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1. Introduction. In [2], A. Brown and C. Pearcy have proved the
following result about linear operators on a Hubert space.

THEOREM. Let ϊ\ and T2 be bounded linear operators on a Hubert
space H, and 2\ (x) T2 be the tensor product of T1 and T2 on H® H. Then
we have

σ(T, (g) T2) = σ(TMT2) = {λ^. I K e σ(Td, λ2 e σ(T2)}

where σ{T) denotes the spectrum of T acting on H.

T. Ichinose [4], M. Schechter [8] and M. Reed, B. Simon [6] extended
this result to the case of Banach spaces.

The purpose of this paper is to discuss the spectra of linear operators
on certain locally convex space and the result of A. Brown and C. Pearcy
analogous for locally convex spaces.

In § 2, we debate upon the algebra L(X) of the continuous linear
operators on a locally convex space X, and the spectrum of TeL(X),
and show its property.

In § 3, we consider a quasi-complete commutative locally convex algebra
and prove some results concerning the spectrum and the joint spectrum
of its element.

In § 4, we shall prove the main theorem which is the result about
the spectrum of tensor product of linear operators on nuclear Frechet
spaces and shall show the application of Theorem.

Throughout this paper, let X be a complete locally convex space over
the complex numbers, C, and an operator means always a linear operator
on a locally convex space.

We consider the simple convergence topology in L(X) and we denote
by LS(X) the linear space L(X) with this topology. A multiplication
(TU)x = T{Ux) (T,Ue L{X)) induces a structure of algebra to L8(X), and
the map (T,U) -+TU of L8(X) x LS(X) into L8(X) is obviously separately
continuous, hence the algebra L8(X) is a locally convex algebra in the
sense of G. R. Allan [1]. Then the following is easily shown
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PROPOSITION. If X is a barreled space, then L8(X) is sequentially
complete.

Before going into the discussion, the author wishes to express his
hearty thanks to Prof. M. Fukamiya for his many valuable suggestions
in the presentation of this paper.

2. Spectra of continuous linear operators on locally convex spaces.
We shall define a bounded operator on a locally convex space.

DEFINITION 2.1. An operator Te L(X) is said to be a bounded operator
in LS(X) (or on X) if there exists a constant d > 0 such that {(dT)n}n=0

is a bounded subset of LS(X). The family of all bounded operators in
L8(X) is denoted by &(X).

We notice the following proposition in [5].

PROPOSITION 2.2. Let X be a barreled space, and TeL(X). Then
the following are equivalent:

(1) T is a bounded operator in LS(X).
(2) There exists a constant δ^O such that {(δT)n}n=0 is a equi-

continuous family in L(X).
( 3 ) There exist a fundamental semi-norm system (hereafter F.S.N.S.

stands for this term), P, for X and a constant c ^ 0 such that p(Tx) ^
cp(x) for all pe P and all xe X.

We remark that if we fix a F.S.N.S, P, for X, then for any bounded
operator Te L(X) the F.S.N.S. satisfying (3) is given by Pτ = {pτ | pe P)
where pτ{x) = sup {p((δT)nx) | n = 0, 1, 2, •}.

DEFINITION 2.3. Let TeL(X). Then the spectrum of T, denoted by
σ(T), is the complex number λ for which T — XI has no inverse in &(X).
The complement of σ(T) in C, denoted by p(T), is said to be the resolvent
set of T.

For a locally convex space X, we have the dual system (X, X*, < »,
and for TeL(X), we denoted ιT the transpose of T. We provide the
bounded convergence topology to X*, denoted by X*, and consider the
spectrum of the transpose, ιT, in LS(X?), and we state the following
theorem.

THEOREM 2.4. Let X be a Frechet space whose dual space is a
barreled space. Then we have σ(T) = σ^T) for TeL(X).

To prove Theorem, we need following three lemmas, since the strong
dual space Xβ* is a barreled space, we can use the criterion of the bounded-
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ness of the operators in L(X*) as stated in Proposition 2.2.

LEMMA 1. Let {Ta}aeA be an equicontinuous family in L(X), then

VTalaeA ί>s also a n equicontinuous family in L{X*).

As the proof is done by the elementary calculas, we omit the proof
of this lemma.

LEMMA 2. Let TeL(X) whose range space is dense in X. If both
T and ιT are one to one, then we have ('T)"1 = '(T"1).

PROOF. For xeR[T], the range of T, and x*eD[*T], the domain
of *T, we have (x, x*) = (TT~% £*> = <T~% *Tx*). Then ( T ^ - ) , *Tx*}
is same as the restriction of x* to R[T], so that *Tx* e D^Γ" 1)] and
'(T-yTx* = x*. Therefore '(Γ"1) is the restriction of (T)- 1.

For xeX and ^ e D ^ Γ 1 ) ] , we have

O, x*) = (T~ιTx, x*> = (Tx, *(Γ->*> .

Then '(Γ-1)^* e D['T] and ̂ Γ^Γ"1^* = x*9 thus ^Γ"1) is the restriction of
(T)- 1. q.e.d.

LEMMA 3. Let X be a Frechet space whose dual space is a barreled
space. Then T is a bounded operator in LS(X) if and only if ιT is a
bounded operator in LS(X*).

PROOF. Let T be a bounded operator in L8(X). Since {(§T)n}n=0 is
an equicontinuous family in L(X) for some δ ̂  0, each (δT)n maps bounded
subsets into bounded subsets. For pB, defined by

pB(x*) = sup I (x, x*> I ,
xeB

where B is a bounded subset of X,

pB((δ*T)*x*) = sup I (x, (δ*T)*x*y | = sup | <(δT)*x, x*> | < M (const.) ,
xeB xeB

where M is independent to n. Thus {(δ'ϊ7)*}"^ is bounded in LS(X*). It
follows that *Te&(Xβ*).

Next if we exchange X by Xf and Xf by (X*)* in the discussion
above, we obtain that %Tz&{Xf) implies *(*Γ) e &((Xβ*)f). Since the
topology of X is same as the topology induced by (X*)*, T, the restric-
tion of *(*Γ), is a bounded operator in L£X). Therefore if *Te^(Xβ*)
then Te^(X). q.e.d.

PROOF OF THEOREM 2.4. By the fact *(T - XI) = ιT - λJ, it is suffi-
cient to show the case λ = 0 especially.

Let Oeρ(T). Then R[T] = T and there exists a constant δ > 0 such
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that {(8T-T}n=o are equicontinuous in L(X) by (2) of Proposition 2.2. By
virtue of Lemma 1, {'((<?JΓ"1)71)}^ are equicontinuous in L(X*). The fact
R[T] = X shows that *T is one to one, so that {(δQT)'1)*}^ are also so
by Lemma 2. Hence OepQT).

Conversely let 0 e p(*T). Then there exists a constant δ ^ 0 such that
{(δ(<T)-1)w}^0 are equicontinuous in L(X/). The fact that R[*T] = X* and
*T is one to one, shows that T is one to one and R[T] is dense in X,
then '(T-1) = ('I7)"1 by Lemma 2. Of course D[*T] = X* by the continuity
of '(T"1)- As above, {(^("(ϊ7""1))*}^ are equicontinuous in-L((X?)f). From
the discussion in Lemma 3, {(^(ϊ7"1))*}^ are equicontinuous in L(X), there-
fore 0e/θ(Γ). q.e.d.

Now we assume that X is a barreled space. Let S be the complex
numbers λ for which there exist a F.S.N.S., P, for X and a constant
c ^ O such that p((T - Xl)x) ^ cp(x) for all peP and all α e X . The
complement of S, denoted by π(T), is a subset of σ(T) and closed in C
since S is open in C

Let 7(Γ) be the complex numbers λ in S for which R[T — XI], the
range of T — λJ, is not dense in X. If Xe S, R[T — XI] is closed from
the completeness of X, then Ύ(T) = {X e S | i2[Γ - λ/] Φ X}. Thus σ(T)
is the disjoint union of π(T) and 7(Γ). Moreover ί7(Γ) is closed (Cor. 3.9.
[1]) and, if Γ e ^ ( X ) , bounded in C.

REMARK. π(T) is the set of all xeC satisfying the condition; for an
arbitrary F.S.N.S., P, there exist {xπ}ϊ=1cX such that pn{xn) = 1 and
pn((T — Xl)xn)~>0 as w—>oo for some sequence {pn}n=i of P.

THEOREM 2.5. Let X be a barreled space and TeL(X). Then we
have dσ(T)adπ(T). (Let d stand for "boundary of9)

PROOF. Firstly we shall show that ρ(T) is closed in S. Let λ =
l i m ^ λ , where XeS and Xneρ(T). For λ e S , there exist a F.S.N.S.,
P, for X and a constant c ^ 0 such that

p((T - Xl)x) ^ cp(x) for all p e P and all x e X .

If I X - Xn I ^ c/2, then

p((T - λ Λ /)α?) ^ p ( ( Γ - Xl)x) -\χn-χ\ p(χ)

^ cp(x) -

For x e X, let xn = (Γ - λ,/)-1^. Since
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for large n, we have the following

p(x- ( Γ - XI)(T - Xjy'x)

= p(x - (T - Xl)xn)

^p(x-(T- Xj)xn) + p((X - X%)xn)

= p(x - x) + I λ - Xn I p(xn)

= IX — Xn I (2/c)p(α;) —• 0 as n —> oo .

Thus x G i2[Γ - XI] = R[T - XI]. Therefore X belongs to p(T). Now
for AczC, Int A denotes the set of interior points in C. Since Ύ(T) =
S\p(T) is open in S, it is also open in C. Then Ύ(T) = Int Ύ(T) c Int σ(T).
Thus 7( T) U Int π( T) c Int σ( Γ). Consequently

dσ(T) = σ(T)\Int σ(T) c σ(T)ψ(T) U Int π{T))

= π(T)\Intπ(T)

= dπ(T) .

3. The spectrum of an element and the joint spectrum of elements
in a locally convex algebra. In this section, let A be a quasi-complete
commutative locally convex algebra over C. (If A is a sequencially
complete locally convex algebra, then it is quasi-complete.) (cf. [1])
Moreover let Ao be the set of all bounded elements of A, i.e., AQ =
{a G A I {(Sa)n}n=o is a bounded subset of A for some δ > 0} and B be a
fundamental system of multiplicative closed absolutely convex and bounded
subset in A.

It is easily shown that AQ = \JB(XeBA(Ba) where A{Ba) — \Jn=ιnBa is
a Banach a lgebra with the norm || \\B defined by

Let MQ (resp. Ma) be the set of all non identically zero multiplicative
linear functional on Ao (resp. A(Ba)). It has been shown in [1] that Mo

(resp. Ma) is compact with respect to σ(M0, Ao) (resp. σ(Ma, A{Ba)) topology
and Mo is isomorphic to the projective limit of Ma9 i.e., M— lim (Ma, πaβ)

where for hβeMβ, τcaβ(hβ) is the restriction of hβ to A(Ba) (β > a i.e.,
Bβz>Ba).

The spectrum of ae A is defined as follows;

σ(ά) = {λ G CI a — Xe has no inverse in Ao} ,

where e is the identity of A, and

ρ(a) = {λ G CI λ ί σ(α)} .

Then we have σ(α) = {̂ (α) | fc G ikf0} for α e Ao. [1]
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Next we define the joint spectrum of element at (1 ^ i ^ n) of Ao.

DEFINITION 3.1. Let α< (1 ^ i ^ n) be element of A. We say that
(λj, , λJίλ; e C , H i ^ w ) belongs to the joint resolvent set, p(au , an)
of {αjisisn* if there exist 6* e Ao (1 ^ i ^ w) such that Σ?= 1 b^ — λ,e) =
e. Otherwise it is said to be in the joint spectrum, σ(au •••, an).

THEOREM 3.2. Let at e Ao (1 ^ i <: w). Γ/^e^ (λx, , λw) belongs to
σ(au , αw) i/ α^ώ O Ϊ̂T/ if there exists he Mo such that h(a%) = λ̂  for
each i, 1 ^ i ^ n.

PROOF. Let (λ^ , λn) ep(aly « ,α w ), then there exist n elements
bi(l ^ i ^ n) of Ao such that Σ?=i ^i(αi — λ * e ) = e For every h e M09

h(ΣiUibi(ai-\ie)) = Σii=ih(bi)(h(at)-\i). On the other hand h(e) = 1,
thus h{ax) Φ \t for some λ<β

Conversely let (λx, , λw) eσ(au , α j . Then there exist a Banach
algebra A(i?δ), (BδeB), which contains {αj^^w and hδeMδ such that
^fe) = λί for each i, [9]. For every a :> δ, we put iVα = {Λ e Ma \ h{ax) =
λ, 1 ^ i ^ w}.

Then Na is closed, and therefore compact, subset of Ma, and by the
supposition Na is non-empty. Since πaβ(Nβ) c Na, (d ̂  a <* β), we can
form the projective limit, Qδ, of {Na \ a ^ <?}. Choose some element

Then we may extend it to an element {ha} of Mo by putting
( i ) ha = K if a ^ δ;

(ii) ha = πaβ(hβ) otherwise, where β ^ α, β ^ δ.
Then ^(α,) = ^ ( α j = feK^) = λ€ for each i (1 ^ i ^ n). q.e.d.

From Theorem 3.2, we obtain the following.

THEOREM 3.3. Let at (1 ^ i ^n) be elements of Ao. If P is a complex
polynomial in n variables^ then

ί ( Φ i , , O ) = σ(P(au , O ) .

PROOF. Following statements are equivalent:
( i ) λeP(<7(αlf . . . ,α n ) ) .
(ii) λ = P(XU , λn) for some (λx, - , λ j e σ(αx, , αn).
(iii) λ = P(λi, , λn) where (λ^ , λn) is a vector such that for

some he Mo, h(aτ) = Xt for each i, (1 ^ i ^ w).
(iv) λ = P{h{at), , Λ(αJ) for some Λ e Mo.
(v) λ = h(P(au '",an)) for some heM0.
(vi) λeσ(P(α l f . . . ,c ,)) ,

Theorem 3.2 says the equivalence of (ii) and (iii). q.e.d.



TENSOR PRODUCT OF LINEAR OPERATORS 253

4. On the spectra of tensor product of linear operators on Frechet
spaces. For Frechet spaces X and Y, let W be the completion of the
tensor product of X and Y endowed with the π topology, say X(g)π Y
(cf. [7]). If P (resp. Q) is a F.S.N.S. for X (resp. Γ), then P®Q =
{p(g)q\peP,qeQ} is a F.S.N.S. for W, where

P (x) q(u) = inf J Σ p(Xi)q{yz) u = Σ xt (x)

for all ue X(x)π F. Conversely we have the following fact.

PROPOSITION 4.1. Let R be a F.S.N.S. for W. Then for re R, there
exist continuous semi-norms p = p(r) and q = q(r) on X and Y respec-
tively such that r is a cross semi-norm of p and q, moreover {p = p(r) \ re R}
and {q = q(r)\re R} are F.S.N.S. for X and Y respectively.

PROOF. Let r e R be given, for which we put

Rr = {p (g) q \ p and q are continuous semi-norms on X and Y

respectively such that r ^ p (x) q} ,

where r ^ p (g)q means that r(u) ^ p (x) q(u) for all ue W. Clearly Rr is
non-empty set by the continuity of r. For any totally ordered subset
{Pα(8>?β}«βi of Rr, let

po(x) = inf pa(x) and qo(y) = inf qa(y) .
aeA aeA

Then p0 (x) q0 belongs to Rr and it is smaller than all elements of {pa (x)
qa}aeA By Zorn's Lemma, there exists at least a minimal element pι (x) qx

in Rr.
We shall show that r is a cross semi-norm of p1 and qlm If this were

not true, then there exists an element xo®yQe X®πY such that

Qi(xo ® Vo) ^ ^(^o ® 2/o)

and we may assume that

1 ^ φ0 ® y0) ,

moreover we assume that p^Xo) ̂  1 and qλ{y0) = 1. This implies that
£0(8)2/0 belongs to the 0-neighbourhood, U = {ue W\ r(u) ^ 1}, in W, but
xQ does not belong to the 0-neighbourhood, U{p^) = {xeX\ p^x) <; 1} in
X. Now we define a new semi-norm, p2, on X such that

p2(x) = inf {ί > 0 I r ^ G

where Γ(^o, U{p^) is a convex and balanced hull of {£0} and J7(Pi). Then
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Ί>2 ® Qi S Vi ® Qi> and by t h e fact ;

= {x(g)y\xe Γ(x0,

and r is the gauge function of U, we have p2 (x) qt ^ r (cf. 6.3 Chap. Ill
of [7]). Then p2®Qι^Rr- This contradicts the minimality of Pi(g)0i>
thus r is a cross semi-norm of pλ and qx. Therefore for each r e R there
exist continuous semi-norms, p = p(r) and q == q{r), on X and 3Γ respec-
tively such that r is a cross semi-norm of p and q, and the assertion
that families of these semi-norms are F.S.N.S.s for X and Y respectively
is easily shown by the following formulas;

p(x) = r(x (x) y^/QίVi) f q(y) = Φ, (x) y)/p(xd ,

where y1 and x1 are elements of X and Y respectively such that q(yj Φ 0
and p(x,) Φ 0. q.e.d.

For TiGLiX) and T2eL(Y), we define the tensor product,
of 7\ and T2 on the algebraic tensor product, X (x) F, by

T7, (x) Γ,(w) = Σ T&t) (x) r 2(^) f or u = Σ ** <8> »* ,
l it

then ϊ7! ® Γ2 is a densely defined continuous linear operator on W and its
continuous extension to W is again denoted by Tί (x) Γ2. Further the
following is easily shown.

PROPOSITION 4.2. Let X and Y be Frechet spaces. If 2\ cmd T2 are
bounded operators on X and Y respectively, then 2\ ® Γ2 is αϊso a bounded
operator on W.

For TλeL{X) and 7eL(F) (resp. IeL(X) and Γ 2eL(Γ)), let Λ
(resp. A2) be the operator on W defined by T1 (x) I (resp. /(x) Γ2).

Now if either I or 7 is a nuclear space, we have Grothendieck's
Theorem, that is, the dual space of W with the β topology, W*9 is the
completion of the tensor product of X£ and Y* with respect to the π
topology, (cf. [3]). Then we have '(T, (g) T2) = tTι (x) ιT2 by elementary
calculas.

At last, in order to prove the main theorem, we note the lemma about
the property of complex valued polynomial in two variables.

LEMMA [8]. Let P( , •) be a polynomial in two variables such that
p(0, 0) = 0. Then there exist two complex-valued functions g(t) and h(t)
continuous in 0 ^ t < oo such that g(0) = h(0) = 0, | g(t) \ + | h(t) | —* oo as
t-+ oo, and P(g(t), h(t)) = 0in0^t<co.
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THEOREM 4.3. Let X and Y be Frechet spaces and let either X or
Y be a nuclear space. If Tγ and T2 are bounded operators on X and Y
and A1= ϊ\ (g) /, A2 = I (x) T2 respectively and P is a polynomial in two
variables, then the spectrum of P(Al9 A2) consists of those X such that X =
P(Xl9 λ2), where X, e σ(T%) < = 1, 2. i.e., σ(P(Aί9 A2)) = P(σ(T^f σ(T2)).

PROOF. The proof of σ(P(Al9 A2)) c P(σ{Tx)9 σ(T2)). It is easily shown
that if X and Y are Frechet space, then W is also Frechet space, thus
L8(W) is sequencially complete by Proposition in § 1, moreover it is quasi-
complete. Let 31 be the double commutant of {Al9 A2} in L8(W). Since
Ax and A2 are commute each other, 21 is a commutative quasi-complete
locally convex algebra, and we put on(T)y the algebraic spectrum of T,
be considered as an element of SI, then σ*(T) = σ{T).

Since σ%{P{Au A2)) = P(σn(Alf A2)) by virtue of Theorem 3.3, and by
Theorem 3.2, λ e σ%(Al9 A2) implies that λ = (λlf λ2) where Xt e σ%{A^9 λ2 e
σn{A2). Then

σ(P(Al9 A2)) = P(σΛ(A» Λ)) c P(σπ(Ad, °*(A2))
- P(a(AJ, σ{A2)) = P(σ(Td, σ{T2)) .

The proof of P(σ(TJ, σ(T2)) c σ(P(Al9 A2)). We shall divide the proof
into three cases. Let λ = (λx, X2)eσ{T^) x σ(T2).

Case 1. X = (λlf λ2) e π(T0 x π(T2).
Since P(Al9 A2) = i^fj^a^Tί ® Ti (a^eC), the proof is reduced to

show the following.
( i ) If μeπiTJ, then μneπ(T1

n) for every n.
(ii) If (μί9 μ2) e π(T,) x π(T2), then μ,-μ2e π(T, ® Γ2).
Let μeπ{T,) and P be a F.S.N.S. for X. For the polynomial, Q( ),

such that T? - μnl = QiTJi^ - μl)9 we define the F.S.N.S., PQ =
{pQ\peP}9 for X such that

pβ(a?) = sup {p((δQ(T0)mx) I m = 1, 2, ...}

where δ is some positive constant. For any ε §: 0, there exist p ρ e PQ and
a G l with pQ(x) = 1 such that Pq{(Tι — μl)x) ^ e. Then for some m,

) ^ 1/2, and we have

W - μl)x)

S (l/δ)pQ((Tι - μl)x)

S e/δ .

Therefore μneπ(T?). This completes the proof of (i).
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To show (ii), let R be a F.S.N.S. for W. We may assume that R
is the countable set, then we put R — {rm}~=1. From Proposition 4.1, there
exist F.S.N.S.s P = {pm}Z,=ι and Q = {qm}Z=i for X and Y respectively-
such that rm is a cross semi-norm of pm and qm. Since ^leTΓ^), we can
take a subsequence {pai}7=ι from {pm}Z=i and {xai}ΐ=1 in X satisfying follow-
ing two conditions;

(a) pa.(xai) = 1 and p^T, - μ,)xa%)->0 as i -» oo.
(b) {^}Γ=iCω: = 1 is also a F.S.N.S. for Y.
Then we can take again a subsequence {g/3jΓ=i from {qai}ΐ=i and {ΐ/̂ KU

in F such that PβJiVβ) = 1 and qβJί(T2 — μ2)yβi)—+0 as i—*oo. Therefore

T2 - μιψιg)(βi ® ^ ) )

μj)xh ®{T2- μj)yβi)

(x) ft^, + μ&βt ® (Γ, - ft

, - μJ)xβi)qβi((T2 - μj)yβ%)

+ \μ2\ Pβ.dT, - μj)xβi)qβi(yβi)

+ I Pi I PβfoβJqβtdTi - μ2)yβ.) — 0 a s i

The other hand rβ.{xβ.®yβ) = pβi(xβi)q(yβi) = 1. Therefore /vμ 2 e π{Tγ

Case 2. λ = (λx, λ2) e ^(ΓO x τ(Γ2).
Since ^(Γi) = σ^Tj) = Tri*^) u TCTΊ), we shall consider two cases;

(2.1) λ.GTΓCΓO, (2.2) λ^TCΓO.

Firstly suppose λ = (λx, λ2)6ττ(ίT1) x 7(Γ2). Since λ2 is an eigenvalue of
ίT2, λ = (λlf λ2) e TΓCΓO x π ί*!7,). In the proof of (b) of the preceding case,
we used the countability of R, then this case is not reduced to Case 1,
but λ2 is also an eigenvalue of (T2)* and the following holds.

(iii) If T*, T2*eL(Xβ*), μ^πiT?) and μ2 is an eigenvalue of Γ2*,
then μ,-μ2eπ{T*®T*).
To prove (iii), let JB* = {r%}aeA be a F.S.N.S. for W* and we assume
that Ta(xo (x)2/o*) Φ 0 for every aeA, where x* is some vector in X* and
2/o* is an eigenvalue of μ2. As Case 1, there exist F.S.N.S.s, P* = {p*}
and Q* = {#£}, for X and Y respectively such that r* is a cross semi-
norm of pa and gα, and q%{yt) Φ 0. Since μιeπ(T1*)9 there exist {p?JΓ=iC
P * and « } Γ = 1 c X ; with p « ) = 1 such that pi&T? - ^ ) < ) —0 as
i — oo. If we put y* - yf/qifyfϊ), r* ((Γx* (x) Γ2* - ^ ^ 2 / (8) / ) < ® y*) — 0
as i — oo, and r*t(x*t ® y*,) = 1. Then ^ ^ 2 e π(T* ® Γ2*). Therefore

P(λx, λ2) e π(*P(Alf A2)) c σ(\P(Au A2)) = σ(P(Au A2)) .

To show that Case (2.2) is reduced to the case above, we put
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P(ί, η) = PiX1 + ζ,X2 + y)- P(λ l f λ2) ,

then P(0, 0) = 0. Hence by the Lemma [8] there exist continuous func-
tions git), hit) on [0, oo) such that #(0) = 0, ft(0) = 0,

~P(\ I n(+\ \ _L_ T>(+\\ T>(\ \ \
JΓ \/\>i ~γ~ y\vjf Aι2 ~"j~~ ityOjJ — JΓ \^ι, ^2/ f

and I git) | + | hit) | —• oo as t —• oo. Since λj. (resp. λ2) is belonging to the
bounded open subset, 7(ίTr

1) (resp. 7(Γ2)) of C, there exists t0 ^ 0 such
that either

(2.2.1) λ : + g(t0) e 37(ίΓ1) c TΓCT )̂ and λ2 + λ(ί) e 7(Γ2)

in 0 ^ ί S to 9

or

(2.2.2) λ2 + hiU) e 37(Γ2) c ττ(Γ2) and λi + g(t) e 7(^0 c ^(TO

in 0 ^ ί ^ t0 .

Case (2.2.1) and (2.2.2) are reduced to Case (2.1) and Case 1 respectively.
Thus

P(λx, λ2) = P(λ1 + git0), λ2 + Λ(ί0)) e ^ ( P ^ i , A2)) .

Case 3. λ = (\l9 λ2) e y(Tt) x 7(Γ2).
Since ΎiT^czπ^T,), this case is a particular case of (2.1). q.e.d.

Now we shall apply Theorem 4.3 to the following example.

EXAMPLE. The space C7iRk) of complex valued periodic infinitely
partial differentiate functions in Rk with /*, hypercube [0, l]fc, as period,
with the topology of uniform convergence in all derivatives, is a nuclear
Frechet space and we have known CpiR2) = CΐiR1) (g)ff CviR1). On the
space CpiR1), we consider translations Ta and Tβ (0 S a, β S 1) defined
by

iTJ)ix) = fix + a) , iTβf)ix) = fix + β) ,

for fix) e CpiR1). Then

HTa (x) Tβ)h)(x9 y) = hix + a, y + β) ,

HTa ® I + I(g)Tβ)h)(x9 y) = hix + a, y) + h(x9 y + /3) ,

for hix, y)e CpiR2).
If O GQ, the set of rational number, there exists an integer n such

that na = 0 (mod. 1) and we put na = min {n^0\na = 0 (mod. 1)}. Other-
wise na Φ 0 (mod. 1) for any integer w. Then we have the following;

({λ | λ > = 1} if aeQ ,

-Mλ| = l} if
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Since Ta and Tβ are bounded operators on Cp

l{Xμ I λ - = 1, μ*β = 1}

| { λ | | λ | = l}

'{λ I I λ I ^ 2}

•{λ + μ

,{λ + μ

we have the following;

if a e Q and β e Q ,

otherwise .

if a g Q and β g Q ,

if α e Q and β$Q ,

it aeQ and β e Q .

\Λ« = 1, I μ I = 1}

S* = 1, ^ = 1}

Furthermore for a polynomial, P ( , •), in two complex variables

σ(P(Ta (x) 7, J(g) Tβ)) = {P(λ, jM) I λ G <7(ra), ^ e σ(Tβ)} .

Moreover we can know the spectrum of *P(Γβ(g)/, I(g)Tβ) acting on the
dual space of (C?(R2)).
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