# ON SACKER-SELL'S THEOREM FOR A LINEAR SKEW PRODUCT FLOW 

Junji Kato and Fumio Nakajima

(Received December 24, 1974)

1. Introduction. Following Hale [1; p. 145] we shall call a linear system of differential equations to be non-critical if it has no non-trivial solution which is bounded on $(-\infty, \infty)$.

It is clear that a periodic linear system (including autonomous case) is non-critical if and only if none of its characteristic exponents has zero real part. By this fact, it is also true that a periodic linear system has an exponential dichotomy if and only if it is non-critical.

The same assertion was not verified for almost periodic systems until recently Sacker and Sell [2] have proved it affirmatively. However, their proof is based on the facts from the algebraic topology and considerably complicated.

In this article, we shall present a simple proof for this fact (Theorem 2 below). Moreover, our first theorem (Theorem 1 below) says more and we can expect many useful applications.
2. Skew product flow. As was mentioned in the above, our main object is to give a simple proof of the following theorem due to Sacker and Sell [2].

Theorem. A non-critical linear skew product flow $\pi=(\phi, \sigma)$ on $X \times Y$ has an exponential dichotomy on $T$ if $X$ is a Banach space of finite dimension and if $Y$ is compact and minimal.

Let $\pi$ be a flow on $X \times Y$ with phase group $T$, where $X$ and $Y$ are topological spaces. The flow $\pi$, or $\pi=(\phi, \sigma)$, is called to be a skew product flow on $X \times Y$ if there is a decomposition

$$
\pi(x, y, t)=(\phi(x, y, t), \sigma(y, t)), \quad x \in X, \quad y \in Y, \quad t \in T
$$

in which $\sigma$ is a flow on $Y$ with the phase group $T$. A skew product flow $\pi=(\phi, \sigma)$ is called to be linear if $X$ is a linear normed space and $\phi(x, y, t)$ is linear in $x$. In this case, the operator $\Phi(y, t)$ defined by

$$
\Phi(y, t) x=\phi(x, y, t)
$$

is a bounded, invertible linear operator of $X$ into itself and continuous
in ( $y, t$ ), and we have

$$
\begin{equation*}
\Phi(\sigma(y, t), s) \Phi(y, t)=\Phi(y, t+s) \tag{1}
\end{equation*}
$$

We shall call the linear skew product flow $\pi=(\phi, \sigma)$ to be noncritical if for any $y \in Y, \phi(x, y, t)$ is bounded on $T$ only when $x=0$. In the theorem above the minimality of $Y$ means that

$$
\overline{\{\sigma(y, t) ; t \in T\}}=Y \quad \text { for each } \quad y \in Y
$$

As was mentioned in [2], a linear system

$$
\dot{x}=A(t) x
$$

on $R^{n}$ yields a linear skew product flow $\pi=(\phi, \sigma)$. Here, $X=R^{n}, T=R$ and $Y$ is the hull $H(A)$ of $A(t)$, that is, $\overline{\left\{A_{t} ; t \in R\right\}}$, where $A_{t}(s)=A(t+s)$ and the closure is in the sense of the compact-open-topology. Moreover,

$$
\sigma(B, t)=B_{t}, \quad B \in H(A)
$$

and $\phi(x, B, t)$ is the solution of the system

$$
\begin{equation*}
\dot{x}=B(t) x \tag{2}
\end{equation*}
$$

passing through $x$ at $t=0$.
Clearly the hull $H(A)$ is compact if and only if $A(t)$ is bounded and uniformly continuous on $R$, and it is minimal with respect to $\sigma$ given in the above if $A(t)$ is almost periodic. Moreover, by the fact that $\pi$ is non-critical, we shall mean that for every $B \in H(A)$ the system (2) (or $B$ shortly) is non-critical in the sense of Hale.

Remark 1. For a periodic case, it is obvious that every $B \in H(A)$ is non-critical if and only if $A$ is non-critical. However, this assertion is not valid for almost periodic systems.

In the following, let $X$ be a Banach space of finite dimension, let $Y$ be a compact space and let $\pi=(\phi, \sigma)$ be a linear skew product flow on $X \times Y$ with phase group $T$ which is $R$ or $\alpha Z$ (for a real $\alpha$ ).

For a $y \in Y, S(y)$ denotes a subset of $X$ defined by

$$
S(y)=\left\{x \in X ;\|\phi(x, y, t)\| \text { is bounded on } T^{+}\right\}
$$

where $T^{+}=\{t \in T ; t \geqq 0\}$. Clearly $S(y)$ is a linear subspace of $X$ because of the linearity of $\phi$.

The linear skew product flow $\pi=(\phi, \sigma)$ is said to have an exponential dichotomy on $T^{+}$(or on $T$ ) at $y \in Y$, if we can select a subspace $U(y)$ of $X$ which is complement to $S(y)$, that is,

$$
X=S(y) \oplus U(y)
$$

is a direct sum and if there exist two positive constants $K=K(y)$ and $\alpha=\alpha(y)$ such that

$$
\begin{equation*}
\|\phi(x, y, t)\| \leqq K e^{-\alpha(t-s)}\|\phi(x, y, s)\|(t \geqq s, x \in S(y)) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\phi(x, y, t)\| \leqq K e^{\alpha(t-s)}\|\phi(x, y, s)\|(t \leqq s, x \in U(y)) \tag{4}
\end{equation*}
$$

where $t$ and $s$ vary on $T^{+}$(or on $T$ ). If $\pi$ has an exponential dichotomy on $T$ at $y$ for every $y \in Y$ and the constants $K(y)$ and $\alpha(y)$ in the relations (3) and (4) can be chosen independently of $y \in Y$, then $\pi$ is said to have an exponential dichotomy on $T$.

Remark 2. It is clear that if a linear skew product flow $\pi=(\phi, \sigma)$ has an exponential dichotomy on $T$, then $\pi$ is non-critical. In fact, let $\phi(x, y, t)$ be bounded on $T$. Then $x \in S(y)$. Therefore, by the relation (3) we have

$$
\|!\phi(x, y, s)\| \geqq \frac{1}{K} e^{\alpha(t-s)}\|\phi(x, y, t)\| \quad(t \geqq s)
$$

which implies that $\|\phi(x, y, s)\| \rightarrow \infty$ as $s \rightarrow-\infty$ if $x \neq 0$. From this it follows that $\phi(x, y, t)$ is bounded on $T$ only when $x=0$.

Thus, under the assumptions for $X$ and $Y$ given in theorem, $\pi$ has an exponential dichotomy on $T$ if and only if it is non-critical.
3. Exponential dichotomy on $T^{+}$. Our first theorem is the following.

Theorem 1. If the linear skew product flow $\pi=(\phi, \sigma)$ is non-critical, then it has an exponential dichotomy on $T^{+}$at $y$ for every $y \in Y$.

By choosing any complementary space $U(y)$ to $S(y)$ we shall show the existence of constants $K$ and $\alpha$ for which the relations (3) and (4) hold.

Proof of the relation (4). First of all, we shall prove that

$$
\begin{equation*}
\|\phi(x, y, t)\| \leqq K_{1}\|\phi(x, y, s)\| \tag{5}
\end{equation*}
$$

for some constant $K_{1}>0$, any $s, t \in T^{+}, s \geqq t$, and any $x \in U(y)$.
Suppose that this is not the case. Then there exist sequences $\left\{t_{k}\right\}$, $\left\{s_{k}\right\}$ and $\left\{x^{k}\right\}$ such that

$$
s_{k} \geqq t_{k} \geqq 0, \quad x^{k} \in U(y), \quad x^{k} \neq 0, \quad\left\|\phi\left(\dot{x^{k}}, y, t_{k}\right)\right\| \geqq k\left\|\phi\left(x^{k}, y, s_{k}\right)\right\| .
$$

By the linearity of $\phi(x, y, t), x^{k}$ can be assumed to belong to the unit sphere in $U(y)$. Since the unit sphere in a Banach space of the finite dimension is compact, we can assume that $\left\{x^{k}\right\}$ converges to an $x \in U(y)$,
$\|x\|=1$.
Let $\sigma_{k}$ be chosen so that $0 \leqq \sigma_{k} \leqq s_{k}$ and

$$
\begin{equation*}
\left\|\phi\left(x^{k}, y, \sigma_{k}\right)\right\|=\max _{0 \leq t \leq s_{k}}\left\|\phi\left(x^{k}, y, t\right)\right\| \tag{6}
\end{equation*}
$$

Then by noting the relation (1), clearly we have

$$
\left\|\phi\left(\xi^{k}, \eta^{k}, s_{k}-\sigma_{k}\right)\right\|=\frac{\left\|\phi\left(x^{k}, y, s_{k}\right)\right\|}{\left\|\phi\left(x^{k}, y, \sigma_{k}\right)\right\|} \leqq \frac{1}{k}
$$

where

$$
\begin{equation*}
\xi^{k}=\frac{\phi\left(x^{k}, y, \sigma_{k}\right)}{\left\|\phi\left(x^{k}, y, \sigma_{k}\right)\right\|}, \quad \eta^{k}=\sigma\left(y, \sigma_{k}\right) \tag{7}
\end{equation*}
$$

which implies that

$$
\|\phi(\xi, \eta, s)\|=0
$$

if $\left(\xi^{k}, \eta^{k}, s_{k}-\sigma_{k}\right)$ converges to a $(\xi, \eta, s)$. Since $\left\|\xi^{k}\right\|=1$ and $Y$ is compact, there arises a contradiction if $s$ is finite, that is, if $\left\{s_{k}-\sigma_{k}\right\}$ contains a bounded subsequence. Thus $\left\{s_{k}-\sigma_{k}\right\}$ is divergent to $\infty$.

Next, suppose that $\left\{\sigma_{k}\right\}$ contains a bounded subsequence. This makes it possible to assume that

$$
\left\|\phi\left(x^{k}, y, \sigma_{k}\right)\right\| \leqq K_{0}
$$

for a constant $K_{0}$ and for all $k$, which shows

$$
\left\|\phi\left(x^{k}, y, t\right)\right\| \leqq K_{0} \quad \text { for all } \quad t, 0 \leqq t \leqq s_{k}
$$

by (6). Since $\left\{s_{k}\right\}$ is divergent to $\infty$, we have

$$
\|\phi(x, y, t)\| \leqq K_{0} \quad \text { for all } \quad t \in T^{+}
$$

by letting $k \rightarrow \infty$, and hence, $x \in S(y)$, which contradicts $x \in U(y),\|x\|=1$. Therefore $\left\{\sigma_{k}\right\}$ is divergent.

Thus, for the ( $\xi^{k}, \eta^{k}$ ) given by (7), we have

$$
\left\|\phi\left(\xi^{k}, \eta^{k}, t\right)\right\|=\frac{\left\|\phi\left(x^{k}, y, t+\sigma_{k}\right)\right\|}{\left\|\phi\left(x^{k}, y, \sigma_{k}\right)\right\|} \leqq 1
$$

for all $t,-\sigma_{k} \leqq t \leqq s_{k}-\sigma_{k}$, which implies

$$
\|\phi(\xi, \eta, t)\| \leqq 1
$$

for all $t \in T$ and for a limit $(\xi, \eta)$ of $\left\{\xi^{k}, \eta^{k}\right\}$. This contradicts the fact that $\pi$ is non-critical. Thus the relation (5) is proved.

To prove the relation (4), it is sufficient to show the existence of a $\tau=\tau(\varepsilon) \in T^{+}$for any given $\varepsilon>0$ such that for any $t \in T^{+}$and any $x \in U(y)$, there is an $s, t \leqq s \leqq t+\tau$, for which
(8)

$$
\|\phi(x, y, t)\| \leqq \varepsilon\|\phi(x, y, s)\| .
$$

Then, from (5) and (8) we would have

$$
\begin{aligned}
\|\phi(x, y, t)\| & \leqq \varepsilon K_{1}\|\phi(x, y, t+\tau)\| \\
& \leqq\left(\varepsilon K_{1}\right)^{k}\|\phi(x, y, t+k \tau)\| .
\end{aligned}
$$

Therefore, if we choose an $\varepsilon$ and an integer $k$ so that

$$
0<\varepsilon<\frac{1}{K_{1}}, \quad t+(k+1) \tau>s \geqq t+k \tau
$$

for a given $s \geqq t$, then we have (4) by putting

$$
K=\frac{1}{\varepsilon}, \quad \alpha=-\frac{1}{\tau} \log \left(\varepsilon K_{1}\right) .
$$

Suppose that for an $\varepsilon>0$ we can not choose such a $\tau>0$ as in the above. Then there are sequences $\left\{t_{k}\right\}$ and $\left\{x^{k}\right\}$ such that $t_{k} \in T^{+}, x^{k} \in U(y)$ and

$$
\left\|\phi\left(x^{k}, y, t_{k}\right)\right\| \geqq \varepsilon\left\|\phi\left(x^{k}, y, s\right)\right\| \text { for all } s \in T^{+}, \quad t_{k} \leqq s \leqq t_{k}+2 k .
$$

By setting

$$
\begin{equation*}
\bar{\xi}^{k}=\frac{\phi\left(x^{k}, y, t_{k}+k\right)}{\left\|\phi\left(x^{k}, y, t_{k}\right)\right\|}, \quad \bar{\eta}^{k}=\sigma\left(y, t_{k}+k\right), \tag{9}
\end{equation*}
$$

we have

$$
\left\|\phi\left(\bar{\xi}^{k}, \bar{\eta}^{k}, t\right)\right\| \leqq \frac{1}{\varepsilon} \text { for all } t \in T^{+}, \quad-k \leqq t \leqq k .
$$

On the other hand, since

$$
\frac{1}{\varepsilon} \geqq\left\|\bar{\xi}^{k}\right\| \geqq \frac{1}{K_{1}},
$$

we may assume that ( $\bar{\xi}^{k}, \bar{\eta}^{k}$ ) converges to a $(\bar{\xi}, \bar{\eta}),\|\bar{\xi}\| \neq 0$. Again $\phi(\bar{\xi}, \bar{\eta}, t)$ becomes to be bounded on $T$ which yields a contradiction and completes the proof.

Proof of the relation (3). The relation (3) has been proved by Sacker and Sell [2], but we shall give a proof for the self-contained, which is slightly different from that in [2] and will be done in a similar manner to the proof for the relation (4). Moreover, the proof in the below also shows that the constants $K$ and $\alpha$ can be chosen independently of each $y \in Y$ as was shown in [2].

First, assuming that the relation (5) does not hold for $t \geqq s, y \in Y$,
$x \in S(y)$, we shall select sequences $\left\{t_{k}\right\},\left\{s_{k}\right\},\left\{y^{k}\right\}$ and $\left\{x^{k}\right\}$ such that

$$
\begin{gathered}
t_{k} \geqq s_{k} \geqq 0, \quad x^{k} \in S\left(y^{k}\right), \quad x^{k} \neq 0, \quad y^{k} \in Y, \\
\left\|\phi\left(x^{k}, y^{k}, t_{k}\right)\right\| \geqq\left\|\phi\left(x^{k}, y^{k}, s_{k}\right)\right\| .
\end{gathered}
$$

Let $\sigma_{k} \geqq s_{k}$ be chosen so that

$$
\begin{equation*}
\left\|\phi\left(x^{k}, y^{k}, \sigma_{k}\right)\right\| \geqq \frac{1}{2} \sup _{t \geq s_{k}}\left\|\phi\left(x^{k}, y^{k}, t\right)\right\| \tag{10}
\end{equation*}
$$

instead of (6). Hence we have

$$
\left\|\phi\left(\xi^{k}, \eta^{k}, s_{k}-\sigma_{k}\right)\right\| \leqq \frac{2}{k},
$$

where replacing $y$ with $y^{k}$, $\xi^{k}$ and $\eta^{k}$ are given by (7), which shows that $\left\{\sigma_{k}-s_{k}\right\}$ must be divergent to $\infty$. On the other hand, by (10),

$$
\left\|\phi\left(\xi^{k}, \eta^{k}, t\right)\right\| \leqq 2 \quad \text { for } \quad t \in T, \quad s_{k}-\sigma_{k} \leqq t<\infty,
$$

which yields a contradiction since $\pi$ is non-critical. Thus we have the relation (5) for $t \geqq s, y \in Y$ and $x \in S(y)$.

Now we shall prove the relation (3). As before, it is sufficient to show that we can not choose sequences $\left\{t_{k}\right\},\left\{y^{k}\right\}$ and $\left\{x^{k}\right\}$ such that

$$
t_{k} \in T^{+}, \quad y^{k} \in Y, \quad x^{k} \in S\left(y^{k}\right), \quad x^{k} \neq 0
$$

$\left\|\phi\left(x^{k}, y^{k}, t\right)\right\| \geqq \varepsilon\left\|\phi\left(x^{k}, y^{k}, t_{k}\right)\right\|$ for all $t \in T^{+}, t_{k} \leqq t \leqq t_{k}+2 k$. This will be done easily by noting

$$
K_{1} \geqq\left\|\phi\left(\bar{\xi}^{k}, \bar{\eta}^{k}, t\right)\right\| \geqq \varepsilon \text { for all } t,-k \leqq t \leqq k
$$

where replacing $y$ with $y^{k}, \bar{\xi}^{k}$ and $\bar{\eta}^{k}$ are given by (9).
4. Exponential dichotomy on $T$. We shall denote by $\Lambda^{+}(y)$ the positive limiting set of the motion $\sigma(y, t)$, namely, the set of the limiting points of $\sigma\left(y, \tau_{k}\right)$ for a divergent sequence $\left\{\tau_{k}\right\}$ of $T^{+}$.

Since $Y$ is compact, $Y$ is minimal if and only if

$$
\Lambda^{+}(y)=Y \quad \text { for every } \quad y \in Y
$$

Therefore, the theorem mentioned in the Section 2 follows from a more general theorem:

Theorem 2. Suppose that the linear skew product flow on $X \times Y$ is non-critical. Then it has an exponential dichotomy on $T$ if

$$
\bigcup_{y \in Y} \Lambda^{+}(y)=Y
$$

Moreover, owing to Theorem 1, Theorem 2 is an immediate consequence of the following two theorems. Theorem 4 is closely related to

Lemma 4 in [3].
Theorem 3. Let the linear skew product flow $\pi$ be non-critical, and let $Y_{0}$ be a subset of $Y$ such that $\pi$ has an exponential dichotomy on $T$ at $y$ for every $y \in Y_{0}$.

Then we can choose the constants $K$ and $\alpha$ in the relations (3) and (4) independently of each $y$ in $Y_{0}$.

Proof. The relation (4) on $T$ says that

$$
\|\phi(x, y, t)\| \leqq K\|x\|
$$

for all $t \leqq 0$ and all $x \in U(y)$. Conversely, if

$$
x=x^{1}+x^{2}, \quad x^{1} \in S(y), \quad x^{2} \in U(y),
$$

then

$$
\begin{aligned}
\|\phi(x, y, t)\| & \geqq\left\|\dot{\phi}\left(x^{1}, y, t\right)\right\|-\left\|\phi\left(x^{2}, y, t\right)\right\| \\
& \geqq \frac{1}{K} e^{-\alpha t}\left\|x^{1}\right\|-K\left\|x^{2}\right\|
\end{aligned}
$$

for all $t \leqq 0$. Therefore, for every $y \in Y_{0}$ the set $U(y)$ equals to the set

$$
S^{-}(y)=\left\{x \in X ; \phi(x, y, t) \text { is bounded on } T^{-}\right\}
$$

where $T^{-}=\{t \in T ; t \leqq 0\}$.
On the other hand, by changing the sign of $t$ the proof for the relation (3) in Theorem 1 verifies that the constants $K$ and $\alpha$ in the relation (4) can be chosen independently of $y$ for every $y \in Y$ if $U(y)$ is replaced by $S^{-}(y)$. Thus the proof of the theorem follows immediately.

Theorem 4. If the linear skew product flow on $X \times Y$ has an exponential dichotomy on $T^{+}$at $y \in Y$, then it has an exponential dichotomy on $T$ at every $z \in \Lambda^{+}(y)$.

Before the proof will be given, we shall mention some facts.
Let $y \in Y$ be fixed, and consider a decomposition

$$
X=S(y) \oplus U(y)
$$

Let $P_{0}(y)$ be a projection operator of $X$ onto $S(y)$ along the space $U(y)$, that is, an idempotent operator with the properties

$$
P_{0}(y) X=S(y), \quad\left(I-P_{0}(y)\right) X=U(y)
$$

where $I$ denotes the identity operator on $X$.
Lemma 1. Let $P_{0}(y)$ be as above and put

$$
P(\sigma(y, t))=\Phi(y, t) P_{0}(y) \Phi^{-1}(y, t)
$$

Then $P(\sigma(y, t))$ is a projection operator of $X$ onto $S(\sigma(y, t))$.
Proof. Clearly $P(\sigma(y, t))$ is idempotent. Therefore, it remains to prove that

$$
\begin{equation*}
P(\sigma(y, t)) X=S(\sigma(y, t)) \tag{11}
\end{equation*}
$$

From the definition and the relation (1),

$$
\begin{aligned}
\Phi(\sigma(y, t), s) P(\sigma(y, t)) X & =\Phi(y, t+s) P_{0}(y)\left[\Phi^{-1}(y, t) X\right] \\
& =\Phi(y, t+s) P_{0}(y) X=\Phi(y, t+s) S(y)
\end{aligned}
$$

Hence the relation (11) follows immediately.
Lemma 2. The linear skew product flow $\pi=(\phi, \sigma)$ has an exponential dichotomy on $T^{+}(o r T)$ at $y \in Y$ if and only if every projection operator $P(y)$ of $X$ onto $S(y)$ along $U(y)$, appeared in the relation (4), satisfies

$$
\begin{align*}
\left\|\Phi(y, t) P(y) \Phi^{-1}(y, s)\right\| \leqq K e^{-\alpha(t-s)} & (t \geqq s)  \tag{12}\\
\left\|\Phi(y, t)(I-P(y)) \Phi^{-1}(y, s)\right\| \leqq K e^{\alpha(t-s)} & (s \geqq t)
\end{align*}
$$

for some positive constants $K$ and $\alpha$ and for any $t, s \in T^{+}(o r t, s \in T)$. Moreover, in the above we can replace "every" by "some".

This assertion can be verified in the same way as in the proofs of [4, 42D (p. 114) for $T^{+}$; 82F (p. 285) for $T$ ]. The latters are stated for the solutions of a linear system

$$
\begin{equation*}
\dot{x}=A(t) x \tag{13}
\end{equation*}
$$

under the assumption

$$
\sup _{t \in R} \int_{t}^{t+1}\|A(s)\| d s<\infty
$$

which is required to guarantee that

$$
\begin{equation*}
\left\|X(t) X^{-1}(s)\right\| \leqq B(\tau) \quad \text { if } \quad|t-s| \leqq \tau \tag{14}
\end{equation*}
$$

where $B(\tau)$ is a constant associated with any fixed number $\tau>0$ and $X(t)$ is a fundamental matrix of the system (13).

In our case, (14) corresponds to

$$
\|\Phi(y, t)\| \leqq B(\tau)
$$

for any $y \in Y$ and any $t \in T,-\tau \leqq t \leqq \tau$, and this relation can be proved as a simple consequence of the compactness of $Y$.

Now we are ready to prove Theorem 4.
Proof of Theorem 4. Let $P(\sigma(y, t))$ be the one given in Lemma 1. By the relation (1) we have

$$
\begin{aligned}
& \Phi(\sigma(y, \tau), t) P(\sigma(y, \tau)) \Phi^{-1}(\sigma(y, \tau), s) \\
& \quad=\Phi(y, t+\tau) P_{0}(y) \Phi^{-1}(y, \tau+s)
\end{aligned}
$$

which shows that

$$
\begin{equation*}
\left\|\Phi(\sigma(y, \tau), t) P(\sigma(y, \tau)) \Phi^{-1}(\sigma(y, \tau), s)\right\| \leqq K e^{-\alpha(t-s)} \tag{15}
\end{equation*}
$$

for all $t \geqq s \geqq-\tau$ by Lemma 2. Similarly we have

$$
\begin{equation*}
\left\|\Phi(\sigma(y, \tau), t)(I-P(\sigma(y, \tau))) \Phi^{-1}(\sigma(y, \tau), s)\right\| \leqq K e^{\alpha(t-s)} \tag{16}
\end{equation*}
$$

for all $s \geqq t \geqq-\tau$.
For any given $z \in \Lambda^{+}(y)$, choose a divergent sequence $\left\{\tau_{k}\right\}, \tau_{k} \in T^{+}$, so that $\sigma\left(y, \tau_{k}\right)$ converges to $z$. Since we have

$$
\|P(\sigma(y, \tau))\| \leqq K
$$

by putting $t=s=\tau$ in the relation (12) and $\operatorname{dim} X<\infty,\left\{\tau_{k}\right\}$ contains a subsequence $\left\{\tau_{k_{j}}\right\}$ for which $\left\{P\left(\sigma\left(y, \tau_{k_{j}}\right)\right)\right\}$ converges to a limit, say $P(z)$. Clearly $P(z)$ is a projection operator.

Thus, from (15) and (16) we have

$$
\left\|\Phi(z, t) P(z) \Phi^{-1}(z, s)\right\| \leqq K e^{-\alpha(t-s)} \quad(t \geqq s>-\infty)
$$

and

$$
\left\|\Phi(z, t)(I-P(z)) \Phi^{-1}(z, s)\right\| \leqq K e^{-\alpha(t-s)} \quad(s \geqq t>-\infty)
$$

respectively, which shows that the skew product flow $\pi=(\phi, \sigma)$ has an exponential dichotomy on $T$ at $z$ by using Lemma 2, again. This completes the proof.

Theorem 2 proves that there is a redundant in the statement of Favard's theorem [5, p. 88].

Theorem 5. A non-homogeneous linear almost periodic system

$$
\begin{equation*}
\dot{x}=A(t) x+f(t) \tag{17}
\end{equation*}
$$

has a unique almost periodic solution, if the homogeneous linear system

$$
\dot{x}=B(t) x
$$

is non-critical for any $B \in H(A)$.
In the original theorem in [5], Favard has assumed the existence of a bounded solution of (17) in addition to the assumption in Theorem 5. However, it is known that if the linear system

$$
\dot{x}=A(t) x
$$

has an exponential dichotomy on $R$, then (17) has a bounded solution (see [4, 103B (p. 344)] or [6, p. 138]).

## References

[1] J. K. Hale, Ordinary Differential Equations, Wiley-Interscience, New York, 1969.
[2] R. J. Sacker and G. R. Sell, Existence of dichotomies and invariant splittings for linear differential systems I, J. Differential Eqs., 15 (1974), 429-458.
[3] W. A. Coppel, Dichotomies and reducibility, J. Differential Eqs., 3 (1967), 500-521.
[4] J. L. Massera and J. J. Schäffer, Linear differential equations and function spaces, Academic Press, New York, 1966.
[5] J. Favard, Leçons sur les functions presque-périodiques, Gauthier-Villars, Paris, 1933.
[6] W. A. Coppel, Stability and asymptotic behavior of differential equations, Heath, Boston 1965.
Mathematical Institute
Tôhoku University
Sendai, Japan

