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1. Introduction. Let X be a Brownian motion process on a probability
space (Ω, 23, P) and the unit interval D = [0, 1] c R. According to the
well-known theory of stochastic integral of real valued functions of the
class L2(D) with respect to X (see for instance J. L. Doob [2] and K. Itδ

[3]) the stochastic integral /(/) = \ fdX exists and is a random variable

in the class L2(Ω) for every feL2(D). Furthermore the expectation of
/(/) is equal to 0 for every feL2(D) and the covariance of /(/) and I(g)
is equal to the inner product (/, g) for every /, geL2(D), the probability
distribution of /(/) is the normal distribution N(0, | |/ | |2) and {/(/), fe
L2(D)} is a Gaussian system of random variables. These results were
obtained by making use of the stochastic independence, and in particular
the orthogonality, of increments of the Brownian motion process. The
objective of this paper is to show that similar results can be obtained for
stochastic integral with respect to a large class of Gaussian processes with
covariance functions satisfying certain continuity and smoothness conditions
which includes the Brownian motion process as an example. These con-
ditions are given below.

We assume that our Gaussian process X on (Ω, S3, P) and D has a
vanishing mean function on D and has a covariance function Γ{sy t), (s, t) e
D x D, which satisfies the following conditions:

1° Γ is continuous on D x D.
2° d2Γ/ds2 and d2Γ/dtds exist and are bounded on the two open

triangles ϊ\ = {(*, t) e D x D; s e (0, t) and t e (0,1)} and T2 = {(s, t)eD x
D;se(t, 1) and ίe(0, 1)}.

These are the conditions assumed by G. Baxter [1] to obtain his
celebrated strong limit theorem for Gaussian processes. These conditions
imply in particular that

n: *) - nt. t) _ l i m r(s, t) - r(t, t)
S — t « i ί S — t

is a bounded and continuous function on (0,1). In addition to 1° and 2°
we also assume



176 J. YEH

3° d2Γ/dtds is continuous on 7\ U T2 except possibly on a subset with
Lebesgue measure 0.

In what follows we write L2(D) for the collection of real valued
Lebesgue measurable functions which are square integrable over D and
write &2(D) for the Hubert space of equivalence classes of functions in
L2(D) modulo a.e. equality on D. We distinguish likewise between L2(Ω)
and 22(Ω). Let C(D) be the collection of real valued continuous functions
on D and let S(Z?) be the collection of those elements of 22(D) each of
which has a version in C{D). Thus &(D) is a dense linear subspace of
22(D). We shall write ( , •) and || || for inner product and norm in both
S2(D) and 22(Ω) since there will be no ambiguity from the context. We
shall also use the same notation for both an element in 22(D) (or S2(β))
and any of its versions in L2(D) (or L2{Ω)) to avoid cumbersomeness in
notation. The symbol mL stands for the Lebesgue measures in R1 and R2.

In Theorem 1, §2 we show that under the assumption of the condi-
tions 1°, 2° and 3° on the covariance function of the Gaussian process

the stochastic integral I(f)= \ fdX exists as the limit in 22(Ω) of sequences
JD

of Riemann-Stieltjes sums of / with respect to X for every fe C(D). In
Theorem 2, §2 we show that the stochastic integral with respect to the
Gaussian process has all the properties of the stochastic integral with
respect to a Brownian motion process mentioned above except that the
covariance of /(/) and I(g) for /, geC(D) is now given by

, W) = \ f(t)g(t)Ύ(t)mL(dt) + f f(s)g(t)^-(s, t)mL(d(s, t)) .
JD JDXD OtOS

For a Brownian motion process for which Γ(s, t) = min {s, t) we have
7 = 1 on (0, 1) and d2Γ/dtds = 0 on Tx U T2 so that the right side of the
equality above reduces to (/, g). In Theorem 3, §2 we show that if/is
continuous and of bounded variation on D and if every sample function
X( , ω), ω e Ω, of X is continuous on D then for a.e. ωeΩ, the stochastic

integral I(f) = \ fdX is equal to the Riemann-Stieltjes integral \ f(t)dX{t, ώ).
JD JO

In § 3, we extend the definition of the stochastic integral from C(D) to
L2(D) by limiting processes utilizing the denseness of &(D) in S2(J5).
Finally in Theorem 4, § 3 we show that the stochastic integral, now
extended to L2(D), preserves all the above mentioned properties. Not the
step functions on D as in the case of the stochastic integral with respect
to a Brownian motion process but our (£(D) is the appropriate dense linear
subspace of 22(D) on which to start defining a stochastic integral with
respect to our Gaussian process.
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2. Stochastic integral for fe C(D). To prove the convergence of the
Riemann-Stieltjes sums of fe C(D) with respect to X in the Hubert space
S2(β) we require two lemmas concerning real valued functions Γ(s, t),
(s, t)eD x D, which satisfies 1°, 2° and 3° of § 1. The substance of the
first of these two lemmas, namely Lemma 3, is already given in G. Baxter
[1]. Here we state it in a form which is suitable to our subsequent
application. Rather than proving Lemma 3 here we state the crucial steps
for the proof as Lemma 1 and Lemma 2. Our Lemma 4 is the principal
lemma for Theorem 1.

LEMMA 1. Let f be a real valued function which is defined and
differentiable on (α, b) with \ /'(£)
limm/(£) exist and satisfy

^ B for t e (α, b). Then limtlaf(t) and

- f(c) ^ B(b - c)a) and
t\a '

for c e (a, b).

LEMMA 2. Let f be a real valued function which is defined and
differentiable on (α, b). If a = lim ί i α/'(ί) and β = limm/'(έ) exist and
are finite then ]imtiaf(t) and limtnf(t) also exist and are finite. If we
define f(a) = lim ί iα/(£) and f(b) = lim ί U/(ί) then the right hand deriva-
tive of f at a and the left hand derivative of f at b exist and are equal
to a and β respectively.

LEMMA 3. Let Γ(s, t) be a real valued function defined on the
open triangle Z\ = {(β, t)eD x D se (0, ί) and t e (0, 1)}. If d2Γ/ds2 and
d2Γ/dtds exist and are bounded by B ^ 0 on T1 and Γ(t, t) is defined by
Γ(t, t) = limsTί Γ(s, t) then the left side derivative

( 1 ) - Km
s ' *> ~ Γ«> *>

exists and is finite for every t e (0, 1).
continuous on (0, 1) and satisfies

( 2 )

S — t

Furthermore Ύ1 is bounded and

>u

( 3 )
ds

( 4 ) 17,(ί') - 7 $ " ) I ^ 2BI f - t" I for V, t" e (0, 1) .

Parallel statements concerning

Ut) - lim Γ<s' *> ~ Γ«' *>
sit S — t
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hold on the open triangle T2 = {(s, t)e D x D; se(t, 1) and t e (0,1)}.

LEMMA 4. Let Γ be a real valued positive definite symmetric func-
tion on D x D which satisfies the conditions 1°, 2° and 3° o / § l and let

( 1 ) %t) = 7x(ί) - 7t(ί) /or ί € (0, 1)

where Ύ1 and 72 are as defined in Lemma 3. For a partition ^ of D
given by 0 = aQ < a1 < < aq = 1 let

(2 ) AΓktl = Γ(ak, aι) - Γ(ak_lf α,) - Γ(α,, a^)

for k, I = 1, 2, , g α^d ίeί

( 3 )
9

ϋf = l

( 4 )

and

( 5 )

= Σ
k,l=l

S.(Φ)= Σ

Then for every ε > 0 there exists some r] > 0

( 6 )

( 7 )

α»d

( 8 )

whenever | β̂ | < ^ where

( 9 )

- ( Ί{t)mL(dt) <

Jz>xD
(e, ί)mx((i(«f ί))

(M) 8, ί))

<

<

= max

PROOF. With regard to (6) observe that the boundedness and the
continuity of 7 on (0,1) imply first the Lebesgue integrability of 7 on D,

then the convergence of the improper Riemann integral I Ύ(t)dt and finally
Jo

the equality

(10) [y(t)dt = [ 7(t)mL(dt) .

Applying (3) and (4) of Lemma 3 we have
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(11) AΓktk = {Γ(akak) - Γ ( α M , ak)} - {Γ(ak, a^) - Γ(ak-l9 ak-d)

= |^A< ak) - ψ(ar,
I 9s os

where α£, α** e (o^-i, αA). Thus from the convergence of 1 Ύ(t)dt, for every
Jo

£ > 0 there exists some 77 > 0 such that

So(̂ 3) - Γ t(t)dt < e whenever | φ | < η .
Jo

This and (10) prove (6).
Regarding (7) note that since d2Γ/dtds is bounded on 2\ U T2 and is

continuous there except on a subset of Lebesgue measure 0, it is Lebesgue
integrable on D x D and its improper Riemann integral on 2\ U T2 converges
to the Lebesgue integral on D x D, i.e.,

(12) \\ ξL-(s, t)d8d« - ( | f (8, ί jm^ίβ, ί)) .\
jτ1i)τ2

From the existence and boundedness of d2Γ/ds2 on T1[jT29 we have for

(13) AΓkΛ =

I ds ds

lotos
- a^Mdk - ak^)

where akf a** e (ak_u ak) and α* e {at_u at). Then from the convergence of
the improper Riemann integral of d2Γ/dtds on T1 U T2, for ε > 0 there
exists Ύ] > 0 such that

< ε whenever | Sβ | < ^ .

This and (12) prove (7).
Finally (8) can be proved as (7) by means of

ΔΓh%ι I = | | ^ - ( α f , af) O(ak -

which is implied by (13).
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Below we list some properties of Gaussian systems which we need in
proving our theorems. To begin with, a system of random variables
{Xa, aeA} on a probability space {Ω, 35, P) where A is an arbitrary index
set is called a Gaussian system if every linear combination of members of
the system is normally distributed, or equivalently, if for any {au •, an} c
A the probability distribution of the ^-dimensional random vector (Xαi,
• • ,X α J is an ^-dimensional (possibly degenerate) normal distribution.
When A is a subset of R the Gaussian system is called a Gaussian process.
It is obvious that every subsystem of a Gaussian system is itself a Gaussian
system. On the other hand the collection of all linear combinations of
members of a Gaussian system is again a Gaussian system. It is well
known that if a sequence of ^-dimensional normal distributions on Rn

converges to a probability distribution on Rn then this limit probability
distribution too is an ^-dimensional normal distribution and furthermore
the mean vectors and the covariance matrices of the sequence converge
componentwise to those of the limit probability distribution. From this
follows that the collection of all limits of convergence in probability of
sequences in a Gaussian system is again a Gaussian system. It follows
also that a sequence in a Gaussian system converges in the 22(Ω) sense to
a random variable on (Ω, 35, P) if and only if the sequence converges in
probability to the random variable. Thus the closed linear subspace in
the Hubert space 82(β) spanned by a Gaussian system {Xa, aeA}, i.e., the
closure in 22(Ω) of the collection of all linear combinations of members of
the Gaussian system, is then a Hubert space as well as a Gaussian system.
We call this closed subspace of S2(β) the Gaussian space generated by the
Gaussian system and designate it by ®{Xα, aeA}.

THEOREM 1. Let X be a Gaussian process on a probability space
(Ω, 35, P) and D = [0, 1] with a vanishing mean function whose covariance
function Γ satisfies the conditions 1°, 2° and 3° of §1. Let ?fin be a
partition of D given by

0 = an>Q < anΛ < < anMn) = 1

for n = 1,2, , and lim^^ | ?βn \ = 0 where \?βn\ is the maximum of the
lengths of the subintervals by the partition ?&n. Corresponding to ?βn and
a collection of q(n) real numbers

a71 = {an,k e [anyk_lf an>k], k = l,2, , q(n)} ,

let the RiemannStieltjes sum of fe C(D) with respect to X be defined by

S(f, φ<\ α )(ω) = Qlif(an,k){X(an,k, ω) - X(an,k.u ω)} for ωeΩ .
k-l
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Then {S(f, φ w , an), n = 1, 2, ...} is a Cauchy sequence in 22(Ω). Further-
more the element in 22(Ω) to which this Cauchy sequence converges is
determined by f independently of the sequences ffin, w = 1, 2, } and
{a\ n = l, 2, . . . } .

PROOF. Let us show that {S(f, 5β , an), n = 1, 2, }c©{X(£, -),teD}
is a Cauchy sequence. Let ε > 0 be arbitrarily given. From the uniform
continuity of / on D there exists δ > 0 such that

l/(ί') ~ /(«") I < ε whenever ί', t " e β and | ί' - ί" | < δ .

Let N be so large that whenever n ^ N we have | $βw | < δ/2 as well as
I ?βn I < η where the positive number η is as prescribed in Lemma 4 for
our ε. Now let m, n^ iVand let 0 = a0 < aι < < aq = 1 be the parti-
tion ?βm'n of D obtained by superposition of ^βw and ?βn. Then

= Σ
where cke R and | c t | < ε for k = 1,2, ,q. Thus

= ΣΣ
•Λ = l ί = l

^ ε2 Σ Σ I ΔΓkΛ
Jfc = l 1 = 1

where ΔΓkΛ is as given by (2) of Lemma 4. Note that from the positive
definiteness of Γ we have JΓkjk :> 0 for k = 1, 2, ••-,?.

Now since | Sβw w | < ^ we have by (6) of Lemma 4

and by (8) of Lemma 4

Σ I ΔΓhΛ I <
k,l=ί

Thus

JZ>xZ>

+

mL(d(8, t)) + ε .

^ e /ί
IJ

dtos
8, ί) , ί))} 2ε3 .

This establishes the fact that {S(f, ψ, α"), n = 1, 2, ...} is a Cauchy
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sequence in 22(Ω).
To show that the element in 22(Ω) to which this Cauchy sequence con-

verges is independent of the sequences {?βn} and {an} with l i m , ^ | "ψ1 \ = 0,
let {£Γ} and {βn} be another pair of such sequences. Then since the
sequence I^S1!* I SZX11, |̂ }32|, | Q 2 | , ••• converges to 0, the sequence

s(f, Φ, O, s(f, α\ β1), s(f, ψ, of), s(f, o2, /s2), .

is a Cauchy sequence in 22{Ω) and the two subsequences {S(f, ψ1, ocn), n =
1, 2, •} and {S(f, £Γ, βn), n = 1,2, . -.} converge to the same element in
22(Ω).

DEFINITION 1. For feC(D) we define the stochastic integral /(/) of
/ with respect to the Gaussian process X to be the element in 22(Ω) to
which the sequence {S(f, ?βn, an), n = 1, 2, . •} in Theorem 1 converges.

THEOREM 2. Let the covariance function Γ of the Gaussian process
X in Theorem 1 satisfy the conditions 1°, 2° and 3° of § 1. For f, ge
C(D) and a, β e R, the stochastic integral I satisfies the following:

(1) I(*f + βg) = al(f) + βl(g)

(2)

3 ) (/(/), I(g)} = \ f(t)g(t)7(t)mL(dt) + \ f(s)g(t)^(s, t)mL(d(s, t))
JD JDXD OtOS

= ( [f(t)Y7(t)mL(dt) + \ f(s)f(t)ξ£-(s, t)mL(d{s, t))
JD JDXD OtOS

(5) /(/) is distributed by N(0, | |/(/)| | 2)

(6) {/(/), feC(D)} is a Gaussian system of random variables

where Ύ in (3) and (4) is as defined by (1) of Lemma 4.

PROOF. Let {^n} and {an} be as given in Theorem 1. Then (1) is
immediate since

S(af + βg, ψ, a-) = aS(f, φn, an) + βS(f, φn, an)

(2) follows from

E[S(f, ξβ , a-)] = ±f(ak)E[X(ak) - Xia^)] = 0

Je = l

and

E[I(f)λ = (/(/), 1) = lim (S(f, ψ, a% 1) = lim E[S(f, φ, a*)] = 0 .
n—*oo n—*oo

To prove (3) note that from the convergence of the sequence of
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Riemann-Stieltjes sums to the stochastic integral in S2(β) we have

( 7) (/(/), I(g)) = lim (S(/, Sβ , α»), Sfor, ^ , α )) .

Let Ŝ* be given by 0 = α0 < ^ < < aq = 1 and let α% be such that
ak = αΛ for & = 1, 2, , q. We then have

S(f, 5β f α )
fc = l

and a similar expression for S(g, ?$n, an). Since

(X(αfc) - X(ah-& X(a%) - X(α,_0) = ΔΓhtl

where ΔΓkΛ is as given by (2) of Lemma 4, we have

( 8) (S(ff r , cc% S(g, r , a*)) = Σ f(ak)g(a

According to (11) in the proof of Lemma 4

kΛ = {Ύ(ak) + 0(ak -

Since 7 is bounded and continuous on (0,1) and both / and g are
continuous on D, fgΎ is Lebesgue integrable on D and the improper
Riemann integral I f(t)g(t)Ύ(t)dt converges to the Lebesgue integral. Thus

Jo

(9) lim Σf{ak)g{ak)AΓk,k - ( f(t)g(t)Ύ(t)mL(dt) .
n->oo k=l JZ>

Similarly for Jc Φ I, from (13) in the proof of Lemma 4 we have

Idtds

where a*, α** e (αfc-i, α*) and α* G (αz_i, α j . Since d2ΓJdtds is bounded on
2\ U T2 and is continuous there except on a subset of Lebesgue measure
0 and since f(s)g(t) is continuous on D x D, f(s)g(t){d2Γ/dtds)(s, t) is Lebesgue
integrable on D x D and the improper Riemann integral of the same on
7\ U Γ2 converges to the Lebesgue integral, i.e.,

Thus

(10) lim Σ f{^)g{aι)AΓk>ι = ( /(8)flf(t)|^(8, ί)mL(d(βf ί)) .
Mi

From (7), (8), (9), (10) we have (3).
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(4) is a particular case of (3).
(6) holds since {/(/), fe C(D)}a®{X(t, •), t e D). It implies in particular

that /(/) is normally distributed. Thus (5) holds in view of (2) and (4).

THEOREM 3. If every sample function of the Gaussian process X in
Theorem 1 is continuous on D, then for every continuous function f with
bounded variation on D we have

I(f)(ω) = [f(t)dX(tf ω) for a.e. ω e Ω .
Jo

PROOF. Since /is of bounded variation on D and X( , ω) is continuous

on D for every ωeΩ, the Riemann-Stieltjes integral I f(t)dX(tt ώ) converges
Jo

for every ωeΩ. On the other hand with $βΛ and an as in Theorem 1,
the sequence {S(f, $βw, an), n = 1, 2, •} converges to /(/) in 22(Ω) so that
there exists a subsequence {nm} of {n} such that

limS(f, ψ™, an™)(ω) = I(f)(ω) for a.e. ωeΩ .
n-*oo

But for every ωeΩ

lim S(f, 5β»«, α -)(ω) = [ f(t)dX(t, ω) .

m—*QQ J O

Therefore our theorem holds.

3. Stochastic integral for feL2(D).
LEMMA 5. For feL2(D) let {fn, n = 1, 2, . . .}c C{D) be such that

([I fn — f\I = 0. Then {I(fn), n = 1, 2, .} is a Cauchy sequence in
22(Ω). Furthermore the element in 22(Ω) to which our Cauchy sequence
converges is independent of the sequence {fny n = 1, 2, •}.

PROOF. From the fact that &CD) is a linear space and from (1) and
(4) of Theorem 2, § 2 we have

) - ! ( / . ) II1 = | | / ( / . - / . ) II1

^ ί \fJfi)-Mt)\*\Ύ(f)\mL(dt)
JD

I/-(«)-/.(«) 11/-(«)-/.(«) I dtds

^A\\fm-fn\\2 + B\\fm-fn\\l
where

(8,t) mL(d(s, t))

A = sup I Ύ(t) I , B = sup
(0.1) T1[JT2 dtds

and

(β,ί)
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11/. - /. Ill = \D l/.(ί) - /.(«) I mL(dt) s£ 11/. - Λll

Thus the fact that {fnf n = 1, 2, •} is a Gauchy sequence in £2(JD) implies
that {/(/»), n — 1, 2, •} is a Cauchy sequence in 82(42).

To show that the element in 22(Ω) to which the sequence {/(/„), n =
1,2, •••} converges does not depend on the sequence {fni n = 1,2, •••}
converging to / in 22(D), let {gn, n = 1, 2, . . . }cC(D) be another such
sequence. Then {fl9 gu f2, g2, •} is a sequence from C(D) which converges
to / in 22(D) so that {I(f), ifo), /(/2), I(g2), •} is a Cauchy sequence in
82(J2) and its subsequences {I(fn), n = 1, 2, . -} and {/(̂ %), w = 1, 2, }
converge to the same element in S2(β).

DEFINITION 2. For feL2(D) we define the stochastic integral /(/) of
/ with respect to the Gaussian processes X to be the element in 22(Ω) to
which the sequence {/(Λ), n — 1, 2, •} in Lemma 5 converges.

THEOREM 4. The stochastic integral /(/), feL2(D), satisfies (1), (2),
(3), (4), (5) of Theorem 2. AZso {/(/), feL2(D)} is a Gaussian system of
random variables.

PROOF. TO prove (1) let {/„, n = 1, 2, ...}, {gn, n = 1, 2, ...} c C(ί?)
be such that lim^TO \\fn - f\\ = 0 and l i m ^ || flrn - g || = 0 . Then

lim || (afn + /5^) - (af + /Ŝ ) || - 0
n-*oo

so that

/(«/ + iSflr) = lim /(α/. + ^ J - lim {al(fn) + /S/(^J} = α/(/) + βl(g) .
1I-+OO n-*oa

Also

E[I(f)] = (/(/), 1) = lim (/(/.), 1) = lim E[I(fn)] = 0

so that (2) holds.
As for (3) note that

= lim

Then since (3) holds on C(D), to show that it holds on L2(D) it suffices
to show that

7) lim ( fn(t)gn(t)y(t)mL(dt) + \ fn{s)gn{t)ξ^(s, t)mL(d(s, t))
n->°° JD JZ>XZ) OtυS

= ( f(t)g(tyr(t)mL(dt) + \ f(s)g(t)ξ£-(s, t)mL{d{s, t)) .
JD JDXD OtOS
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Now with A, B and || W, as defined in the proof of Lemma 5 we have

lim I ( fn(t)gn(tp(t)mL(dt) - [ f(t)g(t)Ύ(t)mL(dt)

^ lim A ί {| g.(t) | |/.(ί) - f(t) | + |/(ί) | | g.(t) - ff(t) \}mL(dt)
n->oo JD

< : U m A { | | f l r . | | \\fn - f \ \ + \\f\\ \ \ g n - g\\} = 0

and similarly

lim I ( /.(β)flr,(ί) U f (s, ί)m£(d(s, ί)) - ( /(β)flr(t) | ^ (β, ί)m£(d(s, ί))
I JDD OtOS JDD OtOS

Λ-»oo I JDXD

^ lim B \ {| ί/.ίί) I I Ms) - f(s) I + | f(s) | | gn(t) -

^ lim 5(11^ ||t | |Λ - / H , + H/IMIff. - flrHJ = 0 .

Thus (7) holds and this proves (3) and hence (4) also.
Since {/(/), feL2(D)} is contained in ®{X(t, •), t e D) it is a Gaussian

system of random variables. This implies in particular that /(/) is normally-
distributed. Its mean and variance are given by (2) and (4) respectively.
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