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1. Introduction. We shall exhibit two series of non-homogeneous
isoparametric hypersurfaces in spheres in this paper, and then give a
classification of some types of isoparametric hypersurfaces in a forthcoming
paper.

We begin with a few definitions and notations to explain our results
more precisely. Let M be a Riemannian manifold with metric (,). The
induced inner product on cotangent vectors is also denoted by (,). A
differentiable function f defined on an open set U in M is called iso-
parametric if df Ad(df,df) =0 and df Ad(4df) =0, where 4 denotes
the Laplacian on M. A hypersurface M (a submanifold of codim 1) in
M is called isoparametric if, for each point » of M, there exist an open
neighborhood U of p in M and an isoparametric function f defined on U
such that

UnNnM=1{qgeU|fl9) = f(»)} .

Let #={M,|teI} be a family of hypersurfaces in M parametrized by
an open interval I. 7 is called a family of isoparametric hypersurfaces
if there exist an open set U in M and an isoparametric function f on U
such that M, = f~'(t) for each t€l. Two families #= {M,|te I} and
S = (M} |t'eI'} of isoparametric hypersurfaces in M are identified if
there exists a diffeomorphism @ of I onto I' such that M, = M,, for
each tel. Also, if we have an imbedding @ of I into I' such that
M, c M, for each tc I, then we write Ac 7.

Now, let M = S** be the unit sphere in an N-dimensional Euclidean
space RY centered at the origin, and M a locally closed hypersurface in
M. M is said to be homogeneous if a suitable subgroup of O(N) acts
transitively on M where O(N) denotes the real orthogonal group of R”.
It is known that M is isoparametric if and only if M has locally constant
principal curvatures (Cartan [2]). Thus, every homogeneous hypersurface
in 87! is isoparametric. Two hypersurfaces M and M’ in S** are said
to be equivalent if a suitable orthogonal transformation of R" transforms
M onto M'. Similarly, two families of isoparametric hypersurfaces in
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SYt are equivalent if a suitable orthogonal transformation of R" trans-
forms one to the other.

The following results are due to Miinzner [5]. For every connected
isoparametric hypersurface M in S"!, there exists a unique maximal
(relative to the above order ) family % = {M,|te I} of isoparametric
hypersurfaces in S** such that each M, is closed in S** and for some
t M is an open submanifold of M,. If M and M’ are equivalent, then
Y and _%;, are equivalent in our sense. Further the classification
problem of such maximal families is reduced to an algebraic one in the
following way. Let F be a homogeneous polynomial function of degree
g on R¥. For g> 2, let m, and m, be positive such that m, + m, + m, +
My + «o+=N—2, and let m, =N —2>0 for g =1. Assume F satisfies

{ (dF, dF) = g*r**
AF = ¢r'?

where ¢ = (1/2)(m, — m,)g* for ¢ =2 and ¢ = 0 for g = 1 and where r is
the radius function and 4 is the Laplacian on RY. Then the restriction
fof F to S¥* is isoparametric on S"*, and % = {M, = f~'(t) | te (—1, 1)}
is a maximal family of isoparametric hypersurfaces in S”' such that
each M, is connected and closed. Conversely, any maximal family of
isoparametric hypersurfaces in S¥! is given in the above way. Such
two families % and %, are equivalent if and only if there exists an
element ¢ in O(N) such that
F(o™x) = = F'(X) xe RY .

In this case, F' and F” are said to be equivalent. Miinzner also has shown
that the above (M) has a solution only if g =1,2 8,4 or 6 and that
m,=m, if g is 3.

Geometrically, the above integers g, m, and m, are related to each

isoparametric hypersurface M, as follows. Consider the unit normal
vector field X, = grad (f)/(df, df)"* for each M,. Let

k1(t) > e > kv(t)(t)

be the distinct principal curvatures of M, relative to X,, and m (t) the multi-
plicity of k;(t) for each j. Then g(¢t) and m;(t) are constant, and we have

(M)

g=9(@),
my = my(t) = my(t) = ---,
my, = mz(t) = m4(t) = ...,

k;(t) = cot (T(ll— {(G— )z + cos"‘(t)}>
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for j=1,2, ..., 9.

We come to the problem of classifying equivalent classes of polynomials
F satisfying the above condition (M). In the case where g=1or g =2
it is easy. Cartan solved it in the case g =3 ([3]) and proposed a
problem: Isevery closed isoparametric hypersurface in S”~—! homogeneous?
Recently, Takagi [6] classified the case where g = 4 and m, or m, =1,
and his result still shows that the obtained ones are homogeneous.

In the present paper I, we shall investigate a homogeneous polynomial
function F satisfying the differential equations (M) of Miinzner in the
case g = 4. To such an F, we associate m, + 1 quadratic forms {p,} and
m, + 1 cubic forms {q,} in m, + 2m, variables, and give a complete
characterization of F in terms of {p,} and {q.,} in Theorem 1. TUsing
this, two series of non-homogeneous isoparametric hypersurfaces in spheres
will be constructed in Theorem 2.

The polynomial functions F defining them are given explicitly as
follows. We denote by F the real quaternion algebra H or the real
Cayley algebra K, and by u— % the canonical involution of F. For the
n-column vector space F* over F, the canonical inner product is denoted
by (,). For each positive integer r, the space F**Y can be identified
with RY where N = 8(» + 1) or 16(» + 1). For a point x = u X v€ F'*' X
Frit = Fz(r+1)’ we set

where w,, v,€ F, u,, v,€ F'. Then we put
Fou x v) = 4]t []* — (u, v} + {ll . |* = || 0 [I* + 2(0, v5)}*
where || || denotes the length of a vector, and
F=q"—2F,.

Then M, = {xe S" | F(x) = t} for each ¢ in (—1, 1) is isoparametric and
its multiplicities m, and m, are given by

m, =3 and m,=4r
or

m, =7 and m,= 8r

respectively according to F = H or K.

The homogeneous isoparametric hypersurfaces in spheres have been
classified by Hsiang-Lawson [4]. In Part II, we shall give an explicit
form of F for each of them, and classify the polynomials F' satisfying



518 H. OZEKI AND M. TAKEUCHI

the condition (M) in the case where g = 4 and m, or m, = 2. It will be
shown that every closed isoparametric hypersurface in this case is homo-
geneous.

We thank Prof. T. Takahashi and Prof. R. Takagi for many helpful
discussions.

2. Preliminaries. First we introduce a few notations for operations
on polynomial functions and give some of their elementary properties.
These notations and properties will be used consistently throughout our
papers I and II.

Let R" be an n-dimensional Euclidean space with inner product (,)
and r the radius function of R*. The induced inner product on the dual
space is also denoted by (,). For any polynomial functions f and g on
R", we denote by <{f, g> the polynomial function on R* defined by

(2.1) fr @) = ((AS). (d9).) zeR".
The mapping (f, g) — {f, g> is bilinear and symmetric, and also satisfies
(2‘2) <fy g1gz> = <f, g1>gz =+, <f; g2>gl .
Let {z,, ---, z,} be an orthonormal coordinate system for R*. Then {f, g)
is equivalently defined by
(2.3) frop=32L00

i=1 0x, 0,

Especially, for a homogeneous polynomial f of degree k¥ on R", and for
any positive integer I we have

(2.4) (r®, fY = 2klfr*dn
We denote by 4 the Laplacian on R", that is,

n az
2.5 4=
®9) 2 oy
Then, for any positive integer k, we have
(2.6) Ar* = 2k(n + 2k — 2)r** 0,

Let V be a linear subspace of R". We introduce the restriction
forms of {,) and 4 as follows. Let W be the orthogonal complement
of V so that we have R*" = V¢ W (orthogonal decomposition). Choose
orthonormal coordinate systems {v;} and {w;} for V and W respectively.
Then any polynomial functions f and g on R" can be expressed as poly-
nomials in variables {v;} and {w;}. We put
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_ s Of og
@7 Sow=ngL L
and
_ o°f
(2.8) 4yf = zi] oy

They are determined independently on the choices of coordinate systems,
and sometimes they will be also denoted by {f, 9>, and 4,,,f. From
the definitions it follows that, for an arbitrary orthogonal decomposition
R"= V& W, we have

(2.9) Frg =L, Ov + LS, Ow
and
(2.10) Af = 4dyf + 4yf .

Let f be a polynomial function on R*, and V a linear subspace of
R". f is said to be homogeneous of degree k on V if f is homogeneous
of degree k& with respect to the variables {v,} in the expression of f as
a polynomial in {v;} and {w,}.

Let V be a linear subspace of R*. Every polynomial function f on
V can be considered also as a polynomial function on R™ canonically
through the orthogonal decomposition R* = V@ W. By this identification,
it follows that for polynomial functions f and g on V we have

(2.11) Sy v =L, 9
and
(2.12) dyf = 4Af .

Finally, for a quadratic form f on R", we define a symmetric linear
mapping 7(f) of R* by

(2.13) ((f)z), &) = flx, 2) xz, 'e R

where f is considered in the usual way as a symmetric bilinear form on
R*. The correspondence f— 7(f) is one to one from the set of quadratic
forms on R" onto the set of symmetric linear mappings of R".

For quadratic forms f and g on R*, we have

(2.14) (S, 97) = 20(F)m(9) + n9n(f)) ,
and especially
(2.15) (S, ) = 4m(f)) .

Furthermore, we have



520 H. OZEKI AND M. TAKEUCHI

(2.16) 4Af = 2Tr (9(f)) -

They can be verified easily.
Now, let S** be the unit sphere in R" centered at the origin. We
need the following preliminary lemmas.

LEMMA 1. Let F be a homogeneous polynomial function of degree g
on RY satisfying

(F, F)=gr¥*,

Then the restriction f of F to S is simgular at a point x of S¥*
if and only if

@r), = £(dr?), .

ProOF. By definition, f is singular at « if and only if (df), = 0.
Note that a tangent vector X in T,(R") is contained in T,(S"?) if and
only if

(dr).(X)=0.
Thus, (df), = 0 if and only if
@F), = c(dr’).

for some constant ¢. Since (dF, dF) = {F, F) = (dr’, dr’) from our
assumption, we see that (df), = 0 if and only if

@F), = £(dr?), . q.e.d.

LEMMA 2. Let F be as in Lemma 1. Then the restriction f of F
to S"! ranges from —1 to 1 unless it is comstant, and f is singular at
a point x of S¥ ' if and only if F(x) = x1.

PROOF. Let 2 be a point of S¥* and choose an orthonormal coordinate
system {u,, -+, uy_,, 2} such that z(x) =1and u(x) =0 for ¢ =1,2, ...,
N —1. We expand F as a polynomial in z as

F=a2" +az "+ -+ +a,

where a, is a homogeneous polynomial of degree % in u,, +--, uy_,. We
have

@F). = (Lo, + 3 (&) @)au.

Uy

= gadz), + 3 (2 )@)duo.

WUy

and
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(dr), = g(r'* rdr), = g(dz). .

First suppose that f is singular at x. Then, by Lemma 1 we have
(@F), = +(dr’),, and hence a, = +1. This shows F(z) = a, = *+1.
Conversely, suppose F(x) = *+1, i.e.,, ¢, = 1. We have

(F, F)@) = (@F).,, @), = ¢ai + 5, ((52)@)
=+ 5 ((55)a) -

Since (F, F) = g*r*~* (F, F)(x) = g°, and hence we have (0F/ou,)(x) =0
for 1=1,2, ..., N— 1. Thus, we have (dF), = *+(dr’),, and hence f is
singular at « by Lemma 1.

We have proved the latter assertion in Lemma 2. The former
assertion follows from the latter since S¥! is compact. q.e.d.

LEMMA 3. Let F be as in Lemma 1, and put
28 iy
F = Za’u iy L oeee )
where {x,, -+, Xy} 18 an orthonormal coordinate system for RY. Assume
that the degree g is even and F satisfies

k 9/2
Flapmrmeymo = (3 01) -
1=

Then we have
alil...,;N = 0
whenever 4, + -+ + 1, =g — 1.

PrROOF. Put F = 3 F, where F, is the homogeneous part of degree
h in the variables x,, .-, 2,:

— Z i in
Fh —_ ail---ilel cee Uy .
iy eestip=h

The assumption says F, = (3 k., 2¥)%. We shall show F,_, = 0. Put
G=F,,+ -+ +F,,

so that we have
F=F,+F,_,+@G.

Now, we have

oF k . (g/2)—1 aF, . aG
.(t 1wl> + ox; ax-
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for i=1, ..., k, and

oF _oF,., , 26
axj axj axj

for j=k+1, --., N, and hence

FF) = g‘( > * ,;;v‘h(ax)z
- FL{ (Ze) () + (5
o () (B4 ) 0 )
ﬂii(%" ) Go)

On the other hand, we have

k N g—1
<RF§=¢Wﬂ=g<§M+.Zﬂ® :

i=k+

Comparing the homogeneous terms of degree 2¢g — 2 in the variables

x,, +++, ¥, in the above two equations, we get
5, (Ze=y =0,
iZEr\ 0x;
and hence
oF,_, _ for j=k+1,---,N.
axj
Since F,_, is linear in ., +--, ¥y, we have F,_,=0. This proves
Lemma 3. q.e.d.

3. Reductions. From now on we shall concern with isoparametric
hypersurfaces in S¥! with 4 distinet principal curvatures. So we in-
vestigate a homogeneous polynomial function F' of degree 4 on R” satisfy-
ing (F, F) = 16r* and 4F = 8(m, — m,)r’. These two equations will be
replaced by equivalent ones step by step, and in the latter part of this
section two families {p,} and {g,} of polynomials will be associated to F'
on a suitable coordinate system. Our first purpose is to give a complete
characterization of such an F in terms of {»,} and {¢,} (Theorem 1 in
§ 4).

Let m, and m, be two positive integers such that N = 2(m, + m, + 1),
and F' a homogeneous polynomial function of degree 4 on R* Consider
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the following two conditions on F
3.1) (F, F) = 167°,
3.2) AF = 8(m, — m)r* .
As a first step of reductions, we choose a unit vector ¢ in R* such
that the restriction f of F to S¥' takes its maximum at the point e.

Let X be the orthogonal complement of the 1-dimensional subspace Re
so that we have

(3.3) R" = X® Re .

Let z be the coordinate function on Re defined by z(¢) =1 and {x,, ---,
xy_,} an orthonormal coordinate system for X.

LEMMA 4. Assume that F satisfies (3.1) and (3.2). Then, F can be
written wn the form

(3.4) F=2z+ A2+ Bz + C

where A, B and C are homogeneous polynomial functions on X of degree
2, 8 and 4 respectively, and A, B and C satisfy the following equations
(1-1)~(1-8) listed below. Conwversely, assume that a homogeneous poly-
nomial function F of the above form (3.4) is given with A, B and C
satisfying (1-1)~(1-8). Then F satisfies (3.1) and (3.2).

1-1) (A, A + 164 = 48(2 xf)
(1-2) (A, By +4B =0

(1-3) (B, B + 2(4, C + 44* = 48(2 x>
(1-4) (B, C> + 2AB = 0

(1-5) (C,C) + B = 16(2’ x)

(1-6) 4A + 12 = 8(my — m,)

1-7) AB=0

(1-8) AC + 24 = 8(m, — m)(”f; xz) .

PrOOF. Assume that F satisfies (3.1) and (38.2). We first remark
that the restriction f of F' to S¥* is not a constant. In fact, suppose
that f is a constant ¢ on S¥'. Then we have F' = ¢r‘. Since {F, F') =
167°, we have ¢ = =1. On the other hand,
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AF = cdr* = ¢(8 + 4AN)r* = 8(m, — m)r*.
Hence, +(8 + 4N) = 8(m, — m,). It follows that m, = —1 or m, = —1.
This is a contradiction.
By Lemma 2, we have F(¢) = 1. By the choice of coordinates, we
have
Flocayy=o = @)
Applying Lemma 3, we see that F' has the form
F=z+A42"+ Bz + C

where A, B and C are homogeneous polynomials in x,, +--, y_, of degree
2, 3 and 4 respectively. We write (3.1) and (8.2) in terms of A, B and
C. We have

F, Fy = (3L) +<F, F)x
= 162° + 4A4°2* + B* + 16Az* + 8Bz* + 44ABz + (F, F'),
= 162° + (164 + {4, A))z* + (8B + 2{A4, B))z*
+ (44° + (B, B) + 2(A4, C))z* + (4AB + 2{B, C))z
+ B*+(C, C>),
and
167° = 16(2* + 3 x2)°
= 162° + 48(3] x2)z* + 483 x3)*%* + 16(3. xi)* .
Comparing the coefficients of z* for each %, we see that (3.1) is equivalent
to (1-1)~(1~5) as a whole.
Next, we have
AF = 4, F + 44 F
= 122 + 2A + (4xA)z* + (4xB)z + 4;C,
and
8(my — m)r* = 8(m, — m)(Z* + >, x) .

Hence, (3.2) is equivalent to (1-6)~(1-8). Thus, we have the first asser-
tion of Lemma 4.
The converse follows clearly from the above argument. q.e.d.

LEMMA 5. Let A be a quadratic form on X satisfying (1-1) and
(1-6). Then, X has a unique orthogonal decomposition

(3.5) X=Y®OW
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with dim W = m, + 1 such that A has the form
(3.6) A= 2( > yf-> - 6( py wz)

where {y;} and {w,} are orthonmormal coordinate systems for Y and W
respectively, and m = m, + 2m,. Conversely, if A is of the above form
with respect to an orthogonal decomposition X = Y P W with dim W =
m, + 1, then A satisfies (1-1) and (1-6).

PROOF. We denote by A the symmetric mapping 7(A) of X associated
to A. Then (1-1) and (1-6) are equivalent to

(1-1y (A + 44 — 121, =0
and ’
1-6)’ Tr (A) = 4(m, — m,) — 6

respectively, where 1; denotes the identity mapping of X. Assume (1-1)
and (1-6). (1-1) shows that an eigenvalue of A is 2 or —6. Decompose
X into the eigenspaces:
X=YpW

where Y and W are the eigenspaces for the eigenvalues 2 and —6
respectively. This is an orthogonal decomposition since 4 is symmetric.
From (1-6) it follows that dim Y = m, + 2m, and dim W =m, + 1. This
shows our first assertion. The converse is easily seen. q.e.d.

LEMMA 6. Assume (1-1) and (1-6) for A. Then, B satisfies (1-2)
if and only if B is homogeneous of degree 2 on Y and of degree 1 on
w.

PRrROOF. Write
B=3SB,
h=0

where B, is the homogeneous part of degree & on W and hence of degree
8 —h on Y. Consider (1-2). Since A =23 ¥ — 6(C w?) by Lemma 5,
we have
(4, B) + 4B

= (4, B)y + {4, B), + 4B

= 239}, B)y — 6 wi, B)w + 4B

= 2(2B, + 4B, + 6B,) — 6(6B; + 4B, + 2B,)

+ 4(B; + B, + B, + By)
= —32B, — 16B, + 16B, .
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Thus (1-2) is equivalent to B;=0, B,=0 and B,=0. This shows
Lemma 6. q.e.d.

Hereafter we assume (1-1), (1-6) together with (1-2). The orthogonal
decomposition X = Y@ W in Lemma 5 gives us the second reduction.
Let {y;} and {w,} be orthonormal coordinate systems for ¥ and W respec-
tively where j runs from 1 to n = m, + 2m, and «a runs from 0 to m,.

In view of Lemma 6, we can define m, + 1 quadratic forms p, «:-, Dn,
on Y by
3.7) B=8S paw,.

a=0

For C, we put
4

(3.8) C= ;,Z‘ C,
where C, is the homogeneous part of degree & on W and hence of degree
4—h on Y, and we define m, + 1 cubic forms ¢, -+, ¢, on Y by
(3.9) C, =83 qw, .

LEMMA 7. The equation (1-3) holds if and only if we have
(i) C.=(Cwi,
(ii) G =0,
(i) G =235 {Pu PeOWWs — 6(3 Y72 w5),
(iv) G =) — 23 pa.
ProoF. Recall (1-3):
(B, B) + 2{4, C) + 4A* = 48(3, x?)?*.
We have
4A° = 4{2(3 y)) — 6(X wa))?
= 4.36(3 wi)’ — 96(3 yH(X wi) + 16(X 3)°
{B, B) ={B, B)y + {B, B)y
= 64 Eﬁ‘. (Pay De)WWs + 64 3, D,
2(A, C> = 2(A, C)y + 2{A, C>y
= K3y}, 26 — 123 wi, 3G
= 8(C; + 2C, + 3C, + 4C,)
= —96C, — 64C, — 32C, + 32C,
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and

48(3] «%)* = 48(3 wa) + 96(X ¥ wi) + 48(X v3) .
Summarizing their homogeneous terms, (1-3) is equivalent to
4-36(3 wi)’ — 96C, = 48(> we)* ,
""6403 = 0 ’
—96(> ¥ wi) + 64 3 {Pay PYWws — 32C, = 96(X ¥))(X w2) »
16(3 w2 + 64 3, pi + 32C, = 48(X v .
Now Lemma 7 follows. q.e.d.

REMARK 1. By Lemmas 4, 5, 6 and 7, it follows that the polynomial
function F can be constructed uniquely from {p.} and {g.}.

Our {p.} and {g.} associated to F' depend on the choice of ¢ in S"*
such that F(e) = 1 and on the choice of an orthonormal coordinate system
{w,} for W. Let F" be another homogeneous polynomial function of degree
4 on R” satisfying (3.1) and (3.2). Choose ¢’ in S** and {w.} for W’ in
the same way, so that we have {p.} and {q.} on Y’ associated to F".

We say that F' and F’ are O(N)-equivalent if there exists an element ¢
in O(N) such that

F'(x) = F(o7'x) for xe R .
Let V and V' be two finite-dimensional vector spaces over R. For a

linear isomorphism 7 of V onto V’, and for a polynomial function f on
V, we denote by zf the polynomial function on V' obtained by

@) = fz™) .
With these notations, we state the following two remarks for a later
use.

REMARK 2. Suppose that F' and F” are O(N)-equivalent by an element
o in O(N) such that o(e) = ¢. Then ¢ induces orthonormal transfor-
mations o,: W— W’ and o,: Y— Y'. By a suitable choice of {w.} for
W’, we have
OrDe = Doy Ovla = Qo

fora=0,1, ..., m,. Conversely, suppose that there exists an orthonormal
tansformation 7 of Y onto Y’ such that

D¢ = Pos»  TQa = o

for « = 0,1, ---, m;. Then F and F’ are O(N)-equivalent by an element
¢ in O(N) such that g(e) = ¢'.
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REMARK 3. Consider the case where the isoparametric hypersurface
in S defined by F = ¢ for some constant ¢ is homogeneous by a subgroup
of O(N). Then it follows that the singular submanifold

M, = {ze S F(z) = 1}

is also homogeneous by the e-component of the same group. Therefore
F and F' are O(N)-equivalent if and only if there exist an orthogonal
matrix (z,s) of degree m, + 1 and an orthonormal transformation ¢ of Y
onto Y’ such that

p:9 = Zrﬁa(apa) ’
q:’ = Z Tﬁa(aqa)

for 8=0,1, :-+, m,.

Remarks 2 and 3 are immediate consequences of the preceding lemmas.

4. A characterization by {p.} and {g,}. We continue the argument
of the preceding section under the assumptions (1-1), (1-2), (1-3) and (1-6).
The equations (1-4), (1-5), (1-7) and (1-8) will be reformulated first in
terms of B, C, and C,, and then in terms of {p,} and {¢.}, using Lemmas
5,6 and 7.

First we list the equations:

(2-1) (B, Cp)y = 8B(3, wz)

(2-2) (B, C)y =0

(2-3) (B, Cpw + (B, Cp)y + 4B(Z¥}) = 0
(2-4) (B, Cw =0

(2-5) (Cyy Copy + 16C(3 wi) = 48(X y)(Z we)
(2-6) (Cyy Cyy +4C(Zwi) =0

@-7) <G, Cow + {C, Cy + 2(C,, Co)y + B* = 48(X y3)'(3 w?)
(2-8) (Cy Cow + LGy, Cpy =0

(2-9) (G, Cdw + {Cy Cdy = 16(X ¥3)
(2-10) 4yB =0

(2-11) 4,C, = (8m, — 12m,)(S, w?)

(2-12) 4,C. =0

(2-13) 4y C, + 4yCy = (8my — 8m, — 4)(Z v) -
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LemMA 8. The following implications hold:

(i) (1-4) =(2-1), (2-2), (2-3) and (2-4),

(ii) (1-5) = (2-5), (2-6), (2-7), (2-8) and (2-9),

(iii) (1-7) = (2-10),

(iv) (1-8) = (2-11), (2-12) and (2-13).

PrROOF. In each of (1-4), (1-5), (1-7) and (1-8), we replace A by
2y —6Cwi), C by C,+C,+ C, + C,, and then C, by (3 w2).
Decomposing the results into the homogeneous part with respect to the
variables w,’s, we can conclude Lemma 8. We give here the proof of
(i). The rest can be shown in a similar way.

Recall (1-4): (B,C>+ 2AB =0.

We have
<B; C> = <B: C>Y + <Br C>W
= (B, Cpy + (B, C)y + (B, C)y + (B, Cpy
+ (B, Cpw + (B, Cw + (B, Cpw + (B, Cpw -
Note (B, C)y = 0, (B, Cyy = 0, and (B, C,)y = (B, (2, wi)>w = 4B w}).
Thus, we have
(B, C) + 2AB
= (B, C,)y — 8B(3, wz)
+ <B’ Cl>Y
+ (B, Cpy + (B, Cy + 4B(X  ¥3)
+ <B, Cl>W ’
from which we can see easily (1-4) = (2-1)~(2-4). q.e.d.

Now we reformulate the above equations (2-1)~(2-13) in terms of

{p.} and {q.} as follows:

<<pa; pzx>y pa> = lepa ’ Apa =0 ’

(3-1) APy Do) = 16m, for each a ;
(3_2) 2<<par pﬂ>; pﬁ> + <<pﬁ’ pﬁ>’ pa> = 16pa
for distinct a, B ;
(3—3) <<pa; pﬁ>y p?’> + <<pﬁ; pr>’ pa> + <<p79 pa>y pﬂ> =0
for mutually distinet «, 8, 7 ;
(3-4) (Pay €y = 0 for each a;

(3-5) Doy @) + (Ds, €y =0 for distinct «, 8 ;
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(3-6) LPay P87y @) + LDpy D1y Qay + Dty D)y Q) = 0
for mutually distinet «, 8, 7 ;
(3-7) gopaqa =0;
(3-8) 16(3,2) = 16G(S ) — (G, G ;
(3-9) 80w 92y = 8({Pay PH(Z¥3) — D2) + Doy Dap, G
—24G — 2 i)(pa, 0, ° for each « ;
(8-10) 80wy 459 = 8({Pa» Ps)(ZL¥3) — Dus) + Duy D), G)
—2 ﬁjf {Day Dr){Ps, D) for distinet «, 8 ;

where G = 372, p% and the indices «, B, ¥ run from 0 to m,.

LEMMA 9. The following implications hold:
(i) (2-1), (2-10), (2-11) = (3-1), (3-2), (3-3)
(3-1), 3-2), (3-3) =(2-1), (2-10),
(ii) (2-2) = (3-4), (3-5),
(iii) (2-6) = (3-6),
(iv) (2-4)=(3-7),
(v) (2-9)=(3-8),
(vi) (2-7) = (3-9), (3-10).
We give here the proofs of (i) and (iii). The rest can be proved
similarly.
PrOOF OF (i). Recall (2-10): 4,B = 0. Thisis equivalent to 4p, = 0.
Consider (2-11):
AYcz = (8m2 - 12m1)(2 wi) .
Using C, = 2 3 Doy DppWaWp — 6(3 yH(X w2), We get
A!'Cz =2 2 AY(<pm pﬁ>)wawﬁ - lz(ml + zmz)(z 'wi) .
Thus, (2-11) can be written as
23 4y(KPay Ps)IWews = {12(m, + 2m,) + 8m, — 12m,} (3 wi)
= 32mz(z we) .
And hence we see that (2-11) is equivalent to

(2-11-1) A( Dy, Do) = 16m, for each a,
and
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(2-11-2) APy 2s)) = 0 for distinct «, 8.
Now consider (2-1): (B, C,)y = 8B(3, w2).
We have

(B, Cp)y — 8B(3 w)
= 2B, 3. {Pa De)WWp)y — 6B, (X ¥5)( wd))r — 8B(X w?)
= 16<3] PaWay 3. { Py P5)WaWs)y — 32B(T W)
= 16{3 ({Puy D8, DY Wawpw; — 16 3 DWW} .
Now we have the implication (2-1), (2-10), (2-11) = (3-1), (3-2), (3-3).
From the above argument, we also have the implication (3-1), (3-2), (3-3)
= (2-1), (2-10).
ProoOF oOF (iii). Recall (2-6): <C,, C)y + 4C,(C, w?) = 0. By Lemma
7, G =23 (Do Peywaws — 6(X ¥7) (3 wi). We have
(Cy, Cy + 4C,(3 w?)
= 16¢3. Doy P8)WaWsp, 3. A Wy)y
— 63 w (X ¥3), Coy + 4C,(3 wi)
= 16 3 KDay P55 @y Wwsw; — 32C(3 w2)
= 16{3. {{Da P8, @) Wwsw; — 16 3 q,w,w}} .

Thus, we see that (2-6) is equivalent to the following three conditions
as a whole:

(2_6"1) <<pm pa>, qa> = 1GQa for each a ’
(2_6_2) 2<<pa; p15>’ qa> + <<pa’ pa>’ Qﬁ> = 16le
for distinct a, B ;
(2-6-3) LPay D)y @) + Dsy D)y oy + Dry De)y @59 = 0
for distinct «, B, 7 .
Thus we have (2-6) = (3-6) = (2-6-3). q.e.d.

Lemma 9 shows the first assertion of the following Theorem 1.

THEOREM 1. Let m, and m, be positive integers such that N = 2(m, +
m, + 1), and put n = m, + 2m,.

Assume that a homogeneous polynomial function F of degree 4 on
RY satisfies {F, F) = 16r* and 4F = 8(m, — m,)r*. Then two families
{p.} and {q.} of polynomials associated to F' in § 3 satisfy the equations
(3-1)~(3-10).

Conversely, assume that there are given m, + 1 quadratic forms
Doy ***y D, and m, + 1 cubic forms qo, +--, @n, both on R" such that they
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satisfy the equations (3-1)~(3-10). Then the polynomial function F on
RY constructed from {p,} and {q.} as in §3 satisfies {F, F) = 167° and
AF = 8(m, — m,)r*

To prove “the converse” in Theorem 1, it suffices, in view of Lemma 9,
to show that (2-3), (2-5), (2-6), (2-8), (2-11), (2-12) and (2-13) follow from
(8-1)~(8-10). We first show (2-38), (2-8) and (2-18) below, and then
reformulate the rest in terms of {p,} and {g.}. They will be proved in

§ 5.
-LEMMA 10. (2-3), (2-8) and (2-13) follow from (3-1)~(3-10).
Proor. Recall (2-3): (B, C)y + (B, Cp)y + 4B(3,¥%3) = 0. We have
<B, CZ>W = <B’ 2 2 <par pﬁ>wawﬁ>W - <By 6(2 y;)(z wi)>W
= 32 2 pa<pa9 pﬁ>wﬁ - 96(2 pawa)(z y?)
and
(B, Cpy = (B, (Z¥j)»r — B, 2G)y
= 8B(X ¥7) — 16 3 {Da, G)yw, -
Thus, we have
<B, CZ>W + <B’ CO>Y + 4B(E y.‘zr)
= 32 Z <pm pﬁ>pﬁwa — 16 2 <pa9 G>wa
= 16{; wa(z Eﬁ: <pm pﬁ>pﬂ - <pa9 G>)} .
Since G = 3, pi, we have {(p,, G = 23,5 {D., Ps)Ps, and hence we have
(2-3). .
Next recall (2-8): <G, C)w + {C,, Cpy = 0. We have

(Cy Coow = (2 X {Duy Dy W, 8 3, QW)
— <6 (Z N wi), 8 X quWa)w
= 82 3, {Duy D)W — 96(3 YH(X ¢aWe) »
and
(C,, Cy = <G, (X yDDr — 2(C, G)y
=12C(X v7) — G, G)y
= 96 (2 ¥3) X qaw. — 16 3. {qu, G)w, .
Hence we have
Gy Cow + {C,, Co)y
= 16{2 3. {Puy Pp)IsWa — 3 {qay G)W,} .
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Now we see that (2-8) is equivalent to
2 ﬁz (P D079s = {qur G) for each « .

By definition, {q., G) = {q., X, P%) = 2315 {qu Ds)Ps. Using (3-4) and
(3-5), we have

ey G = —2 ;‘. (P 4)P5 -
Consider (8-7): 3,9 =0. We have
0 = Doy . Ps95) = % Doy D)5 + Eﬁl (P 4875 -

This proves the required equation.
Finally recall (2-18): 4,C, + 4;C, = {8(m, — m,) — 4}(C, ¥?). We have
4y Cy = dw{2 3 {Puy PyWawp — 6(2 ¥3)(Z wa)}
=43, {Pay Pay — 12(m, + 1)(3 ¥7)
and
4yCy = 4x{(Z] y?‘)z — 2G})
=8 + M) yj) — 23 dvpi
= (8 + ) (X ¥} — 2 3 204D, + 2{De, Pa)} -
Since 4p, = 0 by (3-1), we have

4yCy + 4;C, = {(8 + 4n) — 12(m, + DI ¥3) .

Now
8 + 4n — 12(m, + 1) = 42m, + m,) — 12m, — 4
= 8(m, — m,) — 4

and hence we have (2-13). q.e.d.

LEMMA 11. (2-5) and (2-12) can be written as:
(2-5y oy KPay D)y {Bry PaD) Wl 0705

=16 3, (Do DWW} 5

(2-12y 4q9,=0 for each
respectively.

PROOF. Recall (2-5): <G, C.y + 16C(Z w2) = 48(3, w2)(X v2), and
C. = 23 {Da, PeyWwws — 6(Z ¥3) (X wi).
We have
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Gy Cyy = 4 3 KPay Do)y Pry Pa))Wath 5w,
—96 3, Py Py Wato( 2 w7) + 4-36(3 wiF (X v3)
and
16C(SS %) = 32 ) (Pay D)Wt} — 96(S U(S wi) -
They show that (2-5) is equivalent to (2-5).
Recall (2-12): 4,C, = 0. Since C, = 3, 8q,w,, clearly (2-12) is equiva-
lent to (2-12)'. q.e.d.

Note that (2-6) and (2-11) have been reformulated in the proof of
Lemma 9.

5. The third decomposition of R”. In this section, first the family
{p.} of quadratic forms on Y will be characterized in matricial forms.
Then we shall give a further decomposition of the space Y. The proof
of Theorem 1 will be completed.

For each quadratic form p, on Y, we define the symmetric linear
mapping P, of Y as in §2 by

(5.1) P, = n(p.) .
We have
LEMMA 12. The conditions (3-1), (3-2) and (3-3) on {p.} are equiva-

lent to the following conditions (i), (ii) and (iii) respectively:
(i) For each a, we have

(4-1), P=P,, TrP,=0, rankP,=2m,;
(ii) For each distinct o, B, we have

(4-2).,s P, = PiP, + P,P; + PyP,P;;
(iii) For each mutually distinct «, B, Y we have

(4-2),5,r S(P.PsPy) =0,

where & denotes the sum of terms obtained by interchanging the indices
over all permutations.

Note dim Y = n = m, + 2m,. Lemma 12 follows by direct verifications,
using (2.14), (2.15) and (2.16).

LEmMMA 13. (2-5) follows from (3-1), (3-2) and (3-3).
PrOOF. Recall, by Lemma 11, (2-5) = (2-5)":
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X% KB D8y {Dry Do) DWWsW, W,

a,B,7,8

=16 ﬂZT <pm pﬂ>wawﬁw$ .
a, p,
The monomials of w,’s appearing in (2-5)' are classified in the following
types;
Wh, WiWs, WEWS, WEWgW;, W,W W, W5

where a, 8,7 and 0 are all distinct. Now (2-5)' decomposes into the
following five equations;

(2_5—1) <<pa’ pa>r <pm ptx>> = 16<pm pa> ’
(2_5_2) <<pay pa); <pm pﬁ>> = 8<pm pﬂ> ’
(2_5—3) <<pnr pa>r <pﬂ’ pﬁ>> + 2<<pm pﬂ>f <pay pﬁ>>

= 8(<pm pa> + <pﬁy pﬂ>) ’
(2_5_4) <<pay pa>’ <pﬂ’ pr>> + 2<<par pﬁ>; <pm pr>> = 8<pﬂ, p7’> ’

(2_5_5) <<pm pﬁ>9 <p7‘9 p6>> + <<pa, pr>; <pﬂ’ pa>>
+ <<pm pa>y <pﬂr pr>> =0,

where @, B, 7, 0 are all distinet.

We give here a proof of (2-5-4). In the following verification,
P, P, ... are denoted simply by a, B, ---, and the notation (, ) is also
used for mappings, i.e., {a, B> = 2(aB + La).

To prove (2-5-4), it suffices to show

Ka, @y, <B, 7)) + 2{a, B, {a, 7)) =8&B, 7).
The left hand side
= 8{<a?, (BY + 7B)) + K(aB + Ba), (&Y + Ta))}
= 16{a?BY + a*¥B + Bra* + YRa?
+ aBaY + aBYa + Baay + LaYa
+ avaB + avBa + YaaB + TaBa} .
The right hand side
= 16(8Y + 78) .
From (4-2),.. 7 =a* + 7a* + aYa, we have
8 = a*YB + TaB + avapB .
From (4-2)s,.. B = a’B + pBa* + aBa, we have
BY = a’BY + Ba*y + afa” .
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Substituting them, we see that it suffices to show
By + YRat + apYa + Bava + avBa + YapBx =0 .

Now the left hand side of this equation coincides with &(agY)a, which
is 0 by (4-3),5,;-

The rest of equations can be proved in a similar way. q.e.d.

From now on in this section we assume (3-1) and (3-2). We choose
an arbitrary index «, say a = 0.

By virtue of (4-1),, each P, has the eigenvalues 1, —1 and 0. We
decompose the space Y into the eigenspaces of P,;

(5.2) Y=UDVDZ

where U, V and Z are the eigenspaces of P, for the eigenvalues 1, —1
and 0 respectively. Note that the decomposition (5.2) is orthogonal since
P, is symmetric and that, by (4-1),, we have

dim U = dim V=mz’

5.8
(5-3) dim Z =m, .

Now, with respect to orthonormal bases of U, V and W, P, is repre-
sented by the matrix;
1 0 0
P,~|0 -1 0)

0 0 0
where 1 denotes the identity matrix of degree m, Similarly, we have

LEMMA 14. For each a >0, P, is represented by the following matrix;

0 a, b,
P,~la, 0 ¢,
b, ¢, 0

where a, 18 M, X my, b, and ¢, are m, X m, and ' indicates the transpose.
Further they satisfy

a0 + 20, =1, aLt, + 2c,0, =1,
(5.4) { , ,

blb, = cicy ;

b.clan + ach, =0, eba, + ab.ec, =0,
(5.5) { ) ,

cianb, + b.a.c, =0.

Conversely, assume that a matrix of the above form is given and
satisfies (5.4), (5.5). Then it satisfies (4-1),, (4-2),,, and (4-2),,,.
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Proor. Consider (4-2),,:
P, = PP, + P,P; + PP,P,.
This gives the required form for P,. Similarly, (4-2),.:
P, = PP, + PP, + P,P,P,

gives (5.4). If we assume (4-2),, (4-2),. then (4-1), is equivalent to
(5.5). Note that the condition: rank P, = 2m, follows from (5.4) and
(5.5). q.e.d.

COROLLARY 1. (2-11-2) holds, i.e., we have
A<pw pﬁ> =0
for each distinct «, (.

ProoF. Without loss of generality, we may assume B8 =0. We
have

A<p01 pa> = 4Tr(P0Pa +PaP0) .

It can be easily verified that Tr (P,P,) =0 and Tr (P,P,) =0 for ¢ > 0
using Lemma 14. q.e.d.

Let {u;}, {v.} and {2,} be orthonormal coordinate systems for U, V
and Z respectively. We consider the homogeneous degree with respect
to the variables z,, :--, 2, for polynomial functions on Y. Let

(5’6) Do = ; pa,h ’ qa = zhj(Ia,h
be the decompositions into homogeneous parts with respect to z, ---, 2.,
where & indicates the total degree on {z,}.

COROLLARY 2. For each a > 0, we have
( i ) pa,2 = 09
(ii) <p09 pa,0> = O‘

One can verify them using matricial forms given in Lemma 14.

LEMMA 15. We have, from (3-8) and (3-4),
(i) ¢gus =0 for each «,

(ii) g, is homogeneous of degree 1 on U, V and W.
PrOOF. (i) Recall (3-8):
16(3 ¢:) = 16(S 1) — (G, &
where G = 3. p% and 3,92 = S u! + v + 3 2. In the equation (3-8),
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consider the homogeneous parts of degree 6 with respect to 2, «++, Zn,.
Since p,, = 0, the total degree of G with respect to z,’s is less than 4.
Similarly, the total degree of (G, G)> with respect to z,’s is less than 6,

since (G, G> = 43, {p,, Ds)P.0s- Thus, we have >, ¢%, =0, and hence
q.; = 0 for each a.

(ii) For a =0, (3-4) gives
(Do, @> =0 .
Now we have p, = 3, u! — 3, v, and hence

0
<p09 q0> zzzuti)‘ _22'01,% .
ou 0

i v,

If S is homogeneous of degree % and [ with respect to {u,} and {v,} respec-
tively, then we have

(P S) =2(k =S

Thus, {(», ¢»> = 0 implies that each non zero term of ¢, consists of
monomials with the same degree on {«,} and {v,}. Since g, is cubic and
Q. = 0 by (i), we have (ii). q.e.d.

COROLLARY. (2-12) and (2-6-1) follow from (3-1)~(3-10).

ProoF. Recall (2-12) = (2-12): 4q, = 0 for each a. Without loss
of generality, we may assume @ = 0. Then 4q, = 0 follows from (ii) of
Lemma 15.

Next, recall (2-6-1): <{{(Pp., ), 9. = 16q, for each @. Again we may
assume «a = 0 without loss of generality. Since p, = >, u: — 3, v, we
have

(Do Doy = 4 ui + > V) .
By (ii) of Lemma 15, ¢, = ¢,,. Now we have

{LDBoy Py Qo) = Do Do), Q0,17 = 16¢,,, = 16q, .
This proves our corollary. q.e.d.

LEMMA 16. (2-6-2) follows from (3-1)~(3-10).

PrOOF. Recall (2-6-2): 2{{Puy D5, 9ap + {{Da» Pa), 45> = 169, for each
distinet «, 8. Interchanging the indices, it suffices to show

2<<p0’ pa>9 q0> + <<p07 p0>9 qa> = 16qa
for a > 0. From <{p, pyy = 43 u? + 3, v?), we have
Doy Py Qeyn) = 8B — h)a,n
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for any h. Since ¢,; =0 by (i) of Lemma 15, it suffices now to show

LDy Pa)s 400 = 4902 — 4900 -
By Corollary 2 of Lemma 14, it suffices to show
( *) Doy Do)y @) = 40z — 4o -
Now we consider the total degree on the variables u,, ---, u,,. Let

Doy = 8, + 8
Qoo =fi+ ot i+ 1o,
Qi =9+ 9 + 9o
Qo= h, + Ry

be the decompositions into homogeneous parts, where each suffix indicates
the total degree on u,, :--, %n,. Recall (3-5). We have

(P 4oy + Day @) =0,
and hence
{Por Quyo) + {Doy Qer) + Doy Qas2)
+ {Puoy 9010 + Pty G1) = 0.
Equivalently, we have
{{Poy Qa2) + Dty €0 tugoogr}
+ {{Po €er? + {Pavoy Y0.17}
+ (Do 90) + {Pay @0z} =0 .

Observing the degree with respect to z,, - -+, z,, of each term in the above
equation, we obtain:

(1) (Do Qa2) + Pty €0 tugrop = 0,
(2) {Pos 4a1) + {Daoy @) =0,
(3) (P Qaso) + {Payy d>z = 0.
From p, = 3, u? — 3, v} we obtain:
(4) {Poy Qa2 = 20y — 2h, ,
(5) (Do Qur) = 49, — 495,
(6) {Dy Quoy = 2Bfs + fo — fi — 3f) .

On the other hand, we have

<pa,19 q0>(u¢,'vi) = <80y q0>(u,vvi) + <81, q0>(ui.v,~)
= <so; do)v + 8, @©v -
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Substituting this and (4) into (1), we get

2h, + <84, Goyr = 0,
2ho - <81, QO>U =0.

Similarly, substituting (p.., @)z = <{8i, @yz + {8y, Qoy, and (6) into (3), we
get

(7)

fi=f=0,
(8) 2f2+<suq0>z=0y
2f, — {80, 909z =0 .
Since (g, Do1) = Do, 8oy + Dy, 8,y = —28, + 25, (7) and (8) give the re-
quired equation (*). q.e.d.
Note that we have completed the proof of Theorem 1.

6. A further characterization. In this section we give a further
characterization of {p.} and {g,} under an additional condition (A) for a
later use. Let {p,} be m, + 1 quadratic forms on Y satisfying (3-1) and
(3-2). With the notations in § 5, we state

"LEMMA 17. The following three conditions are mutually equivalent:

(i) Do 2> =0 for distinct a, B;
(i) Doy Doy = {Ps, Ppy for distinct a, B3;
(ili) 2., =0 for each c.

PROOF. As one can see easily, to prove Lemma 17, it suffices to show
that, for each a > 0, the following three conditions are mutually equiva-
lent:

(1) <Po Doy =05

(ii) <Dy Do) = {Day Des

(iii)’ ., = 0.

Using Lemma 14, we give matricial representations for {p,, 0., {Ds Du)
and p,,. In the following, the indices for submatrices are omitted. We
have

0 0 b
(Do Dy ~ 210 0 —c],
b —¢ 0
aa’ + bb’ be’ ac

<pa7 pa> ~ 4 cb’ a'a + cc’ a’b
ca’ ba b'b + c'c
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0 0 b
D1 ~ (0 0 c) .
b ¢ 0

Thus, (i)’ = (iii)’ and (iii)’ = (i)’ are clear. Suppose (ii)’. Then aa’ +
b’ = 1. Since aa’ + 2bb' =1 by Lemma 14, we see bb’ = 0, and hence
b = 0. Similarly we have ¢ = 0. This proves (ii)’ = (iii)’. q.e.d.

From now on we denote by (A) one of the three conditions in Lemma
17. Now assume that {p,} satisfy the condition (A) together with (3-1)
and (3-2). We remark here that the image and the kernel of P, are
independent on & and that the condition (3-3) follows automatically. We
put, for each a,

(6'1) -Ra = Pa IU@V .

We see that R, is a symmetric mapping of U@ V into itself and for
a=0, R, =1, R,|, = —1,. Furthermore it is easily seen that the
family {R,} satisfies the following two conditions:

(5-1) R:=1yey, Tr R, =0 for each «a ;
(5-2) R,R; + RBsR, =0 for distinct «, 8.

Conversely, we have

LEMMA 18. Let {R,} be m, + 1 symmetric mappings of UP V into
itself satisfying (6-1) and (5-2). Then we can associate m, + 1 quadratic
forms {p,} on Y satisfying (3-1), (3-2) and the condition (A) with the
relation (6.1) for each a.

Proor. For each R,, we define P, by

R, on UV
P, =
0 on Z.
Then P, is a symmetric mappingof Y=UP VP Z. Now (5-1) implies
(4-1), for each a. From the construction of P,, it follows that (4-2),,
is a consequence of (5-2). Let p, be the quadratic form on Y corre-
sponding to P,. {p,} satisfy the required conditions. q.e.d.

LEMMA 19. Assume that {p,} satisfy (3-1), (3-2) and the condition
(4). Let {g.} be m, + 1 cubic forms on Y. Then (3-3) and (3-6) follow
immediately. The conditions (3-8), (3-9) and (3-10) can be written
equivalently as

(5-8) 3¢ = (X720
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(5-9) Quw 92 = G — D2 + 4G ui + v 23) for each «
(5-10) {Quy U5) = —DuDs for distinct a, B
respectively.

ProoF. By Lemma 17, we see that (3-3) and (3-6) follow immediately
from (A). For G = 3, »%, consider (G, G)>. We have

(G, Gy = Zﬂ {P% D3y = 4% PP Pay Vs,

=4 ; Dk Dy Do) = 4<§ pi)<po, Doy
=16GC u: + 3 v).

This gives (3-8) = (5-8). Since each p; is a quadratic form on U V,
we have

<<pzxy pa>’ pﬂ> = <<p0, p0>! pﬁ>
= <<p0) p0>9 pﬁ>U®V = 16pﬂ *
Thus, we have

LDy Doy G = ; Day Doy D)
= Zﬁ 2pﬁ<<p07 po>y pﬁ) = 32G .

This and Lemma 17 give (3-9) = (5-9). Lemma 17 gives also (3-10) =
(5-10). q.e.d.

By Lemmas 18 and 19, it follows that for a given {R,} satisfying
(5-1) and (5-2), the required conditions for {g,} in Theorem 1 are now
(3-4), (3-5), (3-7), (5-8), (5-9) and (5-10).

For a later use, we give the following lemma.

LEMMA 20. Let {p,} be m, + 1 quadratic forms on Y satisfying

(8-1), B-2) and (A). Then p,, -+, Pu, are algebraically independent
over R.

ProoF. First we prove that p,, :--, p,, are linearly independent over
R. Suppose >, a,p,=0,a,€ R. We have for any B,

<pﬁy th a’apa> = a’ﬂ<pﬂs pﬂ> ’
and hence a; = 0. Next suppose
3 Gugeim P e D =0

Since each p, is a quadratic form, we have
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i im
) Qigerntyy D 2o * Dt = 0
10+"'+1’m1=l 1

for each I. We shall show Cigeovi, = 0 for all 4, -+, %,. This will be

shown by the induction on [ =4, + -+- +4,. The case Il =1 has been
proved. For each B, we have

(Dpy 3 Buigpovi PP+ + = D)
= 3L Upigeiy D+ o DI e DI Dy DO -
Using this, one can complete easily the proof. q.e.d.

7. Representations of a Clifford algebra. In this section we prove
certain lemmas concerning representations of a Clifford algebra for a later
use.

Let F be an associative division algebra over R, i.e., F = R, C or
the real quaternion algebra H. We denote by M,(F) the algebra of all
m X m matrices with coefficients in F, and by 1, the unit matrix in
M,(F). M,(F) is called the total matrix algebra over F of degree m.

For each non-negative integer k£, we denote by C, the Clifford algebra
over R associated to the negative definite quadratic form —(,) on R-,
where (,) is the usual inner product on R*. Let {e, -+, ¢.} be an
orthonormal base for R* with respect to (,). Then C, is the associative
algebra over R with the unit 1 generated by e, .-, ¢, with the relations:

e = —1 for each &,
e + €6, =0 for each distinet %, I,
and {1, ¢, - ¢,k < -+ <k, 1=r=k} forms a basis of the underlying

vector space of C,, and hence dim C, = 2*. We denote by x— a* the
canonical involution of C,, that is, the anti-automorphism of C, satisfying
¢, = —e, for each k. A homomorphism

p: C.— M. (R) with po(1) =1,

is called a representation of C, of degree m. Two representations p, 0
of C, of degree m are said to be equivalent if there exists Ae GL(m, R)
such that O(x) = Ap(x)A™* for each xe C.. The set of equivalence classes
of representations of C, of degree m will be denoted by Z,(C.).

We consider a representation p of C. of degree m satisfying

(7.1) ox*) = o(x) for each z€C,,

where ' indicates the transpose of a matrix. Two representations o, 0 of
C. satisfying (7.1) are said to be orthogonally equivalent if there exists
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o € O(m) such that g(x) = go(x)o~* for each x € C.. The set of orthogonal
equivalence classes of representations of C, of degree m satisfying (7.1)
will be denoted by 2,(C., *).

LEMMA 21. The natural map:

n(Cyy *) — Fu(CL)
18 a bijection.

Proor.* The bracket operation [z, y] = zy — yx on C, defines a Lie
algebra over R, which is denoted by g. Since C, is a semi-simple algebra
over R, it is the direct sum of a finite number of total matrix algebras.
It follows that g has a natural structure of reductive algebraic Lie algebra
over R. Now the canonical involution x — a* of C, is a positive invo-
lution in the sense that the symmetric bilinear form Tr (L,,.) on C, is
positive definite, L, being the left regular representation of C,: L,y = xy.

In fact, for o, =¢, -+ €, ,Yo=6€;, -+ €;,(1, < ++- <%, 5, < -+ < J,), We
have

1 r=8 iy ey 0 = Gy oo, )
*e, -+ e, t >0 otherwise,
where
ey ooy b} ={ay, oo, 3} UGy ooy 5} — {3y -0, 20 {0y, -0, G0}
Thus we have
dimC, =2>0 r=s,{iy, -+, %} ={Jy ++*, Js
Tr (Lew) = {0 othervsfise , = !

and hence Tr(L,,) is positive definite on C,. Thus, by a theorem of
Weil [8], the map 6 of g defined by x — -z* is a Cartan involution of g.

We shall show first the surjectivity. Let o be a representation of
C. of degree m. Then the representation

0: g — gl(m, R)

is completely reducible. Hence there exists a Cartan involution 6, of
gl(m, R) such that

0,(o(x)) = p(6(x)) for each zeg.
6, can be expressed as
0(X) = —P'X'P for Xegl(m, R)

* The proof of surjectivity is due to I. Satake.
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by a positive definite symmetric matrix Pe M, (R). Thus we have

o(x*) = P 'p(x)'P for x€C, .
Put A = PY* and

o(x) = Ap(x)A™* for xe C, .
Then we have for each ze C,

O(a*) = Ap(x*)A™ = AP™'p(x) PA™
= A7o@)'A’ = p(z) ,

and hence 0 satisfies (7.1). This proves the surjectivity of the map.

To prove the injectivity, let o and 0 be mutually equivalent represen-
tations of C, satisfying (7.1). Let A€ GL(m, R) such that

(7.2) B(x) = Ap(x) A~ for ze C, .

Then we have p(z*) = Ap(x*)A™* for each xe C,. From the condition
(7.1) we have p(x)' = Ap(x)’A™* and hence

(7.3) p(x) = Ao(x)A’ for v e C;

(7.2) and (7.3) imply that the symmetric matrix 4’A commutes with each
o(x). Now write A as the product: A = ¢P of o€ O(m) and a positive
definite symmetric matrix P. Then A’'A = P* commutes with each 0(e;).
From the condition (7.1), 7, = exptp(e;) is in O(m) for each te R, and
hence z.Pz;! is also a positive definite symmetric matrix. It follows from
t,.Pr7t = (t,Pri')* = P* that each 7, commutes with P and hence each
o(e,) commutes with P. Since C, is generated by ¢, ---, ¢,, we have

P(x) = op(x)o™! for xe C, .
Thus o and 0 are orthogonally equivalent. q.e.d.

The subspace of C, spanned by e, ---, ¢, is identified with R* in a
natural way, and any orthogonal transformation ¢ of R*(oec O(k)) is
extended uniquely to an automorphism ¢ of C.. For a representation p
of C, of degree m, we define another representation oo by

(o0)(x) = p(o7'x) for ze C, .

If o satisfies (7.1), then op also satisfies (7.1), since the automorphism
o of C. commutes with the canonical involution x— x*. The correspond-
ence (g, p) — op gives an action of O(x) on #,(C,) and on %, (C,, ). Let
Ok\Z,.(C,) and O(k)\Z#,(C,, ) denote the spaces of O(k)-orbits respec-
tively. Since the natural map <Z,(C., *) — “Z.(C,) is O(k)-equivariant,
Lemma 21 gives us the natural bijection
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O(K\Zn(Cyy %) — O(KN\ZZ(C,) -
We cite Atiyah-Bott-Shapiro [1]: We have an isomorphism
(7.4 Cevs = C: @ M(R) ,
and the Clifford algebras C)s for £ < 8 are given by the following table;

x

C. d(x)

c 2

H
HOH
M,(H)
M(C)
My(R)

My(R) © My(R)

M(R) 16

00 =1 O O i CO D K
00 00 00 00 B

where d(x) denotes the degree of irreducible representations of C.. We
have

(7.5) d(k + 8) = 16d(x)
in virtue of the isomorphism (7.4).

LEMMA 22. For £ = 1, O(k\ZZ...(C,, *) is not empty if and only if
k=18 or7. For k=1,3 or 7, O(k)\ZZ..,(C,, *) consists of exactly one
element, represented by an irreducidble representation of C..

ProoF. By Lemma 21, it suffices to show the above for the set
O(k\#...(C.). From (7.5) we have

dk +8) — (k£ + 8) = 16d(k) — £k — 8
= (15d(k) — 8) + (d(k) — k) > d(k) — £ .

It follows that if <2.,,(C.) is not empty, then £ < 8 and &Z.,,(C,) consists
of equivalent classes of irreducible representations. From the table cited
above we get the first assertion of Lemma 22.

In case £k =1, C, = C and <Z(C,) consists of just one class. In case
k=3, C, = H® H and <Z(C;) consists of two classes. Putting z = e¢,e.e;
in C,, we define f,, f_€C; by

f+=-;—(1+Z),f_=%(1——Z)-
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Then they are primitive idempotents of C, defining the decomposition

C;=H@H. Since —1,€ 0(3) transforms f, into f_, O(3)\.ZZ(C;) consists

exactly one element. In case £ =7, we see similarly that O(7)\<#(C))

consists exactly one element, making use of the element z = ¢, --- ¢,€ C,.

q.e.d.

For £ =1, 3,7, we have C._, = R, H, M|(R) respectively. Hence we
have

LEMMA 23. For £ =1, 8,17, the set Z,(C._,, *) is not empty if and
only if m is @ multiple of 1, 4, 8 respectively. In these cases, #,(C._,, *)
consists of exactly one class.

Now, let k£, m be positive integers. Consider a family {a.},<;<. of &
matrices in M,(R) satisfying the following condition:
ara, =1, for each %

7.6
(7.6) awa; + aa, =0 for distinct %, [ .

Two such families {a,}, {@,} are said to be equivalent and denoted by
{a.} ~ {@,} if there exist g, 7€ O(m) such that
@, = oa, " for each k.

They are classified in terms of representations of Clifford algebras as
follows.

LEMMA 24. The set of equivalence classes of families {a,} of £ matrices
wn M,(R) satisfying the condition (7.6) is im a bijective correspondence
with the set #,(C._,, *).

PrROOF. Let p be a representation of C._, of degree m satisfying
(7.1). We define £ matrices a,, :--, a, by

{ak=p(ek) 1<k=k-1,
a.=1,.
Since we have

{a},= —a,at=—1, foreach k,1<k=<k-—1

a + ae, =0 for distinet £, 1,1k Ik -1,
the family {a,} satisfies the condition (7.6). The correspondence p — {a.}

induces a map of Z,(C._,, *) into the set of equivalence classes of families
{a} satisfying (7.6). One can see easily that it is bijective. q.e.d.

Next, consider a family {A.}<.<. of £ matrices in M, (R) satisfying
the following condition:
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A, = —A, A= -1, for each &,
AkAl + AlAk = O fOI‘ distinct k, l .
Note that the condition (7.7) implies the condition (7.6). Two such families

{A4,}, {4,} are said to be equivalent and denoted by {A,} ~ {4,} if there
exist 6 € O(m) and 7 = (z,,) € O(x) such that

(7.7)

A, = 3 tu(c A0 for each k.
l=1
They are also classified in terms of representations of Clifford algebras
as follows.

LEMMA 25. The set of equivalence classes of families {A} of &
matrices in M, (R) satisfying the condition (7.7) is in a bijective corre-
spondence with the set O(k)\Z,(C,, *).

ProOOF. For each representation p of C, of degree m satisfying (7.1),

we define £ matrices A,, ---, A, by

A, = p(e) for each k.
Then the family {4,} satisfies the condition (7.7). The correspondence
0 — {A,} induces a bijection required in our lemma. q.e.d.

From Lemmas 22 ~ 25, we have

LEMMA 26. There exists a family {A,} of k& matrices in M, ,(R)
satisfying the condition (7.7) if and only if k =1,8,7. Fork=1,31,
there exists a family {a,} of £ matrices in M, (R) satisfying the condition
(7.6) if and only if m is a multiple of 1, 4,8 respectively. In these
cases, both of equivalence classes of {A.} and {a,} are unique.

8. Examples of non-homogeneous isoparametric hypersurfaces. Now
we come back to families of quadratic forms {p,} and cubic forms {g,}
on Y =R". In this section we shall classify polynomials {p.}, {g.} under
certain conditions and construct two series of non-homogeneous isopar-
ametric hypersurfaces.

As in §5, let

Y=UQVDZ

be the eigenspace decomposition of the symmetric mapping P, corre-
sponding to p,, where U,V and Z are the eigenspaces for the eigenvalues
1, —1 and 0 respectively. Recall dimU = dimV = m, and dim Z = m,.
We choose orthonormal coordinate systems {u,}, {v;} and {2} for U, V and
Z respectively. Each symmetric mapping P, corresponding to p, for
k =1 will be represented by a matrix with respect to these coordinates
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as in Lemma 14.

LEMMA 27. Assume that P, is represented in the above way. Then
the family {p,} satisfies (3-1), (3-2) and the condition (A) if and only
if (1) each P, (1 <k < m,) is represented by a matrix of the form

0 a, O
a, O 0)
0O 0 O

with a,€ M, (R) and (2) the family {a,} satisfies the condition (7.6) for
£ =m, and m = m,.

ProOF. First suppose {p,} satisfies (3-1), (3-2) and (A). Then the
family {R,} of symmetric mappings of U@V associated to {p,} in §6
satisfies (5-1) and (5-2). The condition (5-2) for & = 0 and 8 = k implies
that R, is represented by a matrix of the form

e )
a, 0
with a, € M, (R). Now (5-1) gives

(i) aa,=ai, =1, for each &,

2

and also (5-2) gives

.. aa + o, =0 L.
(ii) { e o for distinct %, !

aia, + aja, =0

where 1 <k, 1 < m,. (i) and (ii) together are equivalent to the condition
(7.6), thereby obtaining (1) and (2) of Lemma 27.
The converse follows from the above argument and Lemma 18.
q.e.d.

Now let {p,} be a family of quadratic forms on Y satisfying (3-1),
(8-2) and (A), and let {g.} be a family of cubic forms on Y. We assume
the following additional condition:

(B) For each a, g, is expressed as

qde = ; xaﬁpﬁ

where \,;’s are linear forms on Z.
First note that the above expression of ¢, is unique by virtue of
Lemma 20. We put

my

(8'1) )’aﬁ = k2=1 A oprRi
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for each a, 8, and define m, matrices 4, :--, A, in M, ,,(R) by

(8.2) A, = (aaﬁk)osa,ﬁsml

for each k, 1 <k < m,.

LEMMA 28. As in the above, suppose that {p,} and {q.} satisfy (3-1)
and (3-2) together with (A) and (B). Then, {p.} and {q.} satisfy the
conditions (3-4), (3-5), (8-7), (5-8), (5-9) and (5-10) if and only if the
Sfamily {A,} of m, matrices in M, ..(R) satisfies the condition (7.7) and
the following condition:

(8.3) 2 5 @anges + Ganrs) = Dy

for each a, B, 7, 0 with {a, B} N {7, 0} = @.

ProoF. Note that the above condition (8.3) is equivalent to the
following two conditions:

(8.3.1) S GopiGarr = 05, for each a, 8,7 wWith = a, v+ a;
k
(8.8.2) > (@urt@psi + @usitsri) = 0 for mutually distinet o, 8, 7, 9 .
k

Similarly, the condition (7.7) decomposes into

(7.7.1) A, + A, =0 for each £k ;

vAr = 1 i for each &k,

VA, + AJA, = 0 for distinet £k, 1.

First we show the following implications: (3-7) < (7.7.1); (7.7.1) = (3-4)
and (3-5); and then (5-8) = (7.7.2).
Recall (3-7): 3. p.9.=0. We have

(7.7.2) {

1
g‘. Dels = aE;. NasDalp = 5 % {E;, (@apr + apak)papp}zk .

By Lemma 20, we see (8-7) = (7.7.1). Since each )\, is a linear form on
Z, we have {(p,, \s;» = 0. Thus, we have

<ptxr qﬂ> = ;‘)\"M(pm pT> = k‘A‘Jat<p09 p0> ’

using Lemma 17. Therefore we can write

<pm qﬁ> + <pﬂ’ qa> = (>"aﬂ + )“aﬁ)<p0; p0> .

This shows (7.7.1) = (3-4) and (3-5). Recall (5-8): 3 ¢ = G(Z 2}). We
have
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2
Za q?- = E (Ep:, )‘aﬁpﬁ) =4§T>"aﬂ>“arpﬂp7

a

1
= 2 ﬁzk l(aaﬁkaarl + aaﬂl”’ark)pﬂprzkzl ’
a,B,7.k,

and
o(34) = (32)(3 7).
Now (5-8) is equivalent to
{a%aapkampﬁpr = % ] for each &,
ag}r(aapka.,n + CoprBari)PsDr = 0 for distinct k, I,
which is, by Lemma 20, equivalent to
;amaark = 0p; for each B, 7, k,
{%‘, (@api@ars + @upr@a) = 0  for each B, 7 and distinet %, 7.

This is nothing but (7.7.2), thereby obtaining the implications described

first.
Henceforth we assume the condition (7.7). Consider the condition

(5-9). We have

<qa; qa> = <§4 x'aﬂpﬁy ; )‘arpT>
= pz;. <)"aﬁy )"ar>pﬂp7 + % )’aﬂx’ar<ph pr>
=przkaaﬁkaarkpﬂpr + 4 ui + X vf)ﬂzk:vla'aﬂkaaﬁlzkzl ’

and
G — P + 43 ui + S v)(Z 20
= aE#pﬁ + 4wl + v eh) .

Again by Lemma 20, we see that (5.9) is equivalent to the following
three conditions:

(i) 3 Gupsllar = O for each @, 8,7 With 8= a, 7 # a;
(ii) 3. Geaiaae = 0 for each « ;
(iii) ; CopiGaps = O for each a, k, 1 .

Since (ii) and (iii) follow from (7.7), we have (5-9) = (i) = (8.3.1). By a
similar computation, we can see (5-10) = (8.3.2) and (8.3) = (5-10).
q.e.d.
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Now we recall some properties of inner products on division algebras
over R. Let F be a (not necessarily associative) division algebra over
R,ie., F= R, C, H or the real Cayley algebra K. Lete¢,=1,¢, ---, csy
be the standard units of F with d = dim F. u — % denotes the canonical
involution of F. We put JF = {ue F|u = —u}. Then JF is a (d — 1)
dimensional subspace of F spanned by ¢, ---, ¢,.,. The subspace Rl =
{ue F|% = u} will be identified with R in a natural way. On F,

(wvr=§wa+vm

defines an inner product with the following properties:

(17'9 'D-) = (u’ v) ’
(wv, w) = (v, ww) = (v, wo),
a(vw) + v(uw) = (wu)? + (wo)e = 2(u, v)w .

{es, €y + -, sy} forms an orthonormal basis of F with respect to the above
inner product. The dual base {u,, u,, -+, us_,} of {c, ¢, +--, cs,} forms
an orthonormal coordinate system for F, which we call standard. (,) is
extended to the m-column vector space F™ by

Wﬂ0=%WW+VW

for u, ve F™, where ' denotes the transpose. The standard orthonormal
coordinate system for F™ consists of {u{*|0 < i =<d — 1,1 <\ =< m} where
{u{?|0 < 7+ < d — 1} denotes the standard orthonormal coordinates for the
A-th component u® of we F™. We write also ||«|| for the norm (u, u)"?
of a vector u.

THEOREM 2. Let m, and m, be positive inmtegers such that N =
2(m, + m, + 1), and set n = m, + 2m,.

(i) There exist m, + 1 quadratic forms {p,} and m, + 1 cubic forms
{g.} on Y = R" satisfying the equations (3-1) ~ (3-10) together with the
conditions (A) and (B) if and only if the pair (m, m,) is one of the
Jollowing three types: (1, r), (8, 4r), (7, 8r) for some positive imteger 7.
In these cases, the polynomial F associated to such {p., q.} 18 unique up
to (ON)-equivalence.

(ii) The polynomial F on RY associated to such {P., 4.} 18 given
explicitly as follows:

@) (m, m)=C(@,r); We define a polynomial F, on R*"*® = C™+2 by
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&
Fy$) = ZE?” for &=|_: )eC’“,

=1
§r+2

and set F = r* — 2F,.
() (m,, m,) = (3, 4r) or (7, 8r); F denotes H or K according to m, =

3 or 7. We define a polynomial F, on RY = F*™+) = Frt' x F** py
Fyu x v) = 4|w'7|* — (w, v)} + {[|w]f — [|0.]F + 2(u, v}
for

U Vo
uz( ), v=( ), Uy Vo €EF, u,v,eF,
ul vl

and set F = r* — 2F,.
In each case, F satisfies the differential equations (M) of Miinzner.

REMARK. Takagi-Takahashi [7] gave the multiplicities of principal
curvatures for homogeneous isoparametric hypersurfaces in spheres. Our
pairs (m,, m,) of multiplicities in the case (b) do not appear in their table
except (m,, m,) = (3,4). Hence our isoparametric hypersurfaces given
in the above case (b) are not homogeneous, possibly except the case
where (m,, m,) = (3, 4. However, in Part II it will be shown that our
isoparametric hypersurfaces for (m,, m,) = (3, 4) are also non-homogeneous.

Proor oF (i). The “only if” part follows immediately from Lemmas
26, 27, 28. Conversely, assume that (m, m,) is (1, r), (8, 4r) or (7, 87).
Let F = C, H or K respectively, so that dim F = m, + 1. In the following,
indices k4,7, --- and «, B8, --- run through 1,2 ..., m, and 0,1, ---, m,
respectively. For u, v€ F we have

(cyu, v) = (u, ¢w) = —(crv, u) for each k&
cileu) = —culeu) = —(Ch, CHU = —U for each k&
culew) + eleww) = —Cilew) — Cileu) = —2(ci, c)uw = 0

for distinct %, 1.
We define A,, ---, A, € M, ..(R) by
Ak = (a'aﬁk)oéa,ﬁéml with Qopr = (ckcﬂ; ca)

for each k. Then {4,} satisfy (7.7) as is easily seen from the above
properties. Consider (8.3). For each «, 8,7, 0 with {a, B} N {7, 6} = @,
we have



554 H. OZEKI AND M. TAKEUCHI
Zk‘, (@art@ssr + Gusi@sre)
= X (ewer, ca(encs, €5) + 3 (eacsy calencr, ¢)
= ;, (c.cy, co)(e.cs, ) + Zﬁ] (c.cs, co)(c.Cr, Cp)
= z,“ (., c.C;)(c., CsC5) + g, (€.y €.C5)(c., CsC;)

= (CaCy, €5T3) + (€aCsy €4C7)

= (Cp(caly), Cs) + (s, CaulcsTy))

= 2(cs, €)(Cr, Ts) = 2(Ca Co)(C1, Ca)
= 23,1#570 ’

and hence we have (8.3) for {4.}.
Next, we define m, matrices {a,} in M, (R) as follows: for m, =1

ap = lr ’
and for m, =8 or 7
A, 0
a, = ‘. .
0 A,
where A, appears r-times in the diagonal. One sees easily that {a.}
satisfy (7.6).

Now by Lemma 27 we can associate to the matrices {a,} m, + 1
quadratic forms {p,} on Y, satisfying (3-1), (3-2) and (A). From the
matrices {4,}, using (8.1) we can define m, + 1 cubic forms on Y, satisfying
(B). Our polynomials {p.}, {g.} satisfy, in virtue of Lemma 28, (3-4),
(8-5), (8-7), (5-8), (5-9), (5-10), and hence the equations (3-1) ~ (3-10) by
Lemma 19, which proves the “if” part of (i).

It remains to prove the uniqueness. Let {»,, ¢.} and {P,, G.} be two

families of polynomials on Y satisfying the conditions in (i), and let F
and F' be the associated polynomials on R" respectively. Let

(1) Y=UQVeDZ,

(2) Y=UpVepZ

be the eigenspace decompositions of symmetric mappings P, P, corre-
sponding to p,, 7, respectively. We take orthonormal coordinate systems
{u, (v}, {z} for U, V, W respectively. Linear mappings of Y will be

represented by matrices with respect to these coordinates.
Choosing 0, € O(n) such that o,U=U, 0,V =V and 0,Z = Z, we put
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—17

Py =070, 9P =07'T, .

Then the polynomials {p{", ¢} also satisfy the conditions in (i) and the
eigenspace decomposition of P{" corresponding to p{" is the same as (1).
The condition (B) for {p,, q,} and {p{, ¢’} gives {4,} and {4{"} in
M, ., (R) respectively, which satisfy (7.7) by Lemma 28. It follows from
Lemma 26 that {A,} ~ {A{"}, that is, there exist @ = (.)€ O(m,) and
T = (74) € O(m, + 1) such that

AP = Pu(tA™) for each k.
We put
P = Eﬂlfapm .
Then the quadratic forms {p.?} also satisfy (3-1), (3-2), (A). Let
Y=U"@VePp Z

be the eigenspace decomposition of P{® corresponding to p{®. Choosing
o,¢€ O(n) such that o,U® =U, 0,V*® =V, 0,| Z = identity, we put

(3) — (2)
pa - ozpu .

Then {p{} also satisfy (3-1), (3-2), (A), and the eigenspace decomposi-
tion of P{® corresponding to p{® is the same as (1). It follows from
Lemma 27 that {p{"} and {p{’} define {a}’} and {a}} in M, (R) respectively,
satisfying (7.6). By Lemma 26, we have {a}’} ~ {a{}, that is, we can
find a,, g,€ O(m,) such that

oaPot = af’ for each k.

Putting together o, 0, and @', we get an element g; X 0, X ®7'€ O(m,) X
O(my) X O(m,) < O(n). Put o = 0,(0; X 0, X p7")o,€ O(n). Then we have

Do = Zﬂ Tap(0Dp), Ta = g.fap(aqp) for each «a,
which gives the required uniqueness. In fact,
};. Tos(0Ds) = 0D = 0,(05 X 0, X P7T)PP = 0.9 = Po

Denoting by @.s, @43 the (a, B)-elements of A,, A}’ respectively, we have
071(% Taﬁ("‘]ﬁ)) = (03 X 0, X @_1)02(ﬂzr‘417aﬁaﬁrlzlpr>

=ﬂ;lfaﬁa'ﬁrz(¢_lzl)(as X 0 X ¢_1)0'2(; Tarpf;m)

1) . 1 1) 1
=, Zﬂ‘.l kfapa,sn%zfnzkpé’ = g.afx}kzkpé’ =qy,
37205t ’
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and hence

%:z}ﬁ(GQﬁ):z a;°

It follows that F and F' are O(N)-equivalent.

PRrOOF OF (ii). (b) m, =3 or 7. Let F = H or K respectively. Let

U=F,V=F,Z=F W=F Z=QFc?Z,
and let
R =UQVHZDW,
Y=UVeZ

be the orthogonal direct sums. Elements of U, V, Z, W will be denoted
by u, v, 2, w respectively. The standard orthonormal coordinate systems
for U, V, Z, W are denoted by {u{"}, {v{?}, {z.}, {w.} respectively, and they
as a whole form an orthonormal coordingte system for RY. As a base
point e in R", we take the unit ¢, in Z so that we have z = 2, in the
notation of §3. We compute polynomials {p,}, {¢.,} on Y corresponding to

matrices {a.}, {4:} given in the proof of (i), with respect to the above
orthonormal coordinate system. We have

Do =2 {(w?) — ()} = [l — [|v]*,
0s13m;
1s2s7r
pe=2 3, (e cJulvf =2 3 (o, ul) = 2o, w)

0SS, 5Smy
1s2s7

qde = Z (ckcﬁ; ca)zkpﬁ

Bk

=2 {(ckco, ca)Do + 35 (exc, ca)pz}zk

= 3 {(eieo cllull = 191) + 2 3 (eses, elew w2,
= (oo Ze)( w1 = 191 + 2 3 e Ze)(ew WD),

where we have
(co Zea) = (2, ¢a)
Zz; (c1, ZeL)(er, u'V) = (Ze,, w'V) — (¢, Zc,)(Co, u'V)
= (¢, u'D) — (2, c)(u, v) .
Hence we have
% = (&, c)(llu|l® — [[v[[* — 2(u, v)) + 2(2c,, w'D) .

In particular, q, = 2(Z, 4'0). Now we have
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Ea‘, PaWe = (||w|* — [|v][)w, + 2 ; (cry w'D)w,
= (lull’ = [lv]Hw + 2(w, u'T) — 2(co, u'T)w,
= (lul]* = ||v][* — 2(u, v))w, + 2(w, u'?) ,

2. 0.We = (2, W)(|w = llv][* — 2(u, v)) + 2(zw, w'D) ,

2.0 = ([l — o] + 4 3% (er, w'D)?
= (lwll* = [[v[P)* + 4[lw'?|* — 4(u, v)*.

Furthermore we have

{Day Py = 4[| + [[v[*)ds,s for each a,s.

Recall Lemmas 4, 5,6, 7. The polynomial F on R” associated to {p.}, {q.}
is given by

F =z + zif2(| | + [[v|* + [[z]]") — 6[|w][*}
+ 8z {l|wll* — llv][* — 2(u, v))w, + 2(w, w'D)}
+ (lwlf* + lollF + [[21P? = 2{(lw|* — [|v|[)* + 4l|w'D|] — 4(u, v)}
+ 8{(z, w)(|| | — v — 2(w, v)) + 2(Zw, w'7)}
+ 8(llull + [lvIP) [|wl — 6(lwl® + [|v[* + llz[wl]* + [[w]*
= 25 + 2z{(| |l + [[v]* + 12| + (Jw]* + [[v]* + [|z])*
— 6z5l[wl[* — 6([w|l* + [[v] + [[z])]|w]}
+ 8zowo(||ull* — [[v[[* — 2(w, v)) + 8(z, w)([[u[[* — [[v[[* — 2(w, v))
+ 162z4(w, u'7) + 16(Zw, u'v)
= 2(/|wll* = [[v])* — 8|[w'7|* + 8(w, v)*
+ 8(|wl|l* + [[v ) [wll* + [[w]l*.

Putting £ = 2,6, + 2z € Z (z€ Z), we have

F=(lwl?®+ o]+ [1EIH* — 6(wl® + [[2]° + D w]f
+ 8, w)(|u|l* — l|v]* — 2(%, v)) + 16(Cw, u'?)
= 2(|w|f* — [[v]P? — 8[|w'7|* + 8(u, v)*
+ 8(llulf* + oD wlf* + [[w]*
= (|wll* + o]+ ICIF + l[w]®)® = 8|[C[*[|w]*
+ 8¢, w)([[ulf = [[v[[* — 2(w, v)) + 16(Cw, u'?)
= 2([wll = [lv|»* — 8llu'T|]* + 8(u, v)* .

Seieng
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|w'? — Cwll* = [|[w?| — 2(Cw, w'?) + [[CI||w]]
(1]l = oI = 2, w))* = (lull* — [l2])* — 4& w)(|ull* — [|vIP) + 4(€, w)?
((w, v) — € w))* = (u, v)* — 2(§, w)(u, v) + & w)*,
we get
F = —2F,
where
Fo= 4{||u's — Tw|} — (, v) — & w))} + (=] — l|v]]* — 2 w))*.

We put u,=2, v, = —w, and
U, v
ul=(°), vl=(°>eF’“.
u v
Then we have

Fo = 4{l|uiv, | — (uy 0% + (J]]* = {2 + 204, v0)* ,

which shows the case (b) of (ii).
(a) m,=1. Let

U=R,V=R,2=C W=C Z=3CcZ

and let
R=UDVOHZBW,
Y=U®VZ
be the orthogonal direct sums. In the same way as (b), we get
F =" —2F,
where

Fy = 4((u, v) — 2w, + z,w))* + (lull* = [|o]P — 2(, w))* .
We put
& = u(()l) + 1/——3'05“ for N = ]_’ oo, r,

Erns = ]—}?{(zl —w) + VI + w)}
§rie = 1/1“—5-{(—% + 'wo) + Vv —1(21 + wl)} .

Then we have

St = (lull = llollf = 26, w) + 2V =T, 0) — 2w, + 70 .
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Thus we have

r+1 2
Fo= |58,
which shows (a) of (ii). q.e.d.
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