAUCHI, SENDAI, JAPAN




