Téhoku Math. Journ.
27 (1975), 561-568.

ON SOME 3-DIMENSIONAL COMPLETE RIEMANNIAN
MANIFOLDS SATISFYING R(X, Y)-BR=0

KOUEI SEKIGAWA

(Received July 29, 1974)

1. Introduction. Let (M, g) be a Riemannian manifold. By R we
denote the Riemannian curvature tensor. By T.(M) and Exp, we denote
the tangent space to M at x and the exponential mapping of (M, g) at x.
For X, Ye T, (M), R(X, Y) operates on the tensor algebra as a derivation
at each point x€ M. In a locally symmetric space (VR = 0), we have

(*) R(X, Y)-R =0 for any point xre¢ M and X, Ye T.(M).
We consider the converse under some additional conditions.
THEOREM A (S. Tanno [8]). Let (M, g) be a complete and irreducible
3-dimensional Riemannion manifold. If (M, g) satisfies (x) and the

scalar curvature S is positive and bounded away from 0 on M, then
(M, g) is of comstant curvature.

Other results concerning this problem may be found in references.
In this paper, we shall prove

THEOREM B. Let (M, g) be a complete and irreducible 3-dimensional
Riemannian manifold satisfying (x). If the volume of (M, g) is finite,
then (M, g) is of constant curvature, and hence, VR = 0.

COROLLARY B. Let (M, g) be a compact and irreducible 3-dimen-
stonal Riemannian manifold satisfying (x). Then (M, g) is of constant
curvature.

It may be noticed that (x) implies in particular
(x) R(X, Y)-R =0,

where R, denotes the Ricei tensor of (M, g) .
In this paper, (M, g) is assumed to be connected, complete and of
class C* unless otherwise specified.

2. Preliminaries. Let (M, g) be a 3-dimensional Riemannian mani-
fold. Assume (x). dim M = 3 implies

(2.1) RX,Y)=RXANY+XARY—-(S2XANY,
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where
JRX,Y)=R(X,Y) and XAY)Z=9(Y, 2)X —9X, Z2)Y.

Let (K,, K;, K;) be eigenvalues of the Riceci transformation R' at a point
2. Then (x) is equivalent to

2.2) (K. — K))2K,+ K;)—S)=0.
Therefore we may have only three cases:
(K, K,K), (K,K 0, (0,0,0) at each point.

First, if (K, K, K), K #+ 0, holds at some point x, then it holds on
some open neighborhood U of x. Hence U is an Einstein space, and K
is constant on U and on M. Therefore (M, g) is of constant curvature
(cf. H. Takagi and K. Sekigawa [6]). From now, we assume that rank
R'=2on M Let W= {xe M;rank R' =2 at z}. By W, we denote one
component of W. On W, we have two C~-distributions T, and T, such
that

T,={X; R'X = KX},
T.,={Z; R'Z =0} .
For X, Ye T, and Ze T,, by (2.1), we have
(2.3) RX,Y)=KXANY,
R(X,Z)=0.
This shows that T, is the nullity distribution. Since the index of nullity
at each point of M is 1 or 3, the nullity index of (&, g) is 1. Thus
integral curves of T, are geodesics (and complete if (M, g) is complete)
(cf. Y. H. Clifton and R. Maltz [2], etc.). Let (E, E., E;) = (E) be a local
field of orthonormal frame such that E;e T, (consequently, E,, E,c T)
and
Ve E, =0, 1=123.

We call this (E) an adapted frame field. If we put Vg E; = 3i_, B; B,
then we get B;;, = —B,;,; and

(2'4) B3i2'=09 Ii)j=1;273'
The second Bianchi identity and (2.3) give
(2'5) E:K + -K(Bl31 + stz) =0, or

div E, = —E,K/K .
By (2.4) and R(E,;, Es)Eg = VEiVE3E3 e VEainES - V[E,-,EalEs = 0, we get
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(2.6) E;Bs + (Bis)’ + BBy =0,
E;B,sy, + B,3B,y;, + BB =0,
EB;s + ByyBis + ByuBs =0,
E;B;s, + (B:»)’ + BysBin = 0 .

(2.5) and (2.6),, (2.5) and (2.6),, (2.5) and (2.6),. imply
(2~7) B, = C1(E)K ’ B,y = Cz(E)K ’
2.8) B,y — B,y = D(E)K ,

where C,(E), Cy(E) and D(E) are functions defined on the same domain
as (E) such that E,C(F) = E;,C(E) = E,D(E) = 0.
By (2.5) and (2.8), we get

(2.9) 2B,;, = D(E)K — E,K/K .

Now, let 7,(s) be an integral curve of T, through « = 7,(0) ¢ W, with are-
length parameter s, i.e., 7,(s) = Exp,s(&;),. Then (2.6),, (2.7) and (2.9) give

1 d(1dK 1/1 dKY
2.10 1.d(1dK\_ pgge 1(1dKY" (s)
(2.10) 2 ds (K ds) + 4<K ds> along  7.(s)

where
H = H(E) = D(E)*4 + C(E)Cy(E) .

(2.10) implies that H is independent of the choice of the adapted frame
fields (E). Solving (2.10), we get

(2.11) K=7v, (for H=10), or
(2.12) K= *+1/(as — B)* — H/a*), (for H=+=0),

where @, B and 7 are constant along 7.(s), a # 0.

With respect to our arguments, without loss of essentiality, we may
assume that M is orientable. Let (&) be any adapted frame field which
is compatible with the orientation. We call it an oriented adapted frame
field. Then we see that f = (C,(E) — C(E))K is independent of the choice
of oriented adapted frame fields, and hence f is a function of class C*
on W,. f=0holds on an open set Uc W,, if and only if T) is integrable
on U. This is a geometric meaning of f. In the sequel, we assume that
the volume of (M, g) is finite. We can see that H = H(F) = D(E)*/4 +
C(E)C(FE) is a function of class C* on W,. Let W(H) ={re Wy H+#0
at x}. We assume that W(H) = @. Let W(H), be one component of
W(H). By (2.12) and completeness of (M, g), H must be negative on
W(H),. For each point xze W(H), consider 7,(s). Then 7,(s)e W(H),
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for all s. Let 2, = 7,(8/a). For (E).,, (E.). € Ti(x,), there exists a 2-
dimensional submanifold, {@(u,, u,) € W(H )y (4, us) € (—¢, €),, € > 0}, such
that (0, 0) = x, and (99/0w,)(0, 0) = (E,),,, (0P/0u,)(0,0) = (E),,» Now, we
define a mapping

P: (—¢, &) X (=9, 0)— W(H), by
(2.13) O(uy, Uy, Ws) = BEXDPy(u,,up Waks, for some 6 > 0.

Then @ is of class C* and furthermore, for small ¢, 4, V(e 0) =
{D(uy, Uy, w5) € W(H)o; (s, Uy, ws) € (—€, €)* X (—0, 0)} is a local coordinate
neighborhood with origin at x,. In V(e 9), by (2.12), we get
(2.149) K = *1/((Aw; — B}’ — H/AY),

where A and B are functions of class C* on V(e d) such that 0A4/0w; =
0B/ow; = 0 on V(¢,0) and A =a, B=0 at x,.

By continuity of A and B in (2.14), there is ¢, 0 < & < ¢ such that
—0/4 < B/A < 0/4, for (u,, u,) € (—&, &)

Now, we define a mapping +: (—¢&, &) — Vi, d) by
(2.15) Y (U, ) = Engo(ul, ug) (B(uy, us)/ Auy, u,))Es -
And furthermore, we define a mapping ¥: (—¢, &) X (—0,, 0,) — Ve, 0)
by
(2.16) T (Uyy Usy Us) = EXDypuyup Usls 0o =0/4.
Then ¥ is of class C* and

Uley, 00) = {¥(uy, Ugy us) € V&, 0); (g, Ugy Us) € (— &, &)* X (—0,, 0,)}

is a local coordinate neighborhood with origin at x,.
Between w, in V(e 0) and u, in U(e, 0,), the following relation holds:

(2.17) w; = us + B/A, in Ule,, 0,) .
Thus (2.14) and (2.17) imply
(2.18) K = +1/((Aus)* — H/AY) , on U, 0,) .

Let 7(u,, w,) be the integral curve of T, starting from +r(u,, u,),
(wy us) € (—& &) 1.0y V(U %s)(8) = EXDyiuy,up 8Es.  Then, in Ule, 0o), s
can be considered as the arc-length parameter of Y(u, u,). We put
Ly, ) = {7(ty, us)(8)€ M; — 0 < 8 < }. Since dim T, = 1, taking ac-
count of (2.12) and (2.18), we can see that Y(u,, u,)(s,) #* 7(u,, u,)(s;) for
8,# 8. From (2.12) and (2.18), dK/ds = 0 for s = 0 and otherwise dK/ds = 0
along L(u,, u,), for any (u,, u,) € (—¢&, &)%.. Thus, we can see that if
(%, Us) # (03, v2)y (s, Ua), (vy, V) € (—&, €)%, then L(w,, u,) N L(v, ;) = @.
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Now, we put
U(e,) = {F (s, s, s) € M; (uy, %s) € (—6,, &), —oo < Uy < oo},
where ¥ denotes an extension of ¥ defined by
T (U, Uy Us) = EXDptuyup %sB s 0N (=&, )2 X (— o0, o0) .
Then, from the above arguments, we have the following

LemMA 2.1. Uls,) is a local coordinate meighborhood with origin at
X
For any G > 0, we put
Vo = {T (s, U, s) € U); (ws, ) € (—&0/2, &/2), 0 < us < G} .
Then V,c U(e). Let vol (M, g) and vol (V) denote the volumes of (M, g)

and the open subspace V, of (M, g), respectively. Then, by the assump-
tion, we have

(2.19) vol(Vy) < vol(M, g) < -, forany G>0.
On the other hand, since E; = d/ou; on U(s,), we have

div E; = 1)V 9,)(0V 9,/0us) on Uley) ,
where

g, = det (9:;) , 9:; = 9(3/0w,, 0/ou;) , 1,5=1238.

Thus, by (2.5), we get
(2.20) 1V 9,)(0V 9, /0us) + L/ K)OK/ous) =0 on Uls,) .
Solving (2.20), we get
(2.21) V9, = CIK,

where C = C(u,, u,) is a function of class C* on Ul(e,).
Thus, from (2.18) and (2.21), we get

vol (V,) = SVG M = S ’S rol? SG(C/K)dulduzdus

—egl2 J—ep/2 JO
= a(e)'G, for any G>0,
where
o= Min C/IK>0.
—eolzs:;-:’gzswz

But, this contradicts (2.19). Thus we have the following

LEMMA 2.2. If vol(M,g) is finite, them, for each point xe W,
S = 2K 13 constant along 7,(s8), —co <8< oo,
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3. Proof of Theorem B. In the sequel, we shall assume that
vol (M, g) is finite and rank R' is at most 2 on M and rank R' =2 at
some point of M. From Lemma 2.2, H=0 on W, Let V= {re W,
f(x) = 0}. Now, we assume that V= @. Let V, be one component of V.
H = H(E) = 0 implies D(E): = —4C,(E)C(E). Put cos20(E) = K(C(E) +
C(E))/f and sin 20(E) = KD(E)/f. Define (E*) by E} = E, and

E¥ = cos (E)E, — sin(E)E, ,
E} = sin 6(E)E, + cos 0(E)E, .
Then we have D(E*) =0. Furthermore, for (E) and (E’), we have
*(E) = +=E*(E') and EX(E) = =E*(E'). H=0 and D(E*) =0 imply
C(E*)C(E*) = 0. So we can assume that Cy(E*) = 0 (otherwise, change
(E*, E}¥, E¥)— (E¥, —E*, E})). Then we get
(3°1) By # 0, Bi*m:B;m:Bé*az:Or

where
3
VE1*EJ~* = kz“—l B;-*jk Ek* .

R(E¥, EXY)E¥ = 0 implies

3.2) EfB*, =0.
R(E}, EX)Ey = 0 implies B¥, = 0 and

3.3) E¥Bty + B¥uBfs, =0.
R(E}¥, E})E}* = — KEY implies

(3.4) E}BY, + (Bftw) = —K.

By By; = 0, each trajectory of Ey is a geodesic. Put h = BY, and
F = (E*f)*. Then F is a function of class C*” on V,. From Lemma 2.2,
and (3.3), we get

Es*(Ex*f) = EX(Ef) + [Ea*: Et*]f
= — B} (EXf) = f*h, i.e.,
(3.5) d(E¥*f)/ds = f*h, along 7.(s), zeV,.

From Lemma 2.2, for each point ze V,, 7,(s)e V;, —oo< 8 < oo,
Taking account of (3.2) and solving (3.5), we get

3.6) . F = (f(x)’h(x)s + ¢)*, along 7,(8), —oo <5< o0,

where ¢ is constant along 7,(s).
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Let V* = {xe V,; h(z) # 0}. From (3.4), we see that V* = @. Let Vi*
be one component of V*. Then, by (38.2), we see that, for each point
ze V', 7.(s)e V', —o <8< . For each point € V*, consider 7,(s).
Let z, = 7,(—c/f(x)*h(x)) in (3.6).

Then we have

(3.7) F=((f"h)yw;+ k), on V(,o)NV},

where k = k(u,, u,) is a function of class C~ on V(e ) N V;* such that
(0, 0) =0, and V(e d) is a local coordinate neighborhood with origin at
2, constructed by the similar fashion as in § 2. From (8.7), by applying
the similar arguments as in the proof of Lemma 2.1, to the function F
instead of K, we can construct a local coordinate neighborhood

Ue*) = {T*(uy, Uy us) € V5¥; (wy, ) € (—€*, €¥),, —c0 < Uy < o0},

with origin at z, such that F = ((f*h)u,)* on U(c*), where &¢* > 0, and ¥*
is a mapping of class C~ defined by the similar way as ¥ in §2. For
any G>0, let V& = (T*(u,, Uy, us) € U(e*); (uy, u,) € (—e*/2, €*/2), 0 <u; < G}.
From Lemma 2.2, and (2.5), we have div E;* = 0. Thus, we can see that
if G— oo, then vol(V{)— . But, this is a contradiction. Thus, we
can conclude that f =0 on W, and hence T, is integrable on W,. Thus,
T, and T, are parallel on W(cf. S. Tanno [7]). If W is dense in M, the
restricted homogeneous holonomy group of (M, g) is reducible. If W is
not dense in M, then the interior of the complement of W in M is flat.
Hence, also in this case, the restricted homogeneous holonomy group of
(M, g) is reducible. Lastly, if rank R*' =0 on M, then (M, g) is flat.
Therefore, this completes a proof of Theorem B.

From our arguments in this paper, we can also show the following

THEOREM C. Let (M, g) be a complete and simply connected 3-dimen-
stonal Riemannian manifold satisfying (x). If the volume of (M, g) is
finite, then (M, g) is isometric to a 3-dimensional sphere.
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