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PLURIHARMONIC BOUNDARY VALUES

ERIC BEDFORD AND PAUL FEDERBUSH

(Received June 21, 1973)

Abstract. Let Ω = {p < 0} be a domain with C8-boundary Γ = {p = 0}.
For a large class of domains, the functions u£Cz(Γ) which are the
restrictions of pluriharmonic functions on Ω are characterized as the
solutions of a system of partial differential equations.

I. Introduction. Let Ω — [p < 0} be a bounded domain in Cn(n ^ 2)
with connected C3-boundary Γ = {p = 0}, grad p Φ 0 on Γ. A function
fe C\Γ) can be extended to an analytic function F on Ω if and only if
it satisfies the tangential Cauchy-Riemann equations:

(1) dpΛdf=0

on Γ (see [1], [3]). We will give an analogous system for pluriharmonic
functions. It will also be pointed out that the Neumann conditions for
the 99-operator give a simple characterization of pluriharmonic functions
although these conditions involve derivatives normal to Γ.

Let d = 1/2(9 + 9) and dc = l/2ί(9 — 9) denote the real and imaginary
parts of 9. It will be shown here that for certain domains Ω, a function
u e C\Γ) can be extended to a pluriharmonic function U on Ω if and onljr
if there exists a function aeC\Γ) such that:

(2) dp A dcρ A ddcu = adp A dcρ A ddeρ

(3) dp A ddcu = dp A da A dcp + adp A ddcρ .

Since the expression ddcu does not depend only on the values of Vr
on Γ, the equations (2) and (3) are to be interpreted in the following sense.
A C3 extension ux of u to a neighborhood of Γ is picked, and the same
extension ux is substituted into both equations (2) and (3).

If u extends to a pluriharmonic function U on Ω, then (2) and (3)
are satisfied. For any extension ux will have the form ux = U + ap, and
equation (2) will yield a = a since ddcU = 0. With a — a, equation (3)
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holds. From this argument it follows that the system (2) and (3) depends
only on the values of u on Γ.

In fact (2) and (3) can be rewritten in terms of operators tangential
to Γ and such that the extraneous function a does not appear. This
will be done in the special case where Ω is the unit ball in Cn. It was
observed by L. Nirenberg that there is no second order system of operators
tangential to the unit ball in Cn that annihilates exactly the pluriharmonic
functions.

We have seen that conditions (2) and (3) are necessary for plurihar-
monic continuation. The next two sections of this paper are devoted to
showing that, for certain domains Ω, (2) and (3) are also sufficient to
guarantee a pluriharmonic extension. The basic tool is the following
result.

THEOREM 1. Suppose u e C\Γ) is given. Then u satisfies (2) and
(3) if and only if for each pe Γ there exists a function vp and an open
set ^p containing p such that u + ivp satisfies (1) on Γ Π &P.

II. Proof of Theorem 1. The equation (1) is equivalent to

du + idv = (a + iβ)dp

on Γ, where u and v are defined in a neighborhood of Γ so that du and
dv are defined on Γ. When this is divided into real and imaginary parts,
it becomes:

( 4) dv = — dcu + adcρ + βdp

( 5) dcv = du — adp + βdcp .

LEMMA 1. The systems (4) and (5) can be solved locally if and only
if there is a function v defined locally on Γ such that:

{ 6 ) dp A dv = -dp A dcu + dp Λ ccdcp .

PROOF. We first show that (4) and (5) are equivalent. Consider the
mapping of 1-forms σ: A1 ~> Aγ defined by:

σ{dXj) = dyd

σ{dyό) = —dxj .

We observe that

dxj όy

όyά
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Similarly, σdc = d. Thus σ applied to (4) yields (5).
If v is a solution of (4), then it also solves (6). Conversely, if v is

a solution of (6), then

dv = —dcu + adcp + βdp + jdp .

Thus v0 = v Λ- c will solve (4) if c is chosen so that c = 0 on Γ and
3c/3|O = 7.

LEMMA 2. Given a 1-form ω on Γ, there exists a function v locally
on Γ such that

( 7) dp A dv = dp A ω

if and only if dp A dω = 0.

P R O O F . Taking coordinates (p, x2, •••, x2n), we may wri te :

ω = adp + Σ fjdxj .

Then (7) becomes:

dp A dv = Σ /,-cί̂  Λ (toy .

By Poincare's lemma, one can solve locally for v if and only if

0 = 4 Σ / A ) A dp = dp A dω .

PROOF OF THEOREM 1. By Lemma 1 we can find v locally if and
only if (6) holds. If we set ω = — dcu + adcp, then by Lemma 2, (6) can
be solved if and only if:

0 = dp A dω = dp A ( — ddcu) Λ- dp A da A deρ + dp A addcρ .

One obtains (2) by applying dp A dcp A d to (4):

dp A ddv = 0 = — dp A dcρ A ddcu + adp A dcρ A ddcρ .

III. Proof of sufficiency for certain domains.

THEOREM 2. // H\Γ, C) = 0, and if ue C\Γ) satisfies (2) and (3),
then u can be extended to be the real part of an analytic function
on Ω.

PROOF. For each p e Γ, we can pick β so that the 1-f orm defined
by (4) is tangential to Γ. Since u satisfies (2) and (3), vP can be chosen
to satisfy (1) on Γ near p. Suppose that vx and v2 are defined in this
manner on ^ and <^2. Then dvx = dv2 on ^ Π έ?2- Thus dvP defines a
global section of T*(Γ), the cotangent boundle of Γ.
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Let d! be the exterior derivative on Γ, where Γ is given its Rieman-
nian structure as a submanifold of C\ Then d'dvP = 0. By the de
Rham isomorphism, there is a function v on Γ such that d'v = d'vP. Thus
dp A (dv — dvP) = 0 on Γ. From this it follows that

dp A d(u + iv) = dp Λ d(u + ivp) = 0 .

Thus / = u + iv can be extended to an analytic function on Ω.

THEOREM 3. Suppose the Levi form of Γ is nonvanishing and
suppose Γ is connected. If ue C\Γ) satisfies (2) and (3), then u may be
extended to a pluriharmonic function in Ω.

PROOF. Let p be a point of Γ. By Theorem 1, there exists a function
vP in some neighborhood έ?Pf)Γ of p such that (1) is satisfied. Since
the Levi form does not vanish it must have either a positive or a negative
eigenvalue. Thus u + ivp can be continued analytically to one side or
the other (or both) of Γ.

We claim that u can be extended to a pluriharmonic function on an
open set tf which disconnects Cn and such that 7? ID Γ. Suppose that
uλ and u2 are extensions of u to open sets ^ and ^ Let έ?z be a con-
nected component of ^ Π ̂ 2 such that ^ 3 n Γ contains an open subset
of Γ. Since the Levi form is nonzero and uγ = u2 on έ7z Π Γ, it follows
that Ui = u2 on ^ 3 . Thus u can be extended in a single-valued manner
to one-sided neighborhoods έ?+ and ^L of Γ. If p e Γ is an interior
point of έ?+ U Γ U ^L, then w is pluriharmonic at p. Thus w can be ex-
tended to an open set & which disconnects Cn.

Since the boundary Γ of Ω is connected, we may apply Hartogs'
theorem for pluriharmonic functions and obtain a pluriharmonic extension
to Ω.

REMARK. The theorems above remain valid if Ω is a relatively compact
domain with connected C3-boundary in a Stein manifold X. The same
proofs apply in this more general context because a function on Γ = 3Ω
can be extended to be analytic in Ω if and only if (1) holds.

IV. Examples. The equations (2) and (3) may be written in terms
of 3 and 3 by substituting d = 1/2(3 + 3) and dc = l/2ΐ(3 - 3). Selecting
the terms in (3) of type (1, 2), one obtains

( 2)' dp A dp A ddu = adp A dp A ddp .

( 3 )' dp A ddu = dp A d(adp) .

Thus the above system is equivalent to the statement that for a given
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Vi 6 C\Ώ) there is a modification u = v, — ap ot u such that on Γ,

dp A ddu = 0 .

In the case where Ω = {\z\ < 1} is the unit ball in Cn, we shall calculate
(2) and (3) explicitly and show how they can be written in terms of tan-
gential operators.

If p(z) = Iz|2 — 1, it follows that dp = ^Zjάzj and 39^ = ^3jkdZjdzk9

where δSk is 1 if j = k and 0 otherwise. Let us introduce the notation:

T * 3 - 3
OZk OZj

T * d * d

OZk OZj

Njk = Zi— + zk— .

OZj OZk

Then (2)' and (3)' can be rewritten as

(2)" (I zj |2 + \zk \
2)a = (LjkLjk + Njk)u

( 3 ) " £ y * K - * i α ] = 0

for l^j,k,l^n and | ^ | 2 + . + | ^ | 2 - 1.
Solving (2)" for a and substituting into (3)" one can show that (3)"

is equivalent to:
(8) LjkLlmLlmu = 0

for I <. j, k, I, m ^ n and | ^ | 2 + + \zn\
2 — 1. The advantage of this

formulation is that the operators Ljk and Ljk are tangential to the unit
sphere. The equations (8) were derived in [4] along with consistency
conditions for more general overdetermined systems on the unit ball in
C\

V. 33-Neumann conditions. An alternate approach to the problem
of finding boundary conditions for pluriharmonic functions is to compute
the Neumann conditions for the operator 33. The equations obtained in
this manner are much simpler, although they cannot be written as oper-
ators tangential to Γ.

Let < , > be the standard hermitian inner product on the space Λp>q

of forms of type (p, q), and let ( , ) be the inner product on C~q(Ω) given
by
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We define the contraction operation "V" by (ω V cc, β} = (a, ω Λ /3>.

If & is the formal adjoint of 9, then it follows (Proposition 1.3.1 of

[5]) that for all φeC~,q+ί(Ω), ψeC~q(Ω)>

( 9 ) ψφ, f) = (φ, 3f) - \ (dp V φ, ψ}

(10) (dφ, φ) = (φ, &φ) + ^(dp A ψ, φ>

where the integrals are taken with respect to surface area on Γ.
A function φ 6 C~>0)(Ω) satisfies the Neumann conditions for the de-

complex if

(Mddφ, f) = (ddφ, ddψ)

for all functions ψ e C^>0)(Ω). Using (9) and (10), one obtains for arbitrary

<P,ψe C~>0)(Ω)

(fflddφ, ψ) = (ddφ, ddψ) - [ (dp V &ddφ, ψ) - ( (dp V ddφ, dψ} .

Thus we obtain the 33-Neumann conditions:

(11) ^ dpVdpV ddφ = 0

(12) dp V ϋdφ + d(dp V ddφ) = 0 on Γ .

To see this, set db = dp V dp Λ 3 and #b = ϋ(dρ V dp A •)» then db and #h

are formally adjoint on C^,q)(Γ). Condition (11) allows us to replace dψ
by dhψ in the second integral. Integration by parts and (11) then produce
(12).

We thus have the following result, which resembles Proposition 1.3.7
in [5].

PROPOSITION. A function φ e C°°(Ω) is pluriharmonic on Ω if and
only if φ is biharmonic and satisfies (11) and (12).

PROOF. If ddφ = 0, then (11) and (12) are satisfied. Conversely, if
φ is biharmonic, then

Mddφ = ± ft a- = Δ2V = °

If φ satisfies the Neumann conditions, then

0 = (Mddφ, φ) = (ddφ, ddφ) .

Thus ddφ = 0 completing the proof.

Using the formula
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§{a V β) = {-lfega{a V #β - da V /5)

one may rewrite (12) as

(dp V & - dp V ϋ)ddφ + 33/0 V ddφ = 0 ,

which is the same as

2(dc|0 V dc + dp V d)Δφ - (ddφ, ddp) = 0 .

Thus equations (11) and (12) become

(13) ± Jg-ttrψ- = 0
3,k=i OZjOZk OZj 0Zk

(14) X{ΔΨ) =

where X is the vector field given by grad p.
From this we conclude that within the class of biharmonic functions

on Ωj a function is actually pluriharmonic if and only if it satisfies (13)
and (14). One can easily see, however, that these equations do not depend
only on the values of φ on Γ. If we further restrict ourselves to har-
monic functions, then we actually have a pair of second order operators.

We wish to thank Professor B. A. Taylor for helpful conversations
concerning this material.
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