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1. Introduction. Oscillating generalized polynomials extend to gener-
alized polynomials the concept of oscillating polynomials (defined below)
which were studied first by Bernstein ([3]; [4]). The subjects of oscillating
generalized polynomials (abbreviated hereafter as OGP's), and uniform
approximations, by polynomials with real coefficients, to real powers of x
are closely related. Indeed if r* is a positive real number for ί = 1, 2,
• , k such that for some integer n0, n0 < rι < < rk < nQ + 1, then q(x)
is the best approximation on [0,1] to Σ*=i χ T i by a polynomial of degree
n if and only if Σ?=i %n ~ Φ) is an OGP.

In Section 2 we develop the theory of OGP's. We prove an existence
and uniqueness theorem. Further we derive properties of OGP's useful
in approximations to real powers of a;. In particular we show that if
P(%) = Σt=o Akgak(x) and q(x) = Σ L 0 Bkgak{x) are distinct generalized poly-
nomials (abbreviated hereafter as GP's) where Ak = Bk for at least one k
with ga]e not a constant function and p is an OGP, then max^^i | q(x) \ =
|| ? || > maxoM! I p(α) I = IIPII

In Section 3 we study, by use of the theory of OGP's, the uniform
approximation in [0,1] of real powers of x by polynomials with real coef-
ficients. Here we derive lower bounds for the best approximation error
in [0,1] to xa, where a is a real number lying in (0,1/3), by polynomials
of a given degree. Further, we give in Examples 4 and 5 the polynomials
which provide the best uniform approximation to xι'π and 1/2(#1/3 + x112),
respectively, by polynomials of degree not exceeding n.

2. Oscillating generalized polynomials. Throughout this paper n,
&o, *-,ocn will denote integers such that n ^ 1 and 0 ^ a0 < aλ < < an.
We now define OGP's.

DEFINITION 2.1. Let {ga}a=o be a sequence of functions, real valued,
non-negative and continuous on [0,1] and analytic on (0,1]. Further suppose
that ga is not a constant function if a ^ 1, g0 is not identically zero and
ga(0) = 0 unless ga is a constant. Then {ga}a=o is said to have property 3f
if and only if the following hold:
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( i ) For every set of non-zero real numbers {c0, cu , cn] and for
every choice of integers {a0, au . - , an} the number of zeros, counted with
due regard to multiplicity in (0, 1], of the GP^Σί=oCkgak is at most equal
to the number of variations of sign in the sequence {c0, cu •••, cn).

(ii) For every set of non-zero real numbers {c0, clf •• ,cw} and for
every choice of integers {a0, ar , an) the number of zeros (counted with
due regard to multiplicity) in (0, 1] of the GP ΣLo ckg'ak is at most equal
to the number of variations of sign in the sequence {c0, cu , cn}. (Here
gτ denotes the derivative of g.)

Clearly, by Descartes rule of signs, the sequence of functions {xj}J=Q has
property £&. Moreover, by a familiar argument (cf. [7], pp. 118-120) we
obtain the following example of a sequence of functions with property 3ί.

EXAMPLE 2.2. Let {rα}~=0 denote a sequence of strictly increasing non-
negative real numbers with ra > 0 if a ^ 1. Define ga{x) = xr«, where for
each a we take the principal branch of logs in zr« = exp (ralogz). Then
{ga}a=o has property 3ί.

DEFINITION 2.3. Let {Ao, •••, An} be a set of non-zero real numbers.
Then p(x) = Σϊ=o Akx

afc is said to be an oscillating polynomial (OP) if
I p(x) I = || p || for n + 1 values of x in [0,1],

DEFINITION 2.4. Let {ga}a=o be a sequence of functions with property
3f. Suppose that {Ao, Alf , An} is a set of non-zero real numbers. Then
p(x) = Σfc=o Akgajc(x) is said to be an OGP if and only if | p(x) \ = \\ p \\ for
at least n + 1 values of x in [0, 1].

It is easy to verify that the functions given in the following example
are OGP's.

EXAMPLE 2.5. Let α b e a positive real number. For each non-nega-
tive integer Jc, define gk{x) = xkoc where we take the principal branch of
log z in zka = exp (ka log z). Then the following are examples of OGP's:

( i ) T2n(xal2), a linear combination of the form Σk=o ckx
ka. (Here and

in what follows Tn(x) denotes Chebyshev polynomial of degree n [5, pp.
62-63], [6, pp. 30-31].)

(ii) T2Jxa), a linear combination of the form ^l^Qckx
2ka.

(iii) Ttn+1(x"), a linear combination of the form Σ ϊ = o ^ ( 2 A : + 1 ) α .

From Definitions 2.1 and 2.4 the following two properties of OGP's
can be easily derived.

THEOREM 2.6. Let {ga}a=o be a sequence of functions with property
&. If p(x) = ΣLo Akgak(x) is an OGP, then \ p(x) | = \\p\\ exactly (n + 1)



OSCILLATING GENERALIZED POLYNOMIALS 199

times in [0, 1]. In particular, if gao is a constant function, then | p(x) | =
|| p || at 0, xu , xn_l9 1 where 0 < ^ < < a?n_1 < 1. Ow £&e oί/^βr feαmϊ,
i/ α̂o ^ s ^ o ί constant, then \ p(x) \ = \\ p \\ at xu x2, , xn, 1 where 0 < xλ <
a?2 < < α?n < 1.

THEOREM 2.7. Le£ {#α}?=o 6β & sequence of functions with property
£&. The GP q{x) = Σ*=o Akgafe(x), not necessarily an OGP, has at most
n distinct zeros in (0, 1]. If it has n, the coefficients alternate in sign.

THEOREM 2.8. The coefficients of an OGP p(x) = Σϊ=o Akgak(x) alternate
in sign.

PROOF. Since pf{x) cannot equal zero in (0, 1] except at the points
where \p{x)\ — \\v\\* it follows that p(x) has n distinct zeros in (0, 1].
By Theorem 2.7, the coefficients of p(x) alternate in sign.

COROLLARY 2.9. Let p(x) = Σί=o Akgak(x) be an OGP. Then every
zero of p(x) on (0, 1] is simple.

PROOF. This follows immediately if we observe that the zeros of
p'{x) in (0, 1] are points where | p(x) \ = \\p\\.

We now give the most interesting property of OGP's.

THEOREM 2.10. Let {ga}™=0 be a sequence of functions with property
& and suppose that p(x) — Σk=oAkgak(x) is an OGP in [0, 1]. Ifq(x) =
Σ/Lo Bkgak(x) is another GP such that Ak = Bk for at least one k where
gajc is not a constant function then \\q\\ > \\p\\.

PROOF. Suppose if possible that | | ^ | | < | | p | | . Then by considering
separately when gao is a constant function and when it is not, we find that
p(x) — q(x) = Σy= 0 (Aj — Bj)gaj(x) has at least n zeros in (0, 1] but p — q
cannot have more than (n — 1) zeros in (0, 1]. Hence we have a contradic-
tion and so || q \\ ^ | | p | |.

Suppose now that || p \\ = \\ q \\. If (p — q)(O) Φ 0 then gao is a constant
function and by Theorem 2.6, | p(x) \ = || p \\ at x = 0, xlf , a?n_lf 1. With
the convention that if (p — q){x) has a zero of order at least two at xif

we count one zero for the interval [xt-u xt] and another zero for the
interval [xi9 xi+ί], then we can count at least one zero of (p — q)(x) for
each interval [0, #J, [xu x2], , [xn-u 1]. But property 3f shows that
(p — q) cannot have n zeros in (0, 1] and we have a contradiction.

Next suppose (p — tf)(0) = 0. If p(0) = 0, then gaQ is not a constant
function. By an argument similar to the one given just now, (p — q)(x)
has zeros in each of the intervals [xl9 x2], , [xn, 1], where | p{xτ) \ = \\p\\
for i = 1,2, , n. But (p — q) cannot have n zeros in (0, 1]. However
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if p(0) Φ 0, then gao is a constant function and \p(0)\ = \\p\\. I t follows

that Ao = Bo as well as Ak = Bk, and since (p — q){x) = Σ j ^ (A3- — B3)gaj(x),
p — q has at most (n — 2) zeros in (0, 1]. By the above argument (p — q)(x)
has at least (n — 1) zeros in (0, 1] and we have a contradiction. The
theorem is proved.

We now state the converse to Theorem 2.10.

THEOREM 2.11. Suppose that {ga}a=o is a sequence of functions with
property £&. Let p{x) = Σ*=oAsga.(x)9 q(x) = Σ;=oB3gaj(x) be two GP's
with AQf •••, An all non-zero and at least one coefficient Ak = Bk, where
ga]e is not a constant function. If || p || < || q \\ for every such q Φ p, then
p is an OGP.

For the proof of this theorem, we require the following

LEMMA. Suppose that {ga}a=o is a sequence of functions with property
& and that

( i ) 0 5g α?! < x2 < - - < xn ^ 1> and

(ii) 0 ^ ax < a2 < < an, where each a3- is an integer.
(iii) Suppose further that when xγ = 0, gai is a non-zero constant

function. Then the determinant

To prove this lemma we have to consider two cases xr = 0 and xx > 0.
We omit the details of the proof.

PROOF OF THEOREM 2.11. Suppose that p is not an OGP. Let S =
{x 6 [0, 1] I I p(x) I = || p ||}. Then S = {xl9 x2, , xh] where h < n + 1 and
0 £xx < ••• <xh ^ 1 .

Since gao must be a constant if xt = 0, there exists a vector (d0, ,
dk_u dk+ί, --,dn) such that

dogao(Xi) + + dk-ja^iXi) + dk+1gak+ί(xt) + + dngajxt) = pία?^

for i = 1, 2, , h. Define r(x) = Σϊ=odtga.(x), where dk = 0, and let U
be an open set containing S such that p(x) and r(#) are of the same sign
in U. Then there exists a real number ε such that 0 < e < | | p | | and
max [0)1]_, I p(x) \ = | | p | | - e.

Select a real number λ so that 0 < λ < (ε/|| r\\). Then || p - Xr \\ <
\\p\\. But p(x) — Xr(x) = Σi=o (Aj — Xdj)gaj(x) satisfies the hypothesis (on
q) of this theorem and we have reached a contradiction. The proof is
complete.



OSCILLATING GENERALIZED POLYNOMIALS 201

COROLLARY 2.12. Suppose that {ga}a=o is a sequence of functions with
property £2. Suppose ΠLo tk Φ 0 and p{x) = Σΐ=o tkgk(x) is an OGP with
\\p\\ = 1. Then if q(x) = Σ*=o 0*0*0*0 is a GP with real coefficients, we
have

\ak\^\\q\\\tk\ for k = 0,l, -",n.

PROOF. The result holds for k = 0, when g0 is constant, since | q(0)

^ | | ? || = || q || |ίoί7ol Suppose then k ^ 0 and gk is not a constant
function. Consider the GP

4- Σ
k i=o

Since j> is an OGP, we have, by Theorem 2.10, that | | g | | > |α*/ί*|.

From Example 2.5 and Corollary 2.12 we have the following results.

COROLLARY 2.13. If a is a positive real number and if q(x) =
Σ*=o <Lk%k"f then I ak | ^ || q || | tk |, k = 0, 1, , n where tk is the coefficient
of xka in T2n(xal2).

COROLLARY 2.14. If a is a positive real number and if q(x) =
Σk=o akx

{21e+1)a, then \ak\ ^ || q \\ \ tk |, k = 0, 1, , n, where tk is the coef-
ficient of # ( 2 f c + 1 ) α in T2n+1(xa).

COROLLARY 2.15. If a is a positive real number and if q(x) —
Σfc=o a>kX2ka9 then \ ak \ ̂  || q \\ \tk |, k = 0, 1, , n, where tk is the coefficient
of x2ak in T2n(xa).

We now give an existence and uniqueness theorem for OGP's.

THEOREM 2.16. Let {#α}«=0 be a sequence of functions with property
3f. Further suppose that for each positive integer n, there is an OGP
Vn{%) = Σ L o Akgk(x) with ΐ[k=0 Ak Φ 0. Then to a given set of integers
{a0, -, an} there corresponds an OGP p(x) = Σfc=o αfcgrαA;(^) with ΐ[l=0 ak Φ
0, which is unique except for a constant factor.

REMARK. We have mentioned that the product ΐ[k=0 Ak Φ 0 to empha-
size the precise set of subscripts with respect to which pn is an OGP. A
similar remark applies to the condition following the definition of p.

PROOF. Let {<x0, , &n} be the given set of integers, let c be a non-
zero real constant, and let k be an integer less than or equal to n such
that ga]e(x) is not a constant function. We will show that there exists a
unique OGP p(x) = Σ?=o ajgaj(%) with ak = c.

Let Rn denote Euclidean w-space and define Q: Rn —• R1 so that
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Q{B) = max | BQgaQ(x) + + B^g^x) + cgak(x)

+ Bk+1gak+1(x) + + Bng

for all B = (Bo, , Bk_lf Bk+11 , Bn) e Rn. Then there exists C = (Co,
• , Ck_u Ck+U ••-,Cn)eRn such t h a t inΐBeRn Q(B) = Q(C). Moreover, by

an argument, identical to the one employed in the proof of Theorem 2.10,
we have that C is unique and

C(x) = Σy=o Cjga.(x) + cgak(x)

is an OGP.

THEOREM 2.17. Let {ga}a=o be a sequence of functions with property
such that if a> β then ga{x) = o(gβ(x)) as x—+0. If

- Σϊ=o Akgak(x) + gajx)

and

Q{x) = fcΣto Bkgβfc(x) + gajx)

are both OGFs in [0, 1] where 0 ^ a0 < β0 < < iS i_1 < am < /3 i+1 <

α ί + i < </3. < α» ^ β ^ II P II > II 9 II.

PROOF. Suppose that | | p | | ^ | | g | | . Since ^(ίc) is not a constant
function we have, by Theorem 2.6, | q(x) \ — \\q\\ at xlf •••,»», 1 where
0 < a?! < < #„ < 1. Since p and <? are both OGP's, by property ^
and Theorem 2.8, we have that (q — p) has at most n zeros in (0, 1]. It
follows by an easy argument that (q — p)(x) Φ 0 in (0, xt]. As x —>0,

and so (q — p) takes the sign of — AQ in (0, α J . But

and so q and hence q — p takes the sign of Bo in (0, x j Since Ao and Bo

are of the same sign, we have a contradiction, and the theorem is proved.

Finally we note the following special case of Theorem 2.17.

THEOREM 2.18. Let {ga}a=o be a sequence of functions with property
& such that if a > β, ga{x) = o(gβ(x)) as x—>0. If p(x) = gaQ(x) +
ΣSLi Akgak(x) and q{x) = gao(x) + Σ?=i Bkgβ]c(x) are both OGPs with 0 ^
<̂o < βi < &ι < < ocn9 where gaQ{x) is not a constant function, then

H ί l K l l p l l .
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COROLLARY 2.19. / / p(x) = x + Σ*=i α*ar* is an OGP with rt e
(2i - 1, 2i + 1) for i = 1, 2, , w, £Λ,ew \\p\\ < l/(2n + 1) /or n ^ 1.

PROOF. By Example 2.5, T2%+1(^) = Σϊ=o Akx
2k+1 is an OGP with

|| T2n+ί || = 1 and | A, | = 2w + 1. Since O < l < r 1 < 3 < r 2 < < 2 ^ - 1 <
rΛ < 2n + 1, by Theorem 2.18, we have \\p\\ < l/(2n + 1).

3. Approximation to Real Powers of x. For a given set {ru , rk)
of positive non-integral real numbers and for each positive integer n, define

EΛΣihi %rί) = min max

Here cf are all real numbers.
We now relate the study of OGP's to the discussion of En(Σt=1x

ri).

THEOREM 3.1. Let ru , rk be real numbers with rλ < r2 < < rk.
Suppose there exists an integer n0 such that nQ < rι < < rk < nQ + 1.
Define for each non-negative integer a

xa if a <^nQ ,

f~1 if a ^ n0 + 2 .

to a given set of integers {a0, au , an) there corresponds an OGP

p(x) = Σ/Uo Ukgak(
x) with 11̂ =0 ak Φ 0.

PROOF. By comparison with Example 2.2, it is easily verified that
{ga}a=o has property i^. We now use Theorem 2.16. Let n be a positive
integer. If n ^ n0, then, as noted in Example 2.5, T2jy x) — Σfc=o Akgk(x)
is an OGP with JJk=0 Ak Φ 0. If w ^ ^ 0 + 1» since {1, x, , of1} satisfies
the Haar condition, there exists a unique polynomial q(x) = ΣίU ctx* of
best approximation to gno+1(x) (see [5, p. 81]). Again since {l,x, •••,#*}
satisfies the Haar condition, there exist at least n + 1 points #0, •••,»»
with 0 <^x0 < --• <xΛ<*l with g(^) - g%Q+1{xτ) = ±\\ q - gno+1 \\. Hence

the GP pn(x) = q(x) — gno+i(%) = Σ L o Akgk(x) is an OGP. By property 3F,

Πϊ=o -A* ^ 0. Theorem 2.16 enables us now to complete the proof.

Note that if the set of real numbers {ru , rk) is given satisfying
the hypothesis of Theorem 3.1, then there exists an OGP p(x) = ΣLo ctx* +
Σ L i ^ By Theorem 2.10, En(ΣUiXr*) = | | p | | . On the other hand, if
we are given p(x) = Σ?=o c^ + Σ L i %rχ such that 2£Λ(Σ?=iχTi) = \\P\U
by Theorem 2.11, we have that p is an OGP.

We now give a lower bound for En(xr) where r S 1/3.

THEOREM 3.2. If re (0,1/3), then for each integer n^2, we
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nEn(xr) > r/2.

PROOF. Write E'n(xr) = minc. m a x 0 ^ ^ | xr — Σ?=i ciχi l β y Theorem
3.1, there exist OGP's q{x) = xr + ΣSU #*α* and p(x) = xr + Σ*=o ^ ^ f c

such that £ 7 ^ ) = | | g | | and En(xr) = \\p\\. By Theorem 2.10, E'n(xr) <
|| p - Λ II ^ II P II + I Λ> I = 2J5r

w(α?r). So we only need to show that Ei(xr) >
r/n.

Take ax = 3 and for each integer λ = 2, , n, let ^ be an odd integer
such that λ — 1 < aλr < λ. This choice is always possible. Let C(x) —
xr + cxx

Zr + c2x
a*r + + cnx°*r be an OGP. Since 0 < r < 3r < 1 < α2r <

2 < ••• < n - 1 < αnr < n, by Theorem 2.18, we have | |g | | > | |C | | . But
Tan(xr) is an OGP with coefficient of xr equal to ±au9 so that by Theorem
2.10,

| | C | | >max

Hence ^(aj') = || g || > 1/α. > rM

REMARK. It is shown in [2] that En(xi/3) > l/6(Sn - 1), n ^ 2.

We now give examples of OGP's
1. Let A and & be positive real numbers with h < k. Then

α^* + a2x
k is an OGP with Xkl<k-h)/(h - λ) = kknk-h)/(k - h) where λ

If we take here h = 1, fc = 3 then λ = 3/4 and p(x) = \\p\\ T3(x).
2. Let h and A: be positive real numbers with h < k. Then

hl(k-h)

(

is an OGP. (See [2].)
If we take k = 2Λ, we get p(α ) = a0T4(xh'2).
3. Let fc be a positive real number. Then p(x) = 1 + ajXh + a2x

2h +
a3x

ih is an OGP, where (See [2].)

_ -4(1 + 3/)2 _ 2(3j/ + 2y + 1) _
2/(1 + 2») f 2 τ/2(22/ + 1) ' 3

y\2y

and

y = ^-(2i/3 - 3 + 1/6(1/3 - 1)1/2) .

4. The following examples of OGP's were obtained on the computer
by a method similar to the one described in [1], Let
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En = En(xllπ) = min max xllπ - ( Σ ckx
k) I .

We list below OGP's and En's corresponding to n = 1, 2, , 7.

» = 1, JSί = 0.19972

p(a ) = 1 - 5.007064ί»I/IΓ + 5.007064x .

n - 2, E2 = 0.13409

p(x) = 1 - 7.45735&»1/ir + 18.203350a; - 12.746000a;2 .

% = 3, E, = 0.10460

p(a;) = 1 - 9.559751a;1'11 + 40.04487x - 74.21441a;2

+ 43.72927a;3 .

n = 4, # 4 = 0.087416

j9(x) = 1 - l l^θβa; 1 ' * + 70.5913a; - 244.568a;2

+ 345.287a;
3
 - 161.870a;

4
 .

n = δ, E
b
 = 0.075972

p(x) = 1 - 13.1627a;
1
'* + 109.852a; - 608.063a;

2

+ 1501.12a;3 - 1607.66a;4 + 617.917a;5 .

n = 6, Eβ = 0.067707

p(x) = 1 - 14.7695a?1" + 157.840a; - 1273.10a;2

+ 4786.99a;3 - 8648.85a;4 + 7385.69a;5

-2395.80a;β .

n = 7, Ej = 0.061418

p(x) = 1 - 16.2818a?1" + 214.550a; - 2372.75a;2

+ 12546.2a;3 - 33583.3a;4 + 47322.1a;5

- 33494.0a;β + 9383.42a;7 .

5. Write

t = -ίίa; 1 ' 3 + a;1'2) ,

En = En{t) = min max 11 - Σ L o ckx
k | .

c O^x^l

The OGP's and En's corresponding to n = 1, 2, , 7 are as follows.
n = 1, # ! = 0.15818

p(x) = 1 - 6.32153ί + 6.32153a; .

n
 = 2, E

2
 = 0.096893

p(a?) = 1 - 10.32060*'+ 22.30406x - 13.98345^
2
 .
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n = 3, E3 = 0.071621

p(x) = 1- 13.96234* + 48.33399a; - 80.66461a;2 + 46.29292a3 .

n = 4, E4 = 0.057675

p(x) = 1- 17.33824* + 84.37561a; - 264.4150a;2 + 363.9411a;3

- 168.5634a;4 .

n = 5, E6 = 0.048751

p(x) = 1- 20.51203* + 130.3663a; - 655.0507a;2 + 1577.841a;3

- 1670.111a;4 + 637.4665a;5 .

n = Q, E6 = 0.042501

p(x) = 1- 23.52862* + 186.2697a; - 1367.813a;2 + 5021.601a;3

- 8969.480a;4 + 7607.542a;5 - 2456.596a;6 .

n = 7, E7 = 0.037858
p(x) = 1- 26.41432* + 252.0125a; - 2543.215a;2 + 13136.03a;3

- 34767.89a;4 + 48662.42a;5 - 34287.53a;β + 9574.613a;7 .

The authors want to express their thanks to Mr. W. L. Mahaffey and
Professor L. E. Adelson for help in machine calculations in Examples 4
and 5.
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