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1. Introduction. Let (ikf, g) be a Riemannian manifold. By R we
denote the Riemannian curvature tensor. By TX(M) and Exp^ we denote
the tangent space to ikf at x and the exponential mapping of (ikf, g) at x.
For X, Ye TX{M), R(X, Y) operates on the tensor algebra as a derivation
at each point x e ikf. In a locally symmetric space (VJB = 0), we have

(*) R{X, Y).R = 0 for any point x e M and X , Ye TX(M) .

We consider the converse under some additional conditions.

THEOREM A (S. Tanno [8]). Let (ikf, g) be a complete and irreducible
3-dimensional Riemannian manifold. If (ikf, g) satisfies (*) and the
scalar curvature S is positive and bounded away from 0 on M, then
(M, g) is of constant curvature.

Other results concerning this problem may be found in references.
In this paper, we shall prove

THEOREM B. Let (M, g) be a complete and irreducible Z-dimensional
Riemannian manifold satisfying (*). // the volume of (ikf, g) is finite,
then (ikf, g) is of constant curvature, and hence, VR = 0.

COROLLARY B. Let (ikf, g) be a compact and irreducible Z-dimen-
sional Riemannian manifold satisfying (*). Then (M, g) is of constant
curvature.

It may be noticed that (*) implies in particular

(**) R(X, Y) R1 = 0,

where Rx denotes the Ricci tensor of (ikf, g) .

In this paper, (M, g) is assumed to be connected, complete and of
class C°° unless otherwise specified.

2. Preliminaries. Let (ikf, g) be a 3-dimensional Riemannian mani-
fold. Assume (*). dim ikf = 3 implies

(2.1) R(X, Y) = RιX ΛY+ XΛRΎ- (S/2)X A Y ,
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where

g(RιX, Y) = RJίX, Y) and (X A Y)Z = g(Y, Z)X - g{X, Z)Y .

Let {Kl9 K2, KB) be eigenvalues of the Ricci transformation Rι at a point
x. Then (*) is equivalent to

(2.2) (Kt - Km*i + Kj) - S) = 0 .

Therefore we may have only three cases:

(K, K, K) , {K, K, 0) , (0, 0, 0) at each point.

First, if (K, K, K), K Φ 0, holds at some point x, then it holds on
some open neighborhood U of x. Hence U is an Einstein space, and K
is constant on U and on M. Therefore (M, g) is of constant curvature
(cf. H. Takagi and K. Sekigawa [6]). From now, we assume that rank
R1 ^ 2 on M. Let W={xe M; rank R1 = 2 at x}. By Wo we denote one
component of W. On WOf we have two C°°-distributions 7\ and To such
that

2\ = {X; R'X = KX) ,

To = {Z; R'Z = 0} .

For X, Γ e 2\ and Z e Γo> by (2.1), we have

(2.3) R(X, Y) = KXΛY,
R(X, Z) = 0 .

This shows that To is the nullity distribution. Since the index of nullity
at each point of M is 1 or 3, the nullity index of (M, g) is 1. Thus
integral curves of To are geodesies (and complete if (M, g) is complete)
(cf. Y. H. Clifton and R. Maltz [2], etc.). Let (JSi, E%9 Ez) = (E) be a local
field of orthonormal frame such that E3 e To (consequently, El9 E2 e 7\)
and

VXtEt = 0 , i = 1, 2, 3 .

We call this (E) an adapted frame field. If we put VE.Ej = ΣιUiBiSkEk,
then we get Bij]e = —Bίkj and

(2.4) B5ij = 0, ί , i = l,2, 3 .

The second Bianchi identity and (2.3) give

(2.5) E3K + K(B131 + B232) = 0 , or

By (2.4) and #(#,, E,)E, = VBpBJEz - V^V^S, - V ^ . , ^ = 0, we get



RIEMANNIAN MANIFOLDS SATISFYING R(X, Y)-R = 0 563

(2.6) EZB1ZI + CB1 3 1)
2 + £ 1 3 2 J ? 2 3 1 = 0 ,

EzBιZ2 + ^i3i-Bi32 + B1Z2B2Z2 = 0 ,

EzB2Zι + i?23ii?i3i + B2Z2B2Z1 = 0 ,

EZB2Z2 + (B2Z2)
2 + B2Z1B1Z2 = 0 .

(2.5) and (2.6)2, (2.5) and (2.6)., (2.5) and (2.6)lf4 imply

(2.7) £ 1 3 2 = £ ( # ) # ,

(2.8) B1Z1-B2Z2 =

where C^E), C2(E) and 2)(i£) are functions defined on the same domain
as (E) such that EZC,{E) = £r

3C2(£r) = JE?8D(^) = 0.
By (2.5) and (2.8), we get

(2.9) 2BίZ1 = D(E)K - EzKjK .

Now, let Ύx(s) be an integral curve of To through x = Ύx(0) e Wo with arc-
length parameter s, i.e., Ύx(s) = Exτpxs(Ez)x. Then (2.6)^ (2.7) and (2.9) give

( ) M + ( , a l o n g Ί M ,

2 ds^K ds / 4 V.fiΓ ds I

where

j j = H(E) = D(E)2/A + CAtyCάE) .

(2.10) implies that H is independent of the choice of the adapted frame
fields (E). Solving (2.10), we get

(2.11) K = y , (for H = 0) , or

(2.12) K = ±l/((as - β)2 - HI a2) , (for HΦO) ,

where a, β and 7 are constant along Tx(s), a Φ 0.
With respect to our arguments, without loss of essentiality, we may

assume that M is orientable. Let (E) be any adapted frame field which
is compatible with the orientation. We call it an oriented adapted frame
field. Then we see that / = (C^E) - C2{E))K is independent of the choice
of oriented adapted frame fields, and hence / is a function of class C°°
on Wo. / = 0 holds on an open set Ua Wo, if and only if 2\ is integrable
on U. This is a geometric meaning of /. In the sequel, we assume that
the volume of (M, g) is finite. We can see that H = H(E) = D(E)2/4 +
CJiE)CJiE) is a function of class C°° on Wo. Let W{H) = {xe Wo; HΦO
at x}. We assume that W(H) Φ 0 . Let W(H)0 be one component of
W(H). By (2.12) and completeness of (ikf, g), H must be negative on
W(H\. For each point x 6 W(H)0, consider Ύx(s). Then Ύx(s) e W(H)0,
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for all s. Let x, = Ίx(βla). For {Ex)XQi (E2)XQe T^Xo), there exists a 2-
dimensional submanifold, {φ(uίf u2)e W(H)0; {uu u2)e(-ε, ε)2, ε > 0}, such
that φ(0,0) = x0 and (dφ/duJiO, 0) = ( J ^ , (dφ/du2)(0,0) = (E2)ZQ. Now, we
define a mapping

Φ : ( - ε , ε ) 2 x ( - δ , δ ) - TΓ(ίΓ). by

(2.13) Φ(uίf u2, w3) = E x p ^ , ^ , ^3^3, for some δ > 0 .

Then Φ is of class C°° and furthermore, for small ε, δ, V(ε, δ) =
{Φ(uu u2, w3)e W(H)0; (uu u2, wz)e (—ε, ε)2 x (—δ, δ)} is a local coordinate
neighborhood with origin at x0. In F(ε, δ), by (2.12), we get

(2.14) K = ±l/((iiw. - B)2 - H/A2) ,

where A and B are functions of class C°° on F(ε, δ) such that dA/dw3 =
3£/3w3 = 0 on V(ε, δ) and A = a, B = 0 at a?0.

By continuity of A and JS in (2.14), there is ε0, 0 < ε0 < ε such that
-a/4 < B/A < a/4, for (^, u2) e (-ε0, ε0)

2.
Now, we define a mapping ψ : (—ε0, ε0)

2—> V(ε, δ) by

(2.15) ψ(u19 u2) = Exp ί P ( l ί l , tt2) ( β ^ , u2)/A(ulf u2))E3 .

And furthermore, we define a mapping f: (—ε0, ε0)
2 x (—δ0, δ0)—> F(ε, δ)

by

(2.16) Ψ(uu u2, u3) = E x i v u ^ , ^ # 3 , δ0 = δ/4 .

Then Ψ is of class C°° and

ϋ(e0, *o) = W(u» u2, u3) e V(e, δ); (uu u2, u3) e (-ε 0, ε0)
2 x (-δ 0 , δ0)}

is a local coordinate neighborhood with origin at x0.

Between wz in F(ε, δ) and uz in ?7(ε0, δ0), the following relation holds:

(2.17) wz = u3 + B/A , in U(εQ, δ0) .

Thus (2.14) and (2.17) imply

(2.18) K = ±1/((A^3)
2 - HI A2) , on U(ε0, δ0) .

Let 7(ulf u2) be the integral curve of To starting from ψ(uu u2),
(ulf u2)e(-ε0, ε0)

2, i.e., Ύ(uu u2)(s) = Exp^(tt l, t t2) sE3. Then, in U(ε0, δ0), uz

can be considered as the arc-length parameter of Ύ(ulf u2). We put
L(ulf u2) = {Ύ(UU u2)(s)e M; — oo < s < oo}. Since dim To — 1, taking ac-
count of (2.12) and (2.18), we can see that Ύ(ulf u^fa) Φ 7(uί9 u2)(s2) for
s, Φ s2. From (2.12) and (2.18), dK/ds = 0 for s = 0 and otherwise dK/ds Φ 0
along L(ulfu2), for any (ulf u2)e (—ε0, ε0)

2. Thus, we can see that if
(ulf u2) Φ {yu v2), (ulf u2), (vlf v2) G (-ε0, ε0)

2, then L(ulf u2) Π L(vlf v2) = 0 .
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Now, we put

U(ε0) = {Ψ(u19 u2, uz) e M; (ul9 u2) e ( -ε 0 , ε0)
2, - oo < u3 < 00} ,

where Ψ denotes an extension of Ψ defined by

Ψ(uu u2, u3) = Exp^(wi,W2) u3Es, on (-ε 0, ε0)
2 x (-00, 00) .

Then, from the above arguments, we have the following

LEMMA 2.1. U(e0) is a local coordinate neighborhood with origin at

XQ

For any G > 0, we put

VG = {Ψ(uu u2f wa) e ?7(ε0); {uu u2) e (-εo/2, εo/2)2, 0 < u3 < G} .

Then VGc U(ε0). Let vol (M, g) and vol (VG) denote the volumes of (M, g)
and the open subspace VG of (M, g), respectively. Then, by the assump-
tion, we have

(2.19) vol (VG) < vol CM, g) < oo , for any G > 0 .

On the other hand, since Ez = d/duz on Z7(ε0), we have

div Ez = (l/VΊΓoWVΊΓo/dus) on U(ε0) ,

where

g0 = det {gi5) , gid = ^(3/3^, d/duj) , i, i = 1, 2, 3 .

Thus, by (2.5), we get

(2.20) (l/VY0)(dVY0/du3) + (l/K)(dK/drit) = 0 on ?7(ε0) .

Solving (2.20), we get

(2.21) Wo = C/K ,

where C = C(^, u2) is a function of class C°° on Z7(ε0).
Thus, from (2.18) and (2.21), we get

S f eo/2 f εo/2 f(?

dΛf= \ \ (C/K)dUldu2du3

VG J-eO/2 J-e o/2 JO

^ α(εo)
2G, for any G > 0 ,

where
α = Min C/K > 0 .

-εo/2^it1,M2^eo/2

Wg=0

But, this contradicts (2.19). Thus we have the following
LEMMA 2.2. // vol (Λf, g) is finite, then, for each point xe W,

S = 2K is constant along Ύx(s), -co < s < oo.
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3. Proof of Theorem B. In the sequel, we shall assume that
vol (ikf, g) is finite and rank JB1 is at most 2 on M and rank R1 = 2 at
some point of M. From Lemma 2.2, H = 0 on WQ. Let V = {x e T70;
/(#) =£ 0}. Now, we assume that V Φ 0. Let VQ be one component of V.
H = H(E) = 0 implies D{Ef = -±CJίE)C%{E). Put cos 2Θ(E) = K{C,{E) +
C2(E))/f and sin 2Θ(E) = KD(E)/f. Define (£7*) by #3* - E3 and

£f • = cos θ(E)Ei - sin ̂ (£r)Er

2 ,

# * = sin ̂ (£r)£r

1 + cos Θ{E)E2 .

Then we have D(E*) = 0. Furthermore, for (E) and (£"), we have
E*(E) = ±E*(E') and E2*(E) = ±E2*(E'). H=0 and D(E*) = 0 imply
CάE^CtiE*) = 0. So we can assume that ^(E'*) = 0 (otherwise, change
(E*, JSi , E2*)-+(E2*, -E?, En)- Then we get

(3.1) Sf 32 ^ 0 , Btzι = Btt, = B?Z2 = 0 ,

where

*, £'3*)£'2* = 0 implies

(3.2) EfB?* = 0 .

i2(^*, Ef)E3* = 0 implies £?21 = 0 and

(3.3) Et B?Λ + S1*21β1*32 = 0 .

R(E?, E2*)E,* = -KE? implies

(3.4) E?BϊΛ + {Bΐar=-K.

By 52*<y = 0, each trajectory of E? is a geodesic. Put fe = J3f21 and
F = (Effγ. Then F is a function of class CΓ on Vo. From Lemma 2.2,
and (3.3), we get

EfiEff) = E?{E?f) + [̂ s*, E1 ]f
= -BUE2*f)=f*h, i.e.,

(3.5) diEffVds = fh , along 7.(β) , a; 6 F o .

From Lemma 2.2, for each point xe Vo, Ύx(s)e Vo, — ° o j < s < °°.
Taking account of (3.2) and solving (3.5), we get

(3.6) . F = (f(xYh(x)s + cf , along γ.(β) , - °o < s < oo ,

where c is constant along Ύx(s).
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Let V* = {xe Vo; h(x) Φ 0}. From (3.4), we see that V* Φ 0 . Let Vo*
be one component of V*. Then, by (3.2), we see that, for each point
xe V*, Ύx(s)e V*, — °o < s < oo. For each point xe Fo*, consider Ύx(s).
Let xQ = Ύx(-c/f(x)2h(x)) in (3.6).

Then we have

(3.7) F = ((f2h)wz + k)2 , on V(e, δ) n Fo* ,

where Λ = k(uί9 u2) is a function of class C°° on F(ε, δ) Π Fo* such that
fc(0, 0) = 0, and F(ε, δ) is a local coordinate neighborhood with origin at
x0 constructed by the similar fashion as in § 2. From (3.7), by applying
the similar arguments as in the proof of Lemma 2.1, to the function F
instead of K, we can construct a local coordinate neighborhood

U(e*) = {y*K, u2, O e Vo*; (uu u2) e (-e*, ε*)2, - - < u> < -} ,

with origin at x0 such that F = ((f2h)uzf on Z7(ε*), where ε* > 0, and F*
is a mapping of class C°° defined by the similar way as Ψ in § 2. For
any G>0, let F<? - flPfa, w,, ^3)e J7(ε*); (wlf ^2)e (-ε*/2, ε*/2)2, 0<u 3 <G}.
From Lemma 2.2, and (2.5), we have div E3* = 0. Thus, we can see that
if G—*°o, then vol (V*) —* °°. But, this is a contradiction. Thus, we
can conclude that / = 0 on Wo and hence Tt is integrable on Wo. Thus,
Tt and Γo are parallel on W0(cf. S. Tanno [7]). If W is dense in M, the
restricted homogeneous holonomy group of (M, g) is reducible. If W is
not dense in M, then the interior of the complement of W in M is flat.
Hence, also in this case, the restricted homogeneous holonomy group of
(M, g) is reducible. Lastly, if rank R1 = 0 on M, then (M, g) is flat.
Therefore, this completes a proof of Theorem B.

From our arguments in this paper, we can also show the following

THEOREM C. Let (M, g) be a complete and simply connected 3-dίmen-
sίonal Rίemannίan manifold satisfying (*). If the volume of (M, g) is
finite, then (M, g) is isometric to a ^-dimensional sphere.
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