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1. Introduction. Let p ^ r ^Q, #> 2^ 1 be given real numbers (p may
be + oo ) and g(θ) be Lebesgue integrable, positive and nondecr easing on
[— P, 0], where [— p, 0] denotes (— oo, 0] when ^ = + 0 0 . Let & =
<^([ — p9 0]> Cd) be the Banach space of functions φ mapping [ — p, 0] into
Cd, the complex d-dimensional column vector space, which are Lebesgue
measurable on [ — p, 0], are continuous on [ — r, 0] and have the property
such that

= Γ sup I ψ(θ) V + Γ I φ(θ) I" g(θ)dθ
L-r^0^0 J-/0 J

P <

where | v denotes a norm of v in Cd. We shall discuss the adjoint
equation of a linear functional differential equation

(1-1) -̂  - f ( x t ) ,
dt

where / is a bounded linear operator on & into Cd. Denote by τv the
transposed vector of v e Cd and by TCd the space {τv\ v e Cd}. For a given
function 6 mapping [ — /0, 0] into Cd, the function ^* mapping [0, p] into
TCd is defined by φ*(s) = τΦ(-s), s e [0, p]. For a family &~ of those
functions φ, set "̂* = {^*; ^ 6 ̂ }. For a function x defined on [t — p, t]
(or [t, t + p]), designate by xt (or x*) the function on [ — p, 0] (or [0, p])
such that &,(#) = x(t + θ),θe[-p,Q] (or aj*(β) = x(t + s),se [0, />]).

Now consider a linear functional differential equation for a row
vector y

(1.2) -̂ - -(»')7Ϊ
at

The symbol /[ denotes the operator on «^* naturally induced by / which
operates on ̂ * to the right (see (3.6) and (3.7)). However, we restrict

the domain of /] on a space <%?* such that ̂  can be imbedded con-
tinuously in & and that for any ξ e <^Γ* and any φe&, the convolution
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ξ*Φ (see (3.1)) is defined and belongs to &. Then we can define a bilinear
form <•, •> on <%f* x & (see (3.9)) which satisfies the following proper-
ties;

( i ) <f, Aφy = <A*f, φ) for ξ e &(A*) and φ e &(A) ,

( i i ) for any (f, φ) e gf* x ,̂

<T*(ί - £2)£, Γ(ί - ί00> = constant for ί 6 [ίw ίj ,

where A and — A* are the infinitesimal generators of the solution semi-
groups {Γ(£)K*o on & corresponding to (1.1) and {Γ*(t)}^0 on Jg*7*
corresponding to (1.2), respectively. As <^, we can take the space of
continuous functions C([ — p, 0], Cd) with the supremum norm if p < oo
and the space of continuous functions ^r = &r(( — °°, 0], Cd) if p = oo,
where ^r is defined to be a Banach space of continuous functions φ
mapping (— oo, 0] into Cd such that lim*.,.*, \φ(θ)\ e~rθ = 0 with norm

\ \ ψ \ \ r = sup \φ(θ)\e-*.
θe (—00,0]

The parameter Ί is greater than a constant β which depends on g(θ)
(see (3.3)), and we assume that g(θ) satisfies some condition (see (3.4)).

Under the above restriction on the domain of /|, we call equation (1.2)
the "adjoint" equation of equation (1.1), which is an extension of the
definition in [1]. The operator A* is said to be "adjoint of A" relative
to the bilinear form <•,•>. Finally, in terms of the "adjoint" A*, we
shall give an explicit representation for the projection operator which
corresponds to the direct sum decomposition of <Z$ relative to the point
spectrum of A. Since the theory is almost trivial when p is finite, we
shall prove the theorems when p is infinite. For discussions on functional
differential equations with infinite retardations, see [2] and [4]. The theory
of adjoint equations of functional differential equations with finite
retardation is found in [1]. The space ^r was taken up by Hino in [3]
as an example of the phase spaces of functional differential equations
with infinite retardations.

2. Linear functional differential equations with phase space <^γ.
Let ^Ϊ9 Ύ e R, be the Banach space defined in the above and F be in
£f(^r, Cd), the family of bounded linear operators on ^r into Cd.
Consider a linear functional differential equation

(2.1) f = ίfe) .

Denote by x(t, φ) the solution of (2.1) such that xQ(φ) = φ. It is easy to
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prove that the norm || ||Γ in ̂  satisfies the conditions similar to
•• ,(jH"4) in [4], With the aid of these properties we can prove the
existence, the uniqueness and the continuation in the future of x(φ).
Furthermore, it holds that xt(Φ)—*Φ as £— >0+ and that for each fixed
t ^ 0 there exists a constant c(t) such that || xt(φ) \\r ^ c(t) \\ψ\\r for φe^r

(see the proof of Lemma 2.1 in [4]). Namely, the family of operators
{S(£)K;>o defined by S(t)φ = %t(Φ)> Φ e ̂ π ίs a continuous semi-group on
^γ. We call such a semi-group the solution semi-group on <^r corre-
sponding to equation (2.1). Denote by <&$* the set of functions in ̂
which have continuous first derivatives, and define the function φ for φ
in <&p by

lF(φ) f or Θ = 0

$(θ) = \dφ_(θ) for 0 < 0 .
v dθ

The infinitesimal generator B of (S(t)} is given as follow.

THEOREM 2.1. &(B) = {φ φe ̂ 1} and φ e ̂ r}, and Bφ = φ for
Φ e

PROOF. Set X = [φ] Φ e 9
c X and Bφ — φ for φ e

lim

and φ e Wr}. It is easy to see that
Now suppose that <* is in X Then

= 0 .

Since S(h}φ(θ) = Φ(θ + h) for Θ + h ̂  0, the mean value theorem implies
that for any Sj > 0 there exists a d(ε,) g 0 such that for any h e (0,1)

(2.2) S(h)φ(θ) - φ(θ ) _ Xι

h
φ(θ) ^ e1 for Θ e (-<*>,

Furthermore, since φ is continuous at Θ = 0, x(t, φ) is continuously
differentiate on R. Hence (dx/dt)(t, φ) is uniformly continuous on
[δfo), 1] and consequently for any ε2 > 0, there exists a p(δ(ε^, e2) such
that I (dx/dt)(tu Φ) - (dx/dt)(t,, ψ)\^ε2 if \tί-tΐ ^p and tu t, e [δ(ej, 1].
Therefore, if h< p,

(2.3)
h

- φ(θ) e~r<> ^ ε2c(Ύ, εO for Θ e [δ(εx), 0] ,

where c(Ύ, εt) ̂  er3ίeι' if 7 ̂  0 and c(7, εj ^ 1 if 7 < 0. Inequalities (2.2)
and (2.3) mean that lim^0+ (S(h)φ - φ)/h = φ. Thus we obtain Zc &(B).

q.e.d.
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3. The adjoint equation. For a given function φ mapping an interval

I into Ck, denote by φ\ and ^* the functions on the interval J = { — θ θel}
defined by

~φ\(θ) = φ(-θ) and ψ*(θ) = τ~φ\(θ) for θ 6 J ,

respectively. As in Section 1, let ^* = {φ*;φe&} and &* = (Φ*;φe
^r}. For norms in ̂ * and ^*, we use the same notations as for
norms in & and < r̂, that is, we put | |0* | | = | | f H I f°r Φ^& and
\\Φ*\\r = l l ^ l l r for φe^r For functions f: [0, oo)->Cand φ: (-<*>, 0]^Cd,
we define the convolution ζ *φ of ζ and φ formally by

(3.1) (ξ*Φ)(θ) = Γ ζ(u - θ)φ(u)du for 0 e (- °o, 0] .
}θ

For λeC, define the operator Λf(λ) on & by

M(\)ψ = ω(\)\*φ for φe&,

where ω(λ) is the function on (— oo, 0] such that

(3.2) ω(λ)(fl) = exp λ0 for θ e ( - oo , 0] .

Set

(3.3) β = inf I Re λ; Γ | eλθ * g(θ)dθ < oo I .
\ J —oo j

LEMMA 3.1. Assume that the function g in the definition of &
satisfies the condition

(3.4) g(u + v) <; g(u)g(v) for u, v e (— oo, 0] .

Then the operator function Λf(λ) is a holomorphic function from Cβ =
{λ e C; Re λ > β} into

For a proof of this lemma, see [4].

LEMMA 3.2. Assume that condition (3.4) holds. Then, if T > /3,
for any ίe^r((— oo, 0], C)* and φ£&((—^, 0], Cd) the convolution ξ*φ
is well defined and is in &((—o°, 0], Cd) with norm

\ \ ξ * Φ \ \ ^ c ( Ί ) \ \ ζ \ \ r \ \ φ \ \ ,

where c(Ύ) is a constant which depends on 7.

PROOF. Suppose that 7 > /9, £ e ̂ * and ψe&. Obviously for any

- θ)φ(u)du ^ Γ |7|(β - W) I β-r<'-«>βr<'- > | ̂ (w) |
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Prom the definition of \\ξ\\r we have

(3.5) \ξ*Φ(θ)\ £\\ς\\r\°er<θ->\φ(u)\du for 0e(-oo,0].

Using the notation Λf(λ), we can express by (M(Ύ) \ Φ \)(θ) the integral
term in (3.5). Since condition (3.4) holds, Lemma 3.1 implies that ξ*φ
is in & and

\ \ ξ * φ \ \ ^ \ \ M ( 7 ) \ \ \ \ ξ \ \ r \ \ φ \ \ . q.e.d.

Put βj = column (δίt δίd), j = 1, , d, where δίk are Kronecker's
δ. For any / in £?(& Cd), we define τf e &>(&f, Cd) by the relation

k=ί j

where /Xα/r) is the j'-th component of /(ψ ), α/r e ̂ , and define /) e
by the relation

(3.6)

In fact, corresponding to / in £f(&, Cd), there exist d x d matrix
functions η(θ) = (ηjk(θ)) and ζ(^) = (ζ^(0)) such that ^ fc(^) are of bounded
variation on [— r, 0] and ζyA(0) are measurable with

ζ/*(0) I 9 g(θ)d(θ) < - , + = 1, y, ft = 1, , d ,
oo Q P

and that

/(#) = Γ dη(θ)φ(θ) + (~r ζ(θ)φ(θ)g(θ)dθ for ^e^ .
J-r J-oo

Then V and /[ are expressed by

('f)(φ) = \° dτη(θ)φ(θ) + Γ τζ(θ)φ(θ)g(θ)dθ for φe^ ,
J-r J-oo

(3.7) (ί)7I - (° ξ(-θ)dr](θ) + (""" ξ(-θ)ζ(θ)g(θ)dθ for |e^* .
J-r J-oo

The following lemma can be easily proved.

LEMMA 3.3. // 7 > β, then ^r c & and

\\φ\\^c(Ύ)\\φ\\r for φe<έ?r,

{
co \ VP

sup*e[-r,o] I erθ p + \ I erθ \p g(θ)dθ\ .

By Lemma 3.3, for any / e £f(&, Cd) and any 7 > β, the restriction
of / on ̂ r, which we denote by / again, is in ̂ (̂  Cd), and therefore
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τf is in &(<&Ί, Cd) and 71 is in J^(ίfr*, TCd).
Now, define an operator A* on if*, 7 > β, in the following way.

The domain of A* consists of all functions ξ in r̂* which have con-

tinuous first derivatives and satisfy ξe^*9 where |(0) = (£)/| and f(s) =
—(dξ/ds)(s) for se(0, oo). The operation of A* is defined by

(3.8) A*ζ = ξ for ξ e ̂ (A*) .

Assume that condition (3.4) holds. By Lemma 3.2, for any ξ = (̂ (s),
• , ξd(s)) e ίfV((- oo, 0], Cd)* and any 0 e ̂ ((- oo, 0], Cd] the convolutions
ζj*φ, j = 1, , d, are in .̂ Hence we can define a bilinear form <£, 0>
on ̂  * x ̂  by

(3.9) <ί, <*> - ί(0)

where x y = x}yl + + B^ for a? e rCd and y e Cd.
Let [T(t)}t^Q be the solution semi-group on & corresponding to the

equation

(3.10) %L = f(xt)
dt

and A be the infinitesimal generator of (T(t)}. It was proved in [4] that
the domain of A consists of all functions φ in & which are absolutely
continuous on any compact interval of (—00, 0] and satisfy ^e^, where
φ(Q) = f(φ) and φ(θ) = (dφfdθ)(θ) a.e. in 0e(-oo, 0), and that

Aφ = φ for φ e ̂ (A) .

PROPOSITION 3.4. Assume that condition (3.4) holds and that Ύ > β.
Then the bilinear form < , > is continuous on <^r* x &, and

(3.11) <ί, Aφ} = <A*ί, ^> for ζ e &(A*) , φ e &r(A) .

PROOF. The continuity of <•,•> follows from Lemma 3.2. Suppose
that ξ is in &r(A*) and φ is in ^(A). Integration by parts implies that

(3.12) ξs * Aφ - ̂ (0) - fc(0)0 + (A*f); * # , J - 1, , d .

By Lemma 3.2, ζs*Aφ9 and (A*ζ)s*φ, j = 1, - « ,d, are in ̂ , since f

is in ^(A*) and ^ is in ^(A). By the definition of f\,

Σ/XI7|0(0)) - Σ JΣΛ(^β4)}Λ(θ) - (f)7Ί rtθ) ,

which together with relation (3.12) implies that

Σ Mb * Aφ) = (ξ)J\ φ(0) - ξ(Q) f(φ) + Σ /X(A*ί), * φ) .
3=1 j=l
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Hence we obtain

= ζ(0) f(Φ)

= <A*£, {ί> . q.e.d.

Now, consider the equation

(3.13)
at

where # is a row vector. It is clear that y is a solution of (3.13) if and
only if z = y* is a solution of

(3.14) 4f = Γ/(^α£

Notice that Γ/ is in ^(^γ, Cd). From the discussion in Section 2 it
follows that for any φ e <g*r, the solution z(φ) of (3.14) such that z0 = φ
exists uniquely on [0, oo ) and satisfies the condition zt e <g^ for t ^ 0.
This implies that for any ξ e^r*, the solution y(ξ) of (3.13) such that
y\ξ) = ξ exists uniquely on (— oo, 0] and satisfies y*(ξ) e <g*r* for t e ( — oo, 0].
Define the operators Γ*(ί) on ̂ *, t ^ 0, by

T*(t)ξ = y\ζ) for f e ̂ * .

Let {S(t)Kfc0 be the solution semi-group on <^r corresponding to equation
(3.14) and B be its infinitesimal generator. Clearly, T*(t)ξ = (S(-ί)ί*)*
for ξ e ̂ *. Furthermore, by Theorem 2.1, ̂ (A*) = &(B)* and A*ί =
(Bξ*)* for f in ^(A*), where A* is the operator defined by (3.8). There-
fore, by easy computations, we have

(3.15)

for t ^ 0 and f e

THEOREM 3.5. Let x and y be solutions of (3.10) and (3.13) defined
on [tl9 oo ) and (— °°,ίa] wί£/fc initial conditions xh = φe& and y*2 =
ξ 6 <gT% respectively, where Ί > β and — oo < ^ ̂  ί2 < +00. Then (y*, xt)
is a constant on [tlf t 2 ] , that is,

(3.16) <T*(£ - ίOf, Γ(ί - tι)#> = constant for t e [ίlf tj .

PROOF. If f is in &(A*) and ^ is in ^(A), by Proposition 3.4 and
(3.15) we have
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-
at

= <-A*T*(£ - ί,)f, τ(t - tjφy
= 0 f or t 6 ft, ίj ,

which implies (3.16). Since &(A*) and
respectively, relation (3.16) holds for any (£,

are dense in
x

and
q.e.d.

4. A representation of projection operators. Let &>(λ) be the func-
tion defined by (3.2). Suppose / is in &(&?, Cd) and denote by D(λ) the
d x d matrix \E — f(ω(\)E), where E is the d x d unit matrix. We
define matrices F3 by

= --D(\), 3 -0,1,2,
;?! dλ*

and define me? x md matrices Dm = Dm(\) by

Fm_2

0 0

m = 1, 2,

In [4], it has been shown that D(λ) is holomorphic on C^^jλeC;
Re λ > /3} and that Pσ(A) = {λ; det D(λ) = 0}. Suppose that μ e Cβ is a
zero of detD(λ) with order n. Then μ is a pole of -D(λ)"1 with order
m ^ n. In this section, (n, m) is said to be the index of μ. From the
result in [4] it follows that under condition (3.4) on g, & can be decom-
posed into the direct sum &•= 3l((μl - A)m) 0 £P((μI - A)m), 3l((μl - A)m)
is w-dimensional and that for k = 1, 2, , yi((μl — A)k) coincides with
the set of functions φ of the form

φ(θ) = eμθ Σ—
j=0 J \

for ί 6 (- oo, 0] ,

where b = col (60, 6^ , bk_^ satisfies Dk(μ)b =Ό.
For any 7, /9 < 7 < Re μ, the bilinear form < , > can be defined on

&* x & and it satisfies relation (3.11). Therefore we can prove the
following propositions and theorem by the same way as in [1],

PROPOSITION 4.1. Let A and —A* be the infinitesimal generators
of semi-groups {T(t)}t^0 on & and {T*(t)}t<,0 on <^r* defined in Section
3, where 7 > β. Then the point spectrum Pσ(A*) coincides with Pσ(A)ΠCr.
Let (n, m) be the index of μ e Pσ(A*). Then ^l((μl — A*)w) is n-dimen-
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sίonal. For k = l,2, , %l((μl — A*)k) coincides with the set of functions
ξ of the form

ξ(s) = e-^(-sY^i for βe[0, «>),
j=Q J I

where a — row (a0, aί9 , ak_^ satisfies άDk(μ) — 0.

PROPOSITION 4.2. Under the same assumption as in Proposition 4.1,
t is in &((μl - A)k) if and only if <£, ^ > = 0 for all ζ in $l((μl - A*)k\

THEOREM 4.3. Let μ be in Pσ(A) Π Cβ with index (n, m) and π be
the projection from έH? onto %l((μl — A)m) which corresponds to the
direct sum decomposition &= ?fl((μl — A)m)®^((μl — A)m). Then for
any base {φlf , φn] of %l((μl — A)m), there exists a base {̂ , , ιjrn} of
yi((μl - A*)m) such that

^ = Σ<^,<*>& for φe^.
J = l
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