Tôhoku Math. Journ. 28 (1976), 79-88.

ON SACKER-SELL'S THEOREM FOR A LINEAR SKEW PRODUCT FLOW

JUNJI KATO AND FUMIO NAKAJIMA

(Received December 24, 1974)

1. Introduction. Following Hale [1; p. 145] we shall call a linear system of differential equations to be non-critical if it has no non-trivial solution which is bounded on $(-\infty, \infty)$.

It is clear that a periodic linear system (including autonomous case) is non-critical if and only if none of its characteristic exponents has zero real part. By this fact, it is also true that a periodic linear system has an exponential dichotomy if and only if it is non-critical.

The same assertion was not verified for almost periodic systems until recently Sacker and Sell [2] have proved it affirmatively. However, their proof is based on the facts from the algebraic topology and considerably complicated.

In this article, we shall present a simple proof for this fact (Theorem 2 below). Moreover, our first theorem (Theorem 1 below) says more and we can expect many useful applications.

2. Skew product flow. As was mentioned in the above, our main object is to give a simple proof of the following theorem due to Sacker and Sell [2].

THEOREM. A non-critical linear skew product flow $\pi = (\phi, \sigma)$ on $X \times Y$ has an exponential dichotomy on T if X is a Banach space of finite dimension and if Y is compact and minimal.

Let π be a flow on $X \times Y$ with phase group T, where X and Y are topological spaces. The flow π , or $\pi = (\phi, \sigma)$, is called to be a skew product flow on $X \times Y$ if there is a decomposition

$$\pi(x, y, t) = (\phi(x, y, t), \sigma(y, t)), \quad x \in X, \quad y \in Y, \quad t \in T,$$

in which σ is a flow on Y with the phase group T. A skew product flow $\pi = (\phi, \sigma)$ is called to be linear if X is a linear normed space and $\phi(x, y, t)$ is linear in x. In this case, the operator $\Phi(y, t)$ defined by

$$\varPhi(y, t)x = \phi(x, y, t)$$

is a bounded, invertible linear operator of X into itself and continuous

in (y, t), and we have

$$\Phi(\sigma(y, t), s)\Phi(y, t) = \Phi(y, t+s)$$
.

We shall call the linear skew product flow $\pi = (\phi, \sigma)$ to be noncritical if for any $y \in Y$, $\phi(x, y, t)$ is bounded on T only when x = 0. In the theorem above the minimality of Y means that

 $\overline{\{\sigma(y, t); t \in T\}} = Y$ for each $y \in Y$.

As was mentioned in [2], a linear system

 $\dot{x} = A(t)x$

on \mathbb{R}^n yields a linear skew product flow $\pi = (\phi, \sigma)$. Here, $X = \mathbb{R}^n$, $T = \mathbb{R}$ and Y is the hull H(A) of A(t), that is, $\overline{\{A_i; t \in \mathbb{R}\}}$, where $A_i(s) = A(t + s)$ and the closure is in the sense of the compact-open-topology. Moreover,

$$\sigma(B, t) = B_t$$
 , $B \in H(A)$,

and $\phi(x, B, t)$ is the solution of the system

 $\dot{x} = B(t)x$

passing through x at t = 0.

Clearly the hull H(A) is compact if and only if A(t) is bounded and uniformly continuous on R, and it is minimal with respect to σ given in the above if A(t) is almost periodic. Moreover, by the fact that π is non-critical, we shall mean that for every $B \in H(A)$ the system (2) (or Bshortly) is non-critical in the sense of Hale.

REMARK 1. For a periodic case, it is obvious that every $B \in H(A)$ is non-critical if and only if A is non-critical. However, this assertion is not valid for almost periodic systems.

In the following, let X be a Banach space of finite dimension, let Y be a compact space and let $\pi = (\phi, \sigma)$ be a linear skew product flow on $X \times Y$ with phase group T which is R or αZ (for a real α).

For a $y \in Y$, S(y) denotes a subset of X defined by

$$S(y) = \{x \in X; \mid \mid \phi(x, y, t) \mid \mid \text{ is bounded on } T^+\}$$
,

where $T^+ = \{t \in T; t \ge 0\}$. Clearly S(y) is a linear subspace of X because of the linearity of ϕ .

The linear skew product flow $\pi = (\phi, \sigma)$ is said to have an exponential dichotomy on T^+ (or on T) at $y \in Y$, if we can select a subspace U(y) of X which is complement to S(y), that is,

$$X = S(y) \oplus U(y)$$

80

(1)

is a direct sum and if there exist two positive constants K = K(y) and $\alpha = \alpha(y)$ such that

$$(3) || \phi(x, y, t) || \leq K e^{-\alpha(t-s)} || \phi(x, y, s) || (t \geq s, x \in S(y))$$

and

$$(4) || \phi(x, y, t) || \leq K e^{\alpha(t-s)} || \phi(x, y, s) || (t \leq s, x \in U(y)),$$

where t and s vary on T^+ (or on T). If π has an exponential dichotomy on T at y for every $y \in Y$ and the constants K(y) and $\alpha(y)$ in the relations (3) and (4) can be chosen independently of $y \in Y$, then π is said to have an exponential dichotomy on T.

REMARK 2. It is clear that if a linear skew product flow $\pi = (\phi, \sigma)$ has an exponential dichotomy on T, then π is non-critical. In fact, let $\phi(x, y, t)$ be bounded on T. Then $x \in S(y)$. Therefore, by the relation (3) we have

$$\||\phi(x, y, s)\| \ge \frac{1}{K} e^{\alpha(t-s)} \|\phi(x, y, t)\| \qquad (t \ge s)$$

which implies that $|| \phi(x, y, s) || \to \infty$ as $s \to -\infty$ if $x \neq 0$. From this it follows that $\phi(x, y, t)$ is bounded on T only when x = 0.

Thus, under the assumptions for X and Y given in theorem, π has an exponential dichotomy on T if and only if it is non-critical.

3. Exponential dichotomy on T^+ . Our first theorem is the following.

THEOREM 1. If the linear skew product flow $\pi = (\phi, \sigma)$ is non-critical, then it has an exponential dichotomy on T^+ at y for every $y \in Y$.

By choosing any complementary space U(y) to S(y) we shall show the existence of constants K and α for which the relations (3) and (4) hold.

PROOF OF THE RELATION (4). First of all, we shall prove that

$$(5) || \phi(x, y, t) || \leq K_1 || \phi(x, y, s) ||$$

for some constant $K_1 > 0$, any $s, t \in T^+$, $s \ge t$, and any $x \in U(y)$.

Suppose that this is not the case. Then there exist sequences $\{t_k\}$, $\{s_k\}$ and $\{x^k\}$ such that

$$s_k \geqq t_k \geqq 0 \;, \;\;\; x^k \in U(y) \;, \;\;\; x^k
eq 0 \;, \;\;\; || \, \phi(x^k, \, y, \, t_k) \, || \geqq k \, || \, \phi(x^k, \, y, \, s_k) \, || \;.$$

By the linearity of $\phi(x, y, t)$, x^k can be assumed to belong to the unit sphere in U(y). Since the unit sphere in a Banach space of the finite dimension is compact, we can assume that $\{x^k\}$ converges to an $x \in U(y)$, ||x|| = 1.

Let σ_k be chosen so that $0 \leq \sigma_k \leq s_k$ and

$$(6) \qquad || \phi(x^{k}, y, \sigma_{k}) || = \max_{0 \le t \le s_{k}} || \phi(x^{k}, y, t) ||.$$

Then by noting the relation (1), clearly we have

$$|| \, \phi(\hat{\xi}^k, \, \eta^k, \, s_k - \sigma_k) \, || = rac{|| \, \phi(x^k, \, y, \, s_k) \, ||}{|| \, \phi(x^k, \, y, \, \sigma_k) \, ||} \leq rac{1}{k} \; ,$$

where

(7)
$$\hat{\xi}^k = \frac{\phi(x^k, y, \sigma_k)}{||\phi(x^k, y, \sigma_k)||}, \qquad \eta^k = \sigma(y, \sigma_k),$$

which implies that

$$||\phi(\xi, \eta, s)|| = 0$$

if $(\xi^k, \eta^k, s_k - \sigma_k)$ converges to a (ξ, η, s) . Since $||\xi^k|| = 1$ and Y is compact, there arises a contradiction if s is finite, that is, if $\{s_k - \sigma_k\}$ contains a bounded subsequence. Thus $\{s_k - \sigma_k\}$ is divergent to ∞ .

Next, suppose that $\{\sigma_k\}$ contains a bounded subsequence. This makes it possible to assume that

$$|| \phi(x^k, y, \sigma_k) || \leq K_0$$

for a constant K_0 and for all k, which shows

$$|| \phi(x^k, y, t) || \leq K_0 \quad ext{for all} \quad t, \, 0 \leq t \leq s_k$$

by (6). Since $\{s_k\}$ is divergent to ∞ , we have

 $||\phi(x, y, t)|| \leq K_0$ for all $t \in T^+$

by letting $k \to \infty$, and hence, $x \in S(y)$, which contradicts $x \in U(y)$, ||x|| = 1. Therefore $\{\sigma_k\}$ is divergent.

Thus, for the (ξ^k, η^k) given by (7), we have

$$|| \phi(\xi^k, \eta^k, t) || = rac{|| \phi(x^k, y, t + \sigma_k) ||}{|| \phi(x^k, y, \sigma_k) ||} \leq 1$$

for all t, $-\sigma_k \leq t \leq s_k - \sigma_k$, which implies

$$||\phi(\xi, \eta, t)|| \leq 1$$

for all $t \in T$ and for a limit (ξ, η) of $\{\xi^k, \eta^k\}$. This contradicts the fact that π is non-critical. Thus the relation (5) is proved.

To prove the relation (4), it is sufficient to show the existence of a $\tau = \tau(\varepsilon) \in T^+$ for any given $\varepsilon > 0$ such that for any $t \in T^+$ and any $x \in U(y)$, there is an s, $t \leq s \leq t + \tau$, for which

82

$$(8) || \phi(x, y, t) || \leq \varepsilon || \phi(x, y, s) ||$$

Then, from (5) and (8) we would have

$$egin{aligned} &\| \, \phi(x,\,y,\,t) \, \| &\leq arepsilon K_1 \, \| \, \phi(x,\,y,\,t+ au) \, \| \ &\leq (arepsilon K_1)^k \, \| \, \phi(\,x,\,y,\,t+k au) \, \| \; . \end{aligned}$$

Therefore, if we choose an ε and an integer k so that

$$0 , $t+(k+1) au>s\geq t+k au$$$

for a given $s \ge t$, then we have (4) by putting

$$K=rac{1}{arepsilon}$$
, $lpha=-rac{1}{ au}\log\left(arepsilon K_{\scriptscriptstyle 1}
ight)$.

Suppose that for an $\varepsilon > 0$ we can not choose such a $\tau > 0$ as in the above. Then there are sequences $\{t_k\}$ and $\{x^k\}$ such that $t_k \in T^+$, $x^k \in U(y)$ and

$$|| \, \phi(x^{k},\,y,\,t_{k}) \, || \geq arepsilon \, || \, \phi(x^{k},\,y,\,s) \, || \quad ext{for all} \quad s \in T^{+} \; , \quad t_{k} \leq s \leq t_{k} \, + \, 2k \; .$$

By setting

(9)
$$ar{\xi}^{k} = rac{\phi(x^{k}, \, y, \, t_{k} + k)}{|| \, \phi(x^{k}, \, y, \, t_{k}) \, ||}$$
, $ar{\eta}^{k} = \sigma(y, \, t_{k} + k)$,

we have

$$|| \, \phi(ar{\xi}^k,\,ar{\eta^{\,k}},\,t) \, || \leq rac{1}{arepsilon} \;\; ext{ for all } \;\; t \in T^+ \;, \;\; -k \leq t \leq k \;.$$

On the other hand, since

$$rac{1}{arepsilon} \geqq || \, ar{arepsilon}^k \, || \geqq rac{1}{K_1}$$
 ,

we may assume that $(\bar{\xi}^k, \bar{\eta}^k)$ converges to a $(\bar{\xi}, \bar{\eta})$, $||\bar{\xi}|| \neq 0$. Again $\phi(\bar{\xi}, \bar{\eta}, t)$ becomes to be bounded on T which yields a contradiction and completes the proof.

PROOF OF THE RELATION (3). The relation (3) has been proved by Sacker and Sell [2], but we shall give a proof for the self-contained, which is slightly different from that in [2] and will be done in a similar manner to the proof for the relation (4). Moreover, the proof in the below also shows that the constants K and α can be chosen independently of each $y \in Y$ as was shown in [2].

First, assuming that the relation (5) does not hold for $t \ge s$, $y \in Y$,

 $x \in S(y)$, we shall select sequences $\{t_k\}$, $\{s_k\}$, $\{y^k\}$ and $\{x^k\}$ such that

$$egin{array}{lll} t_k \! \geq \! s_k \! \geq \! 0 \;, & x^k \! \in \! S\!(y^k) \;, & x^k \!
eq 0 \;, & y^k \! \in \! Y \;, \ & \parallel \phi(x^k, \; y^k, \; t_k) \parallel \geq k \parallel \phi(x^k, \; y^k, \; s_k) \parallel . \end{array}$$

Let $\sigma_k \geq s_k$ be chosen so that

(10)
$$|| \phi(x^k, y^k, \sigma_k) || \ge \frac{1}{2} \sup_{t \ge s_k} || \phi(x^k, y^k, t) ||$$

instead of (6). Hence we have

$$|| \, \phi(\hat{arsigma}^k,\, \eta^k,\, s_k - \sigma_k) \, || \leq rac{2}{k}$$
 ,

where replacing y with y^k , ξ^k and η^k are given by (7), which shows that $\{\sigma_k - s_k\}$ must be divergent to ∞ . On the other hand, by (10),

 $||\, \phi(\xi^{k},\, \eta^{k},\, t)\,|| \leq 2 \quad ext{for} \quad t \in T$, $\ \ s_{k} - \sigma_{k} \leq t < \infty$,

which yields a contradiction since π is non-critical. Thus we have the relation (5) for $t \ge s$, $y \in Y$ and $x \in S(y)$.

Now we shall prove the relation (3). As before, it is sufficient to show that we can not choose sequences $\{t_k\}$, $\{y^k\}$ and $\{x^k\}$ such that

 $t_k \in T^+$, $y^k \in Y$, $x^k \in \mathrm{S}(y^k)$, $x^k
eq 0$,

 $|| \phi(x^k, y^k, t) || \ge \varepsilon || \phi(x^k, y^k, t_k) ||$ for all $t \in T^+$, $t_k \le t \le t_k + 2k$. This will be done easily by noting

where replacing y with y^k , $\bar{\xi}^k$ and $\bar{\eta}^k$ are given by (9).

4. Exponential dichotomy on T. We shall denote by $\Lambda^+(y)$ the positive limiting set of the motion $\sigma(y, t)$, namely, the set of the limiting points of $\sigma(y, \tau_k)$ for a divergent sequence $\{\tau_k\}$ of T^+ .

Since Y is compact, Y is minimal if and only if

$$A^+(y) = Y$$
 for every $y \in Y$.

Therefore, the theorem mentioned in the Section 2 follows from a more general theorem:

THEOREM 2. Suppose that the linear skew product flow on $X \times Y$ is non-critical. Then it has an exponential dichotomy on T if

$$\bigcup_{y \in Y} \Lambda^+(y) = Y.$$

Moreover, owing to Theorem 1, Theorem 2 is an immediate consequence of the following two theorems. Theorem 4 is closely related to

84

Lemma 4 in [3].

THEOREM 3. Let the linear skew product flow π be non-critical, and let Y_0 be a subset of Y such that π has an exponential dichotomy on T at y for every $y \in Y_0$.

Then we can choose the constants K and α in the relations (3) and (4) independently of each y in Y_0 .

PROOF. The relation (4) on T says that

 $|| \phi(x, y, t) || \leq K || x ||$

for all $t \leq 0$ and all $x \in U(y)$. Conversely, if

 $x = x^{\scriptscriptstyle 1} + x^{\scriptscriptstyle 2}$, $x^{\scriptscriptstyle 1} \in S(y)$, $x^{\scriptscriptstyle 2} \in U(y)$,

then

$$egin{aligned} &|| \, \phi(x, \, y, \, t) \, || \, \geq \, || \, \phi(x^{ ext{i}}, \, y, \, t) \, || \, - \, || \, \phi(x^{ ext{i}}, \, y, \, t) \, || \ & \geq rac{1}{K} e^{-lpha t} \, || \, x^{ ext{i}} \, || \, - \, K \, || \, x^{ ext{i}} \, || \ \end{aligned}$$

for all $t \leq 0$. Therefore, for every $y \in Y_0$ the set U(y) equals to the set

 $S^-(y) = \{x \in X; \phi(x, y, t) \text{ is bounded on } T^-\}$,

where $T^{-} = \{t \in T; t \leq 0\}.$

On the other hand, by changing the sign of t the proof for the relation (3) in Theorem 1 verifies that the constants K and α in the relation (4) can be chosen independently of y for every $y \in Y$ if U(y) is replaced by $S^{-}(y)$. Thus the proof of the theorem follows immediately.

THEOREM 4. If the linear skew product flow on $X \times Y$ has an exponential dichotomy on T^+ at $y \in Y$, then it has an exponential dichotomy on T at every $z \in \Lambda^+(y)$.

Before the proof will be given, we shall mention some facts. Let $y \in Y$ be fixed, and consider a decomposition

$$X = S(y) \oplus U(y)$$
.

Let $P_0(y)$ be a projection operator of X onto S(y) along the space U(y), that is, an idempotent operator with the properties

$$P_0(y)X = S(y)$$
, $(I - P_0(y))X = U(y)$,

where I denotes the identity operator on X.

LEMMA 1. Let $P_0(y)$ be as above and put

 $P(\sigma(y, t)) = \Phi(y, t)P_0(y)\Phi^{-1}(y, t)$.

Then $P(\sigma(y, t))$ is a projection operator of X onto $S(\sigma(y, t))$.

PROOF. Clearly $P(\sigma(y, t))$ is idempotent. Therefore, it remains to prove that

(11)
$$P(\sigma(y, t))X = S(\sigma(y, t))$$

From the definition and the relation (1),

$$egin{aligned} & \varPhi(\sigma(y,\,t),\,s)P(\sigma(y,\,t))X = \varPhi(y,\,t+s)P_{\scriptscriptstyle 0}(y)[\varPhi^{_{-1}}(y,\,t)X] \ &= \varPhi(y,\,t+s)P_{\scriptscriptstyle 0}(y)X = \varPhi(y,\,t+s)S(y) \;. \end{aligned}$$

Hence the relation (11) follows immediately.

LEMMA 2. The linear skew product flow $\pi = (\phi, \sigma)$ has an exponential dichotomy on $T^+(or \ T)$ at $y \in Y$ if and only if every projection operator P(y) of X onto S(y) along U(y), appeared in the relation (4), satisfies

(12)
$$|| \Phi(y, t) P(y) \Phi^{-1}(y, s) || \leq K e^{-\alpha(t-s)}$$
 $(t \geq s)$,
 $|| \Phi(y, t) (I - P(y)) \Phi^{-1}(y, s) || \leq K e^{\alpha(t-s)}$ $(s \geq t)$,

for some positive constants K and α and for any $t, s \in T^+$ (or $t, s \in T$). Moreover, in the above we can replace "every" by "some".

This assertion can be verified in the same way as in the proofs of [4, 42D (p. 114) for T^+ ; 82F (p. 285) for T]. The latters are stated for the solutions of a linear system

$$\dot{x} = A(t)x$$

under the assumption

$$\sup_{t\in R}\int_t^{t+1} ||A(s)||\,ds<\infty$$
 ,

which is required to guarantee that

(14)
$$||X(t)X^{-1}(s)|| \leq B(\tau) \quad \text{if} \quad |t-s| \leq \tau$$

where $B(\tau)$ is a constant associated with any fixed number $\tau > 0$ and X(t) is a fundamental matrix of the system (13).

In our case, (14) corresponds to

$$|| \Phi(y, t) || \leq B(\tau)$$

for any $y \in Y$ and any $t \in T$, $-\tau \leq t \leq \tau$, and this relation can be proved as a simple consequence of the compactness of Y.

Now we are ready to prove Theorem 4.

PROOF OF THEOREM 4. Let $P(\sigma(y, t))$ be the one given in Lemma 1. By the relation (1) we have ON SACKER-SELL'S THEOREM

$$egin{aligned} & \varPhi(\sigma(y,\, au),\,t)P(\sigma(y,\, au)) \varPhi^{-1}(\sigma(y,\, au),\,s) \ &= \varPhi(y,\,t+ au)P_0(y) \varPhi^{-1}(y,\, au+s) \;, \end{aligned}$$

which shows that

(15)
$$|| \Phi(\sigma(y, \tau), t) P(\sigma(y, \tau)) \Phi^{-1}(\sigma(y, \tau), s) || \leq K e^{-\alpha(t-s)}$$

for all $t \ge s \ge -\tau$ by Lemma 2. Similarly we have

(16)
$$|| \Phi(\sigma(y, \tau), t)(I - P(\sigma(y, \tau)))\Phi^{-1}(\sigma(y, \tau), s) || \leq K e^{\alpha(t-s)}$$

for all $s \ge t \ge -\tau$.

For any given $z \in \Lambda^+(y)$, choose a divergent sequence $\{\tau_k\}, \tau_k \in T^+$, so that $\sigma(y, \tau_k)$ converges to z. Since we have

 $|| P(\sigma(y, \tau)) || \leq K$

by putting $t = s = \tau$ in the relation (12) and dim $X < \infty$, $\{\tau_k\}$ contains a subsequence $\{\tau_{k_j}\}$ for which $\{P(\sigma(y, \tau_{k_j}))\}$ converges to a limit, say P(z). Clearly P(z) is a projection operator.

Thus, from (15) and (16) we have

$$|| \Phi(z, t) P(z) \Phi^{-1}(z, s) || \leq K e^{-\alpha(t-s)} \qquad (t \geq s > -\infty)$$

and

$$|| \Phi(z, t)(I - P(z)) \Phi^{-1}(z, s) || \leq K e^{-lpha(t-s)}$$
 $(s \geq t > -\infty)$,

respectively, which shows that the skew product flow $\pi = (\phi, \sigma)$ has an exponential dichotomy on T at z by using Lemma 2, again. This completes the proof.

Theorem 2 proves that there is a redundant in the statement of Favard's theorem [5, p. 88].

THEOREM 5. A non-homogeneous linear almost periodic system

$$\dot{x} = A(t)x + f(t)$$

has a unique almost periodic solution, if the homogeneous linear system

 $\dot{x} = B(t)x$

is non-critical for any $B \in H(A)$.

In the original theorem in [5], Favard has assumed the existence of a bounded solution of (17) in addition to the assumption in Theorem 5. However, it is known that if the linear system

$$\dot{x} = A(t)x$$

has an exponential dichotomy on R, then (17) has a bounded solution (see [4, 103B (p. 344)] or [6, p. 138]).

References

- [1] J. K. HALE, Ordinary Differential Equations, Wiley-Interscience, New York, 1969.
- [2] R. J. SACKER AND G. R. SELL, Existence of dichotomies and invariant splittings for linear differential systems I, J. Differential Eqs., 15 (1974), 429-458.
- [3] W. A. COPPEL, Dichotomies and reducibility, J. Differential Eqs., 3 (1967), 500-521.
- [4] J. L. MASSERA AND J. J. SCHÄFFER, Linear differential equations and function spaces, Academic Press, New York, 1966.
- [5] J. FAVARD, Leçons sur les functions presque-périodiques, Gauthier-Villars, Paris, 1933.
- [6] W. A. COPPEL, Stability and asymptotic behavior of differential equations, Heath, Boston 1965.

Mathematical Institute Tôhoku University Sendai, Japan