Tôhoku Math. Journ. 27 (1975), 91-97.

LIMIT SETS OF SOME KLEINIAN GROUPS

НІ**RO-О ҮАМАМОТО**

(Received February 7, 1974)

1. It is well known that the limit set of the so-called Schottky group, whose fundamental domain is bounded by finitely many mutually disjoint circles, has always 2-dimensional measure zero. Recently Abikoff [1] proved that there exists an infinitely generated Kleinian group whose fundamental domain is bounded by infinitely many mutually disjoint circles and whose limit set is of positive 2-dimensional measure. In this note we shall give a sufficient condition in order that the limit sets of such groups have 2-dimensional measure zero.

2. Let $\{C_i, C'_i\}_{i=1}^N$ $(N \leq +\infty)$ be an at most countable number of mutually disjoint circles in the complex plane C and assume, in the case $N = +\infty$, that these circles cluster to a totally disconnected compact set E in C and that these circles together with the set E bound an unbounded domain F. Let T_i be a hyperbolic or loxodromic linear transformation of \widehat{C} onto itself which maps the outside of C_i onto the inside of C'_i , where $\widehat{C} = C \cup \{\infty\}$ is the Aleksandrov compactification of C. Then $G^* = \{T_i\}_{i=1}^N$ generates a free discontinuous group G whose fundamental domain is F. In what follows, we call such a group G an S-group. If $N < +\infty$, then an S-group is finitely generated and is a Schottky group. The set $\Lambda(G)$ of all accumulation points of a set $\{\zeta \in C \mid \zeta = V(\infty)$ for some $V \in G\}$ is the limit set of G. Unless N = 1, the set $\Lambda(G)$ for an S-group contains more than two points and G is (non-elementary) Kleinian by definition (Ford [2]). In the following we shall deal with an infinitely generated S-group, that is, the case $N = +\infty$.

For two elements V and W in G, we denote by VW the composite transformation VW(z) = V(W(z)) belonging to G. Since G is free, any $V \in G$ is uniquely represented in the form $V = S_{i_n}S_{i_{n-1}} \cdots S_{i_1}$, where $S_{i_j} \in G^* \cup G^{*-1}$ $(G^{*-1} = \{T_i^{-1}\}_{i=1}^{\infty})$ and $S_{i_{j+1}}^{-1} \neq S_{i_j}$ $(1 \leq j \leq n-1)$. Here we call the number n the grade of V. An element of grade n in G is often denoted by $S_{(n)}$. The element $S_{(0)} \in G$ is the identity I of G.

For an S-group G generated by $G^* = \{T_i\}_{i=1}^{\infty}$, let us denote by G_p the Schottky subgroup of G generated by $G_p^* = \{T_i\}_{i=1}^{p}$. The grade of $V^{(p)} \in G_p$ can be defined in the same way as in the case of G. The unbounded

H. ΥΑΜΑΜΟΤΟ

domain $F_p(\subset \hat{C})$ surrounded by $\{C_i, C'_i\}_{i=1}^p$ is a fundamental domain of G_p . Consider the image $S_{(n)}^{(p)}(F_p)$ of F_p by $S_{(n)}^{(p)} (\in G_p)$ with grade n. It is easily seen that $S_{(n)}^{(p)}(F_p) (n \neq 0)$ is bounded by an outer boundary circle and (2p-1) inner boundary circles which are images of C_i or $C'_i (1 \leq i \leq p)$. We shall call a closed disc bounded by an inner boundary circle of $S_{(n)}^{(p)}(F_p)$ a closed disc of grade n with respect to the group G_p . The disc of grade 0 with respect to G_p is a closed disc $[C_i]$ or $[C'_i]$ bounded by C_i or C'_i , $(1 \leq i \leq p)$. It is obvious that the number of all closed discs of grade n with respect to G_p is equal to $q(p, n) = 2p(2p - 1)^n$ and every one of them can be represented by $S_{(n)}^{(p)}([C_i])$ or $S_{(n)}^{(p)}([C'_i])$ for some $S_{(n)}^{(p)} \in G_p$ and for some C_i or C'_i $(1 \leq i \leq p)$.

3. Let G be an S-group and let $V \in G$ be of the form

$$V\colon z\mapsto \frac{a_vz+b_v}{c_vz+d_v}, \ a_vd_v-b_vc_v=1$$

Since no $V \in G$ $(V \neq I)$ fixes the point $\infty \in \hat{C}$, we see $c_v \neq 0$. Further, $|c_v|^{-1}$ equals the radius of the isometric circle $|c_v z + d_v| = 1$ of V in the sense of Ford [2]. Hence the following lemma holds (cf. Ford [2]).

LEMMA 1. Let G be an S-group. Then the series

$$\sum_{I\neq V\in G}\frac{1}{\mid c_{V}\mid^{\mu}}$$

converges for any real number $\mu \geq 4$.

Next we shall prove another lemma.

LEMMA 2. Let D be a closed disc with radius r in F. Suppose that, for a linear transformation $V \in G$, c_v is not equal to zero and the pole $V^{-1}(\infty) = -d_v c_v^{-1}$ of V lies outside D. If ρ is the distance of D from $V^{-1}(\infty)$, then 2-dimensional measure $m^2(V(D))$ of the image V(D) of D by V satisfies

$$m^2(V(D)) = rac{\pi}{\mid c_r \mid^4} igg[rac{r}{(
ho + r)^2 - r^2} igg]^2 \, .$$

PROOF. Let us denote by $C: |z - z_0| = r$ the boundary circle of D. Obviously V(D) is also bounded by the image circle V(C) of C by V. Letting L be the length of V(C) and putting $\theta = \arg\{(z - z_0)/(V^{-1}(\infty) - z_0)\}$, we have

$$L = \int_{c} \left| rac{d \, V(z)}{dz}
ight| \, dz \, | = \int_{c} rac{|\, dz \, |}{|\, c_{_{V}} z \, + \, d_{_{V}} \, |^{2}} \ = rac{1}{|\, c_{_{V}} \, |^{2}} \int_{_{0}}^{^{2\pi}} rac{r \, d heta}{(
ho \, + \, r)^{2} - 2(
ho \, + \, r)r \cos heta \, + \, r^{2}} = rac{2\pi}{|\, c_{_{V}} \, |^{2}} \cdot rac{r}{(
ho \, + \, r)^{2} - r^{2}} \, .$$

Evidently $m^2(V(D))$ is the area of V(D) and is equal to $L^2/4\pi$. Therefore we have our lemma.

4. Let G be an infinitely generated S-group whose fundamental domain F is an unbounded domain bounded by mutually disjoint circles $\{C_i, C'_i\}_{i=1}^{\infty}$ in C which cluster to only one point z = 0, the origin of C. Denote by r(C) the radius of a circle C in C. Then we can prove the following

THEOREM. Suppose that there exists a numerical constant K satisfying

$$\sup\Bigl\{rac{r(C)}{l(C)} ext{ ; } \ C \in \{C_i,\ C_i'\}_{i=1}^{\infty}\Bigr\} = K < \infty$$
 ,

where $l(C) = \inf |z - \zeta|$ and the infimum is taken for all $z \in C$ and for all $\zeta \in \{C_i, C'_i\}_{i=1}^{\infty} - C$. Then the limit set $\Lambda(G)$ of the group G has 2-dimensional measure zero.

PROOF. Describe a closed disc $D_{\eta_1}: |z| \leq \eta_1$ in C and pick up all pairs (C_i, C'_i) such that at least one of $[C_i]$ and $[C'_i]$ contains a point lying outside D_{η_1} . We may assume that all pairs picked up as above are $\{(C_i, C'_i)\}_{i=1}^{p_1}$, where p_1 depends on η_1 . Put $G^*_{p_1} = \{T_i\}_{i=1}^{p_1}$ and denote by G_{p_1} the group generated by $G^*_{p_1}$. Clearly G_{p_1} is a Schottky subgroup of G. We call G_{p_1} the Schottky subgroup of G associated with η_1 . Let us denote by $\{\delta_j^{(p_1,m)}\}_{j=1}^{q(p_1,m)}, q(p_1, n) = 2p_1(2p_1 - 1)^n$, the set of discs of grade n with respect to G_{p_1} .

Now we put $k_0 = (4K^2 + 1)/(2K + 1)^2$ and take a constant k satisfying $k_0 < k < 1$. Here K is the numerical constant appeared in the assumption of Theorem. For a given number ε as such as $0 < \varepsilon < k/k_0 - 1$, we determine a positive integer $n_1 = n(\eta_1, \varepsilon)$ such that

(1)
$$\sum_{j=1}^{q\,(p_1,n_1)} m^2(\delta_j^{(p_1,n_1)}) = m^2 \left(\bigcup_{j=1}^{q\,(p_1,n_1)} \delta_j^{(p_1,n_1)} \right) < \varepsilon$$
.

In fact, every $\delta_j^{(p_1,n_1)}$ has the form $S_{(n_1)}^{(p_1)}([C_i])$ or $S_{(n_1)}^{(p_1)}([C'_i])$ for some $S_{(n_1)}^{(p_1)} \in G_{p_1}$ and for a suitable C_i or C'_i and $\delta_j^{(p_1,n_1)} = S_{(n_1)}^{(p_1)}([C_i])$, for instance, implies $S_{(n_1)}^{(p_1)-1}(\infty) \notin [C_i]$. Hence we can apply Lemma 2 to estimate $m^2(\delta_j^{(p_1,n_1)})$ and Lemma 1 yields (1).

Put $D_{\tau_1} = \bigcup_{i=p_1+1}^{\infty} ([C_i] \cup [C'_i]) \cup \{0\}$, which is a closure of the set $\bigcup_{i=p_1+1}^{\infty} \{[C_i] \cup [C'_i]\}$. Obviously

(2)
$$\Lambda(G) \subset \left(\bigcup_{j=1}^{q(p_1,n_1)} \delta_j^{(p_1,n_1)}\right) \cup \left(\bigcup_{n=0}^{n_1} \bigcup_{(p_1)} S_{(n)}^{(p_1)} (\widetilde{D_{\eta_1}})\right).$$

Here \bigcup_{p_1} means the union taken over all $S_{(n)}^{(p_1)} \in G_{p_1}$ and this abreviation

is used throughout the paper. We choose a number M satisfying

(3)
$$\max\left(m^2\left(\bigcup_{n=0}^{n_1}\bigcup_{(p_1)}S^{(p_1)}_{(n)}(\widetilde{D}_{\tau_1})\right),1\right) < M.$$

The existence of such an M follows from the fact that the set $S_{(0)}^{(p_1)}(\widetilde{D_{\gamma_1}})$ coincides with \widetilde{D}_{γ_1} and $S_{(n)}^{(p_1)}(\widetilde{D}_{\gamma_1})$ $(n \neq 0)$ lies inside some C_i or C'_i , $1 \leq i \leq p_1$. Now choose a positive number η_2 $(<\eta_1)$ so small that

i) there is a circle C_i $(p_1 < i)$ outside the open disc $|z| < \eta_2$,

ii) $(d^2\eta_2/r([C_{p_1+1}])l_{p_1}^2)^2 \leq 1/(2K+1)^2$ for the diameter d of the set $\bigcup_{i=1}^{\infty} \{[C_i] \cup [C'_i]\}$ and the distance l_{p_1} of $\bigcup_{i=1}^{p_1} \{[C_i] \cup [C'_i]\}$ from $\bigcup_{i=p_1+1}^{\infty} \{[C_i] \cup [C'_i]\}$.

Let us determine the number p_2 in the following way: $\{(C_i, C'_i)\}_{i=1}^{p_2}$ is the set of all pairs (C_i, C'_i) such that at least one of $[C_i]$ and $[C'_i]$ contains a point lying outside the closed disc $|z| \leq \eta_2$.

Let $n_2 = n(\eta_2, k\varepsilon)$ be such a number that

$$(\,4\,) \qquad \qquad m^2 \Bigl(igcup_{j=1}^{q(p_2,\,n_2)} \delta_j^{(p_2,\,n_2)} \Bigr) < k arepsilon \ , \qquad q(p_2,\,n_2) = 2 p_2 (2 p_2 - 1)^{n_2} \ ,$$

where $\delta_j^{(p_2,n_2)}$ is a disc of grade n_2 with respect to G_{p_2} and k satisfies $\varepsilon < k/k_0 - 1$ as stated already. By the same reasoning as in the case for G_{p_1} , we have the inclusion relation

$$A(G) \subset \left(\bigcup_{j=1}^{q(p_2,n_2)} \delta_j^{(p_2,n_2)}\right) \cup \left(\bigcup_{n=0}^{n_2} \bigcup_{(p_2)} S_{(n)}^{(p_2)} \left(\widetilde{D}_{\tau_2}\right)\right),$$

similar to (2).

For the sake of brevity we put

$$A_{\lambda} = igcup_{j=1}^{q(p_{\lambda},n_{\lambda})} \delta_{j}^{(p_{\lambda},n_{\lambda})} ext{ , } ext{ } B_{\lambda} = igcup_{n=0}^{n_{\lambda}} igcup_{p(\lambda)} S_{(n)}^{(p_{\lambda})} (\widetilde{D_{ au_{\lambda}}}) ext{ , }$$

for $\lambda = 1, 2$.

It is not so difficult to certify that

$$egin{aligned} A_{1,2} &= igcup_{j=1}^{q\,(p_1,n_2)} \, \delta_j^{(p_1,n_2)} \, \subset \, A_1 ext{ ,} & q(p_1,\,n_2) = 2p_1(2p_1-1)^{n_2} ext{ ,} \ & B_{1,2} &= igcup_{n=0}^{n_2} igcup_{(p_1)} S_{(n)}^{(p_1)}(\widetilde{D_{ au_1}}) \, \subset \, A_1 \cup B_1 ext{ ,} \end{aligned}$$

 $A_{\lambda} \cap B_{\lambda} = \emptyset$ ($\lambda = 1, 2$) and $A_{1,2} \cap B_{1,2} = \emptyset$. Further we can see that $A_2 \cup B_2 \subset A_{1,2} \cup B_{1,2}$.

We shall show that

$$m^2(B_2) \leq k_0 m^2(B_{1,2})$$
.

For the purpose we consider all the sets $\{{}^{j}S_{(k_{j})}^{(p_{2})}(\widetilde{D}_{\eta_{2}})\}_{j=1}^{N_{n},p_{1}}$ contained in a set $S_{(n)}^{(p_{1})}(\widetilde{D}_{\eta_{1}})(\subset B_{1,2})$, where an element $S_{(n)}^{(p_{1})} \in G_{p_{1}}$ $(0 \leq n \leq n_{2})$ is fixed and $N_{n,p_{1}} = N_{n,p_{1}}(S_{(n)}^{(p_{1})})$ is a number of sets ${}^{j}S_{(k_{j})}^{(p_{2})}(\widetilde{D}_{\eta_{2}})$ contained in $S_{(n)}^{(p_{1})}(\widetilde{D}_{\eta_{1}})$. Necessarily, $n \leq k_{j} \leq n_{2}$, and a grade number k_{j} of some ${}^{j}S_{(k_{j})}^{(p_{2})}$ may coincide to each other.

If $n < k_j$, then every ${}^{j}S_{(k_j)}^{(p_2)}([C_i])$ and ${}^{j}S_{(k_j)}^{(p_2)}([C'_i])$ $(p_2 < i)$ are contained in a certain $S_{(n)}^{(p_1)}([C_{i'}])$ or $S_{(n)}^{(p_1)}([C'_{i'}])$ $(p_1 < i' \le p_2)$ which is a subset of $S_{(n)}^{(p_1)}(\widetilde{D_{\tau_1}})$. Hence for a concentric disc Γ_i ; $|z - z_i| \le r(C_i)(1 + 1/2K)$ of $[C_i]$ or Γ_i' ; $|z - z_i'| \le r(C_i')(1 + 1/2K)$ of $[C_i']$, we easily see

$$egin{aligned} & {}^{j}S^{(p_{2})}_{(k_{j})}([C_{i}]) \subset {}^{j}S^{(p_{2})}_{(k_{j})}(arGamma_{i}) \subset S^{(p_{1})}_{(n)}(\widetilde{D_{ au_{1}}}) \;, \qquad p_{2} < i \;, \ & {}^{j}S^{(p_{2})}_{(k_{j})}([C_{i}']) \subset {}^{j}S^{(p_{2})}_{(k_{j})}(arGamma_{i}') \subset S^{(p_{1})}_{(n)}(\widetilde{D_{ au_{1}}}) \;, \qquad p_{2} < i \;, \end{aligned}$$

and

$$egin{aligned} {}^{j}S^{(p_{2})}_{(k_{j})}(arGamma_{i}) \cap {}^{j}S^{(p_{2})}_{(k_{j})}(arGamma'_{i}) &= {}^{j}S^{(p_{2})}_{(k_{j})}(arGamma_{i}) \cap {}^{j}S^{(p_{2})}_{(k_{j})}(arGamma'_{i'}) &= {}^{j}S^{(p_{2})}_{(k_{j})}(arGamma'_{i'}) \cap {}^{j}S^{(p_{2})}_{(k_{j})}(arGamma'_{i'}) &= arnothing \ p_{2} < i \ . \end{aligned}$$

Further the pole of ${}^{j}S_{(k_{j})}^{(p_{2})}$ is outside of $\bigcup_{i=p_{2}+1}^{\infty} \{\Gamma_{i} \cup \Gamma_{i}'\} \cup \{0\}$. Hence from Lemma 2, we have

$$egin{aligned} &rac{m^2({}^jS[{}^k_{k_j}])([C_i]))}{m^2({}^jS[{}^k_{k_j}](\Gamma_i))} \ &= \Big[rac{r(C_i)}{(
ho+r(C_i))^2-r(C_i)^2} \cdot rac{(
ho+r(C_i))^2-r(C_i)^2(1+1/2K)^2}{r(C_i)(1+1/2K)}\Big]^2 \ &\leq rac{4K^2}{(2K+1)^2} \,. \end{aligned}$$

For $[C'_i]$ $(i > p_2)$, we obtain the quite similar estimate

$$rac{m^2({}^j\!S_{\langle k_j
angle}^{(p_2)}([C_i']))}{m^2({}^j\!S_{\langle k_j
angle}^{(p_2)}(\varGamma_i'))} \leq rac{4K^2}{(2K+1)^2} \ .$$

Next we consider the case $n = k_j$. In this case, it is seen that ${}^{i}S_{(k_j)}^{(p_2)}(\widetilde{D_{\eta_2}}) = {}^{i}S_{(n)}^{(p_1)}(\widetilde{D_{\eta_2}})$. Since the pole of $S_{(n)}^{(p_1)}$ lies inside $\bigcup_{i=1}^{p_1} ([C_i] \cup [C'_i])$ and from the properties (i), (ii) of η_2 , we have

$$\frac{m^{2}({}^{i}S_{(n)}^{(p_{2})}(\widetilde{D_{\eta_{2}}}))}{m^{2}({}^{i}S_{(n)}^{(p_{1})}(\widetilde{D_{\eta_{1}}}))} \leq \frac{\sum\limits_{p_{2} < i} m^{2}({}^{i}S_{(n)}^{(p_{2})}([C_{i}] \cup [C'_{i}])}{m^{2}(S_{(n)}^{(p_{1})}([C_{p_{1}+1}]))} \\ \leq \left(\frac{d^{2}}{r([C_{p_{1}+1}])} \cdot \frac{\gamma_{2}}{l_{p_{1}}^{2}}\right)^{2} \leq \frac{1}{(2K+1)^{2}}$$

Therefore, for a set $S_{(n)}^{(p_1)}(\widetilde{D_{\eta_1}})$ which appears in $B_{1,2}$ we get

$$rac{m^2 \left(egin{array}{c} \prod_{j=1}^{n_{n_j} p_1} j S_{(k_j)}^{(p_2)}(\widetilde{D_{\eta_2}})
ight)}{m^2 (S_{(n)}^{(p_1)}(\widetilde{D_{\eta_1}}))} \ \leq rac{\sum\limits_{k_j
eq n} \sum\limits_{p_2 < i} m^2 (j S_{(k_j)}^{(p_2)}([C_i] \cup [C'_i]))}{\sum\limits_{k_j
eq n} \sum\limits_{p_2 < i} m^2 (j S_{(k_j)}^{(p_2)}(\Gamma_i \cup \Gamma'_i))} + rac{m^2 (j S_{(n)}^{(p_2)}(\widetilde{D_{\eta_2}}))}{m^2 (S_{(n)}^{(p_1)}(\widetilde{D_{\eta_1}}))} \leq rac{4K^2 + 1}{(2K+1)^2} = k_0 \; .$$

Since the set B_2 can be obtained as a union $\bigcup_{n=0}^{n_2} \bigcup_{(p_1)} \bigcup_{j=1}^{N_n, p_1} j S_{(k_j)}^{(p_2)}(\widetilde{D_{\eta_2}})$, it follows that

$$rac{m^2(B_2)}{m^2(B_{1,2})} = rac{\sum\limits_{n=0}^{n_2} \sum' \, m^2 \! \left(igsim_{j=1}^{N_{n,p_1}} {}^j S^{(p_2)}_{(k_j)}(\widetilde{D_{\gamma_2}})
ight)}{\sum\limits_{n=0}^{n_2} \sum' \, m^2 \! \left(S^{(p_1)}_{(n)}(\widetilde{D_{\gamma_1}})
ight)} \leq k_{_0} \; ,$$

where \sum' means the sum for all $S_{(n)}^{(p_1)} \in G_{p_1}$ and $N_{n,p_1} = N_{n,p_1}(S_{(n)}^{(p_1)})$. Thus we can see

$$m^2(B_2) \leq k_0 m^2(B_{1,2})$$
.

Therefore, it holds from (1), (3) and $\varepsilon < k/k_0 - 1$ that

$$egin{aligned} m^2(B_2) &\leq k_{\scriptscriptstyle 0} m^2(A_{\scriptscriptstyle 1} \cup B_1) = k_{\scriptscriptstyle 0}(m^2(A_1) + \, m^2(B_1)) \ &< k_{\scriptscriptstyle 0}(arepsilon + M) < k - k_{\scriptscriptstyle 0} + \, k_{\scriptscriptstyle 0}M = kM + (k - k_{\scriptscriptstyle 0})(1 - M) \leq kM$$
 ,

which together with (4) implies

$$m^{2}(A_{2} \cup B_{2}) = m^{2}(A_{2}) + m^{2}(B_{2}) < k(\varepsilon + M)$$
 .

Repeat the same procedure. Then we get the sequence $\{\eta_{\lambda}\}_{\lambda=1}^{\infty}$ of positive numbers such that $\eta_{\lambda} < \eta_{\lambda-1}$, $\lim_{\lambda \to \infty} \eta_{\lambda} = 0$ and such that for the Schottky subgroup $G_{p_{\lambda}}$ of G associated with η_{λ} , the estimate

$$m^2(A_\lambda \cup B_\lambda) < k^{\lambda-1}(\varepsilon + M)$$

holds, where A_{λ} is the union $\bigcup_{j=1}^{q(p_{\lambda},n_{\lambda})} \delta_{j}^{(p_{\lambda},n_{\lambda})}$, $q(p_{\lambda}, n_{\lambda}) = 2p_{\lambda}(2p_{\lambda}-1)^{n_{\lambda}}$, of discs with grade $n_{\lambda} = n_{\lambda}(\eta_{\lambda}, k^{\lambda-1}\varepsilon)$ with respect to $G_{p_{\lambda}}$ and $B_{\lambda} = \bigcup_{n=0}^{n_{\lambda}} \bigcup_{(p_{\lambda})} S_{(n)}^{(p_{\lambda})} (\widetilde{D_{\eta_{\lambda}}})$. Clearly $\Lambda(G) \subset A_{\lambda} \cup B_{\lambda}$ so that

$$m^{\scriptscriptstyle 2}(\varLambda(G)) < k^{\scriptscriptstyle \lambda-1}(arepsilon+M)$$
 .

Since 0 < k < 1 and λ is arbitrary, we have our Theorem.

REFERENCES

[1] W. ABIKOFF, Some remarks on Kleinian groups, Advances in the theory of Riemann

surfaces, Ann. of Math. Studies, 66 (1971), 1-5.

[2] L. FORD, Automorphic functions (second edition), Chelsea, New York, 1951.

MATHEMATICAL INSTITUTE Tôhoku University