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Abstract. We prove the main conclusions of scattering theory for a
class of first order elliptic systems in which the free (unperturbed) system
is not homogeneous. The perturbed system need not be essentially self
adjoint, and the assumptions on the perturbation are mild. The Dirac
operator is a special case of the systems considered.

1. Introduction. We examine scattering theory for elliptic systems
of the form

(1.1) H(x, D) = E(xΓ(A(D) - B(x)) ,

where

(1.2) A0(D) = ±AiDj + BQ,

x = (xlf , xn), E(x), B(x), Bo and the Ai are hermitian m x m matrices
and Dj = d/idxj. This is compared with the free system

(1.3) H0(D) = E^A0(D) ,

where Eo is also hermitian. The aim of the paper is to obtain the main
conclusions of scattering theory under minimal conditions on the perturbation
B{x). Our assumptions on this matrix will not be sufficient to make H(x, D)
essentially self adjoint. This creates several technical difficulties. The
situation is further complicated by the appearance of the matrix BQ in the
free system, which spoils homogeniety. The fact that E(x) =N Eo adds to
the difficulty.

To obtain a self adjoint extension of H(x, D) we need a criterion
involving two Hubert spaces. For this purpose we generalized a theorem
due to Kato [1] for one Hubert space. We obtain this theorem without
restricting the size of the perturbation or requiring it to be compact
(see Section 2). We use the factored perturbation technique for two
Hubert spaces developed in [12]. In order to get maximum benefit from
this technique we introduced pseudo-differential operators of order 1/2 to
make the factorization as even as possible. This introduces other technical
difficulties which require special attention (see Section 3).
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We assume that Eo is positive definite and that E{x) is bounded and
uniformly positive definite. If we let £(f* be [L2(En)]m equipped with the
scalar product

(u, v)0 = ί v*Eoudx

(here v* denotes the complex conjugate transpose of v), then H0(D)
defined on the test functions C~ = [C~]m becomes a symmetric operator
on 2ft. It is a simple matter to show via Fourier transforms that its
closure Ho is self adjoint. Similarly, if Sίf is the same space equipped
with the scalar product

(u, v) = I v*Eudx ,

then H(x, D) with suitable domain becomes hermitian on 3ίf.

Our assumptions are

1) sup ( I B(y) \\x- y \ι~ndy - + 0 a s δ — 0
* J\χ-y\<δ

2) Put N(x) = E\'\Eϊι - E(xYι)E\!x. Then

(1.4) sup I N(x) | < 1 .

Also JV= F(α?)TΓ(α;), where V and TΓ are bounded and satisfy uniform
Holder conditions with exponents > 1/2. D3 V is locally square integrable
for each j.

3) Put

Zo(x) = \ (I V(y) |2 + I W(y) |2 + I B(y) \)dy

and _

t
J l*-y

Then

(1.5) Z0(x) — 0 as I a? I —• oo

and there are numbers a, p satisfying

(1.6) tf^O, l ^ p ^ oo9a>l- [2n/(n + ί)p]

such t h a t p(x)aZ(x)eLp, w h e r e ρ(x) = 1 + \x\.

4) Λ Φ ) 2 is diagonal.
Let J be the identification operator from ^ to Jg^: Ju = u. When they
exist, the wave operators for self adjoint operators H on Sίf and Ho on

are defined by the strong limits
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(1.7) W±u = lim eitHJe-
itH°Pou ,

t-±oo

where Po is the projection onto the absolutely continuous subspace of Ho

(for definitions, cf. [2]). We say that the wave operators are complete
if their ranges coincide with the absolutely continuous subspace of H.
We have

THEOREM 1.1. Under hypotheses 1)—4) H(x, D) has a self adjoint
extension H such that the wave operators (1.7) exist and are complete.
Moreover, if φ(s) is a function satisfying

(1.8) Γ | ( e-iT8-u^8)dsfdz^0 as

and

(1.9) ( e-ur{8)ds-+0 as t-*

Jr
for each bounded Borel set Γ, then

(1.10) W±u = lim
t±t-*±oo

The relations ψ(H) W± = W±ψ(H0) hold for each Borel function ψ. The
spectrum of Ho is absolutely continuous and the singular spectrum of
H is of measure 0.

The proof of the theorem will be given in Section 4 after we give
the abstract theory in the next section and prove some technical lemmas
in Section 3. Here we make the following observations.

1. Hypothesis 1) can be weakened to include functions having
Coulomb type singularities at finite points. The method is similar to
that of [3].

2. The theorem holds if we replace hypothesis 3) by (1.5) and

(1.11) sup S Z(y)ρ(x - y)~βdy < <χ>
X J

for some β < (l/2)(n — 1). This follows from our proof given in Section 4.

3. The Dirac operator is a special case of our system. For then

E=E0 = I, Λ(f)2 = I ί I2 + μ2 and

(1.12) Z(x) = Z0(x)= \ \B(y)\dy.

Thus we have

COROLLARY 1.2. For the Dirac operator the conclusions of Theorem
1.1 hold if B{x) satisfies hypothesis 1) and Z(x) given by (1.12) satisfies
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(1.13) Z(x)-+ 0 as | x | ~ > c o

and paZeLp for some a, p satisfying (1.6).

4. In [4] we considered systems similar to (1.1). However there are
several basic differences which reflect in the results obtained. There we
impose more restrictions on B(x) to obtain essential self adjointness for
H(x, D). There too Bo = 0 resulting in the homogeneity of A^D). This
allowed us to drop hypothesis 4) but brought about a corresponding
weakness in the results. Dirac operators could not be covered there.

We now show that hypothesis 4) can be dropped when Bo = 0 in (1.2).
For instance we have

THEOREM 1.3. Suppose Bo = 0 in (1.2) and hypotheses 1) and 2) hold.
Assume (1.5) and that paZeL1 for some a > 0. Then the conclusions of
Theorem 1.1 hold.

The proof of this theorem will be given in Section 4. October 10, 1974.
Questions in scattering theory for Dirac operators have been con-

sidered by several authors, including Birman [5, 6] Prosser [7], Mochizuki
[8], Kato [2], Thomson [9], Yamada [10] and Guillot-Schmidt [11]. Because
of the added technical difficulties for the systems we have considered,
our approach is different from the various methods of these authors. We
have borrowed ideas from Guillot-Schmidt [11].

2. The abstract theory. In proving our results we shall make use
of two abstract theorems in Hubert space. The first (Theorem 2.1) extends
a theorem due to Kato [1], and the second (Theorem 2.8) was proved in
[12].

THEOREM 2.1. Let £ίff ̂ gt and 3ίΓ be Hilbert spaces, and let H be
a self adjoint operator on Sίf. Suppose there are closed linear operators
A, B from Sίf to J%" such that D(H) c D(A) Π D(B) and a linear bijective
operator J from £ίf to ££[ such that JQ = J*J maps D(H) into D(B).
Assume that there is a zoep(H) such that Q{z) = [AR(z)B*] is bounded
and G{z) = I + Q(z) has a bounded inverse for z = z0 and z = z0, where
R{z) = (z - H)-\ and that

(2.1) (Hu, JQv) - (Au, BJov)jr = (JoU, Hv) - (BJou, Av)^ u , v e D(H) .

Then there is a unique self adjoint operator H1 on §£[ such that
HJZ) J(H - £*A), DCfiQ c DiAJ-1) n D(BJ*) and

(2.2) R(z) - J-'B^J = [R(z)B^]AJ-ίR1(z)J = [J-'

where
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In proving the theorem we shall make use of a few lemmas.

LEMMA 2.2. If S(z) = G(z)[BJ,R{z)B*]9 then S{z)* = S(z).

PROOF. First note that (2.1) implies

(2.3) JQR(z) - R(z)J0 = [R(z)J0B*]AR(z) - [R(z)A*]BJQR(z) .

Now

S(z)* = [BR(z)J0B*]G(z)* = [B(R(z)J0 + [R(z)JQB*]AR(z))B*]

= [B(JQR(z) + [R(z)A*]BJ0R(z))B*] = S(z) by (2.3). Q

LEMMA 2.3. G{z)BJ0R(z) = BR(z)J0 + [BR(z)J0B*]AR(z).

PROOF. The left hand side equals (I + [BR(z)A*])BJ0R(z). Apply
(2.3). •

LEMMA 2.4. If F(z) = [R(z)A*](BJ0R(z) - GizY'BRWJ,), then F(z)* =

PROOF. By Lemma 2.3, F(*) = [B(z)A*]G{z)'ι[BB(z)JoB*]AB(z). This
equals F(δ)* by Lemma 2.2. Π

LEMMA 2.5. Put

(2.4) Γ(s) = R(z) - [R(z)A*]G(z)-1BR(z) .

Then T(z) is ίnjectίve and satisfies the first resolvent equation

(2.5) T{z) - T(z') = (zf - z)T(z)T(z') .

PROOF. Equation (2.5) is the consequence of a simple computation
and that fact that R(z) satisfies it. If T(z)u = 0, then G{z)~ιBR(z)u =
BT(z)u = 0. Hence R(z)u = 0 by (2.4). Since R(z) is the resolvent of
an operator, we must have u = 0. Π

LEMMA 2.6. J0T(z)* = T(z)JQ.

PROOF. Note that

(2.6) T(z)J0 = R(z)J0 + F(z) - [R(z)A*]BJ0R(z),

where ί 7 ^) is given in Lemma 2.4. By that lemma

J0T(z)* = J0R(z) + F(z) - [R(z)J0B*]AR(z) .

But this equals (2.6) by (2.3). •

PROOF OF THEOREM 2.1. Put R1(z)=J*~1T(z)J*. Then R,(z) is a bounded
operator for z in neighborhoods of z0 and z0. By Lemma 2.5 it is injective
and satisfies (2.5). Thus it is the resolvent of a closed operator Ht on
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Since J* JS^z)/ = T(z)J0, we see that J*Riz)*J = J*R0)J and conse-
quently Rίiz)* — R0). This shows that Hi. is self adjoint. From (2.4)
we see that (2.2) holds in neighborhoods of z0 and z0, and consequently
for all zepiHX^piHJ. Finally, suppose u e D(H) Π D(B*A) and put
v = (z - i2>. Then by (2.2), JM, = Eί(z)Jv + Bι(z)JB*Au. This shows
that Ju e Dίfli) and that (z - JTJJw = J{z - if + β*il)^. Hence HJ is
an extension of the operator J(H — B*A). To show uniqueness, let Hx

be any self adjoint operator such that D{H^ c D^AJ'1) Π D(BJ*) and (2.2)
holds. A simple computation gives

(2.7) BR(z) = G(z)BJ*R1(z)J*~1 .

Thus

- [B(z)A*]BJ*B1(z)J*'1,

where Γ(2J) is given by (2.4). Taking adjoints, we see by (2.2) that

(2.8) J-ιBx(z)J = Γ(2)* .

Since T(z) is uniquely determined by H, A and J5, the same must be true
of Hx. Π

REMARK. In Kato's theorem Sίf, Sίfx and 3ίΓ are the same space,
J = I and the norm of Q(z) is assumed < 1. Konno-Kuroda [13] replace
the last restriction with the assumption that Q(z) is compact for each z.
Note that we remove both of these stipulations.

We note the following consequence of Theorem 2.1.

COROLLARY 2.7. In addition to the hypotheses of Theorem 2.1,
assume that J^1 maps D(H) into itself, and either A or B is bounded.
Then J(H - B*A)J~ι is self adjoint.

PROOF. By the theorem there is a self adjoint operator H1 on £ίfx

such that

(2.9) HJ-DJ{H-B*A).

Taking adjoints we get J*Ht c (H — A*B)J* (this is where we use the
fact that either A or B is bounded) and consequently J*HxJc: (H — A*B)J0.
Thus D(H) c D(HtJ) c D(HJ0) c D(H), the last inclusion coming from the
fact that Jΐ1 maps D(H) into itself. Thus D(H) = DiHJ), and conse-
quently we have equality in (2.9). Since Hx is self adjoint, the result
follows.

THEOREM 2.8. In addition to the hypotheses of Theorem 2.1, assume
that
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a. There is a zoep(H) such that BR(zo)[R(z)A*] is compact for all
nonreal z.

b. The singular spectrum of H is of measure 0 in Λ and there are
locally Holder continuous functions M(s), N(s) from A to B{SΓ) and a
dense subset S of D(A*) such that

(2.10) d(E(s)A*u, A*v)/ds = (M(s)u, v ) ^ a.e., u,veS ,

(2.11) d(E(s)A*u, B*v)/ds = (N(s)u, v)^ α.e., u9veS ,

where {E(s)} is the spectral family of H.
c. A is injective
d. There is a closed set e of measure 0 such that [Jo — I]E{Γ) is

compact for each interval Γ having compact closure in A — e.
Let Hj. be the self adjoint operator satisfying the conclusions of

Theorem 2.1. Then the strong limits

W±f = lim eιtHiJeitHEac(A)f

t->±oo

exist and are complete. Moreover,

W±f = lim eit^H^)Je-it^H)Eac(A)f
t—±oo

holds whenever φ is a function satisfying (1.8) and (1.9) for any bounded
Borel set Γ. The relations ψ(H0)W± = W±ir(H) hold for any Borel
function ψ.

In Section 4 we use Theorems 2.1 and 2.8 to prove Theorems 1.1 and
1.3. Note that in these applications it is not required that ||Q(«)|| < 1
for some z.

3. Some estimates. Before proving the theorems of Section 1, we
shall derive some inequalities which are used in the proofs. They concern
the operator given by

(3.1) Sz = F(z + I ξ \)υ2F .

First we note

LEMMA 3.1. // L(x) satisfies

(3.2) sup( IL(x) |21x - y Γ"Λ dy-+0 as δ ^ O ,

then || LS? \\ -*0 as α — oo.

PROOF. Put S. = F(z2 + \ ξ \2)1/4F. Then

- 1 = LS^Fia2 + I ξ \ψ\a + \ ξ \Tι/2F .
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Thus HLSrMI ^ CWLS-'W, which converges to 0 as α ^ o o (cf. [14,
p. 138]). •

LEMMA 3.2. If a ^ 1, then \\SlR(±ίa)\\ has a bound independent

of a.

PROOF. By symmetry we have

(3.3) α21 E\f\ia -

(3.4) I El'*H0(ξ)(ia -

Since H0(D) is elliptic there are positive constants c0 and N such that

(3.5) \H0(ξ)\^c0\ζ\, \ξ\>N.

Thus

(3.6) I f lKi

£ Co""11 H 0 ( ξ ) ( i - H 0 ( ξ ) Γ \ £ C ί 9 \ ζ \ > N

by (3.4). Thus

by (3.3), (3.4) and (3.6). Thus by (3.3)

(3.7) ( lαl + l

The same reasoning applies if we replace α by - α . The result now
follows from (3.7). •

THEOREM 3.3. Let g(x) be a bounded function which satisfies a
uniform Holder condition with exponent Θ > 1/2. Then

(3.8) || Sa(gu) || ^ || ? |U || Sau \\ + Cθ\\g | L # \\u\\ ,

where Cθ depends only on n and θ and ||flr||oβ,* is \\g\\oo plus the Holder
constant.

PROOF. Put

(3.9) r ( f ) = \\eiζx - 1121 x \~n~ι dx .

Note that r(f) is homogeneous of degree 1. Moreover, it is easily checked
that it is invariant under any rotation about the origin. Thus r(ξ) = c0 \ ξ \
for some constant c0. Hence
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(3.10) | | S U II2

= α | | t t | | f + Co ( r(ί) | Fu |2 dξ

= α | | t t | | 2 + co\ \\ux -u\\*\x\-n~1dx ,

where ux(y) = u(x + y). Now

(3.11)

where

(3.12)

and

(3.13)

Clearly,

(3.14)

2 = [ \x I""- 1 ete, C\ = [
J|»I>1 J|

[dx

- 9\

= 2C \\g|L + C2K0(g) ^

where C# depends only on n and 0. Thus

^ 0 || flftt

Re(g)\\u\\y

α I I 1 + 1 1 ^ 1 1 1 ( 1 1 5 . 1 * 1 1 * - α | | « II*)
cJ'21| g |L iί,(flr) || S α W || || u \\ + Bβ{gf \\ u |

α

This gives (3.8) •

REMARK. A more precise form of (3.8) is

(3.15) || Sa(gu) \\g\\g |U II Sau || + Rβ(g) \\u\\ .

COROLLARY 3.4. Under the same hypotheses, for each c > 0 there is
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a constant N so large that

(3.16) IISαflrStMl ^ II0 IL + e , a > N.

PROOF. By (3.8)

(3.17) || SagSa'u \\£\\g IU II u \\ + Cθ \\ g I L , \\ S?u || .

Since || S^u || ^ a"1/2 \\u\\ by (3.10), we can take a so large that the right
hand side of (3.17) is ^ (|| g |U + ε) || u ||. •

LEMMA 3.5. Let g(ξ) be a smooth function and put

Kr{x) = ( e~^g(ξ)dS .

Then for each a > 0 there is a constant Cr,a depending only on g, r and
a such that

(3.18) I Kr(x) I + sup 11 - r \~« \ Kr(x) - Kt(x) \ ̂  Cr,ap(xy+" ,

where v = (1/2)(1 — n).

PROOF. The estimate for Kr(x) itself follows from a result of Littman
[15] (and it is true with a = 0). To estimate the Holder constant, note
that Kr = r Λ "7(r), where

f(r) = [ eirωxg(rω)dω
J |ω |=l

(in the notation we suppress the dependence of x). It clearly suffices to
estimate the Holder constant for /(r). Now

f'(r) = ( eίrωx[(iωx)g(rω) + gr(rω)] dω .

Applying Littman's estimate we get

I f(r)\ <ί Crp(xY, I f\r) \ ̂  CrP(xY+ί .

Let k be an integer such that ka ^ 1. Then

I f{rf - f(tf I = k I f(τy-T(τ)(r - t) I

^ C\r -t\p(x)k>+1

for t close to r, where τ is some value between t and r. Thus we have

C|r-t| /tK»r . •
COROLLARY 3.6. Le£ fif(ί) δe α smooth function and let P(ξ) be a second

degree polynomial with real coefficients. Put
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(3.19) Kr{x) = ( eiξ*g(ζ)dS.
JP(£)=r2

Then (3.18) holds.

PROOF. There is an affine transformation f = A(η + β) such that
= IV I2"~ c> where c is a constant. Thus (3.19) becomes

Kr(x) = ei{Aβ)x \ etiA»mg(A(fl + β))AdS .

We apply Lemma 3.5. •

LEMMA 3.7. Let f(ξ) be a smooth function such that the surface S
given by f(ζ) = 0 is bounded and grad / =N 0 on S. Let g(ξ) be a func-
tion which is bounded on S. Then

(3.20) ( g(ξ)FuFvdS = (K*u, v) , u,ve Co°° ,
is

where
(3.21) K(x) = ( eiξ*g(ζ)dS .

JS

PROOF. Put δa(x) = a/π(x2 + α2), and let φ(ζ) be any test function
which is 1 on S. Then the left hand side of (3.20) is the limit as α->0 of

\ δa(f(ξ))φ(ζ)g(ξ)FuF%dξ = (FKaFu, Fv) = (Ka*u, v) ,

where

Ka(x) = \eiξxδa(f(ξ))φ(ζ)g(ξ)dζ.

But this converges to (3.21). •

Let P3(ζ) be the i-th eigenvalue of the diagonal matrix A(ί)2 Clearly
it is a nonnegative polynomial of degree 2. If / is any Borel subset of
the real line, let I2 = {s2 \ s e /}. Let {E(X)} denote the spectral family of
Ho. We have

LEMMA 3.8. // I is an interval which is a positive distance from
the origin, then

(3.22) (E(I)u, v\ = -SSLLg \p ( ? ) 6 J 2 [δn + P^r^A

where sgn / is the sign of the points in I and the Ajk(ξ) are the elements
of the matrix Λ>(£)

PROOF. First we note that HQ has no eigenvalues. Thus by Stone's
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m [ {[R{z) - R(z)]u, v)od

where z = s + ia. Suppose [R(z) - R{z)]E^u = f. Then

(4a2A2 + (s2 + α2 - A2)2)/ = -2m(s 2 + α2 + 2s A, + A2)u .

Taking Fourier transforms and making use of the fact that Az

0 is diagonal,
we get

l - i sgn I(Fud + P,(f)-1/2 Σ i l

where Xj is the characteristic function of the set P3(ξ)el2. Substituting
into (3.23) we get (3.22). •

COROLLARY 3.9. There is a closed set e of measure 0 such that

(3.24) d(E(s)u, v)Jds = ±-Σ ( ίl s I δik + AUSWuJFvjdS, s$e.
2π ά,k Jp i(ί)= s2

PROOF. Let e be the set of those s for which there is a, ξ e En such
that s2 — Pj(ξ), grad P^ίί) = 0 for some j . This set is clearly closed, and
it has measure 0 by Sard's theorem. If I does not intersect β, then
Pj(ξ) can be introduced as one of the variables in the integral over the
set Pj(ξ) e P in (3.22). Taking the derivative with respect to s, we obtain
(3.24). •

COROLLARY 3.10. The spectrum of Ho is absolutely continuous and
contained in the set (— oo, — μ] \j [μ9 oo), where

(3.25) μ2 = min min P, (f) .

PROOF. This follows immediately from Lemma 3.8 in view of Lemma
3.2, p. 448, of [16]. •

COROLLARY 3.11. For a.e. s

(3.26) 2πd(E(s)u, v)/ds = (K8*u, v)

where

(3.27) K8jk(x) = \ eixξ [sgn sδjk + s^A^ξ^dS .

PROOF. If the interval I does not intersect e, then by Lemma 3.8

2π(E(I)u, v) = (Kj+u, v) ,

where
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KIjk(x) = \p e^ sgn I[δjk

Taking the derivative with respect to the upper endpoint of /, we obtain
(3.26) and (3.27).

4. The proofs. Now we give the proof of Theorem 1.1. We verify-
that the hypotheses of Theorems 2.1 and 2.8 are satisfied. Note first
that there exist hermitian matrices L(x), M{x) such that LM = B, M is
invertible for a.e. x and

(4.1) sup ( (I L(y) |2 + I M(y) I2) \x - y Γ"Λ dy — 0 as δ — 0
x J\x-y\<&

(hypothesis 1)). Take 3tT = L2 0 U and define

Au = {Mu, S
Bu = {LE-'EoU, SaVEl/2u}

as operators from έ%f to _%7 where Sa is the operator (3.1) and a is a
positive number to be chosen later. Thus

A*{v, w) = E^

B*{v, w) = E-'Lv + Eo1/2VSaw .

For s real, let H8'2 be the completion of C~ with respect to the norm
given by

In view of Theorem 7.3, Chapter 7, of [14], A, B, A* and JS* map
£Γ1/2'2 boundedly into 3tT by (4.1), hypothesis 2) and Corollary 3.4. Thus
these operators are closable, and the domains of their closures contain
jff1/2'2. Next we note that Sail—N)'^1 is a bounded operator on £ίf for a
sufficiently large. This follows from the fact that Sa(I-N)S7ι=I-SaNS71.
The latter has a bounded inverse by hypothesis 2) and Corollary 3.4.
Since Jo = J* = E^E = E^f\I - N)~ιEΓ, we see that Jo maps the space
iϊ1/2'2 into itself and a fortiori D(H0) = H12 into D(B). Put B(z) = {z-HQ)-\
Then

(4.2) BR(z)A*{u, v) =
w, SaVEl/2R(z)E^Mv

Take z = ±ia. Then
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(4.3)

\ 0 asα-oo

by Lemmas 3.1 and 3.2 and Corollary 3.4. Put

P(z) = SaVEΓR{z)HQE^WS~ι.

If we can show that I + P(z) has a bounded inverse for a sufficiently
large, then the same will be true of G{z) = I + [BR(z)A*] by (4.2) and
(4.3). By (3.4)

U(z) = El'2R(z)HoEoV2

is a contraction for each z. Thus if we put Ca = SaNSzι, we have

(4.4) || P(z)* || ^ || SΛVSΐι \\ \\ Ca\Γ> \\ SaWS? \\

for each k. By hypothesis 2) and Corollary 3.4, ||C«|| can be made < 1
by taking a sufficiently large. Thus for such a we can make || P{z)k || < 1
by taking k large enough in view of (4.4). This shows that I + P(z)k

is invertible in L2 for k large. Consequently the same must be true of
I + P(z). Thus G(z) has a bounded inverse on SΓ for a sufficiently large.
Finally, we note that in the present case (2.1) takes on the form

(Hou, Jov)o - (Au, BJQv)jr = (Jou, Hov)o - (BJou, Av)^

and this is easily checked to be an identity. Thus all of the hypotheses
of Theorem 2.1 are satisfied. Now we turn our attention to Theorem 2.8.
First we note that BR(z) is compact for any nonreal z. To see this note
that we have already observed that LJir1 is a bounded operator from HV2>2

to &f. By Theorem 4.1, Chapter 6, of [14] it is compact from H12 to ^f
in view of (1.5). By Corollary 3.10, Ho has no singular spectrum. Next
we verify (2.10) and (2.11). Assume first that p = oo in (1.6) and put
t = (1/2) a > 1/2. Let s be such that (3.24) holds. Since the set Sβ of those
ξ such that Pj(ξ) = s2 is bounded, there is a φ e y such that Fφ = 1 on
a neighborhood of S8. Since t > 1/2, the restriction of functions in &*
to S8 is a bounded operator from Ht>2 to L2(S8) which depends Holder
continuously on s (cf. [17]). Therefore in view of Corollary 3.9 it suffices
to show that the operators defined by F(φ*Mv), F(φ*A0(D)WSa1w)9

F(φ*Lv) and F(φ* VSaw) are bounded from L2 to Ht>2. For the first three
of these operators this follows readily from Lemma 3.6 of [12]. To obtain
the same result for the last, we must show that the operator F(φ*Vu)
is bounded from H~ll2>2 to Ht2. This will follow if we can show that
F(φ*Vu\ F(φ*Dj(Vu)) and F(φ*(DsV)u)i9t are all bounded from L2 to
Hf'2 for each j . Again this follows from Lemma 3.6 of [12]. Thus (2.10)
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and (2.11) are verified when p = oo in (1.6). To verify it for the other
cases, note that in view of Corollary 3.11, a sufficient condition for (2.10)
and (2.11) to hold is that the operators AK8*A* and BK8*A* are bounded
operators on J%Γ and depend in a locally Holder continuous way on s.
This will follow if we can show that the operators LK*M, SaVK8*M,
LKM0WS71, SaVK8*AWS7\ MK8*M, S?WH0K8*M, MK8*A,WS7ι and
S^WHQK^AQWS^1 are such operators on ZΛ With the possible exception
of the second and fourth of these operators, a sufficient condition for them
to have the desired properties is that

(4.5) sup I Z(y)p(x - y)~βdy < 00

holds for some β < (l/2)(?ι - 1) (Lemma 7.2 of [12] and Corollary 3.6). To
prove it for them it suffices to show that VK8*M, (DjV)K8*M, VK9*AoWS7ι

and (D3'V)K8*A0WSaί also have the desired properties for each j . This
is also implied by (4.5). Now (4.5) holds if Ze U for some p < 2n/(n +1).
Thus (2.10) and (2.11) are established if hypothesis 3) holds either in the
case p = 00 or in the case p < 2n/(n + 1). The intermediate cases are
handled by an interpolation theorem as in the proof of Theorem 4.9 of
[18]. Thus (2.10) and (2.11) hold under hypothesis 3). That A is injective
follows from the way M was chosen. Finally we note that [Jo — I]E(Γ)u =
EΐV2V(I- N)-ιWEl'\φ*E(Γ)u) for Γ a bounded set not intersecting the
set e of Corollary 3.9. Now the operator φ*w is bounded from U to
H12 and W is a compact operator from the latter space back to the
former by (1.5). Since the remaining operators are bounded, we see that
(Jo — I)E(Γ) is a compact operator on ZΛ Thus all of the hypotheses of
Theorem 2.8 are satisfied. The conclusions of that theorem together with
Corollary 3.10 give Theorem 1.1.

Now we turn to the proof of Theorem 1.3. The verification of the
hypotheses of Theorems 2.1 and 2.8 are the same as given above with
the exception of (2.10) and (2.11). Under the present circumstances we
cannot use Lemma 3.8. To find a substitute, let λy(£) be the roots of det
(λ - H0(ξ)) = 0. Then

d(E(I)u, tOo = Σ ( Fv*Sj(ζ)Fudξ ,

where the S3(ζ) are bounded homogeneous matrices of degree 0 (cf., e.g.,
[19]). This leads to (3.26) with K8(x) satisfying K8(x) = s^K&x) (see [12]).
This implies that for each a > 0

\K.(x)-Kt{x)\£C\8-t\ p(xY.
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The rest of the verification proceeds as above (cf. [4]). That the spectrum
of Ho is absolutely continuous was shown in [20].

The author wishes to thank J. C. Guillot and G. Schmidt for making
their work available to him before publication.
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