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1. Introduction. Let o =7 =0, p =1 be given real numbers (0 may
be + =) and g(f) be Lebesgue integrable, positive and nondecreasing on
[—p, 0], where [—p, 0] denotes (—c,0] when o= +c. Let Z=
F([—p, 0], C%) be the Banach space of functions ¢ mapping [—p, 0] into
C?, the complex d-dimensional column vector space, which are Lebesgue
measurable on [—p, 0], are continuous on [—7, 0] and have the property
such that

1g1l =] sup @) + | 1601 9010 | < =,

where |v| denotes a norm of v in C°% We shall discuss the adjoint
equation of a linear functional differential equation

(L.1) 92 _ f),

where f is a bounded linear operator on <& into C% Denote by “v the
transposed vector of veC? and by "C? the space {"v; ve C?%. For a given
function ¢ mapping [—p, 0] into C?% the function ¢* mapping [0, o] into
TC? is defined by ¢*(s) = "¢(—s), s€[0, p]. For a family # of those
functions ¢, set F * = {¢*; €. }. For a function « defined on [t — p, t]
(or [t,t + p]), designate by x, (or =) the function on [—p, 0] (or [0, o])
such that x,(0) = 2(t + 6), 6 €[—p, 0] (or x'(s) = =(t + s), s €0, p]).

Now consider a linear functional differential equation for a row
vector y

dy £

1.2 = = — .

(1.2) It W)l

The symbol f| denotes the operator on <& * naturally induced by f which
operates on <Z* to the right (see (3.6) and (3.7)). However, we restrict
the domain of f| on a space 2°* such that .2° can be imbedded con-
tinuously in & and that for any £ € .2°* and any ¢ € <%, the convolution
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£x¢ (see (8.1)) is defined and belongs to <#Z. Then we can define a bilinear
form (-,-)> on Z°* x & (see (3.9)) which satisfies the following proper-
ties;

(i) <& Ag) = (A%, ¢) for (€ D(A*) and g F(4),

(ii) for any (¢, ¢)e Z* X Z#,
(T*t — t,)& T — t)¢) = constant for ¢ €[t t.] ,

where A and —A* are the infinitesimal generators of the solution semi-
groups {T(t)},se on <& corresponding to (1.1) and {T*(t)},<, On Z*
corresponding to (1.2), respectively. As 2, we can take the space of
continuous functions C([—p, 0], C?) with the supremum norm if o <
and the space of continuous functions &, = &, ((—, 0], C%) if o = oo,
where &, is defined to be a Banach space of continuous functions ¢
mapping (— oo, 0] into C¢ such that lim,,_. |$(0)] e ™ = 0 with norm

ll¢ll; = sup [g(6)|e.
6 € (—o,0]

The parameter ¥ is greater than a constant @ which depends on g(6)
(see (3.3)), and we assume that g(f) satisfies some condition (see (3.4)).
Under the above restriction on the domain of f|, we call equation (1.2)
the “adjoint” equation of equation (1.1), which is an extension of the
definition in [1]. The operator A* is said to be “adjoint of A” relative
to the bilinear form (-,.)>. Finally, in terms of the “adjoint” A*, we
shall give an explicit representation for the projection operator which
corresponds to the direct sum decomposition of <# relative to the point
spectrum of A. Since the theory is almost trivial when o is finite, we
shall prove the theorems when p is infinite. For discussions on functional
differential equations with infinite retardations, see [2] and [4]. The theory
of adjoint equations of functional differential equations with finite
retardation is found in [1]. The space &, was taken up by Hino in [3]
as an example of the phase spaces of functional differential equations
with infinite retardations.

2. Linear functional differential equations with phase space Z,.
Let &, Ye R, be the Banach space defined in the above and F be in
L (&, CY), the family of bounded linear operators on &, into C¢%
Consider a linear functional differential equation

dr _
2.1) yTe F(x,) .

Denote by x(t, ) the solution of (2.1) such that z(¢) = ¢. It is easy to
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prove that the norm || - ||, in &, satisfies the conditions similar to (H,),
.+, (H) in [4]. With the aid of these properties we can prove the
existence, the uniqueness and the continuation in the future of x(g).
Furthermore, it holds that x,(¢) — ¢ as ¢t — 0+ and that for each fixed
t = 0 there exists a constant ¢(f) such that ||z,(¢)||; =< c(t) || ¢ ||, for ¢ €&
(see the proof of Lemma 2.1 in [4]). Namely, the family of operators
{S(t)}:zo defined by S(t)p = x(4), 6 € F>, is a continuous semi-group on
&,. We call such a semi-group the solution semi-group on %, corre-
sponding to equation (2.1). Denote by &%" the set of functions in &
which have continuous first derivatives, and define the function ¢ for ¢
in " by

F(g) for 6 =0
-5
T @ for6<O0.

The infinitesimal generator B of {S(¢)} is given as follow.
THEOREM 2.1. 2(B)={4;¢6e%&" and §c%,;}, and Bp =¢ for
¢ € 2(B).

PROOF. Set X={¢;6ec& and gec%,}. It is easy to see that
(B)c X and Bp = ¢ for g€ =7(B). Now suppose that ¢ isin X. Then

lim

f-—>—c0

@L _0:
dﬁ(a)ler 0.

Since S(h)¢(0) = ¢(6 + h) for 6§ + h < 0, the mean value theorem implies
that for any ¢, > 0 there exists a d(¢;) = 0 such that for any % €(0, 1)

2.2) S(h)?‘(ﬁi)b —40) _ 5(0)[ e <& for fe(—-o, ()] .
Furthermore, since 4 is continuous at 6 = 0, z(¢, §) is continuously
differentiable on R. Hence (dx/dt)(t, ) is uniformly continuous on
[6(¢), 1] and consequently for any e, >0, there exists a 0(d(¢), €,) such
that |(dxz/dt)(t, ¢) — (da/dt)(t, ¢)| <&, if |, —t.| <0 and ¢, ¢ €[d(e), 1].
Therefore, if < p,

2.3) S(")"’(a})b— 80) _ 50)| e < ee(r, &) for 0e[d(e), 0],

where ¢(7, €,) < e if ¥ =0 and ¢(7, &) <1 if 7 < 0. Inequalities (2.2)

and (2.3) mean that lim,_,, (S(k)¢ — ¢)/h = ¢. Thus we obtain X c =(B).
q.e.d.
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3. The adjoint equation. For a given function ¢ mapping an interval

I into C*, denote by ¢| and ¢* the functions on the interval J = {—8; 0 e I}
defined by

B(0) = ¢(—6) and ¢*(0) = “g[(f) for feJ,

respectively. As in Section 1, let &Z* = {¢*; ¢ &} and & = {¢*; b€
&,}. For norms in &#* and &, we use the same notations as for
norms in & and &,, that is, we put | ¢*|| =]/ ¢|| for ¢ and
le*Il; =1 8ll, for ¢ € &,. For functions &: [0, o) —C and ¢: (— <, 0] — C*¢,
we define the convolution £x¢ of & and ¢ formally by

(3.1) €+9)0) = | s — Opwidu for de(—e,0].
For M eC, define the operator M(\) on <& by

M(\)é = o(\)|x¢ for ¢eFZ,
where @w(\) is the function on (— o, 0] such that

(3.2) w(\)(@) = exprd for fe(—,0].
Set
(3.3) 8 = inf {Re N S_ |6 |7 g(6)dh < oo} .

LEMMA 3.1. Assume that the fumction g in the definition of &
satisfies the condition

(3.4) g(u + v) < g(u)9(v) for wu,ve(—oo,0].

Then the operator function M(\) is a holomorphic function from C, =
{xeC; Re\ > B} into L (B, Z&).

For a proof of this lemma, see [4].

LEMMA 3.2. Assume that condition (3.4) holds. Then, if ¥ >p,
for any &€& ((—, 0], C)* and ¢ € Z((— =, 0], C%) the convolution &xg¢
1s well defined and is in F((— o, 0], C?) with norm

Wexgll = Mgl

where c¢(Y) is a constant which depends on 7.

PrOOF. Suppose that ¥ > 8, £€€&* and ¢e . Obviously for any
fe(—o,0],

| et — opidu]| = | 1316 — w) | er0-0e0- | o) | du
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From the definition of ||£||, we have
@5 &0 = el | e 15w du tor ge(—e, 0]

Using the notation M(\), we can express by (M(Y)|¢|)(#) the integral
term in (3.5). Since condition (3.4) holds, Lemma 3.1 implies that £x¢
is in &Z and

el = 1 MM I11€ll: 18]l q.e.d.

Put ¢; = column (0;, --- 9;4), =1, ---, d, where §;, are Kronecker’s
0. For any f in (<, C?), we define 7f € (<, C?) by the relation

CHE) =SS Ao tor 6= pees,

k=1

where f;(v) is the j-th component of f(v), v € <&, and define f]e L (F*,
’C% by the relation

(3.6) @OF1 ="(("f)E*) for ceZ*.

In fact, corresponding to f in (<%, C?%), there exist d X d matrix
functions 7(0) = (;,(0)) and £(0) = ({;,(0)) such that 7;,(0) are of bounded
variation on [—7, 0] and {;,(0) are measurable with

S_r'C'1k(0)lqg(0)d(0)<Oo ’ l l:l’ j’k=1;"'7d’
- q VY

and that
1@ = | an090) + | cow)90)a0 tor sez .
Then ”f and f| are expressed by
@ = a0 + | oo for pez

@0 @@= a-0amo + | d-0)0w@0s for sez.

The following lemma can be easily proved.

LEMMA 3.3. If ¥ > B, then &, C F# and
lgll e ligll; for ¢e%%,
0

1/p
where the constant ¢(Y) is less than {supge[_,,o] |er|? +S |er?|? g((i)dﬁ} .

By Lemma 8.8, for any f e .¥(<Z, C%) and any ¥ > 3, the restriction
of f on &;, which we denote by f again, is in (%, C?), and therefore
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Tf is in L(F, C%) and f] is in L(&F, 7CY).

Now, define an operator A* on &*,7 > B, in the following way.
The domain of A* consists of all functions & in &%* which have con-
tinuous first derivatives and satisfy &e &, where £(0) = (¢)f] and &(s) =
—(d¢/ds)(s) for se(0, ). The operation of A* is defined by
(3.8) A*e =¢ for fe o(4%).

Assume that condition (8.4) holds. By Lemma 3.2, for any & = (§(s),
coe, 88)) e EH(— o, 0], C)* and any ¢ € Z((— o, 0], C?] the convolutions
gixp, 3 =1,---,d, are in <Z. Hence we can define a bilinear form (¢, ¢)
on &) X &Z by

(3.9) & 8> = €0)-40) + £ 7ies+9)

where £-y = x,y, + -+ + 2y, for xe€”7C* and y e C%

Let {T(t)},so be the solution semi-group on <# corresponding to the
equation

dr
(3.10) T S(a,)

and A be the infinitesimal generator of {7'(¢)}. It was proved in [4] that
the domain of A consists of all functions ¢ in <& which are absolutely
continuous on any compact interval of (— o, 0] and satisfy ¢ € <&, where
$(0) = f(¢) and $(0) = (dp/d6)(0) a.e. in #c(—oo, 0), and that

Ap=¢ for ge 2(A).

PRrOPOSITION 3.4. Assume that condition (3.4) holds and that v > B.
Then the bilinear form (-,-> is continuous on &, X &, and

(3.11) ¢, Ag) = (A%, ¢) for e 2(A%), de2(4).

Proor. The continuity of (-, -)> follows from Lemma 3.2. Suppose
that ¢ is in =2(A*) and ¢ is in &(A4). Integration by parts implies that

(3.12) &A= Elp(0) — &(0)8 + (A*E);x9, J=1,---,d.
By Lemma 3.2, &;+xA¢, and (A*E);x¢, =1, ---,d, are in &, since &
is in 2(A*) and ¢ is in 2(A4). By the definition of f],

S EBO) = 3 {3 £1Elen}oi0) = 71+ 60),

which together with relation (8.12) implies that

3175+ A9) = @71+ 60) — 600 F9) + 2 7(A%8)s+9) -
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Hence we obtain
& Ag) = 0)- @) + 3, & A9)
= OF1- 80 + 3 £,((4%9);+9)

= (A%, ¢) . q.e.d.
Now, consider the equation
dy ¢
3.13 flacd SRR ,
(3.13) i (")

where y is a row vector. It is clear that y is a solution of (3.18) if and
only if z = y* is a solution of

(3.14) — ="f(z) .

Notice that 7f is in (%%, C%). From the discussion in Section 2 it
follows that for any ¢e€ &, the solution z(¢) of (8.14) such that 2z, = ¢
exists uniquely on [0, <) and satisfies the condition 2z,€%, for ¢ = 0.
This implies that for any &e &*, the solution %(£) of (8.13) such that
9°(£) = & exists uniquely on (— o, 0] and satisfies y*(&) € &;* for ¢t € (— o, 0].
Define the operators T*(¢t) on &%, t <0, by

T*@)s = y'(§) for sez*.

Let {S(¢)},>, be the solution semi-group on %, corresponding to equation
(3.14) and B be its infinitesimal generator. Clearly, T*(t)¢ = (S(—t)&*)*
for £ &*. Furthermore, by Theorem 2.1, &(A*) = =2(B)* and A*¢ =
(B&*)* for & in =2(A*), where A* is the operator defined by (3.8). There-
fore, by easy computations, we have

a
dt

for t £ 0 and £e 2(4*).

THEOREM 3.5. Let x and y be solutions of (3.10) and (3.18) defined
on [t, «) and (—oo, t,] with initial conditions x, = ¢ F and y* =
g e &, respectively, where Y > B and — <t, =t, < +co. Then (¥’ x,)
18 a constant on [t, t,], that is,

(3.16) (Tt — )&, T(t — t)p) = constant for telt, t,] .

Proor. If ¢ is in 2(4*) and ¢ is in =(A), by Proposition 3.4 and
(3.15) we have

(3.15) TH(t)e = — A*TH(E)E = — T*(t)A*e
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& gy _ _
E<T (t — 1) T(¢ — t)g)

= <—A* T*(t — )8, T(t - t1)¢> + <T*(t - tz)&; AT(t - t1)¢>
=0 for telt, t,],

which implies (3.16). Since &2(A*) and =7(A) are dense in & and <,
respectively, relation (3.16) holds for any (&, ¢) € & X . g.e.d.

4. A representation of projection operators. Let w(\) be the func-
tion defined by (3.2). Suppose f is in (<, C?) and denote by D(\) the
d x d matrix ME — f(w(\)E), where E is the d x d unit matrix. We
define matrices F; by

1 df

Fj:Fj)\:——'_———,DX, .=O,1,2,"',
0 =5LD0),

and define md X md matrices D, = D,(\) by

Fo Fl"'Fm—l
0 _F'...F'm__2

_Dm‘—_“ 0 N m:l’z,.oo.
0 0"'Fo

In [4], it has been shown that D(\) is holomorphic on C; = {AeC;
Re ) > B} and that P,(A) = {\; det D(\) = 0}. Suppose that peC; is a
zero of det D(\) with order n. Then g is a pole of D(\)™* with order
m < n. In this section, (n, m) is said to be the index of ¢. From the
result in [4] it follows that under condition (8.4) on g, <& can be decom-
posed into the direct sum &= N((ul — A)™) P A (eI — A)™), N((peI — A)™)
is m-dimensional and that for £k =1,2, ..., N((l — A)*) coincides with
the set of functions ¢ of the form

k—
#(0) = 6F0,Z‘=:Tlr 0b; for fe(—o, 0],

where b = col (b, by, -, b,_,) satisfies Dk(;t)l; = 0.

For any 7, 8 < 7 < Re p, the bilinear form {-,-)> can be defined on
& X & and it satisfies relation (8.11). Therefore we can prove the
following propositions and theorem by the same way as in [1].

ProproSITION 4.1. Let A and —A* be the infinitesimal generators
of semi-groups {T(t)}zo on FZ and {T*(t)}<o, on & defined in Section
3, where ¥ > 8. Then the point spectrum P,(A*) coincides with P,(A)NC;.
Let (n, m) be the index of pe P,(A*). Then N((nl — A*)™) is n-dimen-
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stonal. For k=12, <, R(( — A*)*) coincides with the set of functions
& of the form

) = o S~y Bt for a0, =),

=
where @ = row (ay, @, -+, a,_,) satisfies @D, (1) = 0.

PROPOSITION 4.2. Under the same assumption as in Proposition 4.1,
¥ s in B(pl — A)) if and only if (&, v) = 0 for all & in N((pl — A*)¥),
k=12 -

THEOREM 4.3. Let p be in P, (A)N C, with index (n, m) and © be
the projection from <& onto R((ul — A)™) which corresponds to the
direct sum decomposition Z = N((pl — A" B #(p¢I — A)™). Then for
any base {¢,, ---, ¢.} of Nl — A)™), there exists a base {y, «--, 9.} of
N((eI — A*)™) such that

Il

g 2 (Ps, $09; for €7 .
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