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1. Introduction. Oscillating generalized polynomials extend to gener-
alized polynomials the concept of oscillating polynomials (defined below)
which were studied first by Bernstein ([3]; [4]). The subjects of oscillating
generalized polynomials (abbreviated hereafter as OGP’s), and uniform
approximations, by polynomials with real coefficients, to real powers of x
are closely related. Indeed if r, is a positive real number for 7 =1, 2,
«++, k such that for some integer n,, n, < r, < --+ <7, <M, + 1, then q(x)
is the best approximation on [0, 1] to > %, x" by a polynomial of degree
n if and only if X%, 2" — q(x) is an OGP.

In Section 2 we develop the theory of OGP’s. We prove an existence
and uniqueness theorem. Further we derive properties of OGP’s useful
in approximations to real powers of «. In particular we show that if
P(®) = i Arge, (@) and q(x) = 3., B9, (x) are distinct generalized poly-
nomials (abbreviated hereafter as GP’s) where A, = B, for at least one &
with g,, not a constant function and p is an OGP, then max,, | q(®) | =
gl > max,,s | p@)| =|p|l.

In Section 3 we study, by use of the theory of OGP’s, the uniform
approximation in [0, 1] of real powers of x by polynomials with real coef-
ficients. Here we derive lower bounds for the best approximation error
in [0, 1] to 2%, where « is a real number lying in (0, 1/3), by polynomials
of a given degree. Further, we give in Examples 4 and 5 the polynomials
which provide the best uniform approximation to x'* and 1/2(x'? + x'?),
respectively, by polynomials of degree not exceeding n.

2. Oscillating generalized polynomials. Throughout this paper =,
@, +--, &, will denote integers suchthatn = land0=a, < a, < :-- < «,,.
We now define OGP’s.

DEFINITION 2.1. Let {g,}5_, be a sequence of functions, real valued,
non-negative and continuous on [0, 1] and analytic on (0, 1]. Further suppose
that g, is not a constant funection if @ =1, g, is not identically zero and
9.(0) = 0 unless g, is a constant. Then {g,};-, is said to have property &
if and only if the following hold:
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(i) For every set of non-zero real numbers {c, ¢, -+, ¢,} and for
every choice of integers {«a,, a,, ---, @,} the number of zeros, counted with
due regard to multiplicity in (0, 1], of the GP 3}i_,c¢.g., is at most equal
to the number of variations of sign in the sequence {c, ¢, -, ¢,}.

(ii) For every set of non-zero real numbers {c, ¢, ---, ¢c,} and for
every choice of integers {a,, @,---, a,} the number of zeros (counted with
due regard to multiplicity) in (0, 1] of the GP 3ii_,c.g,, is at most equal
to the number of variations of sign in the sequence {c,, ¢, ---, ¢,}. (Here
g’ denotes the derivative of g¢.)

Clearly, by Descartes rule of signs, the sequence of functions {x’}7, has
property <&. Moreover, by a familiar argument (cf. [7], pp. 118-120) we
obtain the following example of a sequence of functions with property <.

ExampLE 2.2. Let {r,})-, denote a sequence of strictly increasing non-
negative real numbers with », > 0 if @ = 1. Define g.(x) = x"«, where for
each a we take the principal branch of log 2 in 2"« = exp (r,log z). Then
{9.}7-0 has property 2.

DEFINITION 2.3. Let {4,, ---, A,} be a set of non-zero real numbers.
Then p(x) = 5, A,x** is said to be an oscillating polynomial (OP) if
[p(®)] = ||pl|l for » + 1 values of x in [0, 1].

DEFINITION 2.4. Let {9,}7-, be a sequence of functions with property
2. Suppose that {4,, A4, ---, 4,} is a set of non-zero real numbers. Then
P(x) = oo Aids,(2) is said to be an OGP if and only if |p(x)| = || p|| for
at least » + 1 values of « in [0, 1].

It is easy to verify that the functions given in the following example
are OGP’s.

ExAMPLE 2.5. Let a be a positive real number. For each non-nega-
tive integer k, define g,(x) = 2** where we take the principal branch of
log z in z** = exp (ka log z). Then the following are examples of OGP’s:

(i) T..(x*?), a linear combination of the form X_,c,x**. (Here and
in what follows T,.(x) denotes Chebyshev polynomial of degree n [5, pp.
62-63], [6, pp. 30-31].)

(ii) T..(x*), a linear combination of the form >}i_,c,x*".

(iii) Tyn..(2%), a linear combination of the form 3, c,x®+0e,

From Definitions 2.1 and 2.4 the following two properties of OGP’s
can be easily derived.

THEOREM 2.6. Let {g.}a, be a sequence of functions with property
2. If p(x) = i Ade(®) s an OGP, then |p(x)| = || p|| exactly (n + 1)
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times in [0,1]. In particular, if g,, is a constant function, then | p(x)| =
o]l at 0, 2, <, @,_y, 1 where 0 < 2, < -++ <®,_, <1. On the other hand,
if 9, s mot constant, then | p(x)| = ||p|| at ®,, @, ««+, €,, 1 where 0 < x, <
< e <, < 1.

THEOREM 2.7. Let {9.}5., be a sequence of functions with property
2. The GP q(x) = X0 Ao, (), not necessarily an OGP, has at most
n distinct zeros in (0,1]. If it has n, the coefficients alternate in sign.

THEOREM 2.8. The coeffictents of an OGP p(x)=>i_ A9, (%) alternate
m Sign.

ProOF. Since p'(x) cannot equal zero in (0, 1] except at the points
where |p(x)| = ||p]||, it follows that p(x) has % distinct zeros in (0, 1].
By Theorem 2.7, the coefficients of p(x) alternate in sign.

COROLLARY 2.9. Let p(x) = Xt Ao (®) be an OGP. Then every
zero of p(x) on (0, 1] s simple.

Proor. This follows immediately if we observe that the zeros of
p'(x) in (0, 1] are points where | p(z)| = || »||.

We now give the most interesting property of OGP’s.

THEOREM 2.10. Let {g9.}7-, be a sequence of functions with property
< and suppose that p(x) = i, Awg.(x) is an OGP in [0,1]. Ifq(x) =
Sii-o Bigo,(®) is another GP such that A, = B, for at least one k where
9., 18 Mot a comstant function then ||q|| > [|p]l.

PROOF. Suppose if possible that |[¢|| <||»|. Then by considering
separately when g, is a constant function and when it is not, we find that
(@) — q(@) = Xij-0 (A; — Bj)g.,(x) has at least n zeros in (0, 1] but p — ¢
cannot have more than (n — 1) zeros in (0, 1]. Hence we have a contradic-
tion and so ||¢| = |[»]l.

Suppose now that [[p|| =|/¢|l. If (»p — q)(0) # 0 then g,, is a constant
function and by Theorem 2.6, | p(x)| = ||»||atx =0, 2, +--, ,_;, 1. With
the convention that if (p — q)(x) has a zero of order at least two at =z,,
we count one zero for the interval [z,_,, x,] and another zero for the
interval [z, ©;.,], then we can count at least one zero of (p — q)(x) for
each interval [0, z,], [z, «.], - -, [®,—;, 1]. But property < shows that
(» — q) cannot have » zeros in (0, 1] and we have a contradiction.

Next suppose (»p — ¢)(0) = 0. If p(0) =0, then g,, is not a constant
function. By an argument similar to the one given just now, (»p — q)(x)
has zeros in each of the intervals [z, @,], - - -, [2,, 1], where | p(x;) | = || ||
for ©=1,2, ---,n. But (p — q) cannot have % zeros in (0, 1]. However
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if p(0) # 0, then g,, is a constant function and |p(0)] = ||p||. It follows
that A, = B, as well as A, = B,, and since (p — ¢)(x) = X7, (4; — Bj)g.;(®),
» — q has at most (n — 2) zeros in (0, 1]. By the above argument (p — q)()
has at least (n — 1) zeros in (0,1] and we have a contradiction. The
theorem is proved.

We now state the converse to Theorem 2.10.

THEOREM 2.11. Suppose that {9.}5-, s a sequence of functions with
property 2. Let p(x) = Xj- Aig.; (%), q(@) = Xi= Biga;(x) be two GP’s
with A, ---, A, all non-zero and at least one coefficient A, = B,, where
9., 18 mot a constant function. If||pl||l <[ ql|| for every such q # p, then
» s an OGP.

For the proof of this theorem, we require the following

LEMMA. Suppose that {g9.}i-, ts a sequence of functions with property
2 and that

(i) 0=, <4, < ++- <@, =1, and

(ii) 0=, <, < -+ < @, where each a; is an integer.

(iii) Suppose further that when x, = 0,9, s a mon-zero constant
function. Then the determinant

gal(xl)y Tty gan(xl)
.. #0.

gal(xn)y M) gan(x'n)

To prove this lemma we have to consider two cases #, = 0 and x, > 0.
We omit the details of the proof.

PrROOF OF THEOREM 2.11. Suppose that p is not an OGP. Let S =
{xel0,1]||p()| = |||} Then S = {x, x,, -+, x,} where h <n + 1 and
0=, < - <2, =1.

Since g,, must be a constant if x, = 0, there exists a vector (d,, ---,
A1y Apyy, +++, d,) such that

dogao(xi) + o+ dk—1gak_1(xt) + dk+1gak+1(wi) 4o + dngaﬂ(xi) = p(x,)
for 1 =1,2, ..., h. Define r(x) = 33}, d.g,,(x), where d, =0, and let U
be an open set containing S such that p(x) and r(x) are of the same sign
in U. Then there exists a real number ¢ such that 0 < e < || p|| and
maXp, -y | p@) | = || 2] — &

Select a real number A so that 0 <X < (¢/||7]). Then ||p — ]| <
[p]l. But p(®) — M) = 3}, (4; — Ndj)g.,(x) satisfies the hypothesis (on
q) of this theorem and we have reached a contradiction. The proof is
complete.
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COROLLARY 2.12. Suppose that {9.}3-, ts a sequence of functions with
property 2. Suppose [Ii_,tr # 0 and p(x) = i t,9.(x) 13 an OGP with
lo|l =1. Then if q(x) = Di-o a,9:(x) is ¢ GP with real coefficients, we
have

la] = llgll[t]  for E=0,1,---,m.
ProOOF. The result holds for £ = 0, when g, is constant, since | ¢(0) | =

lawgo| < |lql| = 1|q]||tg,]. Suppose then k=0 and g, is not a constant
function. Consider the GP

pi@) = 22 3 t,9,(x)
tk 3=0

Since p is an OGP, we have, by Theorem 2.10, that [|q|[| > |a./t,].
From Example 2.5 and Corollary 2.12 we have the following results.

COROLLARY 2.13. If a 1is a positive real mumber and if q(x) =
S e, then |a,| < || q]||t:], k=0,1, -+, n where t, is the coefficient
of x* im T,,(x*?).

- COROLLARY 2.14. If a is a positive real number and if q(x) =
Sii—o @@t then |a,| < || q]||ts], K =0,1, -+, n, where t, is the coef-
ficient of x®**+ve in T,,..(x%).

COROLLARY 2.15. If a is a positive real mumber and if q(x) =
Siieo 0, then |a.] = ||q]llte], £ =0,1, -+, n, where t, is the coefficient
of x** in T,,(x%).

We now give an existence and uniqueness theorem for OGP’s.

THEOREM 2.16. Let {9,}7-, be a sequence of functions with property
2. Further suppose that for each positive integer n, there is an OGP
2.(x) = oo Augi(®) with [[i—o Ay 0. Then to a given set of inmtegers
{a,, -+, @,} there corresponds an OGP p(x) = >ii— 0194, (%) with 1= ar #
0, which is umique except for a constant factor.

REMARK. We have mentioned that the product []3., 4. # 0 to empha-
size the precise set of subscripts with respect to which p, is an OGP. A
similar remark applies to the condition following the definition of p.

PrOOF. Let {a,, ---, @,} be the given set of integers, let ¢ be a non-
zero real constant, and let & be an integer less than or equal to » such
that g,,(x) is not a constant function. We will show that there exists a
unique OGP p(x) = 3j= @;9.;(¥) with a, = c.

Let R” denote Euclidean n-space and define @: R® — R! so that
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Q(B) = max [ Bigeo(®) + +++ + Bioi8ay_,(¥) + €90y (¥)
+ Bk+1gak+1(x) + et + B’nga,,(x)l

for all B= (B, -+, Bi_,, Biy1, +++, B,) € R*. Then there exists C = (G,
«er, Cp_yy Ciiyy +++, C,) € R™ such that inf.z« Q(B) = Q(C). Moreover, by
an argument, identical to the one employed in the proof of Theorem 2.10,
we have that C is unique and

Clx) = g;;:o Ci9a;(%) + €ga, (%)
is an OGP.

THEOREM 2.17. Let {g.}i-, be a sequence of fumctions with property
Z such that if a > B then g.(x) = o(gs(x)) as x —0. If

p(x) = k;ﬂzzo A9, (@) + 9., ()

and
q(x) = k;ﬂzﬂ B..95,(®) + ga, ()

are both OGP’s in [0,1] where 0 S a, < By < +++» <Bicyt < Uy < Biyr <
Oy < +o0 <B, < @, then ||p]|] > lall.

PRrROOF. Suppose that |[p|| =|[/¢q]|. Since g, (x) is not a constant
function we have, by Theorem 2.6, |q(x)| = |/ ¢]|l at 2, ---, x,, 1 where
0<z, <+ <2,<1. Since p and ¢ are both OGP’s, by property <&
and Theorem 2.8, we have that (¢ — ») has at most n zerosin (0,1]. It
follows by an easy argument that (¢ — p)(®) # 0 in (0, z,]. As z—0,

0= o) = 0. -+ 2]

and so (¢ — p) takes the sign of —A4, in (0, z,]. But

_ 0(95,(%)) _
1@ = 0 @B+ TR @0

and so ¢ and hence ¢ — p takes the sign of B,in (0, 2,]. Since 4, and B,
are of the same sign, we have a contradiction, and the theorem is proved.
Finally we note the following special case of Theorem 2.17.

THEOREM 2.18. Let {g.}>-, be a sequence of functions with property
Z such that if a> B, g x) =o0(g9;(x)) as *—0. If p(x) = g.(v) +
St Ar0o (@) and q(@) = g.,(x) + i, Bugs,(x) are both OGP’s with 0 <
o< p<a < <a, where g,(r) is not a constant function, then
lall <ol
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CoROLLARY 2.19. If p(x) =2+ i, ax™ s an OGP with r; €
@2i—-1,20+1) for t=1,2, .-+, m, then ||p]] <1/@n + 1) for n = 1.

Proor. By Example 2.5, T,,..(x) =D ,Ax*" is an OGP with
| Toniill =1 and |4, =2n + 1. Since0<1<r, <38<r,< -+ <2n—1<
r, <2n + 1, by Theorem 2.18, we have ||p| < 1/2n + 1).

3. Approximation to Real Powers of x. For a given set {r,, ---, r:}
of positive non-integral real numbers and for each positive integer %, define
n
E, Sk xm) = minmax |3 ¢c;x* — Dk x|,
¢; 0szs1|2=0

Here ¢, are all real numbers.
We now relate the study of OGP’s to the discussion of E,(3 7, 2™).

THEOREM 3.1. Let r, ---, 7, be real numbers with r, < r, < «++ < 1.
Suppose there exists an integer n, such that n, <r, < - < r, < n, + 1.
Define for each mon-negative integer o

x* if a=mn,,
g.(x) = LA if a=mn+1,
xe! if a=mn,+ 2.

Then to a given set of integers {&,, «,, +--, &,} there corresponds an OGP
(@) = ko @1, (¥) with Ik-o ar # 0.

PrOOF. By comparison with Example 2.2, it is easily verified that
{9.)5-, has property &2. We now use Theorem 2.16. Let % be a positive
integer. If m < m, then, as noted in Example 2.5, T,,(\V ) = S,7_, A.9.(x)
is an OGP with i, A, # 0. If » = n, + 1, since {1, =, ---, x"} satisfies
the Haar condition, there exists a unique polynomial ¢(x) = 3%, ¢;x* of
best approximation to g,..(x) (see [5, p. 81]). Again since {1, 2z, ---, a"}
satisfies the Haar condition, there exist at least n + 1 points z,, ---, x,
with 0 =2, < -+ <w, =1 with ¢(x,) — gp.(*;) = £||q@ — gn1. /|- Hence
the GP p,(2) = q(¥) — Guy:i(¥) = ko0 A49:(x) is an OGP. By property =,
i A, # 0. Theorem 2.16 enables us now to complete the proof.

Note that if the set of real numbers {r, ---, r,} is given satisfying
the hypothesis of Theorem 3.1, then there exists an OGP p(x) = D%, ¢’ +
k.27, By Theorem 2.10, E,}.,2%) = |/p]|l. On the other hand, if
we are given p(x) = >7, ¢t + S5, "2 such that E,(Sf, 2") = || p||, then
by Theorem 2.11, we have that » is an OGP.
We now give a lower bound for E,(x") where r < 1/8.

THEOREM 3.2. If re(0,1/3), then for each integer m = 2, we have
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nwE,(x7) > r/2.

PrROOF. Write Ej(z") = min,, maXy,s, [2” — 3%, c2*|. By Theorem
3.1, there exist OGP’s q(x) = 2" + >3, Bx* and »(x) = 2" + D7, A 2"
such that E,(x") =|/q|| and E,(x") = ||p]||]. By Theorem 2.10, E)(x") <
Ilp—A4 =llpll + 14, = 2E,.(x"). So we only need to show that E,(z") >
r/n.

Take a, = 3 and for each integer A = 2, ---, n, let &; be an odd integer
such that A — 1 < a;r <. This choice is always possible. Let C(z) =
x" + e X + e + -o- +¢,2%" be an OGP. Since 0 <r<3Ir<l<ar<
2< - <n—1<a,r <n, by Theorem 2.18, we have |[¢|| > ||C||. But
T, (x") is an OGP with coefficient of 2" equal to +a,, so that by Theorem
2.10,

1
o

[|C|] >max

0szst

T, (x")
a

n

Hence E (z") = |/q|| > l/a, > r/n.
REMARK. It is shown in [2] that E,(z'*) > 1/6(83n — 1), n = 2.

We now give examples of OGP’s

1. Let 2 and k be positive real numbers with 2 < k. Then p(x) =
ax" + ax* is an OGP with AN/*"®/(h — \) = k¥*~»[(k — h) where A =
{1 — (L/a)) [ 2}

If we take here o =1, k =3 then A = 3/4 and p(x) = || p|| T:(x).

2. Let % and k be positive real numbers with 2 < k. Then

p(x) = a, + 2ao<h f k)(—%)h/(k—m(x” — )

is an OGP. (See [2].)

If we take k = 2h, we get p(x) = a,T\(x"?).

3. Let h be a positive real number. Then p(x) =1 + a2* + a,x* +
ax'* is an OGP, where (See [2].)

_ -4ty 28+ 29+ 1) _ -2
Ty + 2) ¥y + 1) Ty + 1)

and

Y= %(21/5 — 3+ 1V8(V3 — 1)) .

4. The following examples of OGP’s were obtained on the computer
by a method similar to the one described in [1]. Let
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”
xl/z . <Z Ckxk>
k=0

We list below OGP’s and E,’s corresponding to » =1,2, --+, 7.
n =1, E, = 0.19972
p(x) = 1 — 5.007064x"" + 5.007064x .
n = 2, E, = 0.13409
p(x) = 1 — 7.457358x"* + 18.203350x — 12.7460002° .
n = 3, E; = 0.10460
p(x) =1 — 9.559751x"" + 40.0448Tx — T74.21441x°
+ 43.72927x° .
n =4, E, = 0.087416
p(x) = 1 — 11.43962"* + 70.5913x — 244.568x°
+ 345.287x° — 161.870x* .
n =5, By = 0.075972
p(x) =1 — 13.1627x"" + 109.8522 — 608.063x*
+ 1501.122° — 1607.662* + 617.917x° .
n = 6, Ey = 0.067707
p(x) = 1 — 14.7695x"" + 157.840x — 1273.10x*
+ 4786.99x° — 8648.85x* + 7385.69x°
—2395.802° .
n =", E,=0.061418
p(x) =1 — 16.2818x"" + 214.550x — 2372.75x*
+ 12546.2x* — 33583.3x* + 47322.1x°
— 33494.02° + 9383.42x7 .

E, = E,(x") = min max

c 0sz=<1

5. Write
1
t = —(2'® + g\ ,
= )
E,= E,() =minmax |t — D% ,c.x*]| .
c oszst
The OGP’s and E,’s corresponding to » =1,2, .-, 7 are as follows.

n =1, E, = 0.15818
p(xr) = 1 — 6.32153¢ + 6.32153x .
n = 2, E, = 0.096893
p(x) = 1 — 10.32060¢t + 22.30406x — 13.983452° .
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n = 3, E; = 0.071621
p(x) = 1 — 13.96234¢ + 48.33399x — 80.664612* + 46.29292x° .
n = 4, K, = 0.057675
p(x) = 1 — 17.33824¢ + 84.37561x — 264.41502* 4 363.9411x°
— 168.5634x* .
n =5, E; = 0.048751
p(x) =1 — 20.51203¢ + 130.3663x — 655.0507a* + 1577.841x°
— 1670.1112* 4 637.4665x° .
n = 6, Ey = 0.042501
p(x) = 1 — 23.52862t + 186.2697x — 1367.813x* + 5021.601x°
— 8969.480x* + 7607.5422° — 2456.596x° .
n =1, K = 0.037858
p(x) = 1 — 26.41432¢ + 252.0125¢ — 2543.215x* + 13136.03x°
— 34767.89x* + 48662.42x° — 34287.53x° + 9574.613x" .

The authors want to express their thanks to Mr. W. L. Mahaffey and
Professor L. E. Adelson for help in machine calculations in Examples 4

and 5.
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