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1. Introduction. Following Hale [1; p. 145] we shall call a linear
system of differential equations to be non-critical if it has no non-trivial
solution which is bounded on (—00, oo).

It is clear that a periodic linear system (including autonomous case)
is non-critical if and only if none of its characteristic exponents has zero
real part. By this fact, it is also true that a periodic linear system has
an exponential dichotomy if and only if it is non-critical.

The same assertion was not verified for almost periodic systems until
recently Sacker and Sell [2] have proved it affirmatively. However,
their proof is based on the facts from the algebraic topology and con-
siderably complicated.

In this article, we shall present a simple proof for this fact (Theorem
2 below). Moreover, our first theorem (Theorem 1 below) says more and
we can expect many useful applications.

2. Skew product flow. As was mentioned in the above, our main
object is to give a simple proof of the following theorem due to Sacker
and Sell [2].

THEOREM. A non-critical linear skew product flow π = (φ, σ) on
X x Y has an exponential dichotomy on T if X is a Banach space of
finite dimension and if Y is compact and minimal.

Let π be a flow on Xx Y with phase group Γ, where X and Y are
topological spaces. The flow π, or π = (φ, σ), is called to be a skew
product flow on X x Y if there is a decomposition

π(x, y, t) = (φ(x, y, ί), σ(y, ί)) , xeX , yeY , ί e Γ ,

in which σ is a flow on Y with the phase group T. A skew product
flow π = (φ, σ) is called to be linear if X is a linear normed space and
φ(x, y, t) is linear in x. In this case, the operator Φ(y, t) defined by

is a bounded, invertible linear operator of X into itself and continuous
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in (y, £), and we have

(1) Φ(σ(y, t), s)Φ(y, t) = Φ(y, t + s) .

We shall call the linear skew product flow π — (φ, σ) to be non-
critical if for any y e Y, φ(x, y, t) is bounded on T only when x — 0. In
the theorem above the minimality of Y means that

{σ(y, ί); t e T} = Y for each y e Y .

As was mentioned in [2], a linear system

x = A(t)x

on Rn yields a linear skew product flow π = (0, σ). Here, X = Rn, T = R
and Γ is the hull £Γ(A) of A(ί), that is, (At\ teR}, where At(s) = A(ί + s)
and the closure is in the sense of the compact-open-topology. Moreover,

σ(B,t) = Bt, BeH(A),

and φ(x, B, t) is the solution of the system

(2 ) x = B(t)x

passing through x at t = 0.
Clearly the hull H(A) is compact if and only if A(t) is bounded and

uniformly continuous on R, and it is minimal with respect to σ given in
the above if A(t) is almost periodic. Moreover, by the fact that π is
non-critical, we shall mean that for every B e H(A) the system (2) (or B
shortly) is non-critical in the sense of Hale.

REMARK 1. For a periodic case, it is obvious that every BeH(A)
is non-critical if and only if A is non-critical. However, this assertion
is not valid for almost periodic systems.

In the following, let X be a Banach space of finite dimension, let Y
be a compact space and let π = (φ, σ) be a linear skew product flow on
X x Y with phase group T which is R or aZ (for a real a).

For a y e Y, S(y) denotes a subset of X defined by

S(y) = {x e X] || φ(x, y , t ) \ \ is bounded on T+} ,

where T+ — (t e T; t ^ 0}. Clearly S(y) is a linear subspace of X because
of the linearity of φ.

The linear skew product flow π = (φ, σ) is said to have an exponential
dichotomy on T+ (or on T) at y e Y, if we can select a subspace U(y)
of X which is complement to S(y), that is,

X=S(v)®U(y)
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is a direct sum and if there exist two positive constants K = K(y) and
a = a(y) such that

( 3 ) || φ(x, y,t)\\£ Λr«<'-> || φ(x, y, s) \\ (t ^ s, x e S(y))

and

( 4 ) || φ(x, y, t) || g Ke««-°> \\ ψ(x, y, s) \\ (t^s,xe U(y)) ,

where t and s vary on T+ (or on T). If π has an exponential dichotomy
on T at y for every y e Y and the constants K(y) and a(y) in the rela-
tions (3) and (4) can be chosen independently of y e F, then π is said to
have an exponential dichotomy on T.

REMARK 2. It is clear that if a linear skew product flow π = (φ, σ)
has an exponential dichotomy on T, then π is non-critical. In fact, let
φ(x, y, t) be bounded on T. Then x e S(y). Therefore, by the relation
(3) we have

\\\Φ(χ, y, s) || ^-iβ""

which implies that || (̂#, #, s) || — > °o as s — » — oo if x φ 0. From this it
follows that 0(#, y, t) is bounded on T only when x = 0.

Thus, under the assumptions for X and Y given in theorem, π has
an exponential dichotomy on T if and only if it is non-critical.

3. Exponential dichotomy on T+. Our first theorem is the following.

THEOREM 1. // the linear skew product flow π = (φ, σ) is non-critical,
then it has an exponential dichotomy on T+ at y for every y e Y.

By choosing any complementary space U(y) to S(y) we shall show
the existence of constants K and a for which the relations (3) and (4)
hold.

PROOF OF THE RELATION (4). First of all, we shall prove that

( 5 ) l l ^ , y , ί ) l l ^ ^ ι l l ^ » , β ) l l
for some constant K± > 0, any s, t 6 Γ+, s ^ ί, and any x e U(y).

Suppose that this is not the case. Then there exist sequences {tk},
{sk} and {xk} such that

sk^ tk ^ 0 , xk e U(y) , xk Φ 0 , || φ(xk, y,tk)\\^k \\ φ(xk, y, sk) || .

By the linearity of φ(x, y, t), xk can be assumed to belong to the unit
sphere in U(y). Since the unit sphere in a Banach space of the finite
dimension is compact, we can assume that {xk} converges to an x e U(y),
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1 1 * 1 1 = 1.
Let σk be chosen so that 0 £Ξ σk ^ sk and

( 6 ) || φ(xk, y, σk) \\ = max || φ(xk, y, t) \\ .

Then by noting the relation (1), clearly we have

__ \ I I _ \\Φ(xk,V,-- , y,
where

which implies that

if (ίfc, ^y*, sk — σk) converges to a (£, 97, s). Since || ίΛ || = 1 and Y is com-
pact, there arises a contradiction if s is finite, that is, if (sk — σfe} con-
tains a bounded subsequence. Thus {sk — σk} is divergent to oo.

Next, suppose that {σk} contains a bounded subsequence. This makes
it possible to assume that

for a constant K0 and for all fc, which shows

II Φ(xk, y, t) || ^ #0 for all t, 0 ̂  t ^ sk

by (6). Since {sk} is divergent to oo, we have

\\Φ(x,y,t)\\ ^K0 for all teT+

by letting fc — > oo , and hence, x e S(?/), which contradicts x e Ϊ7(3/), || x || — 1.
Therefore {σk} is divergent.

Thus, for the (ξk, ηk) given by (7), we have

for all t, —σk^t^sk — σk, which implies

for all t e T and for a limit (£, 57) of {f fc, ^fe}. This contradicts the fact
that π is non-critical. Thus the relation (5) is proved.

To prove the relation (4), it is sufficient to show the existence of a
τ = τ(ε) 6 T+ for any given ε > 0 such that for any t e T+ and any x e U(y),
there is an s, t ^ s <^ £ + τ, for which
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(8) \\Φ(x,V, t ) \ \ £ e \ \ φ ( x , y , s)\\ .

Then, from (5) and (8) we would have

\\φ(x,V,t)\\ ^eKΛlMx, y, t + τ)\\

£(*KJk \\tix, V,t + k r ) \ \ .

Therefore, if we choose an ε and an integer k so that

0 < ε < -ί- , t + (k + l)r > 8 ̂  ί + kτ
KI

for a given s ^ ί, then we have (4) by putting

Suppose that for an ε > 0 we can not choose such a τ > 0 as in the
above. Then there are sequences {tk} and {xk} such that tk e Γ+, xk e U(y)
and

II Φ(x\ V, ίfc) II ^ ε || φ(x\ y, s) || for all s e T+ , tk ^ s ^ tk + 2k .

By setting

I I Φ(χkj y, t k ) I I
we have

|| ^(ffe, ,̂ ί) || rg 1- for all t e T+ , -k^t^k .

On the other hand, since

we may assume that (£*, 57A) converges to a ( ξ , η ) , | | f 1 1 = ^ 0 . Again
0(?> ̂  *) becomes to be bounded on T which yields a contradiction and
completes the proof.

PROOF OF THE RELATION (3). The relation (3) has been proved by
Sacker and Sell [2], but we shall give a proof for the self-contained,
which is slightly different from that in [2] and will be done in a similar
manner to the proof for the relation (4). Moreover, the proof in the
below also shows that the constants K and a can be chosen independently
of each ye Y as was shown in [2],

First, assuming that the relation (5) does not hold for t ^ s, y e Y,
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xeS(y), we shall select sequences {tk}, {sk}, \yk] and {xk} such that

t*^β»^0 , xkeS(yk), 35*^0 , y*e F,

\\Φ(xk,yk,tk)\\^k\\φ(xk,yk,sk)\\.

Let σ,. ΞΪ sk be chosen so that

(10) 1 1 Φ(xk, yk, σk) 1 1 ^ -ί sup 1 1 φ(xk, y«, ί) 1 1
Δ t^8k

instead of (6). Hence we have

' k ^ k

where replacing y with yk, ζk and rf are given by (7), which shows that
{<?k — Sk} must be divergent to oo. On the other hand, by (10),

\\Φ(ξk, η\ t ) | | ^2 for teT, sk-σk^t<™,

which yields a contradiction since π is non-critical. Thus we have the
relation (5) for t ^ s, y e Y and x e S(y).

Now we shall prove the relation (3). As before, it is sufficient to
show that we can not choose sequences {tk}, {yk} and {xk} such that

tk e T+ , yk e Y, xk e S(yk) , xk ^ 0 ,

|| φ(χk

f y*f t) || ^ e || ^(α;fc, τ/fc, ίfc) || for all έ e Γ+, tk ^ t ^ ίt + 2k. This will
be done easily by noting

K, ^ || φ(ξk, ηk, ί) || ^ e for all ί, -fc ^ t ^ k ,

where replacing T/ with ?/fc, f f c and rjk are given by (9).

4. Exponential dichotomy on T. We shall denote by A+(y) the
positive limiting set of the motion σ(y, t), namely, the set of the limiting
points of σ(y, τk) for a divergent sequence {τk} of T+.

Since Y is compact, Y is minimal if and only if

A+(y) — Y for every # e Y .

Therefore, the theorem mentioned in the Section 2 follows from a
more general theorem:

THEOREM 2. Suppose that the linear skew product flow on X x Y is
non-critical. Then it has an exponential dichotomy on T if

U Λ+(y) - Γ.
y&Y

Moreover, owing to Theorem 1, Theorem 2 is an immediate conse-
quence of the following two theorems. Theorem 4 is closely related to
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Lemma 4 in [3],

THEOREM 3. Let the linear skew product flow π be non-critical, and
let YQ be a subset of Y such that π has an exponential dichotomy on T
at y for every y e F0

Then we can choose the constants K and a in the relations (3) and
(4) independently of each y in Y0.

PROOF. The relation (4) on T says that

\ \ Φ ( x 9 V 9 t ) \ \ £ K \ \ x \ \

for all t ^ 0 and all x e U(y). Conversely, if

x = x1 + x2 , xl € S(y) , x2 e U(y) ,

then

\ \ Φ ( x , y , t ) \ \ > \ \ φ & , v , t ) \ \ - \ \ φ ( a ? , V 9 t ) \ \

ϊ> Iβ—Hrf ||- K \\x* ||
J\.

for all t ^ 0. Therefore, for every y e YQ the set U(y) equals to the set

S~(y) = {x e X; φ(x, y, t) is bounded on T'} ,

where T~ = {t e T; t ^ 0}.
On the other hand, by changing the sign of ί the proof for the

relation (3) in Theorem 1 verifies that the constants K and a in the
relation (4) can be chosen independently of y for every y e Y if U(y) is
replaced by S~(y). Thus the proof of the theorem follows immediately.

THEOREM 4. If the linear skew product flow on X x Y has an ex-
ponential dichotomy on T+ at y e Y, then it has an exponential dichotomy
on T at every z e Λ+(y).

Before the proof will be given, we shall mention some facts.
Let y e Y be fixed, and consider a decomposition

X=S(v)®U(y).

Let P0(y) be a projection operator of X onto S(y) along the space U(y),
that is, an idempotent operator with the properties

PQ(y)X - S(y) , (/ - PJίv))X = U(y) ,

where I denotes the identity operator on X.

LEMMA 1. Let P0(y) be as above and put

P(σ(y, t)) = Φ(y, f)Pa(y)Φ~\y, t) .
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Then P(σ(y, t)) is a projection operator of X onto S(σ(y, t)).

PROOF. Clearly P(σ(y, t)) is idempotent. Therefore, it remains to
prove that

(11) P(o(y, t))X = S(σ(y, t)) .

From the definition and the relation (1),

Φ(σ(y, t\ s)P(σ(y, t))X = Φ(y, t + s)Pΰ(y)[Φ-1(y, t)X]

= Φ(y, t + s)P,(y)X = Φ(y, t + s)S(y) .

Hence the relation (11) follows immediately.

LEMMA 2. The linear skew product flow π = (<j>, σ) has an exponential
dichotomy on T+(or T) at ye Y if and only if every projection operator
P(y) of X onto S(y) along U(y), appeared in the relation (4), satisfies

(12) H Φ(y, t)P(y)φ-\y, β) || £ JKβ-"1'-' (t ^ s) ,
H Φ(y, t)(I - P(y))φ-1(y, s) \\ ̂  Ke"«-'> (s^t),

for some positive constants K and a and for any t, s e T+ (or t, s e T).
Moreover, in the above we can replace "every" by "some".

This assertion can be verified in the same way as in the proofs of
[4, 42D (p. 114) for Γ+; 82F (p. 285) for T]. The latters are stated for
the solutions of a linear system

(13) x = A(t)x

under the assumption

S ί+l
II A(s)|| ds < oo ,

t

which is required to guarantee that

(14) 11X^X^(8) \\^B(τ) if | t -β ^τ,

where B(τ) is a constant associated with any fixed number τ > 0 and
X(t) is a fundamental matrix of the system (13).

In our case, (14) corresponds to

\ \ Φ ( y , t ) \ \ £ B ( τ )

for any ye Y and any t e T, —τ<^t ^τ, and this relation can be proved
as a simple consequence of the compactness of Y.

Now we are ready to prove Theorem 4.

PROOF OF THEOREM 4. Let P(σ(yJ t)) be the one given in Lemma 1.
By the relation (1) we have
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V, τ))Φ-l(°(y, τ), s)
= Φ(y, t + τ)P0(y)φ-\y, τ + s) ,

which shows that

(15) || Φ(σ(y, τ\ t)P(σ(y, τ))φ-\σ(y, τ\ s) \\ <ί Ke

for all t ^ s ^ — τ by Lemma 2. Similarly we have

(16) || Φ(σ(y, τ), t)(I - P(σ(y, τ)))Φ~\σ(y, τ), s) \\ £

for all s ̂  t ^ — τ.
For any given zeΛ+(y), choose a divergent sequence {τk}, τke T+, so

that σ(y, τk) converges to z. Since we have

\\P(σ(y,τ))\\£Z

by putting t = s = τ in the relation (12) and dim X < oo , {τk} contains
a subsequence {τkj} for which {P(σ(y, τkj))} converges to a limit, say P(z).
Clearly P(z) is a projection operator.

Thus, from (15) and (16) we have

|| Φ(z, t)P(z)Φ~l(z, s) || ^ Ke-«(t~8) (t ̂  s > - oo)
and

|| Φ(z, t)(I - P(z))Φ~l(z, s) || ^ Ke-«(t-8) (s ̂  ί > - oo) ,

respectively, which shows that the skew product flow π — (φ, σ) has an
exponential dichotomy on T at z by using Lemma 2, again. This com-
pletes the proof.

Theorem 2 proves that there is a redundant in the statement of
Favard's theorem [5, p. 88],

THEOREM 5. A non-homogeneous linear almost periodic system

(17) x = A(t)x + /(£)

has a unique almost periodic solution, if the homogeneous linear system

x = B(t)x

is non-critical for any B e H(A).

In the original theorem in [5], Favard has assumed the existence of
a bounded solution of (17) in addition to the assumption in Theorem 5.
However, it is known that if the linear system

x = A(t)x

has an exponential dichotomy on R, then (17) has a bounded solution (see
[4, 103B (p. 344)] or [6, p. 138]).
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