ON THE EXISTENCE OF POSITIVE INVARIANT FUNCTIONS FOR SEMIGROUPS OF OPERATORS

RYOTARO SATO

(Received May 9, 1973)

1. Introduction. Let S be a semigroup. B(S) will denote the space of all bounded real-valued functions on S. A linear functional φ on B(S) is called a *left invariant mean* on S if for any $f \in B(S)$ and any $a \in S$,

$$\inf \{f(s); s \in S\} \le \varphi(f) \le \sup \{f(s); s \in S\}$$

and

$$\varphi(af) = \varphi(f)$$
,

where $_af$ is defined by $_af(s)=f(as)$ for $s\in S$. The semigroup S is said to be *left amenable* if it has a left invariant mean. In what follows we shall always assume that S is left amenable. LIM will denote the set of all left invariant means on S. If $f\in B(S)$, we define

$$M(f) = \sup \{ \varphi(f); \varphi \in LIM \}$$
.

Let (X, \mathcal{M}, m) be a probability space and $L_p(X) = L_p(X, \mathcal{M}, m)$, $1 \leq p \leq \infty$, the usual Banach spaces. Let $\mathscr{S} = \{T_s; s \in S\}$ be a representation of S as a semigroup of positive linear operators on $L_p(X)$ for some fixed p with $1 \leq p \leq \infty$. Thus $T_{s_1}T_{s_2} = T_{s_1s_2}$ for $s_1, s_2 \in S$. Here if $p = \infty$, we shall assume, throughout this paper, that each T_s is countably additive, i.e., $T(\lim_n f_n) = \lim_n Tf_n$ provided (f_n) is an increasing sequence of nonnegative functions in $L_\infty(X)$ such that $\lim_n f_n \in L_\infty(X)$; hence T_s is the adjoint of an operator on $L_1(X)$ and T_s^* restricted to $L_1(X)$ is an L_1 -operator. A function f in $L_p(X)$ is called \mathscr{S} -invariant if $T_s f = f$ for all $s \in S$. In the case of p = 1, the problem of finding necessary and sufficient conditions for the existence of a strictly positive \mathscr{S} -invariant function has been studied by many authors (see, for example, [1], [2], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13]). It is known that if $||T_s||_1 \leq 1$ for all $s \in S$, then the following conditions are equivalent:

- (0) There exists a function $f_0 \in L_1(X)$ with $f_0 > 0$ a.e. and $T_s f_0 = f_0$ for all $s \in S$.
 - (i) $A\in\mathscr{M}$ and $m(A)\!>\!0$ imply inf $\left\{\int_{A}T_{s}1\,dm;s\in S\right\}>0$.

188 R. SATO

(ii) $A \in \mathscr{M}$ and m(A) > 0 imply $M(\int_A T_s 1 dm) > 0$.

The purpose of the present paper is to prove similar results for L_p -operator semigroups \mathscr{S} , without the restriction of norm condition.

In the last section we assume that $\sup\{||T_s||_p; s \in S\} < \infty$ and also that there exists a strictly positive function e in $L_q(X)$, where $p^{-1} + q^{-1} = 1$, such that $T_s^*e \leq e$ a.e. for each $s \in S$. Under these assumptions we obtain a generalization of Neveu's decomposition theorem [9] for the particular semigroup generated by a single positive linear contraction on $L_1(X)$.

2. Existence of positive invariant functions.

THEOREM 1. Let $\mathscr{S} = \{T_s; s \in S\}$ be a representation of S as a semigroup of positive linear operators on $L_1(X)$. Then the following conditions are equivalent.

- (0) There exists a function $f_0 \in L_1(X)$ with $f_0 > 0$ a.e. and $T_s f_0 = f_0$ for all $s \in S$.
- (i) There exists a non-negative function h in $L_1(X)$ such that the set $\{T_sh; s \in S\}$ is weakly sequentially compact in $L_1(X)$ and for any $0 \le u \in L_{\infty}(X)$ with $||u||_{\infty} > 0$,

$$\inf\left\{\int (T_sh)u\,dm;\,s\in S\right\}>0$$
.

PROOF. Since the implication $(0) \Rightarrow (i)$ is obvious, we prove here only the converse implication $(i) \Rightarrow (0)$.

Suppose (i) holds. It follows that $\sup\{||T_sh||_1; s \in S\} < \infty$. Hence if $\varphi \in LIM$, we can define, for $A \in \mathcal{M}$,

$$\mu(A) = \varphi \Big(\int_A T_s h \, dm \Big) .$$

The condition (i) implies that μ is a finite measure on (X, \mathcal{M}) equivalent with m. Let $f_0 = d\mu/dm$. Then, clearly, $f_0 > 0$ a.e., and $T_*f_0 = f_0$ for all $s \in S$, since φ is a left invariant mean. This completes the proof.

COROLLARY 1. Let $\mathscr{S} = \{T_s; s \in S\}$ be a representation of S as a semigroup of positive linear operators on $L_1(X)$. Suppose $\sup\{||T_s||_1; s \in S\} < \infty$. Then the following conditions are equivalent.

- (0) There exists a function $f_0 \in L_1(X)$ with $f_0 > 0$ a.e. and $T_s f_0 = f_0$ for all $s \in S$.
 - (i) $A \in \mathscr{M} \ and \ m(A) > 0 \ imply \ \inf\left\{\int_A T_s 1 \ dm; s \in S\right\} > 0.$

PROOF. The implication $(0) \Rightarrow (i)$ is easy (cf. [2] or [9]), so we prove only the implication $(i) \Rightarrow (0)$.

Suppose (i) holds. By Theorem 1 it suffices to prove that the set $\{T_s1; s \in S\}$ is weakly sequentially compact in $L_1(X)$. If this is not the case, then there exists an $\varepsilon > 0$, a sequence (A_n) in \mathscr{M} , and a sequence (s_n) in S such that $A_1 \supset A_2 \supset \cdots$, $\bigcap_{n=1}^{\infty} A_n = \emptyset$, and $\int_{A_n} T_{s_n} 1 \, dm \geq \varepsilon$ for all $n \geq 1$. But a slight modification of the proof of Lemma 9 of Hajian and Ito [5] demonstrates that this is impossible, and hence $\{T_s1; s \in S\}$ must be weakly sequentially compact in $L_1(X)$. The proof is complete.

THEOREM 2. Let $1 , and let <math>\mathscr{S} = \{T_s; s \in S\}$ be a representation of S as a semigroup of positive linear operators on $L_p(X)$. Then the following conditions are equivalent.

- (0) There exists a function $f_0 \in L_p(X)$ with $f_0 > 0$ a.e. and $T_s f_0 = f_0$ for all $s \in S$.
- (i) There exists a non-negative function h in $L_p(X)$ such that for any $0 \le u \in L_q(X)$ with $||u||_q > 0$,

$$0<\inf\left\{\int \left(T_sh
ight)u\ dm;\,s\in S
ight\} \leqq \sup\left\{\int \left(T_sh
ight)u\ dm;\,s\in S
ight\}<\infty$$
 ,

where $p^{-1} + q^{-1} = 1$.

(ii) There exists a non-negative function h in $L_p(X)$ such that for any $0 \le u \in L_q(X)$ with $||u||_q > 0$,

$$\sup \left\{ \int (T_s h) u \, dm; \, s \in S
ight\} < \infty \quad and \quad M \Big(\int (T_s h) u \, dm \Big) > 0 \; .$$

If $A \in \mathscr{M}$ then 1_A is the indicator function of A and $L_p(A)$ denotes the Banach space of all $L_p(X)$ -functions that vanish a.e. on X-A. For the proof of Theorem 2 we need the following

LEMMA. Let $1 , and let <math>\mathscr{S} = \{T_s; s \in S\}$ be a representation of S as a semigroup of positive linear operators on $L_p(X)$. Then the space X is uniquely decomposed into two sets Y and Z in \mathscr{M} such that

- (a) there exists a function $g \in L_p(Y)$ with g > 0 a.e. on Y and $T_s g = g$ for all $s \in S$,
- (b) if $0 \le h \in L_p(X)$ satisfies $\sup \left\{ \int (T_s h) u \ dm; \ s \in S \right\} < \infty$ for any $0 \le u \in L_q(X)$, then

$$M\Big(\int (T_s h) v \, dm\Big) = 0$$

for any $0 \leq v \in L_q(Z)$.

PROOF. Since the T_s are positive, there exists a non-negative \mathscr{S} -invariant function g in $L_p(X)$ such that for any non-negative \mathscr{S} -invariant

function f in $L_p(X)$, supp $f \subset \operatorname{supp} g$. Let us denote $Y = \operatorname{supp} g$ and Z = X - Y. To prove (b), let $0 \le h \in L_p(X)$ and $\sup \left\{ \int (T_s h) u \, dm; s \in S \right\} < \infty$ for any $0 \le u \in L_q(X)$. If $\varphi \in LIM$ and $u \in L_q(X)$, define

$$\Phi(u) = \varphi(\int (T_s h) u \, dm).$$

Then Φ is a positive linear functional on $L_q(X)$ and, since the dual space of $L_q(X)$ is the space of $L_p(X)$, there exists a non-negative function f in $L_p(X)$ such that $\Phi(u) = \int fu \, dm$ for any $u \in L_q(X)$. Since $\Phi(T_s^*u) = \Phi(u)$ for any $s \in S$ and any $u \in L_q(X)$, it follows that $T_s f = f$ for all $s \in S$, and hence supp $f \subset \text{supp } g = Y$. Consequently we have $\Phi(v) = \int fv \, dm = 0$ for any $v \in L_q(Z)$. This proves (b), and the uniqueness of such a decomposition is easily checked. The proof is complete.

PROOF OF THEOREM 2. The implications $(0) \Rightarrow (i) \Rightarrow (ii)$ are obvious, hence we prove only the implication $(ii) \Rightarrow (0)$.

Suppose (ii) holds. By Lemma it is sufficient to prove that m(Z)=0. To see this, let $v=1_Z$. Then, since $M(\int (T_sh)v\,dm)=0$, the condition (ii) implies that $||v||_q=0$ and hence m(Z)=0. The proof is complete.

COROLLARY 2. Let $1 , and let <math>\mathscr{S} = \{T_s; s \in S\}$ be a representation of S as a positive linear operators on $L_p(X)$. Suppose $\sup\{||T_s||_p; s \in S\} < \infty$. Then the following conditions are equivalent.

- (0) There exists a function $f_0 \in L_p(X)$ with $f_0 > 0$ a.e. and $T_s f_0 = f_0$ for all $s \in S$.
 - (i) $A\in\mathscr{M}$ and m(A)>0 imply $\inf\left\{\int_{A}T_{s}1\ dm;\,s\in S
 ight\}>0.$
 - (ii) $A \in \mathscr{M}$ and m(A) > 0 imply $M\left(\int_A T_{\mathfrak{s}} 1 \, dm\right) > 0$.

PROOF. Immediate from Theorem 2.

3. Decomposition theorem. Let $1 \le p \le \infty$, and let $\mathscr{S} = \{T_s; s \in S\}$ be a representation of S as a semigroup of positive linear operators on $L_p(X)$. Throughout this section we shall assume that

(1)
$$\sup \left\{ || \ T_s ||_p ; s \in S \right\} < \infty ,$$

and that there exists a strictly positive function e in $L_q(X)$ such that

(2)
$$T_s^*e \leq e \text{ a.e. for each } s \in S.$$

Proposition 1. The following conditions are equivalent.

(0) There exists a function $f_0 \in L_p(X)$ with $f_0 > 0$ a.e. and $T_s f_0 = f_0$ for all $s \in S$.

(i)
$$A\in\mathscr{M}$$
 and $m(A)>0$ imply $\inf\left\{\int_{A}T_{s}1\,dm;\,s\in S\right\}>0.$

(ii)
$$A \in \mathscr{M} \ and \ m(A) > 0 \ imply \ M\Big(\int_A T_s 1 \ dm\Big) > 0.$$

(iii) $f \in L_p(X)$ and f > 0 a.e. $imply \sum_{n=1}^{\infty} T_{s_n} f = \infty$ a.e. for any sequence (s_n) in S.

(iv) $0 \le u \in L_q(X)$ and $\sum_{n=1}^{\infty} T_{s_n}^* u < \infty$ a.e. for some sequence (s_n) in S imply u = 0.

(v) $0 \le u \in L_q(X)$ and $\sum_{n=1}^{\infty} T_{s_n}^* u \in L_q(X)$ for some sequence (s_n) in S imply u = 0.

PROOF. By Corollaries 1 and 2, it is sufficient to prove that (i) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (v) \Rightarrow (i) and (i) \Rightarrow (v).

(i) \Rightarrow (iii): If $s \in S$ and $f \in L_p(X)$, define

$$V_s(ef) = e(T_s f)$$
.

Since $\{ef; f \in L_p(X)\}$ is dense in $L_1(X)$ in the L_1 -norm topology and $||V_s(ef)||_1 \le ||(T_s^*e)f||_1 \le ||ef||_1$, V_s may be considered to be a positive linear operator on $L_1(X)$ such that $||V_s||_1 \le 1$. It is clear that $V_{s_1}V_{s_2} = V_{s_1s_2}$ for $s_1, s_2 \in S$. Thus $\{V_s; s \in S\}$ is a representation of S as a semigroup of positive linear contractions on $L_1(X)$. By using an argument analogous to that of Fong [3, p. 79], it may be readily seen that (i) implies that

(i)'
$$A \in \mathscr{M}$$
 and $m(A) > 0$ imply $\inf \left\{ \int_A V_s 1 \, dm; \, s \in S \right\} > 0$.

Let $f \in L_p(X)$, f > 0 a.e., and let $\xi \in L_{\infty}(X)$, $\xi > 0$ a.e.. Then define, as in Neveu [9],

$$h = \xi / \left(1 + \sum_{n=1}^{\infty} V_{s_n}(ef)\right)$$

where (s_n) is an arbitrary sequence in S. It follows that $0 \leq h \in L_{\infty}(X)$ and

$$\sum_{n=1}^{\infty} \int (V_{s_n}(ef))h \, dm = \int \left(\sum_{n=1}^{\infty} V_{s_n}(ef)\right)h \, dm < \infty.$$

Hence $\inf\left\{\int (V_s(ef))h\,dm; s\in S\right\}=0$. But since ef>0 a.e. and $||V_s||_1\leq 1$ for all $s\in S$, it follows that

$$\inf\left\{\int (\mathit{V_s}1) h\, dm; s \in S
ight\} = 0$$
 ,

and hence h = 0 a.e. by (i)'. This demonstrates that

$$\sum\limits_{n=1}^{\infty}\,T_{s_n}f=rac{1}{e}\,\sum\limits_{n=1}^{\infty}\,V_{s_n}(ef)=\,\infty\,\,$$
 a.e. .

(iii) \Rightarrow (iv): If $0 \le u \in L_q(X)$ and $\sum_{n=1}^{\infty} T_{s_n}^* u < \infty$ a.e. for some sequence

 (s_n) in S, define

$$f=\xi/\left(1+\sum_{n=1}^{\infty}T_{s_n}^*u\right)$$
.

It follows that $f \in L_p(X)$, f > 0 a.e., and $\sum_{n=1}^{\infty} \int f(T_{s_n}^* u) dm < \infty$. Since $\sum_{n=1}^{\infty} T_{s_n} f = \infty$ a.e. by (iii), we observe that u = 0 a.e..

 $(iv) \Rightarrow (v)$: Obvious.

 $(v) \Rightarrow (i)$: Let $0 \le h \in L_{\infty}(X)$ and $\sum_{n=1}^{\infty} V_{s_n}^* h \in L_{\infty}(X)$ for some sequence (s_n) in S. Since $V_{s_n}^* h = (1/e) T_{s_n}^* (eh)$ for each $n \ge 1$, it follows that

$$\sum_{n=1}^{\infty} T_{s_n}^*(eh) \in L_q(X) .$$

Since e > 0 a.e., (v) implies that h = 0 a.e.. This and Theorem 3.3 of Sachdeva [10] imply that (i)' holds. Hence an argument analogous to that of Fong [3, p. 79] implies that (i) holds too.

(i) \Rightarrow (ii): Obvious.

(ii) \Rightarrow (v): If $\varphi \in LIM$ and $0 \leq u \in L_q(X)$, define

$$\Phi(u) = \varphi(\int (T_s 1)u \, dm).$$

Here if $\sum_{n=1}^{\infty} T_{s_n}^* u \in L_q(X)$ for some sequence (s_n) in S, then for each $k \ge 1$ we have

$$k arPhi(u) = arPhi\Big(\sum\limits_{n=1}^k T_{s_n}^* u\Big) \leqq arPhi\Big(\sum\limits_{n=1}^\infty T_{s_n}^* u\Big) < \infty$$
 ,

since φ is a left invariant mean. Thus $\Phi(u) = 0$, and so $M(\int (T_s 1)u \, dm) = 0$. Consequently (ii) implies that u = 0 a.e.. This completes the proof of Proposition 1.

The following proposition is a counterpart to Proposition 1.

Proposition 2. The following conditions are equivalent.

- (0) The only $g \in L_p(X)$ such that $T_s g = g$ for all $s \in S$ is 0.
- (i) There exists a strictly positive function u in $L_q(X)$ such that

$$\inf\left\{\int (T_s1)u\,dm;\,s\in S\right\}=0.$$

- (ii) For each strictly positive function f in $L_p(X)$ there exists a sequence (s_n) in S, dependent on f, such that $\sum_{n=1}^{\infty} T_{s_n} f < \infty$ a.e..
- (iii) There exists a strictly positive function u in $L_q(X)$ and a sequence (s_n) in S such that $\sum_{n=1}^{\infty} T_{s_n}^* u < \infty$ a.e..
- (iv) There exists a strictly positive function u in $L_q(X)$ and a sequence (s_n) in S such that $\sum_{n=1}^{\infty} T_{s_n}^* u \in L_q(X)$.

PROOF. (0) \Rightarrow (i): Let $\{V_s; s \in S\}$ be the same as in the proof of Proposition 1. It follows from (0) and Proposition 1 that the only g in $L_i(X)$ such that $V_sg=g$ for all $s \in S$ is 0. Let $\varphi \in LIM$ and define, for $h \in L_\infty(X)$, $\Phi(h) = \varphi\left(\int (V_se)h\ dm\right)$. Since $\Phi(V_sh) = \Phi(h)$ for any $s \in S$ and any $h \in L_\infty(X)$, and since $||V_s||_1 \leq 1$ for any $s \in S$, it follows from Lemma 1 of Neveu [9] that for some strictly positive function h in $L_\infty(X)$,

$$\inf\left\{\int (V_s e) h\, dm; s \in S
ight\} = 0$$
 .

Here if we let u=eh, then $\inf\left\{ \int (T_s1)u\,dm; s\in S\right\} =0$.

(i) \Rightarrow (0): By (2), if $T_s g = g$ for all $s \in S$, then $T_s |g| = |g|$ for all $s \in S$. Thus (i) and (1) imply that

$$\int \mid g \mid u \ dm = \inf \left\{ \int (T_s \mid g \mid) u \ dm; s \in S
ight\} = 0$$
 ,

and hence g = 0 a.e..

(i) \Rightarrow (ii): Let $f \in L_p(X)$ and f > 0 a.e.. Since the $||T_s||_p$ are bounded, (i) implies that $\inf \left\{ \int (T_s f) u \ dm; s \in S \right\} = 0$, and so there exists a sequence (s_n) in S such that $\sum_{n=1}^{\infty} \int (T_{s_n} f) u \ dm < \infty$. Since u > 0 a.e., it follows that $\sum_{n=1}^{\infty} T_{s_n} f < \infty$ a.e..

(ii) \Rightarrow (i): Let (s_n) be a sequence in S such that $\sum_{n=1}^{\infty} T_{s_n} 1 < \infty$ a.e.. Let $\xi \in L_{\infty}(X)$ and $\xi > 0$ a.e.. Define $u = \xi/(1 + \sum_{n=1}^{\infty} T_{s_n} 1)$. Then $u \in L_q(X)$, u > 0 a.e., and inf $\left\{ \int (T_s 1) u \ dm; \ s \in S \right\} = 0$.

(i) \Rightarrow (iv): Since, by (i), the only g in $L_1(X)$ such that $V_sg=g$ for all $s \in S$ is 0, there exists a strictly positive function h in $L_{\infty}(X)$ with $h \leq 1$ such that $\inf \left\{ \int (V_s 1) h \, dm; s \in S \right\} = 0$. Then, as in Sachdeva [10, p. 203] (see also Takahashi [12, Lemma 4]), we can choose $s_n \in S$, n = 1, $2, \dots$, such that

$$\int \left(\sum_{i=1}^n V_{s_n} \cdots V_{s_i} 1\right) h \, dm < \frac{1}{2^n}.$$

For $j \geq 0$, define

$$h_j = \left\lceil h - \sum_{n=j+1}^{\infty} \left(\sum_{i=1}^{n} (V_{s_n} \cdots V_{s_i})^* h \right) \right\rceil^+.$$

It is clear that $0 \le h_i \le h$, and

$$\int (h - h_{i}) dm \leq \sum_{n=j+1}^{\infty} \int \sum_{i=1}^{n} (V_{s_{n}} \cdots V_{s_{i}})^{*} h \, dm < \frac{1}{2^{j}}.$$

It follows that $m(\bigcap_{j=0}^{\infty} \{x \in X; h_j(x) = 0\}) = 0$. Next we prove that for

each $j \geq 0$,

(3)
$$\sum_{n=1}^{\infty} (V_{s_n} \cdots V_{s_1})^* h_j \in L_{\scriptscriptstyle \infty}(X) \; .$$

To see this, define the operators S_{ii} , where $j \ge i \ge 0$, as follows:

$$S_{j_i} = egin{cases} V_{s_j} \cdots V_{s_{i+1}} & & ext{if} \quad j > i \geqq 0 ext{ ,} \ I & & ext{if} \quad j = i \geqq 0 ext{ .} \end{cases}$$

It follows, as in [10, p. 204], that

$$\sum\limits_{m=j+1}^{\infty}{(S_{mj})^*h_j} \le 1$$
 a.e..

Thus

$$\sum_{m=j+1}^{\infty} V_{s_1}^* \, \cdots \, V_{s_m}^* h_j = (V_{s_1}^* \, \cdots \, V_{s_j}^*) \Big(\sum_{m=j+1}^{\infty} (S_{mj})^* h_j \Big) \in L_{\infty}(X)$$
 ,

from which (3) follows easily. Since $T_s^*(eh_j) = e(V_s^*h_j)$ for any $s \in S$, we have

(4)
$$\sum_{n=1}^{\infty} (T_{s_n} \cdots T_{s_1})^* (eh_j) \in L_q(X) .$$

Let $a_j = ||eh_j||_q + ||\sum_{n=1}^{\infty} (T_{s_n} \cdots T_{s_i})^* (eh_j)||_q + 1$, and put

$$v=\sum\limits_{i=0}^{\infty}\left(eh_{i}/2^{j}a_{i}
ight)$$
 .

Then $v\in L_q(X)$, v>0 a.e., and $\sum_{n=1}^{\infty}{(T_{s_n}\cdots T_{s_1})^*v}\in L_q(X)$.

 $(iv) \Rightarrow (iii)$: Obvious.

(iii) \Rightarrow (i): Let u be a strictly positive function in $L_q(X)$ and (s_n) a sequence in S such that $\sum_{n=1}^{\infty} T_{s_n}^* u < \infty$ a.e.. Let $\xi \in L_{\infty}(X)$ and $\xi > 0$ a.e.. Define

$$f=\xi\Big/\Big(1+\sum\limits_{n=1}^{\infty}\,T_{s_n}^*u\Big)$$
 .

Then $f \in L_p(X)$ and f > 0 a.e.. Since $\int (\sum_{n=1}^{\infty} T_{s_n} f) u \, dm = \int f(\sum_{n=1}^{\infty} T_{s_n}^* u) dm < \infty$, $\sum_{n=1}^{\infty} T_{s_n} f < \infty$ a.e.. Thus if we let

$$h=\xi\Big/\!\Big(1+\sum\limits_{n=1}^{\infty}\,V_{s_n}(ef)\Big)$$
 ,

then $h\in L_{\infty}(X)$ and h>0 a.e.. Moreover, since $\sum_{n=1}^{\infty}\int V_{s_n}(ef)h\ dm<\infty$,

$$\inf\left\{\int V_s(ef)h\,dm;\,s\in S
ight\}=0$$
 .

Therefore, it follows that

$$\inf\left\{\int (T_s1)eh\,dm;\,s\in S
ight\}=\inf\left\{\int (V_se)h\,dm;\,s\in S
ight\}=0$$
 .

This completes the proof of Proposition 2.

Combining Propositions 1 and 2, we have the following decomposition of the space X.

Theorem 3. The space X is the disjoint union of two uniquely determined sets P and N in \mathscr{M} such that

- (a) there exists a function g in $L_p(P)$ with g > 0 a.e. on P and $T_*g = g$ for all $s \in S$,
 - (b) if $T_s f = f$ for all $s \in S$, then $f \in L_v(P)$,
- (c) if f is a strictly positive function in $L_p(X)$, then for any sequence (s_n) in S,

$$\sum\limits_{n=1}^{\infty}T_{s_n}f=\infty$$
 a.e. on P ,

and for some sequence (s'_n) in S,

$$\sum\limits_{n=1}^{\infty}T_{s_{n}^{\prime}}f<\infty$$
 a.e. on $N=X-P$.

A positive operator T on $L_p(X)$ is called *conservative* if $\sum_{n=0}^{\infty} T^n f = 0$ or ∞ a.e. for any $0 \le f \in L_p(X)$. The following proposition is an extension of results due to Sachdeva [10] and Fong [3].

PROPOSITION 3. If there exists a strictly positive function f_0 in $L_p(X)$ such that $T_*f_0 = f_0$ for all $s \in S$, then the T_* are conservative and for each $A \in \mathcal{M}$, the left invariant means of $\int_A T_*1 \, dm$ coincide. Conversely, if S is countably generated, if the T_* are conservative, and if for each $A \in \mathcal{M}$, the left invariant means of $\int_A T_*1 \, dm$ coincide, then there exists a strictly positive function f_0 in $L_p(X)$ such that $T_*f_0 = f_0$ for all $s \in S$.

PROOF. Using techniques given in Sachdeva [10] and Fong [3], it is now easy to prove the proposition, and hence we omit the details.

REFERENCES

- J. R. Blum and N. Friedman, On invariant measures for classes of transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 8 (1967), 301-305.
- [2] D. W. DEAN AND L. SUCHESTON, On invariant measures for operators, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 6 (1966), 1-9.
- [3] H. Fong, On invariant functions for positive operators, Colloq. Math., 22 (1970), 75-84.
- [4] E. Granirer, On finite equivalent invariant measures for semigroups of transformations, Duke Math. J., 38 (1971), 395-408.

- [5] A. B. HAJIAN AND Y. Ito, Weakly wandering sets and invariant measures for a group of transformations, J. Math. Mech., 18 (1968/69), 1203-1216.
- [6] A. B. HAJIAN AND S. KAKUTANI, Weakly wandering sets and invariant measures, Trans. Amer. Math. Soc., 110 (1964), 136-151.
- [7] D. L. HANSON AND F. T. WRIGHT, On the existence of equivalent finite invariant measures, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 14 (1970), 200-202.
- [8] J. NEVEU, Sur l'existence de measures invariantes en théorie ergodique, C. R. Acad. Sci. Paris, 260 (1965), 393-396.
- [9] J. NEVEU, Existence of bounded invariant measures in ergodic theory, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II, Part 2, pp. 461-472, Univ. of California Press, Berkeley, 1967.
- [10] U. SACHDEVA, On finite invariant measure for semigroups of operators, Canad. Math. Bull., 14 (1971), 197-206.
- [11] L. SUCHESTON, On existence of finite invariant measures, Math. Z., 86 (1964), 327-336.
- [12] W. TAKAHASHI, Invariant functions for amenable semigroups of positive contractions on L^1 , Kōdai Math. Sem. Rep., 23 (1971), 131-143.
- [13] M. Wolff, Vektorwertige invariante Masse von rechtsamenablen Halbgruppen positiver Operatoren, Math. Z., 120 (1971), 265-276.

DEPARTMENT OF MATHEMATICS JOSAI UNIVERSITY SAKADO, SAITAMA 350-02, JAPAN