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ON ARTIN L-FUNCTIONS
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(Received December 10, 1973)

Let & be an algebraic number field of finite degree. Let K be a
Galois extension of k of finite degree. Let G be the Galois group of this
extension. Let ) be a character of G. Then Artin L-function L(s, ) is
defined. For some groups G, L(s, ¥) is known to be an entire funection
for every non-trivial irreducible character ) [2, p. 225]. These cases can
be proved through Blichfeldt’s theorem [3, p. 348] reducing to abelian
cases, i.e., Hecke L-functions. This theorem can be applied for other
groups, i.e., for supersolvable groups. A group G is called supersolvable
if G has normal subgroups H, H, ---, H, such that G = H, D H, D :+-+ D
H, = {¢} and every H,_,/H, is cyclic [4].

THEOREM 1. If the Galois group G 1is supersolvable, L(s, x) is entire
for every mom-trivial irreducible character Y.

Proor.” If G is abelian, L(s, ¥) is a Hecke L-function which is entire.
So we assume that G is not abelian and we will prove by induction on
the order of G. Let x be the character of a representation module (G, V).
If there exists a non-trivial normal subgroup N which operates trivially
on V, x is a character of G/N. As G/N is also supersolvable, L(s, ¥) is
entire by induction. Now we assume that there exists no such normal
subgroup. Then G is a subgroup of GL(V). Let C be the center of G.
As G/C is also supersolvable, there exists a normal subgroup A of G
such that A/C is cyclic and A = C. Then A is abelian because C is in
the center of A. Now Blichfeldt’s theorem shows that there exists a
proper subgroup H of G such that y = % for some character @ of H,
where ¢ means the induced character of G. It is easy to see that @ is
non-trivial and irreducible. As L(s, ) = L(s, #) and as H is also super-
solvable, our assertion is proved by induction.

REMARK. Professor M. Ishida kindly suggested this proof when G
is nilpotent. We note that every finite nilpotent group is supersolvable.

1 This proof shows that L(s, x) is entire for every x if the Galois group is an M-group.
Hence Theorem 1 is a special case of Huppert’s Theorem [5, p. 580]. We also note that
every M-group is solvable [5, p. 581].
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We now give an example of a finite solvable group on which Blichfeldt’s
theorem cannot be applied. In fact, the following example is of the
smallest possible order. Let G be a finite group generated by o, z and
© whose relations are as follows:

ot=0p=1, ot =1%, oot =171,
popt =1, oTp™t =10 .

Then o and 7 generate the commutator subgroup G’ which is isomorphic
to the quaternion group. As (G:G’) = 3, the order of G is 24. Now G
can be represented as subgroups of GL(2, C), where C is the complex
numbers. In fact, if we put

(1} O) ( 0 1) (1 ——1)
0= |, = and o = «af . ,
0 —1 -1 0 1 0

we see easily that above relations hold. In the above, a is one of the
following values:

—14+71 —l—l—zw or —l—kzw2

a = y
2 2 2

1

where ® is a primitive cube root of unity. Above representations give
three 2-dimensional characters y;, ¥, and ¥, which are different with one
another, as the values of the characters at o are different. As G has no
subgroup of index 2, any 2-dimensional character cannot be induced from
a proper subgroup. Hence Blichfeldt’s theorem cannot be applied in this
case. We see that G has seven conjugate classes which are represented
by 1, 6% o, 0, 0% po® and p*¢*. Hence every character of G is determined
by values at these elements. We see that

2(1) =2, x(0*) = —2 and (o) =0
for every ¢, and
x(0) = %(0%) = =1, x(oo®) = p(e0’) =1,
XZ(p) = -, Xz((oz) = -, Xz(pO'Z) =, Xz(pzaz) =,
and ¥, = X, is the complex conjugate of ¥,. Let H be the subgroup of
G generated by po®. Let @ and ¢ be one-dimensional characters of H
such that @(0o®) = —® and v(00?) = —1. Let ¢ and +° be induced

characters of G. As we can take 1, o, 7, or as representatives of G/H,
we see that

1) =4, 9% =—4, 9% 0)=0
and
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PHp) = p(r) if peH— (0%,
and the same for .

THEOREM 2. Let K and k be algebraic number fields of finite degrees.
We assume that K is a Galotis extension of k with Galois group G defined
above. Then

L(s, 1" = L(s, P)L(s, $)/L(s, ¥)
L(s, x2)* = L(s, §)L(s, ¥)/L(s, )
and
L(s, X»)* = L(s, P)L(s, ¥)/L(s, 3)
hold.
Proor. It is easy to see that
2L =9+ 9" —v°
2% = @° + ¥° — @°
and
2 = % + 4% — 3% .
This shows above equalities.

REMARK. Let A be a one-dimensional character of the subgroup gen-
erated by ¢ such that Mo) = i. Then

%=+ o — 2\,
Yo = \E — @

and
L = \E — P°

hold.

We now assume that & is the field of the rational numbers. Let F
be the intermediate field of K/k corresponding to H. Then L(s, ®), L(s, @)
and L(s, v) are different L-functions corresponding to an abelian extension
K/F. Moreover they are multiplicatively independent because L(s, ;)
are multiplicatively independent [1]. If we can show that different L-
functions of an abelian extension have independent distributions of zero
points, L(s, ;) have poles by Theorem 2. Following example seems to
show that it is not absurd to think so, though Artin’s conjecture asserts
that L(s, x;) has no pole.

ExAMPLE. Let F' be an algebraic number field of finite degree. Let
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L(s, #) and L(s, ) be different Hecke L-functions over F. Let F, and
Fy be cyclic extensions of F corresponding to @ and 4, respectively. If
the numbers of real places ramified at F, and Fy are the same, and if
the conductors of ® and 4 are the same, L(s, #)/L(s, v¥) has poles.

PrOOF. Let

06, 9) = AGy () 1(S)" 16 Les, )
as usual, where f, is the conductor of ®» and v is the number of real
places ramified at F,/F. Above assumptions show that L(s, ¥)/L(s, ¥) =
O(s, P)/D(s, ¥). First we consider the case L(s, v) = L(s, ). If
L(s, ®)/L(s, ) has a zero point o, 0 is a pole of this function. Hence if
L(s, #)/L(s, #) has no pole, the zero points of L(s, #) and L(s, ) are the
same counting the multiplicities. It is known [6] that

0(s, ) = ae” I (1 — %) olo

for constants ¢ and b depending on @, where o runs over the zeros of
L(s, ) such that 0 < Rpo < 1. Therefore

L(s, )/ L(s, p) = @(s, P)/D(s, p) = ae'*[ae" .
Let a, =a/@ and let b, =b — b. Let s =re” for some 6 such that
—7/2 < 0 < /2. The left hand side of the above equation goes to 1
when 7 goes to infinity. If b, = 0, the right hand side goes to zero or
to infinity for suitable . Hence it must be b, = 0. Then a, must be 1,
as the left hand side goes to 1 when 7~ goes to infinity. This shows
L(s, ) = L(s, ) which is a contradiction. Now let L(s, v) = L(s, ).
We put M(s) = L(s, )L(s, )/ L(s, ¥v)L(s, ¥). If M(s) has a pole p, p or
0 is a pole of L(s, )/L(s, ). We assume that M(s) has no pole. Now

(s, P)I(s, P) = ade’ o I;I (1 — %) (1 — %) ellle+iip)e

= q@etthe ];[ (1 — %) <1 _ %) ].;I olllo+iipe

cor (1 £) (- 4o o £ 55+ 1))
as the products converge absolutely. Now Landau shows [6]
b+5+§p}<%+%)=0.

Hence
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3) = ad -5 -5
065, P)O(s, 7) = aa ] (1 ; ) (1 p) .
As we assume that M(s) = &(s, @)d(s, )/P(s, v)D(s, ¥) has no pole, it
must be

_ (1 5 -5
M) = e T (1 p)(l p>
for some constant ¢, where JI’ means the product over the zero points
of M(s). As 0 < Rp <1,

G- 3)e-3)1

for real s > 2, and (1 — s/p)(1 — s/p) goes to infinity as s goes to infinity.
Hence if M(s) has at least one zero point, the absolute value of the right
hand side goes to infinity, which is a contradiction because the left hand
side goes to 1. Hence it must be M(s) = 1. If L(s, )/L(s, v) has a zero
point p, it is a pole of L(s, #)/L(s, ¥). Then p is a pole of L(s, ®)/L(s, )
which contradicts to our assumption. Hence the zero points of L(s, @)
must coincide to those of L(s, v). Then it must be

L(s, P)/L(s, ¥) = (s, P)/D(s, ¥) = a.e"’/ae"

for some constants a@,, a,, b, and b,, But this shows L(s, #) = L(s, ¥") as
in the case ¥ = @.

Above theorem shows that it is difficult to know whether L(s, x) is
entire or not, even if the Galois group is solvable. Following theorem
is in contrast with this.

THEOREM 3. Let k be an algebraic mumber field of finite degree.
Let F be an algebratic extension of k of finite degree. Let K be the
normal closure of this extension, t.e., the smallest Galois extension of k
containing F. If the Galois group G = G(K/k) is solvable, {(s)/Cy(s) is
an entire function.

ProoF. If there exists an intermediate field E of F/k, entireness of
£#(8)/C(s) follows from entireness of ((s)/Cx(s) and Cx(s)/Ci(s). So we
may assume that F/k has no intermediate field. Let H be the subgroup
of G corresponding to F. H contains no non-trivial normal subgroup of
G because K is the normal closure of F/k. Hence G can be considered as
a permutation group of 2 = G/H. As H itself is the stabilizer of He 2
and as H is a maximal subgroup of G by our assumption, G is a primitive
permutation group of 2 [5, p. 147]. As G is solvable, Galois’ theorem
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[5, p. 159] shows that there exists an abelian normal subgroup N such

that
G=HN and HNN=(e).

Let %, and @, be trivial characters of G and H, respectively. If we put

PE=No+ Aot o0+ X

X © = 1, are non-trivial. As Cx(s)/C(s) = L(s, )/ L(s, %) = IIi=1 L(s, %),
it suffices to show that every L(s, %), % = 1, is entire. First we show
that every y,, ¢ = 1, is non-trivial over N. Let % be an irreducible char-
acter of G which is trivial over N. Then ¥ can be considered as an
irreducible character of G/N. As H= G/N, x| H is irreducible, where
x| H means the restriction of ¥ to H. As

(5, Ve = (@0, X1 H)u »

X appears as a component of @§ if and only if ¥| H=9,. But y|H=o,
means Y =YX,» Now let x be an irreducible character of G which is non-
trivial over N. Let (G, V) be a representation module of G whose char-
acter is equal to ¥. Then there exists a non-trivial irreducible character
A of N which appears as a component of ¥ |N. That is, the subspace
W of V defined by

W= {we V|nw = Mn)w for every ne N}

is not trivial. Let G, be the subgroup of G which consists of the elements
g, of G such that g W= W. Let @ be the character of the representa-
tion module (G,, W). Then @ is irreducible and it is known [3, § 50] that
Y = ®% Let N; be the kernel of . Then G, is contained in the nor-
malizer N (N,) of N, in G. It holds that

Mnr)gw = ngw = g,(97'ng)w = Mgr'ng,)g,w

for any neN, ¢,€G, and we W. This shows that G,/N, is contained
in the centralizer of N/N, in NgN)/N,. It is also easy to show
that every element in the centralizer of N/N, is contained in G,/N,.
That is, G,/N, is the centralizer of N/N, in Ng(N,)/N,. Especially, G,
depends only on A, not on ¥. As G, contains N, there exists a subgroup
H, of H such that G, = H,N. Hence G,/N, is isomorphic to a direct product
of H, and N/N,, because N/N, is in the center of G,/N,. Let v, ¥y, -,
<, be the irreducible characters of H,, where 4, is a trivial character.
Let v; @ be a character of G, defined by v; ® Mhn) = ¥, (h)Mn) for
every h,e H and ne N. Then it is a character of G,/N,, and it is irre-
ducible because G,/N, = H, x N/N,. And @ defined above is one of the
i @ N As (v @ N)¢| N contains ) as an irreducible component, above
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argument shows (y; ® \)¢ is an irreducible character of G. It holds that
Pim) =0 if neN — (e)
and
P5(e) = (N:1) .
Hence
(@5, M) = (PN, Ny = 1.

Therefore there exists only one component of A¢ which appears as a com-
ponent of @§. It is easy to see that A% = ¢, ® N\, Where 4., is the
character of the regular representation of H,. Then there exist only one
(¥; @ N)¢ which appears in @f. Let h;e H, t =1, ---, t, be the represen-
tatives of G/G,. Then it holds for any ke H that

(’!b‘o ® )")a(h) = 21: P ® X(h;lhht)
= the number of k; such that h;'hh, e H, .
Hence every (v, @ N)%h) = 0 and (v, ® M)%e) = (H: H,) > 0. It then holds

(¢0G; ("Fo ® 7\')6)6 = (qu; ("/"o ® )")G | H)H
= (H:1)™ 2 (h® A)e(h) > 0 .

Therefore (v, ® \)¢ is the component of A® which appears in @¢. We
have shown that every component of ®f — %, is of the form (v, ® M),
As ¢, @ X\ is a non-trivial one-dimensional character of G,, L(s, ¥, @ \) is
a Hecke L-function which is entire. This shows that {,(s)/C.(s) is entire.
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