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ON BOUNDED FUNCTIONS IN THE ABSTRACT HARDY
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We continue in this paper the study of bounded functions in the
abstract Hardy space theory in our former work [19]. The situation is
as follows: Let (X, Σ, m) be a probability measure space and H a weak*
closed subalgebra of the sup-norm algebra L°° of the bounded m-measur-

able functions, satisfying 1 e H and I uvdm = 1 udm \ vdm for any u, v e H.
Hp is the Lp closure of H (0 < p < oo). We have shown in [19] that for
every non-constant u e H there corresponds a unique Caratheodory domain
A such that m{x: u(x) e A} = 1, \ udm e A and m{x: | u(x) — a \ < ε} > 0
for any ε > 0 and any a e dA. It is then natural to ask: Is the spectrum
of u contained in AΊ If / is a continuous function on A, holomorphic
in Ay does the composed function f(u) lie again in HI Or, more gener-
ally, if / is in HP(A), does the appropriately defined composed function
f(u) lie in Hpe! We answer to the third question in the paragraph 2.
In the classical unit disc case these were studied by many mathematicians.
(See for details Ryff [15] or Nordgren [11].) We consider in Section 2 the
case where the essential range or the value carrier of u is contained in
the unit disc and in Section 3 the case where the value carrier of u is
contained in a more general domain, i.e., a Caratheodory domain. In the
paragraph 3 the first and second questions are answered also affirmative.
The second one is answered in somewhat different form: Let D be a
Caratheodory domain and f(z) a continuous function on D, holomorphic

in D. Then for every ue H with m{x: u(x) e D} = 1 and 1 udm e D it

holds f(u) e H and Φ{f{u)) — f(Φ(u)) for all non-zero multiplicative linear
functional Φ on H (Theorem 4.2). Some problems related to it are also
discussed there. One of them is, roughly speaking, the following: Let
D be an open set in the complex plane. Then, if a measurable function
f on D operates on H, f is necessarily holomorphic in D (Corollary 4.4).
This is an analogous result to a familiar one in group algebras. Prelimi-
naries and some remarks on conformal mapping are given in the next

* This work was in part supported by the Alexander von Humboldt Foundation.
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paragraph.

1. Preliminaries, notation and some remarks on conformal map-
ping.

1. Let D be an arbitrary simply connected domain in the complex
plane with at least two boundary points. There is no difficulty in defining
the space H°°(D) of bounded holomorphic functions in D; it is a Banach
algebra under the norm

For 0 < p < oo, a function / holomorphic in D is said to belong to the
class HP(D) if the subharmonic function \f(z)\p has a harmonic major ant
in D. The norm can be defined as

II f II — II f II — I W * M 1/*
\\J\\HP{D) — 1 1 / U P — [^\ZQ)\ f

where zQ is some fixed point in D and u is the least harmonic majorant
of \f\p. It is easy to see that the space HP(D) is comformally invariant.
That is, if fe HP{D) and if z — g(w) is a conformal mapping of a domain
D* onto D, then f(g(w)) e HP(D*). Furthermore, if the norm in HP(D*)
is defined in terms of the point w0 = g^fo), this correspondence f—+f°g
is an isometric isomorphism. If 1 ίS j> ̂  <*>, || ||P is a genuine norm, i.e.,
the triangle inequality holds:

This ceases to be true if 0 < p < 1; in that case we have, however,

\\f+g\\l£\\f\\l+ II fir 115 -

For the unit disc U the above definition of HP(D) coincides with the clas-
sical one, i.e., fe HP(U) if and only if

1/P

< OO .

In that case each / in HP(U) has non-tangential boundary values a.e. on
the unit circle Γ, which determine a well-defined element /* of the space
LP(T) with respect to the normalized Lebesgue measure L on T and the
mapping /—•/* is an isometry of HP(U) onto a subspace of LP{T). We
denote this space as HP(T). H°°(T) is an example of our space H.

Next we recall the definition of the following familiar uniform alge-
bras, which we shall use frequently. Let if be a compact set in the
complex plane. The algebra C(K) consists of the continuous functions on
K, endowed with the supremum norm. The algebra P{K) is the set of
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all uniform limits of polynomials in z. The algebra R(K) is the set of
all uniform limits of rational functions with poles off K. The algebra
A(K) is the set of all functions in C(K), holomorphic in the interior of K.

Now let {Gn} be a sequence of simply connected domains in the com-
plex plane, each containing a fixed disc k with center z0. Let E be the
set of all points z with a neighborhood N(z) contained in all the domains
Gn starting from some value of n (depending on z). Obviously E is non-
empty, since kczE. Moreover E is open, and hence E is the union of
countably many disjoint domains, namaly the connected components of E.
Of these components, let GZQ be the one containing z0. Then GZQ is called
the kernel of the sequence {Gn} (relative to the point z0). It is a fortiori
simply connected.

DEFINITION 1.1. Let {Gn} be a sequence of simply connected domains,
with kernel GZo relative to the point z0. Then {Gn} is said to converge to
GZo if every subsequence of {GJ has the same kernel G,o (relative to z0)
as {Gn} itself. Otherwise, {Gn} is said to diverge.

DEFINITION 1.2. By a Jordan domain, we mean a domain which is
the interior of a closed Jordan curve.

DEFINITION 1.3. Let G be a bounded simply connected domain, and
let GTO be the component of (G)c containing the point at infinity. Then G
is said to be a Caratheodory domain if G and G^ have the same boundary.

In particular, every Jordan domain is a Caratheodory domain. A
sequence of bounded simply connected domains {Gn} is said to be strictly
decreasing if Gn+1aGn (n = 1, 2, •••). If G is a Caratheodory domain,
then there exists a strictly decreasing sequence of bounded simply con-
nected domains with smooth boundaries, converging to G as its kernel
(relative to any point zoeG). Conversely, if G is a kernel of a strictly
decreasing sequence of bounded simply connected domains {Gn}, then {Gn}
converges to G (relative to any point of G) and G is a Caratheodory
domain.

We state first a sharpened result of a Caratheodory's theorem in
the case of strictly decreasing sequence.

THEOREM 1.1. Let {Dj} be a strictly decreasing sequence of bounded
simply connected domains and let D be a kernel of {Dj}. Fix a point
ae D. Let φ, φ5 be the conformal mappings of U onto D, Dj (respectively)
such that φ(0) = ^(0) = a and φ'(0), ^(0) > 0. Then we have

II Φύ ~~ Φ \\HP(U) ^ 0

as j —* co, for every 0 < p < oo.
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To prove this, we need the following lemma which can be proved
with a slight modification of the proof of Lemma 9.1 of Gamelin [3, p. 35].

LEMMA 1.1. Let K be a compact set of the complex plane. Let Kn

be compact sets of the complex plane such that dKn consists of a finite
number of Jordan curves, Kn+1cKn, and f ϊ~=i^ = K. Suppose u is a
real-valued continuous function on a neighborhood of Kγ with piecewise
continuous partial derivatives of first order and un is the harmonic ex-
tension of u\dKn to the interior of Kn. If every zedK satisfies Lebesgue's
condition, then un converges to u uniformly on dK.

Here a point z e dK is said to satisfy Lebesgueys condition if \ (dr)/r =
is

+ oo, where S consists of all r, 0 < r < 1, such that the circle of radius
r and center z meets the complement of K.

PROOF OF THEOREM 1.1. We suppose first the boundaries dDό are
smooth. Put K = Π Dj. Then we note first that K is compact and Kc

is connected, and hence every point of dK satisfies Lebesgue's condition.
Clearly we have dDcdK. Let ud(z) be the least harmonic majorant of \z\p

i n D j . T h e n w e h a v e [ u ό { a ψ p = \ \ z \ \ H P { D j ) = \\ΦA\Hv{U) = WΦJWP- S i n c e \ z \ p

is continuously differentiate on C\{0}, uά{z) is also the harmonic extension
of \z\p\dD. to Dj and so we can apply Lemma 1.1 to | z\p. Thus we see
that Uj(z) converges to \z\p uniformly on dK and hence on dD. Hence
Uj(z) converges to a continuous function u(z) uniformly on D. This
function is harmonic on D and satisfies u \dD = \z\p \dD. One can thus
easily deduce that u is also the least harmonic majorant of \z\p in D.
In particular, uό{a) tends to u(a), that is,

Next we have already noted that D3 converges to D in the sense of
Caratheodory. Hence in virtue of Caratheodory's theorem, φ5{z) converges
to φ(z) uniformly on compact sets of U. For 1 < p < oo this implies that
φj tends to φ weakly in LP(T). Since \\φj\\P tends to \\φ\\P, we have
thus || φj — φ ||p —• 0 by the well-known property of 2/(1 < p < oo). Hence
we have || φ3- — φ \\p —> 0 for any 0 < p < oo. Next we shall prove in the
general case. When dDj are not smooth, we can choose a strictly de-
creasing sequence of bounded simply connected domains {Gj} with smooth
boundaries such that Dj+1 czGj c G , cDj (j = l,2, •••)• Then {(?,} also
c o n v e r g e s t o D a n d w e h a v e WZWHJ,^.^ ^ \ \ z \ \ H P { D j ) ^ \ \ z \ \ H P { G j ) . B y t h e
a b o v e a r g u m e n t H S H H P U ^ . , t e n d s t o | |2Jliπ>(i» a n d h e n c e \\z\\HP{Dj) t e n d s t o
|| z \\HP{D) A g a i n b y t h e a b o v e a r g u m e n t w e h a v e \\Φj — Φ \\P —* 0 a s j —> oo.
T h i s c o m p l e t e s t h e p r o o f .
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COROLLARY 1.1. Let D, Djf a be as in Theorem 1.1 and 0 < p < °o.
Further suppose f(z) is holomorphic on a neighborhood of f] D3. Then
for sufficiently large j f(z)eHp(D3) and WfWπPφ^ converges to | | / |UPU».

The proof follows along the same lines as in the proof of Theorem 1.1.
Further, for the inverse conformal mappings we have an analogous result
to Theorem 1.1.

THEOREM 1.2. Let D be a bounded simply connected domain and
{Dj} a sequence of uniformly bounded simply connected domains, con-
verging to D and satisfying DaD3. Let a point ae D be fixed. Let
g, g3 be conformal mappings of D, D3 onto U respectively such that
ff(&) = ΰόiβ) — 0 and g'(a), g)(a) > 0. Then we have g3 —> g in HP{D) for

*any 0 < p < oo.

PROOF. Since D c D31 we have first for any 0 < p < oo

( * ) \\9J\\HP(D) = Wΰsog^WiiPiu) ^ l = \\g*g'1 WHPW) = I I 0 I U P < D > -

( i ) Case p > 1. Since g3- —> g uniformly on compact sets in D by
Caratheodory's theorem, we have gό o g~1{w) —> w for all w e U and hence
g3og-\w)—*w in the weak topology of LP(T). Hence we have

( ϊ ) Hminf HflryoflΓ1!!^, ^ \\w\\HPίϋ) = 1 .
3-

i χ\τn aaa fVidf II / ,Combining (*) and (t) we see t h a t \\g^g l\\Hp(m converges to \\w\\Hvw)
Since gjog~1(w)-^w weakly in LP(T)9 we have again as in t h e proof of
Theorem 1.1 t h a t gso g~1(w)—>w in the strong topology of L p , i.e.,
llfl^oflΓ1 - gog^WHPiu) = IIQJ - QWHP^-^O as j—> oo,

(i i ) Case 0 < p ^ l . Since \\f\\HP{D)^\\f\\H2{D) for any feH~(D),
we have from (i) that g3—>g in HP(D). This completes the proof.

In the same way we can show the following

COROLLARY 1.2. Let D, D3, a, g and g3- be as in Theorem 1.2 and
1 ^ p < oo. Then, for any f(z)eHp(U) it holds f°g3->f°g in HP(D).

PROOF. For 1 < p < oo the proof follows along the same lines as in
the proof of Theorem 1.2. For p = 1 that f°g3°g~1-^f uniformly on
compact sets implies that f°g3°g~ι-+f in the weak* topology as the sub-
space of the dual space of C(T). Hence we have l i m m ! ^ \\fog3

og~1\\Hvω) ^
\\f\\Hp{U) a n d a s b e f o r e l i m , - ^ \\fogίog'1\\HPm = \\f\\HP{u). N o w , u s i n g t h e so-
called pseudo-uniform convexity of H\U) we have the desired conclusion.

Now let K be a fixed compact set in the complex plane with con-
nected complement. In this case we have R{K) = P{K) and hence R{K)
is a Dirichlet algebra on dK. For z e K\ mz will denote the unique
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representing measure for z on 3K, that is, mz is the harmonic measure
for z on 3K.

Let D be a component of K°. A point zedD is said to be accessible
from D if 2 is the endpoint of a continuous curve which has its other
points in D.

Since Kc is connected, D is a bounded simply connected domain and
there is a conformal mapping / of U onto D. Let S be the subset of T
at which / has non-tangential boundary values. Then S is a Borel set,
and / extends to be a Borel function on S. The extension of / to S will
also be denoted by /. We note that every point of f(S) is an accessible
point of 3D. Since Ke is connected, we have f(z^) Φ f(z2) if zγ Φ Z2, zlf

z2eS.
Let μw be the harmonic measure on T for weU. Then we can

formulate Lemma 4.3 in Gamelin [3, p. 149] as follows.

LEMMA 1.2. Let K, D, f, μw and mz be as above. Then there exists
a Borel set Ee T such that

( i ) / has non-tangential boundary values at every point of E, i.e.,
EdS.

(ii) f is one to one on E, f(E) a 3D is a Borel set, and f~ι is a
Borel function on f(E).

(iii) μw is supported on E for all we U.
(iv) mz is supported on f(E) for all ze D. In particular, mz is

supported on the set of points of 3D accessible from D.
(v) For all bounded Borel function g on 3D,

j gdmz = \ g <>fdμw , well, z = f(w) .

REMARK. Let h be another conformal mapping of U onto D. Then,
if we replace (/, S, T,E,f(E)) in Lemma 1.2 by (Λ, h~^f{S), h~ιof(T),
h~ιof{E), f{E)), Lemma 1.2 is still valid.

2. Holomorphic functions of functions in H. Our purpose in this
paragraph is to generalize the classical results on composed functions of
bounded holomorphic functions in the unit disc. We devide this para-
graph into two sections.

2. Disc case.
By elementary calculation we obtain the following lemma.

LEMMA 2.1. Let ue H, | u \ <̂  1, Φ eia(a: real), and b = \ udm. Then

we have
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— rb |
for

Using this equality one can prove the following lemma, a generali-
zation of the classical Lowner's lemma.

LEMMA 2.2 [18]. Let u,b be as in Lemma 2.1. Then for any Lebesgue
measurable set E on the unit circle T, we have

\ dm{x) \ λ^MLdβ = \
JI«(X)KI JE I e%θ — u(x) | 2 J#u(x)

In particular, we have

m{x: u(x) <

Further, if | u \ = 1,

d θ

ΫΘ - b I

eiθ - u(x)\2

θ - 2πm{x: u(x) e E] .

- |&

) 6 E]

Using this lemma we have the following result on composed functions.

THEOREM 2.1. Let 1 ^ p < °o. Let ue H, non-constant, \ u \ — 1 and

b= I udm. Then for any feLp(T) the composed function f(u(x)) is

well-defined and we have

( i ) f{u(x)) = l i m — Γ
r-i 27Γ J -

(ii)

* I e%θ — ru(x) |
f(eiθ)dθ a.e. and in Lp-means.

(iv) The above constants in both sides are the best possible ones.

PROOF. By Lemma 2.2 f(u(x)) is well-defined, (i) Let /(r, eiθ) be the

Poisson integral of /, i.e., /(r, eiθ) = l/(2ττ) ( * ( 1 - r2)\eiβ - reiθ\-2f(eiβ)dβ.
J—π

Then it is well-known that /(r, eiθ) tends to f(eiθ) almost everywhere as
r —• 1. Hence again by Lemma 2.2 /(r, u(x)) tends to f(u(x)) a.e. as
r —* 1. We write next the Poisson integral of f(r, eiβ) as f(s, r, eiθ). Then,
since /(s, r, eί/?) = /(sr, eiθ) (0 < s, r < 1), we have /(r, 6̂(̂ )) = /(s, r/s, u(x))
if r < s < 1. Hence it holds for 0<r, s<t<l
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/(r, u(x)) - f(s, n{x)) = f(t, r/t, u(x)) - fit, s/t, u(x))

τ\Λr/t,e«)-f(8/tfe«)]dθ.
2π i-\eie - tu(x)\2

Therefore, we have by Cauchy-Schwarz inequality and by Lemma 2.1

||/(r, u{x)) - f(s, φ)) H, <; (±±A^-)llP \\f(r/t, e") - f(s/t, eu) \U

Since f(r,eiθ) tends to /(e") in L\T) as r - + l , /(r, iφ)) also tends to
f{u{x)) in Lp(m). Thus we have proved (i). (ii) follows immediately from
(i), and (iii) follows immediately from (ii). We shall show next (iv). That
the constant ((1 - | b |)/(1 + | b |))1/p is the best possible one in the left
inequality can be shown for example as follows: Consider the functions
fr(eiθ) = [(1 - r2)(b I 6 Γ1 + reiθ)'ψp. Then by Lemma 2.1 we have

lbl-1 +-rb\2 1 + r | 6 | 1 + r\ b \

Letting r —• 1, we see that the constant is the best possible one. In the
same way we see that the constant in the right side is also the best
possible one. We have thus completed the proof.

REMARK 2.1. The equality (ii) itself can be derived as a special case
from the more general result on composed functions by Mϋrmann [9].
But it seems to us that (i) is often useful.

REMARK 2.2. Under the situation of Theorem 2.1 it holds

\\f(u(x))\\P for all fe HP(T) for some 0 < p <oo if and only if ( udm = 0

In fact, we have f(z) = (1 + bz/\ b |)2'p e H\U) and \\f(u) | |; = 2 + 2| b | >

2 = | | / | | ; if 6 = 1 udm Φ 0. This shows the only if-part. The if-part is

immediate from (iii).

We reformulate (iii) in Theorem 2.1 (p = 2) as a result on I2 sequences
as follows.

COROLLARY 2.1. Let b be a complex number with | 6 | < 1. Then we
have for any {aJ e I2

Y V I n iΛ < V a π.h*^~^ < LdllAlY V \π lΛl .ZJ \aί\ ) = ,2-i UiUjϋ ^ ——-i ZJ \ a i \ >
1 + I 0 I

where b* = b if % ^ j and — b if i < j .



BOUNDED FUNCTIONS IN THE ABSTRACT HARDY SPACE 5 2 1

We next consider the case | u | ^ 1. We formulate as follows.

THEOREM 2.2. Let 1 ^ p < <χ>. Let ueH, \u\.£l, Φ eia(a: real) and

b = \ udm. Suppose further fe LP(T) and let f(r, eiθ) be its Poisson

integral. Then the composed function f(\u(x)\, u(x)/\u(x)\) is well-defined
and we have

( i ) f(\u(x)\fu(x)/\u(x)\)

(i i) 11/(1 ^ 1 , u/\u\)\\,£

J-* \e%θ — ru(x)\2

a.e. and in Lp-means.

(iii) The constant (—iJ—^) is the best possible one.
VL - | 6 | /

PROOF. The proof of (i) follows along the same lines as that of
Theorem 2.1 (i). (ii) Set

Then we have by Cauchy-Schwarz inequality

" - ru(x) |2

where 1/j) + 1/p' = 1. Since the last term is equal to 1, we see in virtue
of Lemma 2.1 and Fubini's theorem that

Letting r —> 1 we have (ii) by Fatou's lemma, (iii) Consider the functions
Me**) = [(1 - r2)/] b I 6 |~ι - re iβ I2]1''. Then we have fr{\ u \, u/\ u |) =
[(1 - r2| u |2)/| b I δ Γ1 - ru I2]1" and hence via Lemma 2.1

= f
d m = l - r 2 j 6 | 2

 = 1 + r\ b \
2 d m

\b/\b\-ru\2 \b/\b\-rb\
Letting r —»1, we see that the constant ((1 + | b |)/(1 — | b |))1/p is the best
possible one. This completes the proof.

Now restricting Theorem 2.2 to the spaces HP(T) or H"(U) we have
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THEOREM 2.3. Let 0 < p ^ oo. Let u e H, \ u | <̂  1, Φ eia(a: real) and

h = \ udm. Then for any f(z) e Hp( U) we have

( i ) f(u(x)) is well-defined and in Hp.

(iii) // 1 ^ p ^ oo, \f(u)dm = f(b) .

PROOF. (1) The case 1 ^ p < oo. By Theorem 2.2 /(w(a )) is well-
defined and 11/Kit) ||, ^ ((1 + 16 |)/(1 - | δl))1" | | / | | , . Now clearly f(ru) e H
and we have

Hence by Theorem 2.2 f(ru) tends to f(u) in Lp and so /(w) is in £P by
definition and further

\ f(u)dm = lim 1 f(ru)dm = lim/ί r I tccίm j = /( \ udm) ,

since 6 = \ udm e ?7 (this follows from | w | <* 1 and i6 Φ eia (a: real)).

(2) The case p = oo is clear from (1). (3) The case 0 < p < 1. We have
by the classical inner-outer factorization theorem f(z) = g(z)hllP(z) for
some inner function g(z) and some outer function h{z)e H\U). Then by
Lemma 2.2 f(u), g(u) and &(%) are well-defined and it holds f(u) = g(u)hllP(u).
Hence we see easily that f{u) e Hp and

\\f(u) 1|? :S j I h{u) I dm <: L ± I | i \\h \\, = ^ ± ^ \\f\\p.

This completes the proof.

REMARK 2.3. If | u \ = 1, we have the same inequality as in Theorem
2.1 (iii) and the constants are the best, which is known in the classical
case [11]. Indeed, since the positive valued function fr{eiθ) in the proof
of Theorem 2.1 (iv) is in LP(T) and log fr is in L\T), we have fr(eid) =
\gr(eiθ)\ for some greHp(U) as is well-known. The rest of the proof
follows along the same lines as that of Theorem 2.1 (iv).

REMARK 2.4. If \ udm = 0, the constant in (ii) in Theorem 2.3 is the

best possible one. If I udm Φ 0, we do not know whether that constant

is the best. But the following example shows that the best possible con-
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stant is greater than 1. Example: Let b = \ udm Φ 0 and a be a positive

number satisfying 2a \ b | ^ 1. Put f(z) = (a + bz/\ b |)2/ί\ Then we have

f(z)eHp(U) and \\f(u) | |; = J |α + |6 | + bu/\b \ - \b \ \2dm =

6 I - I b I \2dm > a2 + 2α | 6 | + 16 |2 > a2 + 1 = | |/ | |J .

We note next that we have also a generalization of a theorem of
Ryff with a slight modification of his proof. We state it without proof.

THEOREM 2.4. Let 0 < p < oo. Lei ue H, \ u \ ^ 1 αwώ 1 ^ώm = 0.

Then in order \\f(u) \\p = \\f\\P for some non-constant feHp(U) it is
necessary and sufficient that | u \ — 1.

From the above theorem and Remarks 2.3 and 2.4 we can deduce
the following.

COROLLARY 2.2. Let 0 < p < oo. Let ue H, | u | <: 1

(a: real). Then in order \\f(u)\\p = | | / | | P /or αW feHp(U) it is neces-

sary and sufficient that | u | = 1 αm£ \ udm = 0.

3. General case.
Let ΰ be a Jordan domain and g a conformal mapping of D onto Z7.

Then g can be extended continuously to D and if we denote this extended
function also by gy g maps D onto U topologically. Hence if u e H and
m{x: u{x) e D) = 1, the composed function #(M(#)) is well-defined. Further
g(u) lies in H. In fact, by Walsh's theorem or by Mergelyan's theorem,
there is a sequence of polynomials Pn(z) such that Pn(z) —* 0(2) uniformly
on 5 . Hence P ^ ) tends to g(u) in L°° norm. Since clearly PJu) e H,

we have g(u)eH and I g(u)dm = g(\ udmj. Hence using Theorem 2.3

we can state the following lemma.

LEMMA 3.1. Let D be a Jordan domain and let an α e D be fixed.
Let f(z) e A(D). Then if ue H satisfies m{x: u(x) e D} = 1, the composed
function f{u) lies in H and we have for any 0 < p ^ 00

and

^ f(u)dm = f(\ udm) ,

where C depends only on a and u.
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PROOF. We may assume that u is not constant, since otherwise
the conclusion is trivial. Now let g(z) be the conformal mapping of D
onto U satisfying g(ά) = 0 and g\a) > 0. Then we have by the above

argument g(u) e H and 1 g(u)dm = g(\ udmj. Let b = l udm. Now as

f(u) = f°g~\g(u)) and fog-'eAφ) we get by Theorem 2.3 f(u)eH and

II/Mil <ίλ±ΛiEl\IP\\foa-ί\\ -ίl±AMϊϊlP

UJWUP ^ \-z — 7 7 T T / 1 1 / # \\HPiϋ) — \ - z ;—7ΓΓ7 I

\ 1 - I g(b) I / V 1 - I g(b) \ /
Here g(b) depends only on a and u. Next by Theorem 2.3 (iii) we have

\f(u)dm = Z0^"^] 9{y)dm\ = f°g~ι(g(\udmyj = f(\udmj .

This completes the proof.

LEMMA 3.2. Le£ D be a Caratheodory domain and D the polynomial
convex hull of the closure of D. Let an a e D be fixed and g a conformal
mapping of D onto U satisfying g(a) = 0. Further suppose us H with

m{x: u(x) e D) = 1 and 1 udm e D. Then for any fe Aφ) it holds f(u) e H,

\ f(u)dm = f( I udm) and for every 0 < p ^ oo

where b = I udm.

PROOF. Since φ)c is connected, we have A0) = P(D). Hence we

may assume / is a polynomial. Then f(u) e H and I f(u)dm = f(\ udmj

are obvious. Now there exists a strictly decreasing sequence of Jordan
domains {D3} converging to D. Let g3 be the conformal mappings of D3

onto U such that g3(a) = 0 and g){a) > 0. Then by Lemma 3.1 we have

Since g3{z) converges to g(z) | r̂'(α) \/g'(a) by Caratheodory?s theorem, and
since H/ll^^) tends to | | / |UP ( D, by Corollary 1.1, we obtain

That completes the proof.

LEMMA 3.3. Let D, a, g, u be as in Lemma 3.2. Further let g'{a) > 0
and {Dj} be a strictly decreasing sequence of bounded simply connected
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domains converging to D and g5 the conformal mappings of Dd onto U
such that gό{a) = 0 and g'ά{a) > 0. Then {gj(u)} is a Cauchy sequence in
Lp for every 1 ^ p < oo. In particular, g3(u) converges to the same
element of H for every choice of {Dj}. If we write this element as g[u],

it holds \ g[u]dm = g( \ udmj.

PROOF. By Lemma 3.2 we have

II ftfa) - gk(u) ||p ^ C^p H e r , - gk \\HP{D) ,

since Dj ZD D and gd e A(Dά). Hence by Theorem 1.2 {gj(u)} is a Cauchy
sequence in L* for any 1 ^ p < oo. Let us write its Lp limit as g[u\.
Then, since || g^u) |U ^ 1 we have g[u] e H and | g[u] \ ^ 1. Clearly g[u]
is independent of the choice of {Dj}. Now we have

1 g[u]dm = lim \ gό{u)dm = lim ftί \udmj = grί mcίm J ,

which completes the proof.

LEMMA 3.4. Let D, a, g, u be as in Lemma 3.3. Further let φ be
the inverse conformal mapping of U onto D satisfying φ(ϋ) = a and
φ'{Q>) > 0. Then for the composed function Φ(g[u]) it holds

PROOF. Let {Dj}, gά be as in Lemma 3.2. Then by Lemma 3.2 we
get for 1 <; p < oo

( * ) IIΦ(9i(u)) ~u\\P^ Cιιp \\Φ°gj{z) - z\\BP{D)

= C1lp\\φogj-φog\\HP{D).

By Corollary 1.2 φogό converges to φ°g in HP(U). Hence by (*) Φ(gj(u))
converges to u in Hp and boundedly. On the other hand, since gj{u) —>
g[u] in Hp, gά{u) —> g[u] a.e. by taking a subsequence if necessary. Hence
Φ(gj(u)) converges to Φ(g[u]) a.e.. Therefore we have Φ(g[u]) = u. That
proves the lemma.

Now noting that (D)c is connected and D is a component of (5)° for
a Caratheodory domain D, we are in the position to state the following
theorem.

THEOREM 3.1. Let D be a Caratheodory domain and an aeD be
fixed. Let φ be the conformal mapping of U onto D satisfying φ{G) — a
and φ'{ϋ) > 0 and g its inverse conformal mapping of D onto U. Further
let E be a set defined in Lemma 1.2 for φ. Then if ue H is not con-
stant, m{x: u{x) 6 D} = 1 and b = \ udm e D, we have



526 K. YABUTA

( i ) m{x: u(x) e ΰ u Φ(E)} = 1.
(ii) For every ma {the harmonic measure with respect to (^-measur-

able set G on dD it holds

Jβ\Φ) - gφ)I

In particular, if m{x: u(x) e 3D) = 1, it holds

l-\g(b)\

m{x: u{x) e G) = \ 1 ~ ] Φ )

l = -A- ί
2π J — g(b) |2

and

1 -
1 + g(f>)

•ma(G) <: m{x: u(x) e G} ma(G) .
ι-\gφ)\

(in) The composed function g(u) is well-defined and coincides with
the function g[u] in Lemma 3.3, and hence lies in H.

(iv) If h is another conformal mapping of D onto U, h is extend-
able to D U φ{E) in the sense of Lemma 1.2 and the composed function
h(u) also lies in Hand it holds h(u) — hoφ(g(u)) and I h(u)dm = h(\ udmj.

We remark first that g(u) is independent of the choice of set E.

PROOF. Since L(T\E) = 0, we have by Lemma 2.2

m{x: g[u](x) e U U E} = 1.

Since Φ(g[u]) = u by Lemma 3.4, we get thus

m{x: u(x) e ΰ u Φ(E)} = 1 .

Now for any harmonically measurable set G a 3D we have

m{x: u(x) e G) = m{x: u(x) eGn Φ(E)} = m{x: g[u](x) e g(G n

Hence by Lemma 2.2 we have setting F = g(G f] φ(E))

dθ ^
2 ~2π )r I ete - gφ) |2

In particular, if m{x: u(x) e 3D} = 1, we have

gφ)
L(F) .

Since the function (1 — | g(b) |2)/| g(z) — g(b) |2 is a bounded Borel function
on φ(E), we have by Lemma 1.2 (v)

2π )F I e i9 - gφ) |2 JCn#t£» | g(z) - gφ)
-dm,

J f f «orI g(z) - gφ) I
•dma(z)
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for a Borel set G and hence for any measurable set G. We have also

ma(G) = ma(G n φ(E)) = \ dma(z) = -A- ( ^ - L(F) .

Next by (ii) the composed function gou is defined almost everywhere,
and it holds m{x: g{u{x)) e E U U) = 1. By Lemmas 1.2 (i) and 3.4 we
have Φ(g[u]) = 0(#(w)). Since ^ is one to one on E I) U, we have #[M] =
g(u) a.e.. The proof of (iv) is clear from the remark to Lemma 1.2. This
establishes the theorem.

Now we can sharpen Lemma 3.2.

THEOREM 3.2. Let D be a Caratheodory domain. Then if ueH

with m{x:u(x)eD} = 1 is non-constant and \udmeD, and if feA(D),

the composed function f(u) is in H and it holds \f(u)dm = f(\udm\

Further if we fix a point ae D and g is a conformal mapping of D
onto U satisfying g(a) = 0, then we have for any 0 < p ^ co

\\f(u)\\
l-\g(b)\

PROOF. We suppose first g'{a) > 0. Let I udm = 6. Then by Theorem

3.1 we have f(u(x)) = fΌg~\g{u{x))) a.e.. Since g(u)eH, \g(u)\ ^ 1 and
fog-1 e H°°(U), we have by Theorem 2.3 f(u) e H and f or 0 < p ^ oo

which gives the desired inequality for this special g, since \\f°g~ι\\Hp(u) =
H/llffP(Dϊ Now if gx is a conformal mapping of D onto U satisfying
0i(α) = 0, then we have g1 — eiag for some real a and hence we have
the desired inequality. This completes the proof.

From this theorem one can easily deduce that the spectrum of u is
contained in D. But on the consequences of this type we shall discuss
in the next section. Another consequence is the following.

THEOREM 3.3. Let 0 < p :g oo. Let D be a Caratheodory domain
and an aeD be fixed. Let g be the conformal mapping of D onto U
satisfying g(a) = 0 and gf(a) > 0. Further suppose u e H is non-constant,

m{x: u(x) 6 D} = 1 and b = l udm e D. Define τ as a linear mapping

from HP{D) into Hp by: τ(f) = f°g~1(g(u)). Then τ is a bounded linear
operator from HP(D) into Hp, more precisely we have
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l-\g(b)\

// in particular p = oo, this is an algebraic homomorphism from H°°(D)
into H.

The proof is clear.

3 Spectrum and operating functions. In this paragraph we shall
investigate the spectrum of a u e H and then give an anologous result
on operating functions to the case of group algebras. In our case,
however, if K is compact in C, K° = 0 and Kc is connected, and if u e H
satisfies m{x: u(x) e K} = 1, then u is necessarily constant by Corollary 1
in [19] Hence we consider the case when the domain of an operating
function is open or a compact set with non-empty interior.

4. On the spectrum of a non-constant ue H we have the following
result by combining Theorem A in [19] and Theorem 3.2.

THEOREM 4.1. Let ue H be non-constant. Then there is a unique

Caratheodory domain A such that m{x: u(x) e A} = 1, I udm e A, and for

any ε > 0 and aedA it holds m{x: | u(x) — a \ < ε} > 0. Further the
spectrum σ(u) of u is contained in A and every point of dA belongs to
σ{u).

PROOF. The first assertion is a version of Theorem A. It holds
further dA = dA, since A is a Caratheodory domain. Hence we get
(Ά)°\A = A\A. Let a e C\A. Then the function (z — a)'1 is holomorphic
on a neighborhood of A. Hence by Theorem 3.2 we obtain (u — α)"1 e H.
This means that a is a point of the resolvent, and hence it follows
σ(u) c A. The last assertion follows from the first one. This establishes
the theorem.

In the same way we can show the following

COROLLARY 4.1. Let D be a Caratheodory domain and ueH with

m{x: u(x) e D} = 1. Then if \ udm e D, the spectrum of u is contained

in D.

The case \ udm e D and u is non-constant is clear from the proof of

the above theorem. In the other case u must be constant by Lemma 1
of [19], and the assertion is obvious.

REMARK 4.1. From the assumption m{x: u(x) e 5} = 1 we can con-
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elude only that the spectrum is contained in D. In the above corollary

the condition I udm e D is not superfluous. For instance, let D be the

cornucopia, which is a ribbon winding the outside of the unit circle and
accumulating on that circle. Then D is a Caratheodory domain. Let H
be H°°(T) and u(z) the identity function. Then L{u(eiθ) e D} = 1 and

udL = u(0) = 0, and that σ(u) = {\ z | ^ 1}.

Next we give a definition.

DEFINITION 4.1. Let Wl = Wl(H) be the maximal ideal space of H.
Let D be a set in the complex plane and f(z) an everywhere defined
function on D. f(z) is said to operate on H (with respect to D) if for
every UQ H with m{x: u(x) e D} = 1 the composed function f(u) belongs
to H and Φ(f(u)) = f(Φ(u)) for any Φ e 27Ϊ. We say that /(z) operates
conditionally on if (with respect to D) if for every ue H with m{#: w(#) e

D) — 1 and I wώm 6 Z) the composed function f(u) belongs to H and

Φ(f(u)) = /(Φ(^)) for any Φ e 2K. '

We are now able to state another consequence of Theorem 3.2.

COROLLARY 4.2. Let D be a Caratheodory domain. Then every
f{z) G A(D) operates conditionally on H.

PROOF. Since D is a Caratheodory domain, D^ = (D)c is simply con-
nected, and P(D) = JS(Z)) is a Dirichlet algebra, and so E(D) is also a
Dirichlet algebra on dZ), since R(D)Z)R(D) | 5 . Hence we have i2(5) = A(5).

Now let Φ e SK, /(«) e A(5) and w e if with m{ίc: %(α?) e ΰ } = l and I udm e D.

Then there is a sequence of rational functions {fn(z)} with poles off D
converging to f(z) uniformly on D. For every rational function h(z) with
poles off D we have by a well-known theorem h{u) e H and Φ(h(u)) —
h(Φ(u)), since the spectrum of u is contained in 5 by Corollary 4.1.
Again by Theorem 3.2 we get f(μ) e H. Therefore we have

Φ(f(u)) = lim Φ(fn(u)) = lim fn(Φ(u)) - f(Φ(u)) .
n-*oo n->°o

If u is constant, then we have trivially f(u) e H and Φ(f(u)) = f{Φ(u)).

If u is not constant, we have I udmeD by Lemma 1 in [19]. Hence the

proof is completed.

We shall next state a similar result to the above as a lemma which
we shall use later.



530 K. YABUTA

LEMMA 4.1. Let K be a compact set in the complex plane whose
complement is connected and whose interior K° is non-empty. Let D be
a component of K°. If f(z) is bounded and holomorphic in D, then it

holds f(u) e Hand \ f{u)dm — f( I udmj for all ue H with m{x: u(x) e D) = 1.

PROOF. Let ue H with m{x: u(x) e D) = 1. Then by Lemma 2 of our

former work [19] we have I udm e D. Now by Farrell-Rubel-Shields

theorem (Gamelin [3, p. 154]) there exists a sequence of polynomials
{Pn(z)} such that PΛ(z)-+f(z) for all zeD and \Pn(z)\ ^ supζe2> |/(ζ) | for
all ze D. Since clearly PJu) e H and H is weak* closed, we have f(u) e H

and also I f(u)dm = f(\ udmj. This completes the proof.

When D is a bounded simply connected domain, the boundedness of
an operating function will be shown.

LEMMA 4.2. Suppose HΦ C. Let D be a bounded simply connected
domain. Then if f(z) is holomorphic on D and f(u) e H for all ue H

with m{x:u(x) e D] = 1 and I udm e D, it follows that f(z) is bounded on D.

PROOF. Combining Theorem 3.3 and Theorem 4.1, for every
Caratheodory domain G there exists a ue H such that m{x: u(x) e G} = 1,

I udm e G, and for any ε > 0 and any aedG it holds m{x: \ u(x) — a | <

ε} > 0. Now let g be a conformal mapping of U onto D. We assume
that the conclusion is false, i.e., f(z) is unbounded. Then f°g(z) is also
unbounded in U. Hence there is a point aedU and a Jordan curve
J = e/i + J2 such that Jl9 J2 are Jordan arcs with common endpoint a and

( * ) lim sup I/o g(z) | = oo .
z—*a

zej1

Let G be the Jordan domain bounded by J and u a corresponding ue H
pointed out above. Since g is bounded and holomorphic on Z7, g(u) is in H

by Lemma 4.1 and further m{x: g(u(x)) eD} = l and I g(u)dm = g(\udm) e D.

Hence we have f{g{u)) e H by the assumption. On the other hand, by
the third property of u and (*) the function f(g(u)) is not bounded,
which contradicts f(g(u)) e H. That proves the lemma.

When there exists a non-constant ue H with | u \ = 1 we can show
a converse of Lemma 4.1.

THEOREM 4.2. Let D be an open set in the complex plane, f(z) an
everywhere defined locally integrable function on D and suppose there
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exists a non-constant ue H with \u | = 1. Then, if f(v) e H for all ve H

with m{x:v(x)eD} = 1 and I vdmeD, it follows that f(z) is Lebesgue-

almost everywhere equal to a function holomorphic on D.

PROOF. Considering the function (u — i udmjll — u I ΰdmj, we may

assume 1 udm = 0. Hence by Lemma 2.2 we have for any Lebesgue

measurable set E on the circle T (1) m{x: u(x) e E) — L{E). By assump-
tion f(z) is locally integrable. Now let Q be a rectangle with its sides
parallel to the axes such that its closure lies in D and

\
J

\f{z)\\dz\<

Further let g be a conformal mapping of U onto Q. Then, since dQ is
a rectifiable curve, we have g'(z)e H\U) and hence by Theorem 2.3
g'(u) e JET1. Next we have the following equality.

( f{z)dz = \ f{g{w))g'{w)dw = i Γ f(g(eiθ))gψθ)eiθdθ .
JdQ JdU Jo

Combining this with (1) we obtain further

I f(z)dz = 2πi i f(g(u))g'(u)udm = 2πi \ f{g{u))g\u)dm I udm = 0 ,

since g{u) e H, g\u) e H1 and hence by assumption f(g(u)) e H. Hence by
a generalization of Morera's theorem (Royden [12]), f(z) is almost every-
where equal to a function holomorphic in D. That proves the theorem.

The next corollary is then trivial.

COROLLARY 4.3. Let D be an open set in the complex plane, f(z) a
continuous function on D and suppose there exists a non-constant ue H
with \u\ — 1. Then, if f(v) e H for all ve H with m{x: v(x) e D) = 1 anώ

vdm e D, it follows that f(z) is holomorphic on D.
\

Under the following additional assumption on / the local bounded-
ness of / follows and one can show the continuity of /.

COROLLARY 4.4. Let D be an open set in the complex plane, f(z) an
everywhere defined measurable function on D and suppose there exists

a non-constant ue H with \ u \ = 1. Then, if f(v) e H and I f(v)dm =

f(\ vdm) for all ve H with m{x: v(x) e D) = 1 and I vdme D, it follows

that f(z) is holomorphic on D.
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PROOF. We may assume I udm = 0. We have only to show that f(z)

is continuous on D. Now fix a point z0 e D arbitrarily and let 2R be the
supremum of radii r such that the discs C(z0; r) with radii r and centers
zQ are contained in D. For every ae U we set ua = (u + a)/(I + au).
Then by Lemma 2.2 we get for every Lebesgue measurable set E on the
unit circle

α ME) ^ m{x: ua(x) e E) <S ±
+ I a 1 — I a

since uae H, \ua\ = 1 and \ uadm = α. Since m{x: z0 + Rua{x) e D) =

m{x: I ua(x) \ = 1} = 1 and I (̂ 0 + Rua)dm = zQ + i2α e D, we have by as-

sumption f(z0 + i2^α) e # and

I /(̂ o + Rua)dm = /( \(^0 + Rua)dm) = f(z0

Hence we have

By (*) we see that \\f(zQ + Λw.)|U = ||/(«o + Λw)|U. Hence /(β) is bounded
on C(z0; R). Since / is measurable on D, f is integrable on C(zQ; R), and
so by Fubini's theorem f(z0 + reiθ) is c£#-integrable for almost all 0 < r ^ R.
For such r we have as in the proof of Theorem 4.2

IT" SΓ^° + reί^dθ = \ f(Zo + r*Φ))ώm0*0 = / ( j («o + ru)dm} = f(z0) .

By integrating this equality with respect to rdr we have

f(Zo) = J _ ί /(^0 + reiθ)rdrdθ
πs Jc(zo\8)

for all 0 < s < R. The continuity of / then follows immediately from
this expression. This completes the proof.

Combining Corollary 4.2 with Corollary 4.3 we have

THEOREM 4.3. Suppose there exists a non-constant u e H with | u | = 1.
Let D be a Caratheodory domain. Then a continuous function f(z) on
D operates conditionally on H if and only if f(z) is holomorphic on D.

Combining Lemma 4.1 with Lemma 4.2 and Corollary 4.4 we have

THEOREM 4.4. Suppose there exists a non-constant u e H with \ u \ == 1.
Let Dbe a Caratheodory domain. Then an everywhere defined measurable
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function f(z) on D satisfies f(v) e H and I f(v)dm = f( 1 vdmj for all v e H

with m{x: v(x) e D] = 1 and I vdm e D, if and only if f(z) is bounded and

holomorphic on D.
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