ON ARTIN L-FUNCTIONS

Kôji Uchida

(Received December 10, 1973)

Let k be an algebraic number field of finite degree. Let K be a Galois extension of k of finite degree. Let G be the Galois group of this extension. Let χ be a character of G. Then Artin L-function $L(s,\chi)$ is defined. For some groups G, $L(s,\chi)$ is known to be an entire function for every non-trivial irreducible character χ [2, p. 225]. These cases can be proved through Blichfeldt's theorem [3, p. 348] reducing to abelian cases, i.e., Hecke L-functions. This theorem can be applied for other groups, i.e., for supersolvable groups. A group G is called supersolvable if G has normal subgroups H_0 , H_1 , \cdots , H_r such that $G = H_0 \supset H_1 \supset \cdots \supset H_r = \{e\}$ and every H_{i-1}/H_i is cyclic [4].

THEOREM 1. If the Galois group G is supersolvable, $L(s, \chi)$ is entire for every non-trivial irreducible character χ .

PROOF.¹⁾ If G is abelian, $L(s,\chi)$ is a Hecke L-function which is entire. So we assume that G is not abelian and we will prove by induction on the order of G. Let χ be the character of a representation module (G,V). If there exists a non-trivial normal subgroup N which operates trivially on V, χ is a character of G/N. As G/N is also supersolvable, $L(s,\chi)$ is entire by induction. Now we assume that there exists no such normal subgroup. Then G is a subgroup of GL(V). Let G be the center of G. As G/G is also supersolvable, there exists a normal subgroup G of G such that G is cyclic and G and G is abelian because G is in the center of G. Now Blichfeldt's theorem shows that there exists a proper subgroup G of G such that G is easy to see that G is non-trivial and irreducible. As G is also supersolvable, our assertion is proved by induction.

REMARK. Professor M. Ishida kindly suggested this proof when G is nilpotent. We note that every finite nilpotent group is supersolvable.

¹⁾ This proof shows that $L(s, \chi)$ is entire for every χ if the Galois group is an M-group. Hence Theorem 1 is a special case of Huppert's Theorem [5, p. 580]. We also note that every M-group is solvable [5, p. 581].

We now give an example of a finite solvable group on which Blichfeldt's theorem cannot be applied. In fact, the following example is of the smallest possible order. Let G be a finite group generated by σ , τ and ρ whose relations are as follows:

$$\sigma^4=
ho^3=1$$
 , $\sigma^2= au^2$, $\sigma au\sigma^{-1}= au^{-1}$, $ho\sigma
ho^{-1}= au$, $ho au
ho^{-1}= au\sigma$.

Then σ and τ generate the commutator subgroup G' which is isomorphic to the quaternion group. As (G:G')=3, the order of G is 24. Now G can be represented as subgroups of GL(2,C), where C is the complex numbers. In fact, if we put

$$\sigma=egin{pmatrix} i & 0 \ 0 & -i \end{pmatrix}$$
 , $au=egin{pmatrix} 0 & 1 \ -1 & 0 \end{pmatrix}$ and $ho=lphaegin{pmatrix} 1 & -1 \ i & i \end{pmatrix}$,

we see easily that above relations hold. In the above, α is one of the following values:

$$lpha=rac{-1+i}{2},\,rac{-1+i}{2}\,\omega \ \ ext{or} \ rac{-1+i}{2}\,\omega^2\,,$$

where ω is a primitive cube root of unity. Above representations give three 2-dimensional characters χ_1 , χ_2 and χ_3 which are different with one another, as the values of the characters at ρ are different. As G has no subgroup of index 2, any 2-dimensional character cannot be induced from a proper subgroup. Hence Blichfeldt's theorem cannot be applied in this case. We see that G has seven conjugate classes which are represented by 1, σ^2 , σ , ρ , ρ^2 , $\rho\sigma^2$ and $\rho^2\sigma^2$. Hence every character of G is determined by values at these elements. We see that

$$\chi_i(1) = 2$$
, $\chi_i(\sigma^2) = -2$ and $\chi_i(\sigma) = 0$

for every i, and

$$\chi_{\scriptscriptstyle 1}(
ho)=\chi_{\scriptscriptstyle 1}(
ho^2)=-1$$
 , $\chi_{\scriptscriptstyle 1}(
ho\sigma^2)=\chi_{\scriptscriptstyle 1}(
ho^2\sigma^2)=1$, $\chi_{\scriptscriptstyle 2}(
ho)=-\omega$, $\chi_{\scriptscriptstyle 2}(
ho^2)=-\omega^2$, $\chi_{\scriptscriptstyle 2}(
ho\sigma^2)=\omega$, $\chi_{\scriptscriptstyle 2}(
ho^2\sigma^2)=\omega^2$,

and $\chi_3 = \overline{\chi}_2$ is the complex conjugate of χ_2 . Let H be the subgroup of G generated by $\rho \sigma^2$. Let φ and ψ be one-dimensional characters of H such that $\varphi(\rho \sigma^2) = -\omega$ and $\psi(\rho \sigma^2) = -1$. Let φ^a and ψ^a be induced characters of G. As we can take 1, σ , τ , $\sigma \tau$ as representatives of G/H, we see that

$$arphi^{\scriptscriptstyle G}\!(1)=4$$
 , $arphi^{\scriptscriptstyle G}\!(\sigma^{\scriptscriptstyle 2})=-4$, $arphi^{\scriptscriptstyle G}\!(\sigma)=0$

and

$$arphi^{g}(\mu)=arphi(\mu) \quad ext{if} \quad \mu\in H-\{1,\,\sigma^{\scriptscriptstyle 2}\}$$
 ,

and the same for ψ .

THEOREM 2. Let K and k be algebraic number fields of finite degrees. We assume that K is a Galois extension of k with Galois group G defined above. Then

$$L(s, \chi_1)^2 = L(s, \varphi)L(s, \overline{\varphi})/L(s, \psi)$$

 $L(s, \chi_2)^2 = L(s, \overline{\varphi})L(s, \psi)/L(s, \varphi)$

and

$$L(s, \chi_3)^2 = L(s, \varphi)L(s, \psi)/L(s, \overline{\varphi})$$

hold.

PROOF. It is easy to see that

$$egin{aligned} 2\chi_{\scriptscriptstyle 1} &= arphi^{\it a} + ar{arphi}^{\it a} - \psi^{\it a} \ 2\chi_{\scriptscriptstyle 2} &= ar{arphi}^{\it a} + \psi^{\it a} - arphi^{\it a} \end{aligned}$$

and

$$2\chi_{\scriptscriptstyle 3}=arphi^{\scriptscriptstyle G}+\psi^{\scriptscriptstyle G}-ararphi^{\scriptscriptstyle G}$$
 .

This shows above equalities.

REMARK. Let λ be a one-dimensional character of the subgroup generated by σ such that $\lambda(\sigma) = i$. Then

$$\chi_{\scriptscriptstyle 1}=arphi^{\scriptscriptstyle G}+ar{arphi}^{\scriptscriptstyle G}-\lambda^{\scriptscriptstyle G}$$
 , $\chi_{\scriptscriptstyle 2}=\lambda^{\scriptscriptstyle G}-arphi^{\scriptscriptstyle G}$

and

$$\chi_3 = \lambda^G - \bar{\varphi}^G$$

hold.

We now assume that k is the field of the rational numbers. Let F be the intermediate field of K/k corresponding to H. Then $L(s, \varphi)$, $L(s, \overline{\varphi})$ and $L(s, \psi)$ are different L-functions corresponding to an abelian extension K/F. Moreover they are multiplicatively independent because $L(s, \chi_i)$ are multiplicatively independent [1]. If we can show that different L-functions of an abelian extension have independent distributions of zero points, $L(s, \chi_i)$ have poles by Theorem 2. Following example seems to show that it is not absurd to think so, though Artin's conjecture asserts that $L(s, \chi_i)$ has no pole.

EXAMPLE. Let F be an algebraic number field of finite degree. Let

78 K. UCHIDA

 $L(s, \varphi)$ and $L(s, \psi)$ be different Hecke L-functions over F. Let F_{φ} and F_{ψ} be cyclic extensions of F corresponding to φ and ψ , respectively. If the numbers of real places ramified at F_{φ} and F_{ψ} are the same, and if the conductors of φ and ψ are the same, $L(s, \varphi)/L(s, \psi)$ has poles.

Proof. Let

$$arPhi(s,\,arphi)=A(\mathfrak{f}_arphi)^sarGamma\Big(rac{s+1}{2}\Big)^{
u}arGamma\Big(rac{s}{2}\Big)^{r_1-
u}arGamma(s)^{r_2}L(s,\,arphi)$$

as usual, where \mathfrak{f}_{φ} is the conductor of φ and ν is the number of real places ramified at F_{φ}/F . Above assumptions show that $L(s, \varphi)/L(s, \psi) = \Phi(s, \varphi)/\Phi(s, \psi)$. First we consider the case $L(s, \psi) = L(s, \overline{\varphi})$. If $L(s, \varphi)/L(s, \overline{\varphi})$ has a zero point ρ , $\overline{\rho}$ is a pole of this function. Hence if $L(s, \varphi)/L(s, \overline{\varphi})$ has no pole, the zero points of $L(s, \varphi)$ and $L(s, \overline{\varphi})$ are the same counting the multiplicities. It is known [6] that

$$\Phi(s,\varphi) = ae^{bs} \prod_{\rho} \left(1 - \frac{s}{\rho}\right) e^{s/\rho}$$

for constants a and b depending on φ , where ρ runs over the zeros of $L(s, \varphi)$ such that $0 < \Re \rho < 1$. Therefore

$$L(s, \varphi)/L(s, \overline{\varphi}) = \Phi(s, \varphi)/\Phi(s, \overline{\varphi}) = ae^{bs}/\overline{a}e^{\overline{b}s}$$
.

Let $a_1=a/\bar{a}$ and let $b_1=b-\bar{b}$. Let $s=re^{i\theta}$ for some θ such that $-\pi/2<\theta<\pi/2$. The left hand side of the above equation goes to 1 when r goes to infinity. If $b_1\neq 0$, the right hand side goes to zero or to infinity for suitable θ . Hence it must be $b_1=0$. Then a_1 must be 1, as the left hand side goes to 1 when r goes to infinity. This shows $L(s,\varphi)=L(s,\bar{\varphi})$ which is a contradiction. Now let $L(s,\psi)\neq L(s,\bar{\varphi})$. We put $M(s)=L(s,\varphi)L(s,\bar{\varphi})/L(s,\psi)L(s,\bar{\psi})$. If M(s) has a pole ρ , ρ or $\bar{\rho}$ is a pole of $L(s,\varphi)/L(s,\psi)$. We assume that M(s) has no pole. Now

$$egin{aligned} arPhi(s,\,arphi)arPhi(s,\,ar{arphi}) &= aar{a}e^{(b+ar{b})s}\prod_{
ho}\Big(1-rac{s}{
ho}\Big)\Big(1-rac{s}{ar{
ho}}\Big)\,e^{(1/
ho+1/ar{
ho})\,s} \ &= aar{a}e^{(b+ar{b})s}\prod_{
ho}\Big(1-rac{s}{
ho}\Big)\Big(1-rac{s}{ar{
ho}}\Big)\prod_{
ho}e^{(1/
ho+1/ar{
ho})\,s} \ &= aar{a}\prod_{
ho}\Big(1-rac{s}{
ho}\Big)\Big(1-rac{s}{ar{
ho}}\Big)\exp\left\{s\Big(b+ar{b}+\sum_{
ho}\Big(rac{1}{
ho}+rac{1}{ar{
ho}}\Big)\Big)
ight\}\,, \end{aligned}$$

as the products converge absolutely. Now Landau shows [6]

$$b\,+\,ar{b}\,+\,\sum\limits_{
ho}\left(rac{1}{
ho}\,+\,rac{1}{ar{
ho}}
ight)=0$$
 .

Hence

$$\Phi(s,\,\varphi)\Phi(s,\,\overline{\varphi}) = a\overline{a}\,\prod_{\rho}\Big(1-\frac{s}{\overline{\rho}}\Big)\Big(1-\frac{s}{\overline{\overline{\rho}}}\Big).$$

As we assume that $M(s) = \Phi(s, \varphi)\Phi(s, \overline{\varphi})/\Phi(s, \psi)\Phi(s, \overline{\psi})$ has no pole, it must be

$$M(s) = c \prod_{\rho}' \left(1 - \frac{s}{\rho}\right) \left(1 - \frac{s}{\overline{\rho}}\right)$$

for some constant c, where Π' means the product over the zero points of M(s). As $0 < \Re \rho < 1$,

$$\Big(1-rac{s}{
ho}\Big)\Big(1-rac{s}{ar
ho}\Big)>1$$

for real s>2, and $(1-s/\rho)(1-s/\bar{\rho})$ goes to infinity as s goes to infinity. Hence if M(s) has at least one zero point, the absolute value of the right hand side goes to infinity, which is a contradiction because the left hand side goes to 1. Hence it must be M(s)=1. If $L(s,\varphi)/L(s,\psi)$ has a zero point ρ , it is a pole of $L(s,\bar{\varphi})/L(s,\bar{\psi})$. Then $\bar{\rho}$ is a pole of $L(s,\varphi)/L(s,\psi)$ which contradicts to our assumption. Hence the zero points of $L(s,\varphi)$ must coincide to those of $L(s,\psi)$. Then it must be

$$L(s,\varphi)/L(s,\psi)=\Phi(s,\varphi)/\Phi(s,\psi)=a_1e^{b_1s}/a_2e^{b_2s}$$

for some constants a_1 , a_2 , b_1 and b_2 . But this shows $L(s, \varphi) = L(s, \psi)$ as in the case $\psi = \overline{\varphi}$.

Above theorem shows that it is difficult to know whether $L(s, \chi)$ is entire or not, even if the Galois group is solvable. Following theorem is in contrast with this.

THEOREM 3. Let k be an algebraic number field of finite degree. Let F be an algebraic extension of k of finite degree. Let K be the normal closure of this extension, i.e., the smallest Galois extension of k containing F. If the Galois group G = G(K/k) is solvable, $\zeta_F(s)/\zeta_k(s)$ is an entire function.

PROOF. If there exists an intermediate field E of F/k, entireness of $\zeta_F(s)/\zeta_k(s)$ follows from entireness of $\zeta_F(s)/\zeta_E(s)$ and $\zeta_E(s)/\zeta_k(s)$. So we may assume that F/k has no intermediate field. Let H be the subgroup of G corresponding to F. H contains no non-trivial normal subgroup of G because K is the normal closure of F/k. Hence G can be considered as a permutation group of G and as G is a primitive permutation group of G [5, p. 147]. As G is solvable, Galois' theorem

80 K. UCHIDA

[5, p. 159] shows that there exists an abelian normal subgroup N such that

$$G = HN$$
 and $H \cap N = (e)$.

Let χ_0 and φ_0 be trivial characters of G and H, respectively. If we put

$$\varphi_0^G = \chi_0 + \chi_1 + \cdots + \chi_r$$
 ,

 χ_i , $i \geq 1$, are non-trivial. As $\zeta_F(s)/\zeta_k(s) = L(s, \varphi_0^g)/L(s, \chi_0) = \prod_{i=1}^r L(s, \chi_i)$, it suffices to show that every $L(s, \chi_i)$, $i \geq 1$, is entire. First we show that every χ_i , $i \geq 1$, is non-trivial over N. Let χ be an irreducible character of G which is trivial over N. Then χ can be considered as an irreducible character of G/N. As $H \cong G/N$, $\chi \mid H$ is irreducible, where $\chi \mid H$ means the restriction of χ to H. As

$$(arphi_0^G,\,\chi)_G=(arphi_0,\,\chi\,|\,H)_H$$
 ,

 χ appears as a component of φ_0^G if and only if $\chi \mid H = \varphi_0$. But $\chi \mid H = \varphi_0$ means $\chi = \chi_0$. Now let χ be an irreducible character of G which is non-trivial over N. Let (G, V) be a representation module of G whose character is equal to χ . Then there exists a non-trivial irreducible character λ of N which appears as a component of $\chi \mid N$. That is, the subspace W of V defined by

$$W = \{ w \in V \mid nw = \lambda(n)w \text{ for every } n \in N \}$$

is not trivial. Let G_1 be the subgroup of G which consists of the elements g_1 of G such that $g_1W=W$. Let φ be the character of the representation module (G_1, W) . Then φ is irreducible and it is known [3, § 50] that $\chi = \varphi^G$. Let N_1 be the kernel of λ . Then G_1 is contained in the normalizer $N_G(N_1)$ of N_1 in G. It holds that

$$\lambda(n)g_1w = ng_1w = g_1(g_1^{-1}ng_1)w = \lambda(g_1^{-1}ng_1)g_1w$$

for any $n \in N$, $g_1 \in G_1$ and $w \in W$. This shows that G_1/N_1 is contained in the centralizer of N/N_1 in $N_G(N_1)/N_1$. It is also easy to show that every element in the centralizer of N/N_1 is contained in G_1/N_1 . That is, G_1/N_1 is the centralizer of N/N_1 in $N_G(N_1)/N_1$. Especially, G_1 depends only on λ , not on χ . As G_1 contains N, there exists a subgroup H_1 of H such that $G_1 = H_1N$. Hence G_1/N_1 is isomorphic to a direct product of H_1 and N/N_1 , because N/N_1 is in the center of G_1/N_1 . Let $\psi_0, \psi_1, \cdots, \psi_s$ be the irreducible characters of H_1 , where ψ_0 is a trivial character. Let $\psi_i \otimes \lambda$ be a character of G_1 defined by $\psi_i \otimes \lambda(h_1n) = \psi_i(h_1)\lambda(n)$ for every $h_1 \in H$ and $n \in N$. Then it is a character of G_1/N_1 , and it is irreducible because $G_1/N_1 \cong H_1 \times N/N_1$. And φ defined above is one of the $\psi_i \otimes \lambda$. As $(\psi_i \otimes \lambda)^G | N$ contains λ as an irreducible component, above

argument shows $(\psi_i \otimes \lambda)^G$ is an irreducible character of G. It holds that

$$\varphi_0^G(n) = 0$$
 if $n \in N - (e)$

and

$$\varphi_0^G(e) = (N:1)$$
.

Hence

$$(\varphi_0^G, \lambda^G)_G = (\varphi_0^G | N, \lambda)_N = 1$$
.

Therefore there exists only one component of λ^{σ} which appears as a component of \mathcal{P}_0^{σ} . It is easy to see that $\lambda^{\sigma_1} = \psi_{\text{reg}} \otimes \lambda$, where ψ_{reg} is the character of the regular representation of H_1 . Then there exist only one $(\psi_i \otimes \lambda)^{\sigma}$ which appears in \mathcal{P}_0^{σ} . Let $h_i \in H$, $i = 1, \dots, t$, be the representatives of G/G_1 . Then it holds for any $h \in H$ that

$$(\psi_{\scriptscriptstyle 0} \otimes \lambda)^{\scriptscriptstyle 0}(h) = \sum \psi_{\scriptscriptstyle 0} \otimes \lambda(h_i^{\scriptscriptstyle -1}hh_i)$$

= the number of h_i such that $h_i^{-1}hh_i \in H_1$.

Hence every $(\psi_0 \otimes \lambda)^{d}(h) \geq 0$ and $(\psi_0 \otimes \lambda)^{d}(e) = (H: H_1) > 0$. It then holds

$$egin{aligned} (arphi_0^{\scriptscriptstyle G},\, (\psi_{\scriptscriptstyle 0} igotimes \lambda)^{\scriptscriptstyle G})_{\scriptscriptstyle G} &= (arphi_{\scriptscriptstyle 0},\, (\psi_{\scriptscriptstyle 0} igotimes \lambda)^{\scriptscriptstyle G} \,|\, H)_{\scriptscriptstyle H} \ &= (H\!\!:1)^{\scriptscriptstyle -1} \sum\limits_{h \,\in\, H} \, (\psi_{\scriptscriptstyle 0} igotimes \lambda)^{\scriptscriptstyle G} (h) > 0 \;. \end{aligned}$$

Therefore $(\psi_0 \otimes \lambda)^g$ is the component of λ^g which appears in φ_0^g . We have shown that every component of $\varphi_0^g - \chi_0$ is of the form $(\psi_0 \otimes \lambda)^g$. As $\psi_0 \otimes \lambda$ is a non-trivial one-dimensional character of G_1 , $L(s, \psi_0 \otimes \lambda)$ is a Hecke L-function which is entire. This shows that $\zeta_F(s)/\zeta_k(s)$ is entire.

REFERENCES

- [1] E. ARTIN, Über eine neue Art von L-Reihen, Abh. Hamburg, 3 (1923).
- [2] J. W. S. CASSELS AND A. FRÖHLICH, Algebraic number theory, Chapter 8, Academic Press.
- [3] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience Publishers.
- [4] M. HALL, The theory of groups, MacMillan.
- [5] B. HUPPERT, Endliche Gruppen I, Springer.
- [6] E. LANDAU, Zur Theorie der Heckeschen Zetafunktionen, welche komplexen Charakteren entsprechen, Math. Z., 4 (1919).

MATHEMATICAL INSTITUTE.

Tôhoku University,

SENDAI, JAPAN.