T6hoku Math. Journ.
28 (1976), 7-55.

ON SOME TYPES OF ISOPARAMETRIC HYPERSURFACES
IN SPHERES II

HipeEk1 OzEKI AND MASARU TAKEUCHI

(Received October 17, 1974)

Introduction. This paper is a continuation of Part I [13]. In the
first half of the present paper, we study the homogeneous isoparametric
hypersurfaces in spheres. Every homogeneous hypersurface in a sphere
is represented as an orbit of a linear isotropy group of a Riemannian
symmetric space of rank 2, due to Hsiang-Lawson [8]. In §1, we study
the linear isotropy representations of Riemannian symmetric spaces and
their orbits in general. §2 and §3 are devoted to a study of the homo-
geneous isoparametric hypersurfaces, their classification and invariant
polynomials. In §4 and §5, we construct explicitly the defining polynomial
F for each homogeneous isoparametric hypersurface in a sphere, which
was done by Cartan [3] in case g = 3.

In the second half, we prove that every closed isoparametric hyper-
surface in a sphere in case g =4 and m, or m, = 2 is homogeneous.
Cartan [4] indicated, without proof, that in case g = 4, every -closed
isoparametric hypersurface in a sphere with the same multiplicities is
homogeneous. In case m, = m, = 2, we give a brief outline of its proof
in §9.

In §6, we exhibit explicit forms of {p,, ¢.} for some of the homogeneous
examples. We see that, for a homogeneous isoparametric hypersurface
with g = 4, m, = 4 and m, = 3, its defining polynomial — F' does not satisfy
the condition (B) given in §6 of Part I. Thus one can conclude that our
example constructed in Theorem 2 of Part I for F = H and r = 1 is not
homogeneous. Consequently, there are at least two types of isoparametric
hypersurfaces in S* with the same multiplicities; one is homogeneous, and
the other is not. It seems to be an interesting problem to seek a local
geometric quantity in order to distinguish them.

1. s-representations. In this section we shall consider the linear
isotropy representations of Riemannian symmetric spaces and investigate
the structures of orbits of such representations.

Let V be a Euclidean space, i.e., a finite dimensional real vector space
equipped with an inner product (,). The unit sphere in V centered at
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the origin 0 will be denoted by S(V). O(V) and SO(V) denote the ortho-
gonal group and the special orthogonal group of V respectively. That is,

O(V) = {oe GL(V)|(ox, 0y) = (x,y) for each =z,ye V},
SO(V) ={ceO0(V)|deteg =1} .

If V = R” equipped with the standard inner product (,), then S(V), O(V)
and SO(V) are the usual unit sphere S¥™*, the usual linear groups O(N)
and SO(N) respectively. Consider an orthogonal representation o0: K —
SO(V) of a compact connected Lie group K on V. In this note a repre-
sentation of a topological group will be always assumed to be continuous.
Through the representation o, the group K acts on V and S(V) as linear
automorphisms and isometries respectively. These actions are effective
if and only if p is faithful. p is said to be of cohomogeneity v if the
maximum of dimensions of K-orbits in V is equal to dimV — v, or equi-
valently if the maximum of dimensions of K-orbits in S(V) is equal to
dim S(V) — v + 1. Orthogonal representations po: K— SO(V) and p": K’ —
SO(V’) of compact connected Lie groups K and K’ respectively, are said
to be ~¥-equivalent and denoted by p ~ p’, if there exist an isomorphism
®: K— K’ and an isometry o:V —V’ such that oo(k) = p'(#(k))o for each
ke K.

An s-representation associated to a Lie algebra of rank v, which will
be defined in the following, is an example of a faithful orthogonal repre-
sentation of cohomogeneity v.

Let g be a non-commutative real reductive algebraic Lie algebra
without compact factors. Let 6 be a Cartan involution of g. The Cartan
decomposition associated to ¢ is given by

g=t+p,
where

t={regl|bx =2},
p={xegl|x = —ux}.

Let Ad g GL(g) denote the adjoint group of g. Then the Lie algebra
of Adg is identified with the commutator subalgebra [g, g] of g and f is
a maximal compact subalgebra of [g, g]. Let K denote the connected
subgroup of Adg generated by f. Maximal abelian subalgebras in p are
mutually conjugate under the action of K on p. The dimension v of such
subalgebras is the so-called R-rank of g. In this note we call it simply
the rank of g. Denoting by ¢ the center of g, we have a direct sum
decomposition:
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g=cD(salnyp).

The Killing form B of g is positive definite on [g, g] N p. We choose an
inner product (,) on p such that (1) it coincides with a positive multiple
of B on [g, g]Nb,i.e., there exists ¢ > 0 such that (x, y) = ¢B(z, y) for
each z, ye[g, gl Np, and (2) (¢, [g, g1 N p) = {0}. The vector space p will
be considered as a Euclidian space with this inner product. We define
an orthogonal representation p: K— SO(p) by

olk)y =Ekl|p for ke K.

It is known (cf. Helgason [7]) that o is of cohomogeneity v and that for
2 € P, the equality dim K(x) = dim p — v holds if and only if x is a regular
element of p. Note that o is faithful in virtue of [p, p] = £. The repre-
sentation o is called the s-representation associated to the triple (g, 4, (,)),
or simply an s-representation associated to g.

The ~s-equivalence class of o depends only on the isomorphism class
of g. In fact, let g and g are isomorphic, and let p: K— SO(p) and
0': K’ — SO(p’) be s-representations associated to (g, 6, (,)) and (g, ¢, (,))
respectively. Choose an isomorphism a:g— g’ such that 'a = af. We
define an isomorphism ®: K — K’ and a linear isomorphism z: p — p’ by

(k) = aka™ for ke K,
TG = ax for zep.

Then we have zo(k) = o' (®(k))r for each ke K. Furthermore zc =",
7(lg, sl N'p) = [¢', g1 N 9" and B(z, y) = B'(zw, vy) for each w, ye[g, gl Np,
where ¢, ¢ and B, B’ denote the centers and the Killing forms of g, g’
respectively. It follows that we can find an isometry o: p — p’ satisfying
op(k) = p'(p(k))o for each ke K, and hence o ~ p0'.

PrOPOSITION 1. The s-representation defines an injective map of
the set of isomorphism classes of non-commutative real reductive algebraic
Lie algebras of rank v without compact factors into the set of ~-equivalence
classes of faithful orthogonal representations of cohomogeneity v.

Proor. Let p: K— SO(p) and po’: K'— SO(p’) be s-representations
associated to (g, 4, (,)) and (g, ¢, (,)) respectively. Assume p ~ 0/, i.e.,
there exist an isomorphism ®: K— K’ and an isometry o: p — p’ such that

(1) oo(k) = p'(p(k))o for each ke K.

We have to prove that g and g’ are isomorphic. From the above argument,
we may assume that (,) and (,) coincide with the Killing forms on
[g, s] N p and [g, ¢'] N b’ respectively. Denoting by ®,: ¥ —t’ the differential
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of the isomorphism @, we define a linear isomorphism a:g— g’ by

alx + y) = @& + oy for zef, yep.
In virtue of (1) we have
(2) a(ad x)y = ad (ax)ay for xet, yep.

It follows that « sends the center ¢ of g onto the center ¢ of ¢'. It
suffices to show that a is a Lie algebra homomorphism. We extend the
inner products (,) and (,) to adjoint invariant symmetric non-degenerate
bilinear forms (,) and (,) on g and g’ respectively, in such a way that
they coincide with the Killing forms on [g, g] and [g’, '] respectively.

(a) Let z,yet. We have

alx, y] = Pul, y] = [Pu, Puy] = [ax, ay] .
(b) Let xet and yep. By (2) we have
alz, y] = a(ad 2)y = ad (ax)ay = [ax, ay] .
(a) and (b) show that ad (ax) = a(ad x)a™ for each xct, and hence
(3) (x, ¥) = (ax, ay) for x, yet.
(¢) We show that «afx, y] = [ax, ay] for each z, yep. As we can
see easily, we may assume x, ¥ € [g, g] N p. For each zet, we have by (3)
([ax, ay], az) = —(ax, [z, ay]) = —(ax, alz, y])’
= —(ox, olz, y]) = — (=, [2, ¥]) = ([%, ¥], 2)
= (afx, y], az) .
This shows [ax, ay] = alz, y]. q.e.d.
Now we consider the structure of K-orbits of s-representations. In
general, for a group G acting on a space X, we denote by G\X the space
of G-orbits in X. Let p: K— SO(p) be the s-representation of cohomo-
geneity v associated to (g, 4, (,)). We may assume without loss of gen-
erality that the inner product (,) coincides with the Killing form on
[, gl N p. We extend (,) to an adjoint invariant symmetric non-degenerate
bilinear form (,) on g in such a way that it coincides with the Killing
form on [g, g]. The C-linear extensions of ¢ and (,) to the complexification
g¢ of g, are also denoted by # and (,) respectively. Choose a maximal

abelian subalgebra a in p and extend it to a Cartan subalgebra § of g.
Then we have a direct sum decomposition:

Hh=06Pa where b=pHNnt.
We put §, =1 —1b + a. Then the form (,) is positive definite on Y,
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and hence it defines a Euclidean space structure on Y,. The set 3 of
roots of g€ relative to §°, the complexification of Y, is identified with a
subset of §, by means of the duality defined by the inner product (,).
Choose a lexicographic order > on ¥, in such a way that if ¢ 3 — 1/ =16,
a >0, then fa < 0. Denoting by IT the fundamental root system for
5 with respect to the order >, we define a positive Weyl chamber & in

a by
@ = {heal(a, k) >0 for each aecil —1/=1b}.
And then we set
=% NSPh)=2 NSa).
Making use of the group of particular rotations:
P={ocO0W)|oa=q,05=75 ol =1},
we define a subgroup C of O(a) by
C={ol,loeP}.
Note that the group C leaves %' invariant. The Weyl group W =
Nx(a)/ Zx(a), where Ng(a) and Z(a) denote the normalizer and the centralizer
of ain K, is identified with a finite subgroup of O(a). It is known (cf. Helgason
[7]) that the inclusions & C aCp induce the natural identifications
@ =W\a=K\p and &' =W\S(@) = K\S®p),

where — means the closure in a. Let I(p) and I(a) denote the algebra
of K-invariant polynomial functions on p and the one of W-invariant poly-
nomial functions on a respectively. Then it is known by Chevalley [5],
Harish-Chandra (cf. Helgason [7]) that the restriction map of I(p) into
I(a) is an isomorphism and that I(p) has v algebraically independent
homogeneous generators, say I, -+, I,. The K-orbits in p are described
by means of I, ---, I, as follows (cf. Helgason [7], Kostant-Rallis [11]):
(A) The correspondence

I(x,)
e for wx,€P
I(x,)
of p into R’ induces an injective map K\p— R* in such a way that
K(x,) = {xep|Li(x) = I(x,) for =1, -, v}

for each x,€p. The ideal in the algebra of polynomial functions on b,
consisting of all f such that f|gwu, =0, 18 a prime ideal generated by



12 H. OZEKI AND M. TAKEUCHI

I — I(xy), +++, I, — L(x,), and hence for each x,€p K(x,) is an irreducible
algebraic variety in .

We can choose generators {I;} of I(p) such that I, = 7% where r is
the usual radius function on p. In fact, let =z, -+, x, where v, is the
dimension of the center ¢ of g, be an orthonormal coordinate system for
¢and I, - -+, I,, where v, = dim ([g, g] N a), be a system of homogeneous
generators of the algebra of K-invariant polynomial functions on [g, g] N .
Then {x, 1 <i=<v), I} 1 <j<v,)} form a system of generators of I(p),
considering them as polynomial functions on p. Since we can choose {I}}
in such a way that a generator of the lowest degree, say I;, coincides
with the Killing form on [g, g] N p, we can find generators {I,} of I(p)
such that I, = 3, 22 + I, = r®. Hence, after the above choice of generators
of I(p), we have

(B) The correspondence

I(x,)
xw—»( ) for x,e S(p)
Iv(xo)

of S(p) into R induces an injective map K\S(p)— R in such a way
that

K(x,) = {x e S(v)| I;(x) = I(x,) for ©=2, -1}
for each x,€ S(p).
In particular we have

PROPOSITION 2. Let v =2. Take a homogeneous generator F of I(p)
other than r’. Then the map x,— F(x,) of S(p) into R induces an injec-
tive map K\S(p) — R in such a way that

K(x,) = {x e S(p) | F(z) = F(x,)}

for each x,€ S(p). Each K(x,) is an irreducible algebraic variety in .
Denoting by |W| the order of the Weyl group W, and by g the degree of
F, we have

W[ =2g,
and the possibilities of g are 1, 2,8, 4 and 6.

PrOOF. The first and the second assertions follow from (B) and (A).
The possibilities of Weyl groups W are

(a-1) dimc=1. W is of type A, x {1} (W acts on c trivially).
|W| = 2.
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(a-2) ¢ is semi-simple, not simple. W is of type 4, X A,. |W| = 4.

(b) g is simple. W is of type A, B, or G,. |W| is 6,8 or 12
respectively.
(In this note a Lie algebra is said to be simple if it is not commutative
and has no non-trivial ideal.) On the other hand, it is known (cf. Bourbaki
[2]) that in each case 2¢ coincides with |W|. This can be also derived
from a theorem of Kostant [10] on exponents of Weyl groups, without
use of the classification of Weyl groups. q.e.d

In general, for a Riemannian manifold # and a submanifold M of
M, we denote by I(M, M) the group of all isometries of M leaving M
invariant, endowed with the topology induced from the one of the group
of isometries of M. I (M, M) denotes the identity component of I(M, IM).

For an automorphism a of g, the C-linear extension of a to g¢ will
be also denoted by a. We denote by Aut(g, £, (,)) the group of all
automorphisms a of g such that af =t and (ax, ay) = (x, y) for each
x,yeg. Similarly, Aut(g, t, 9, 77, (,)) denotes the group of all @ € Aut (g, f,
(,)) such that af =¥ and @/l = [I. It is known (Takeuchi [16]) that K
is a normal subgroup of Aut(g,f, (,)),

Aut (g, L, (, ))~= Aut (g, t, 0, 77, (, ))K (semi-direct), and the restriction
map Aut (g, t, 9, 71, (,)) — P is a surjective homomorphism. Hence a sur-
jective homomorphism 7: Aut (g, ¥, (, )) — C is defined by the composite of

Aut(g, £, (,))—Aut(g, ¢, (,))/K
= Aut(gr f; f)y 179 ( ’ ))'_>P'_>C‘
Then we have
PrOPOSITION 3. For an element x,€ ", put
Aut (g; £, ( ’ ))xo = {ae Aut (g, t, ( ) ))|'Y(Cl()x0 = xo} .
Then the restriction a+— |, defines an injective homomorphism:

Aut (g’ £, ( ’ ))avo - I(S(‘p)y K(“O)) .

If furthermore o(K) = I(S(p), K(x,)), then the above homomorphism 1is
an tsomorphism.

ProoF. Let ac Aut(g, ¥, ( ,~)),,0. By definition, «|,€ O(p), aKa™ = K
and there exist fe Aut(g, £ b, I7, (,)) and ke K such that a = kB8 and
B(x,) = x,. We have

aK(x,) = aKa™'a(z) = KkB(x) = K(,) ,

and hence a|,€ I(S(p), K(x,)). The injectivity follows from [p, p] =t.
Assume po(K) = L,(S(p), K(x,)). Let oeI(S(p), K(x,)). Then we have
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op (K)o~ = p(K) by the assumption. We define an automorphism @ of K by
o(e(k)) = op(k)o* for keK

and denote by @, the differential of . Then, as we have seen in the

proof of Prop. 1, the linear automorphism « of g defined by
a(x + y) = Py + oy for xzef, yep

is an element of Aut (g, f, (,)) satisfying |, = 0. Let a(z,) = k'(x,) with
ke K. Then ka«a fixes a regular element x, of a, and hence kaa = a.
Since both b and k,ab are Cartan subalgebras of the centralizer 3(a) of
a in f, we can choose k,e€ Z.(a) such that kkab =Db. Choose k;€ K such
that %9 = 9 and kk.k,all = II. Since k, leaves the positive Weyl chamber
& invariant, we have k,€ Zg(a). By the construction, 8 = k;k.k.« is in
Aut(g, 1,9, 771, (,)) and B(x,) = 2,. It follows that 7(a)x, = x, and hence
acAut(gft (,)),. This shows the surjectivity of the map a— «f,.
g.e.d.

K-orbits M and M’ in S(p) are said to be equivalent if an element
of O(p) transforms M onto M’. A K-orbit M in S(p) is said to be principal
if dim M = dimp — v. Then we have

PROPOSITION 4. The correspondence x,+— K(x,) for x,€ &' induces a
surjective map of C\&* onto the set of equivalence classes of primcipal
K-orbits in S(p). If furthermore o(K) = I(S(p), K(x,)) for each x,€ ",
then this map is bijective.

ProOOF. Let z, 2ec &'. Assume that there exists e C such that
0%, = . From the surjectivity of the homomorphism Aut(g, £, 9, 7,
(,))— P, it follows that ¢ can be extended to an automorphism ae
Aut (g, £ (,)). Then aKa™ = K and hence K(x;) = aKa™'(x;) = aK(x,) with
a|,€ O(p). This shows the equivalence of K(x,) and K(x;). Hence our map
is well defined. The surjectivity of the map follows from the natural identi-
fication: <&'= K\S(p). Suppose further that o(K) = I(S(p), K(x,)) for
each z,e &' Let 2, x;€ &' Assume that there exists o€ O(p) such
that oK(x,) = K(x;). Since oI(S(y), K(x,))o™ = I(S(p), K(x;)), we have
00(K)o™ = p(K). In the same way as in the proof of Prop. 8, we can
choose € Aut (g, §, (,)) satisfying a|, = 0. Let a(x,) = k7'(2") with k, € K.
Since k,a(x,) = x; is an element of a, we can choose k,c K such that
kx, = x, and k,oa = a. In the same way as in the proof of Prop. 3,
we can choose k;€ Zx(a) such that 8 = kka is in Aut(g, t, 8, 17, (,))
and B(x,) = x;. It follows that xz, and «) are in the same C-orbit in &
This shows the injectivity of our map. q.e.d.
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2. Homogeneous hypersurfaces in spheres. In this section we shall
reduce the classification of homogeneous hypersurfaces in spheres to the
one of certain representations of compact connected Lie groups, and
then state a theorem of Hsiang-Lawson giving the classification of such
hypersurfaces.

Let S (N = 8) be the unit sphere in an N-dimensional Euclidean
space centered at the origin and M a connected locally closed (N — 1)-
dimensional submanifold in S¥"'. As in Introduction of Part I, M is said
to be homogeneous if the group I(S"*, M) acts transitively on M. In
the sequel, a homogeneous connected locally closed (N — 2)-dimensional
submanifold in S7~* will be called a homogeneous hypersurfacein S¥-*. Asin
Introduction of Part I, hypersurfaces M in S** and M’ in S are said
to be equivalent, if N= N’ and an element of O(N) transforms M onto M’.

Let M be a homogeneous hypersurface in S¥!, and I(M) the Lie
group of isometries of M with respect to the Riemannian metric of
M induced from the one of S¥'. Then the restriction \: I(S¥", M)—
I(M) is a continuous homomorphism. Let K(M) denote the \-image
MN(SYY M) of I(SY Y, M), endowed with the topology induced from the
one of I(M).

LemMMA 1. Let M be a homogeneous hypersurface im S¥7'.

(1) The restriction N I(S¥ ', M) — K(M) is an isomorphism, and
hence the inverse isomorphism of N, defines a faithful orthogonal repre-
sentation 0, K(M)— SO(N) of the group K(M).

(ii) M is compact, and hence K(M) is a compact connected Lie
group.

Proor. (i) The surjectivity of A, follows from definition. Let
o€ I(S¥", M) such that \(0) = 1. Take a point x,€¢ M. Without loss
of generality we may assume that

0

(1)

Ly = (.) ’ Tzo(M) = 0 §e R

1 0

The differential of ¢ at x, is the identity by the assumption: (o) = 1.
It follows that o€ SO(N) is of the form

1,.] O

g = +=1 0
o1,
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and hence ¢ = 1,. This shows the injectivity of A,.

(ii) Let d be the Riemannian distance of S*! and d the one of M
with respect to the induced Riemannian metric. Note that the distance
d is complete since I(M) acts transitively on M. Take a point x,€ M, and
choose ¢ > 0 such that each point xe S¥* with d(x, ) < ¢ can be joined
to x, by a unique geodesic in S*'. Put U = {xe M|d(x, ) < ¢}. Then
there exists a positive constant ¢ such that d(x, ) < cd(x, x) for each
xe U. Since I(S**, M) acts transitively on M, we have

d(z, y) < cd(x, y) for each «,ye M with d(z, y) <e.

Now let {«,},—..... be a sequence in M, converging in S"' to a point
s, € S¥ . It follows from the above inequality that {x,} is a Cauchy
sequence in M with respect to the complete distance d. Thus {x,} con-
verges to a point z,€ M and hence s, = x,€ M. This shows that M is
closed in S¥, q.e.d.

For a homogeneous hypersurface M in S¥"!, the above faithful
orthogonal representation p, of the compact connected Lie group K(M)
is said to be associated to M. A faithful orthogonal representation
0: K— SO(V) of cohomogeneity v is said to be maximal if there is no
faithful orthogonal representation p’: K’ — SO(V) of cohomogeneity v
such that K is a proper subgroup of K’ and p’(k) = p(k) for each ke K.

LEMMA 2. Let p: K— SO(N) be a maximal faithful orthogonal re-
presentation of cohomogeneity 2, and M an (N — 2)-dimensional K-orbit
wn St Then o(K) = I(S", M).

Proor. We identify K with a compact subgroup of SO(N) through
the faithful representation p. Let M = K(x,) with x,€ S**. Put K' =
I(S"* M). Then the inclusion homomorphism K’— SO(N) is of coho-
mogeneity 2. In fact, if there would exist y,€ S¥! such that dim K'(y,) =
N —1, then K'(y,) = S and I(S"!, M)(x,) = S¥*, which is a contradic-
tion. It follows from the maximality of o that K’ = K. This proves
the lemma. q.e.d.

THEOREM 1. For a homogeneous hypersurface M in S¥7', the repre-
sentation 0,: K(M)— SO(N) associated to M is a maximal faithful
orthogonal representation of cohomogeneity 2, and M is an (N — 2)-
dimensional K(M)-orbit in S¥'. If M and M' are equivalent, then p,
and 0y are ~-equivalent. Conmwversely, any maximal faithful orthogonal
representation of cohomogeneity 2 is obtained as the representation O,
assoctated to a homogeneous hypersurface M inm a sphere.
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Proor. Let p,: K(M)— SO(N) be the representation associated to
a homogeneous hypersurface M in S¥!. The same argument as in the
proof of Lemma 2 shows that o, is of cohomogeneity 2. Let K’ be a
compact connected subgroup of SO(N) containing I(S™', M) such that
the maximum of dimensions of K’-orbits is equal to N — 2. Then for
each point xe M, K'(x) D I(S*', M)(x) = M, and hence K'(x) = M. This
means K' < I,(S¥', M). Thus we have proved the maximality of .

Assume that homogeneous hypersurfaces M and M’ in S¥* are equi-
valent, i.e., there exists 0 O(N) such that oM = M’'. Then the isomor-
phism @: I(S¥Y, M)— I(S"*, M’) defined by

o(k) = oko™ for ke I(S", M)

satisfies ok = @(k)o for each ke I,(S"*, M). This shows the ~s-equivalence
of o, and .

Let 0: K— SO(N) be a maximal faithful orthogonal representation
of cohomogeneity 2. Take an (NN — 2)-dimensional K-orbit M in S"7.
Then by Lemma 2 we have I(S" !, M) = K, and hence K = K(M) and
© = py. This proves the last assertion. g.e.d.

In virtue of Theorem 1, the classification of equivalence classes of
homogeneous hypersurfaces in spheres is reduced to the following two
problems:

(I) Classify ~-equivalence classes of maximal faithful orthogonal
representations of cohomogeneity 2 of compact connected Lie groups.

(II) Let p: K— SO(N) be a maximal faithful orthogonal represen-
tation of cohomogeneity 2. Classify equivalence classes of K-orbits in
S¥t of dimension N — 2.

We denote by o(l, r) the Lie algebra of the Lorentz group for a
quadratic form of signature (1, r), i.e.,

o1, r) = {xegl(r + 1, R)|2'S + Sz = 0},

S:(l —1,).

Then an answer to the problem (I) is given by the following theorem,
which is due to Hsiang-Lawson.

where

THEOREM 2. (i) The following two families of Lie algebras exhaust
the all mon-commutative real reductive algebraic Lie algebras without
compact factors such that the associated s-representations are maximal
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faithful orthogonal representations of cohomogeneity 2;
(a) Lve algebras isomorphic to

(a-1) RPod,s) (s=2), or
(a-2) o1, r)Pod,s) s=r=2).

(b) Non-compact simple Lie algebras of rank 2.

(ii) The s-representation defines a bijective map from the set of iso-
morphism classes of Lie algebras in families (a) and (b) onto the set of
rs-equivalence classes of maximal faithful orthogonal represemtations of
cohomogeneity 2.

ProoF. (i) and the surjectivity of the map in (ii) were proved in
Hsiang-Lawson [8]. The injectivity of this map follows from Prop. 1.
q.e.d.

REMARK. An associated s-representation is reducible or irreducible,
according to case (a) or case (b).

An answer to the problem (II) is given by (i) of the following
theorem.

THEOREM 8. Let g be a mon-commutative real reductive algebraic
Lie algebra without compact factors such that an associated s-represen-
tation is @ maximal faithful orthogonal representation of cohomogeneity
2. Let p: K— SO(p) be an s-representation associated to g such that the
inner product (,) on p coimcides with the Killing form on [g, gl N p.
Let %, C and Aut (g, t, (,))., be as in §1.

(i) The correspondence x,— K(x,) for x,€ €' induces a bijective
map of C\Z*' onto the set of equivalence classes of principal K-orbits
in S(p).

(ii) For each w,€ ", Aut(g,t, (,))., ts isomorphic to I(S(p), K(x,))
by the correspondence a+— aj,.

PROOF. These are immediate consequences of Prop. 4, Prop. 38 and
Lemma 2. q.e.d.

g = (1/2)|W| and the group C are given as follows:

(a-1) g=R®0o(1,s) (s=2). g=1, C=4Z,.
(3_2) g=0(1, "’)@0(1, 8) (Sgr22)° 9=2,
Z, r=s,

C=
1} r<s.
(b) g a non-compact simple Lie algebra of rank 2. g = 8, 4 or 6,
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Z, if W is of type A,,
{1} if Wis of type B, or G,.

Each non-trivial element of C acts on the open arc &* in the circle S(a)
by the “symmetry” with respect to the middle point of &'.

C=

3. Homogeneous isoparametric hypersurfaces in spheres. A maximal
family # = {M,|te I} of isoparametric hypersurfaces in a sphere is said
to be a maximal family of homogeneous isoparametric hypersurfaces if
each M, is a homogeneous hypersurface. In this section, such families
of hypersurfaces will be classified.

For a maximal faithful orthogonal representation p: K— SO(N) of
cohomogeneity 2, the family of all (N — 2)-dimensional K-orbits in S¥™!
will be denoted by .%. We shall investigate the structure of such family
%. For this purpose, we consider a non-commutative real reductive
algebraic Lie algebra g without compact factors such that an associated
s-representation is a maximal faithful orthogonal representation of coho-
mogeneity 2. Let p: K— SO(p) be an s-representation associated to g.
Choosing a maximal abelian subalgebra a in p, a Cartan subalgebra § =
b+ a of g containing a, and a lexicographic order > on §, =/ —1b + ¢,
we define a positive Weyl chamber & in a as in §1. Let h, denote the
middle point of &' = % N S(a). Choose an h.,c S(a) with (hy, hrs) =0
and fix it once and for all. We define a real parameter 8 of S(a) by

he = cos 6h, + sin Oh,, for AeR.
Then we have
= {h ~ o< L,
) 29 <0< 2g}

where 2¢g is the order |W| of the Weyl group W. Recall that the family
 is given by

S = K

1 T
— << =t.

o <0< zg}
Denoting by {\,, \,} the dual basis of the basis {k, k.,} for a, we define
a homogeneous polynomial function F, on a of degree g by

(3.1) F, =“""”’”< g

21 +
Then F(hy) = sin gd for each e R. It is easy to see that the Weyl
group W is generated by elements w, and w, which act on S(a) by

1) ( —_ 1)‘i)\lf—-(2€+l)x§i+l .

1=0
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Wt hot> beygg s

Wy hﬂ = h€+2n/g .

It follows that F, is a W-invariant polynomial function on a. By the
theorem of Harish-Chandra cited in §1, F), is extended uniquely to a K-
invariant polynomial function F on p. By Prop. 2, each K-orbit K(hs)
is an irreducible algebraic variety in p satisfying

K{(hs) = {we S(p)| F(x) = sin g6} .

Let 3 and 5+ be the set of roots and the one of positive roots respec-

tively, and @: §,— a the orthogonal projection. We define ¥, 3+, ¥, and
2i by

I

=&l —v=1p), I+=al+r-1v=1),
z*z{vezl}z_vez}, St=3vn%,.

The cardinality of the set Y} coincides with g. For Y ea, we denote by
¢(7) the number of roots @ of 5 —1/—1b such that @(a) =7. We put
m(7) = p(7) + p#(27) for ve€X,. For each 7eXf, there exists uniquely
0(7) with —z/2 < 8(7) < 7/2 satisfying (hspysze ¥) = 0. We number the
roots in 2} in such a way that (7)) < --- < 6(7,). Then we have

6(v) =L @2i—-1)—Z for i=1---,9.
29 2
We put m;, = m(v;) and 6, = 6(7,) for i =1, ---, g. Seeing that m(7) =
m(—"7), m(wy) = m(7) for veX¥,, we W, we have
m, =m, for odd ¢g=3,
m, = Mz = *++,
m2 =i 71’1,4 == e

Let —7r/(2g) < 0 < w/(29). We define a unit normal vector field X, on
K(hs) in S(p) by

Xo(kho) = k(—sin 6 h, + cos 0 h.,) for ke K,

identifying a tangent space of S(p) with a subspace of p-X, is well
defined since the stabilizer in K of the point h, is the centralizer Z.(a)
of ain K. It is known (Takagi-Takahashi [15]) that K(h,) has g distinct
principal curvatures with respect to X,, which are given by

(3.2) k(6) = tan 6 —4a) for +=1,---,9,
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and that the multiplicity of k,(6) is equal to m, for each i. Note that
k,(60) > ky(0) > -+ > k,(6). Denoting by Exp the exponential map of the
normal bundle of K(k,) into S(p), we define a C=-map p,: K(h,) — S(p) by

po(x) = Exp (6X,(x)) for xe K(h,) .
For x = kh, with ke K, we have

p4(x) = Exp 6k h,,) = k(cos O h, + sinf h.,) = kh, ,

and hence p, is a diffeomorphism of K(h,) onto K(hs). Thus the family
%, consists of parallel hypersurfaces K(h,) of constant principal curvatures
given by (3.2). It follows from Satz 2 in Miinzner [12] that the restriction
to S(p) of the polynomial F' is an isoparametric function on S(p) and that
F satisfies the differential equations of Miinzner:

{(dF, dF) = gir¥?
AF = ¢r'?,

(M)
where

;l(mz — m)g® g even,
c=1{2

{ 0 g odd.

Hence the family .7 is a maximal family of homogeneous isoparametric
hypersurfaces in S(p). Furthermore if o and o’ are ~-equivalent maximal
faithful orthogonal representations of cohomogeneity 2, then .% and 7%,
are equivalent families of isoparametric hypersurfaces. Thus, together
with the theorems in §2, we have the following theorem.

THEOREM 4. (i) Let .~ = {M,|tc I} be a maximal family of isopara
metric hypersurfaces in a sphere. If one of M, is homogeneous, then
each M, is homogeneous, i.e., # 1is a maximal family of homogeneous
1soparametric hypersurfaces. In a maximal family # = {M,|te I} of
homogeneous tsoparametric hypersurfaces in S¥7', each M, is an trre-
ducible algebraic variety in R”.

(ii) The correspondence p — 2 induces a bijective map of the set
of ~-equivalence classes of maximal faithful orthogonal representations
of cohomogeneity 2 onto the set of equivalence classes of maximal famsilies
of homogeneous isoparametric hypersurfaces in spheres.

4. Defining polynomials for homogeneous hypersurfaces in spheres—
I. In this and the next sections, we shall compute a polynomial function
F on RY satisfying the differential equations (M) for each maximal family
of homogeneous isoparametric hypersurfaces in S,



22 H. OZEKI AND M. TAKEUCHI

As we have seen in §3, one of such polynomials is obtained by the
following procedures: Take a non-commutative real reductive algebraic
Lie algebra g without compact factors such that an associated s-represen-
tation is a maximal faithful orthogonal representation of cohomogeneity 2.
Take an associated s-representation p: K— SO(p) and a maximal abelian
subalgebra a in p. Choose an orthonormal coordinate system {\, \,} for
a such that the middle point A, of &* satisfies M(h,) = 1 and Ay (k) = 0.
Define a polynomial F, on a of degree g = (1/2)|W| by the formula (3.1),
and then extend it to a K-invariant polynomial F on p. Then F is a
required polynomial. For g = 1 or 2, the construction of F' is immediate;
so we shall state only the results in these cases.

Case g = 1: F'is constructed fromg= R @Po(1,s) (s =2). m,=s—1.
With respect to the standard orthonormal coordinate system {x,} for
R**' F' is given by

F=gx,.

Case g =2: F is constructed from g =01, r)@P o1, s) 2= r =< s).
m,=r—1and m, =s —1. With respect to the standard orthonormal
coordinate system {x,} for R"**, F' is given by

F=uai+ oo + 22— (@, + -0+ 2) .

Case g = 3: Let F be a division algebra over R,i.e., F = R, C, the
real quaternion algebra H or the real Cayley algebra K. A linear form
t(x) and a quadratic form n(x) on F are defined by

tx) =2+ %, n(x) = 2% for zeF,
where x+— Z denotes the canonical involution of F. Let

H(F) = {ue My(F)|4' = u}
and define

oV = %(uv + vu) for wu, ve Hy(F).

Then H,(F) becomes a compact simple Jordan algebra with respect to
the product wov. An element

§ w T,
4.1) w =% & xl) &, eR, x,cF
x, T &

of H(F) will be denoted by
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u = & + &6 + &6 + T U, + Ty + Tl .
We define a cubic form N on Hy(F), called the nmorm of the Jordan
algebra H(F), by
3
N(u) = £&8 — ; gin(x;) + t(x,x,25)

for the above w. The norm N is invariant by the group Aut (Hy(F)) of
automorphisms of the algebra H,(F). We define an Aut (H,(F))-invariant
inner product (,) on Hy(F) by

(u, v) = % Tr (wov) for w, ve Hy(F),

and Aut (H,(F))-invariant subspace p of Hy(F) by
p = {ue H(F)|(u, Rl) = 0} = {uc H(F)|Tru = 0} .

The inner product (, ) defines a Euclidean space structure on p of dimension
N=3dim F + 2. For uec M(F) we define T(u)e F by

T(w) = t(Tru) F = H.,
Tr otherwise ,

and put

SH(F) = {ue My(F); @ = —u, T(u) = 0} .
Injective linear maps R: Hy(F)— gl(Hy(F)) and D: SH(F)— gl(H,F)) are
defined by

Ru)y = uov = %—(uv + vu) for wu, ve Hy(F),
(4.2)

D(uyw = %(u’u — vw) for ue SH(F), ve H(F).

Let f denote the subalgebra of gl(H,(F)) generated by D(SHy(F)). Then
f is a compact simple Lie algebra of type B, 4, C, or F, according to
F=R,C, Hor K. (See also the next section.) We have relations:

[D, R(u)] = R(D(w)) for Deft,ue Hy(F).
We identify p with R(p) through the injective map R. Then
g=t+p

is a subalgebra of gl(H,F)) and these Lie algebras exhaust non-compact
simple Lie algebras of rank 2 with g = 3. Furthermore the above decom-
position of g is a Cartan decomposition, and the inner product (,) on p
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is a positive multiple of the Killing form of g. The image o(K) of the
associated s-representation o: K — SO(p) coincides with the restriction to
p of the identity component of the group Aut (Hy(F)). Thus Nl|p is a
homogeneous K-invariant polynomial on p of degree 8. As for these
properties of the Jordan algebra Hy(F), we refer to Schafer [14].

Now we choose

a={X¢&e|> & =0}

as a maximal abelian subalgebra in p. A linear form > &,,—¢&, on a
will be denoted by &,. Such notations will be often used in the sequel.
Then ¥ is given by

5= %(Ei—éj)li,j=1, 2, 3»'““'}'

We introduce an order > satisfying & < & < &. Then X} consists of 3
roots v, = (1/2)(& — &), 7. = (1/2)(& — &) and 7Y, = (1/2)(5 — &). We have
m, = my, = m; = dim F. Linear forms

—‘/23 &

A = "51"%‘52, Ay =

give a required orthonormal coordinate system for a, and hence

Fo = 3)'?)\'2 - )\,3 = §2—3515253 .
Thus
Flu) = 33 Nw) for wep

2
is a required polynomial for g. These polynomials were given in Cartan
[3].

Case g = 4:

(i) Let F be an associative division algebra over R, i.e., F=R, C
or H, and r an integer such that » =8 for F=R or C and r = 2 for
F = H. We consider a non-compact simple Lie algebra

g={Aegl(r + 2 F)|T(4) =0, A’0 + 0A = 0},

where T(A) is defined in the same way as in case g = 3 and

(1),
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The linear map A+ — A’ of g is a Cartan involution of g. We denote
by M, .(F) the space of r X 2 matrices with coefficients in F, and define
Xe M, (F) for Xe M, (F) by

s (0 X
= (3
X 0/.
Then (—1)-eigenspace p of the above Cartan involution is given by

p={X|XeM,(F).
We define an inner product (,) on p by

(X, ¥) = %%Re Tr XY = ReTr X'Y for X, Ye M, (F).

It is a positive multiple of the Killing form of g. The~ associated s-repre-
sentation o: K— SO(p) is lifted to a covering group K of K as follows:
Let

SO(2) x SO(r) F
S(U2) x U(r)) F
Sp(2) x Sp(r) F

Define a homomorphism @: K — SO(p) by

R,
K c,
H

Il

~ 5 ~
O(k, X k)X = k, X' for k, X ke K, Xe M, (F) .

Then there exists a covering homomorphism 7: K — K such that p(z(k)) =
O(k) for each ke K. Denoting by {E,;} the standard basis of M,(F) over
F, we put

H(, &) = 6(Ey + Ey) + &(E, + E,) for &,&€eR.
Then
a= {H(Eu EZ)[EI’ &€ R}

is a maximal abelian subalgebra in p and {£, &} is an orthonormal coor-
dinate system for a. We have

2 ={£(& £ &), £&, £&, 126, 125} .

We introduce an order > satisfying & > & > 0. Then X} consists of
4-roots

(4'3) Y,=6— 52; Yo =6&, 7= &+ 52, Ti=6&,

and
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1r—2) F=R,
(my, my) =42,2r—3) F=0C,
(4,4r—5) F=H.
Linear forms

woYetve, Va-va, ,  Va-va., V2+Va,.
2 2 2 2

constitute a required orthonormal coordinate system for a, and hence
(4.4) Fo= 4N, — NN = 3(81 + &) — 4(&1 + &) .
We define a polynomial F on b by

F(Z) = %(Tr 7% — 2Tr (2Y) for Zep.

Then F is invariant by K and coincides with F, on a. Thus F is a re-
quired polynomial. The polynomial F for F = R is equivalent to the
polynomial F' for m, = 1 given in Theorem 2, (ii) of Part I.

(ii) Let 1, 7, j, k be the standard units of H. We identify C with
a subalgebra of H by the natural map z+ VvV —1y — 1 + yi. This
identification induces an identification gl(n, C) C gl(n, H). We consider a
non-compact simple Lie algebra

g={Aegl(5, H)|A'W + TA =0} where ¥ =1—11,.

The linear map A+ —A’ of g is a Cartan involution of g and the as-
sociated Cartan decomposition g =f + p is given by

f=1i(5),

p={Z|Ze M\(C), Z' = —Z}.
We identify p with the space of complex skew-symmetric matrices of
degree 5 by the map jZ+— Z.

Next let g = o(5, C), considered as a real Lie algebra. The linear
map Ar— A of g is a Cartan involution of g and the associated Cartan
decomposition g =t + p is given by

t =0(5),
p=1v—=10() = (V' —1Z|Zc M{(R), Z’ = —Z} .

We identify also p with i}le space of real skew-symmetric matrices of
degree 5 by the map V' —-1Z+ Z.

In the following, we shall consider the above two Lie algebras g
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simultaneously. We define an inner product on

p={ZeM(F)| Z' = —Z)} F=R or C,
by

(Z, W) = —-—;-ERe Tr (ZW) for Z, Wep.

It is a positive multiple of the Killing form of g. Let
o SOGB6) F=R,
“lusy F=c.
Then the asso~ciated s-representation p: K — SO(p) is covered by the homo-
morphism pg: K — SO(p) defined by
0(k)Z = kZk™ for kekK, Zeyp.
We put
H(, &) = &(B, — E,) + &(E,; — E) for ¢,&¢eR.

Then
a = {H(En 52)[51; &€ R}

is a maximal abelian subalgebra in p and {¢, &} is an orthonormal coor-
dinate system for a. We introduce an order > satisfying & > & > 0.
Then 3} consists of 4 roots of the same form as (4.3), and

22 F=R,
(45 F=C.
Hence F, has the same form as (4.4). We define a polynomial F on p by

(myy me) = {

F(Z) = %(Tr 77y — 2Tr (ZZ) for Zep.

Then F is invariant by K and coincides with F, on a, and hence F is a
required polynomial.

(iii) It remains a non-compact simple Lie algebra of type EIIl among
non-compact simple Lie algebras of rank 2 with ¢ = 4. The polynomial
F for this Lie algebra will be computed in the next section.

Case g = 6:
Let ¢, -+, ¢; be the standard pure imaginary units of the real Cayley
algebra K. They satisfy the relations:

CiCit1 = —Ci41C; = Ciyz sy Ci41Ciys = —Ci4sCity = Ci

CirsCi = —CiCiys = Ciyy, €= —1 for i1eZ.
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A linear map of K will be represented by a matrix with respect to the
basis {1, ¢, -+, ¢;} of K. Then the group Aut(K) of automorphisms of
the algebra K is a compact simply connected subgroup of O(8) and the
Lie algebra @ of Aut (K) is described as follows (cf. Borel-Hirzebruch
[1]). Put

Giszii—EJ'i for i’j:]_’n--,'z,’[:;&j

and

®i = {7]1Gi+1,i+3 + 772Gi+2,i+6 + %Gi+4,i+b] 7 € R, 2 i = 0}
for 1=1,.---,7.

Then & has a direct sum decomposition:
7
G = Z ®i
i=1
with commutation relations:

[@i, ®i] = {O} ’ [@i, ®i+1] = @i+3 ’
[@i+1’ B4l = G, , [®i+39 G, =6, .
® is a compact simple Lie algebra of type G,. We put
=6, + 6, + &,
.=+ 6, + G + G, .

It follows from the above relations that [£, ] C¥, [, p,] < b, and [p,, p.] C L.
The connected subgroup of Aut(K) generated by ¥ is isomorphic to
SO(4). We define a real subalgebra g of the complexification &€ of & by

g=t+p where p=1"—1p, .

Then g is a non-compact simple Lie algebra of type GI and the above
decomposition is a Cartan decomposition of g. We identify p with p,
by the map V—1X+— X.

Next we consider g = &° as a real Lie algebra. As for g = o(5, C)
in case g = 4, (ii), we have a Cartan decomposition g=f+p by t=&
and p =1V —1®. We also identify p with ® by the map V—1X+— X.

The above two Lie algebras exhaust non-compact simple Lie algebras
of rank 2 with g = 6. In the following, we shall consider these Lie
algebras simultaneously. We define an inner product (,) on pc o(8),
which is a positive multiple of the Killing form of g, by

(X, Y) = —% Tr (XY) for X, Yep.
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We put
H(‘EI, 529 53) = Elel + E2G37 + E3G56 for Ei € R, Z Ei = 0 .
Then (H(gly EZ, 53)) H(El; EZ; 53)) = S% + E; + Eg and

a={H(E, &, &)|&cR, 3 & =0}

is a maximal abelian subalgebra in p. We introduce an order satisfying
0>¢&>¢&. Then X} consists of 6 roots 7, = —§&, 7, =& — &, Vs =&,

V=& — & Vs=—& and V=& — & We have m, =m, =1 or 2, ac-
cording to g = GI or ®&°. Linear forms
=Bkl (Vo1 VBl VBT

2 2 2 ! 2

define a required orthonormal coordinate system for a. A computation
shows
F, = 620\, — 200308 + 6A\3
= 1051 + & + &))" — 36(&) + & + &) .
We define a polynomial F on p by

F(X) = —-i—(Tr X + 18 Tr (X°) for Xep.

Then F' is invariant by the connected subgroup K of Adg generated by
f. Furthermore it coincides with F, on a. Thus F is a required poly-
nomial.

5. Defining polynomials for homogeneous hypersurfaces in spheres—
II. Let K be the real Cayley algebra and ¢, =1, ¢, ---, ¢; the standard
units of K as in the previous section. Let 2+ Z be the canonical involution
of K, (,) the canonical inner product on K. We extend them C-linearly
to the complexified algebra K¢ of K and denote them by the same nota-
tions x+— Z and (, ) respectively. Denoting by «+— & the complex con-
jugation of K¢ with respect to K, we define a hermitian inner product
{,)» on K¢ by

(=, ¥) = (z, ¥) for «,ye K°.
This satisfies
(=, v) = (=, ) for x, ye K°.

In general, a complex vector space V, considered as a real vector space,
will be denoted by V. We define an inner product ((,)) on (K& by

((z, ) = Re (x, y) for «, yeK°
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and denote the associated norm by || |.

Let H,(K) be the compact simple Jordan algebra defined in §4 and
(,) the inner product on H,(K) defined there. We extend the form (,)
C-linearly to the complexified Jordan algebra Hy(K)° and denote it by
the same notation (,). It satisfies
(5.1) (Uow, w) = (v, uow) for u, v, we Hy(K)®.
Hy(K)¢ is canonically identified with

Hy(K) = {ue My(K)|u' = u}.
In the same way, the complexification SH,(K)° of the space SHy(K) defined
in §4, is identified with
SH(K) = {ue M(K)|% = —u, Tru = 0} .
We also define a hermitian inner product ¢, ) on Hy(K)‘ by
{u, v) = (u, 7) for wu, ve H(K),
denoting by % # the complex conjugation of Hy(K)® with respect to

H{(K). An element uec H(K)® of the form (4.1), with £,e€C, x, € K¢, is
denoted by

U = £i6, + &8, + 83 + XU, + TyUy + XTsUs

and an element u e SHy(K)® of the form

2z, Ty — Xy
U = (—Ea 2, xl) 2, 0, €K 2, = —2;,>,2, =0
X, —X, 2
is denoted by
U = 2,8, + 2.0, + 2:05 + 2, U, + XU, + XU .

We identify the Lie algebra gl(Hy(K)) of R-linear maps of Hy(K) with
a real subalgebra of the Lie algebra gl(H(K)°) of C-linear maps of
Hy(K)°. R(u)ec gi(Hy(K)) for uw e H(K)° and D(u) € g Hy(K)) for u € SHy(K)*
are defined by the same formula as (4.2). Let ®, denote the subalgebra
of gl(Hy(K)) generated by the set {D( 2.)|z.€ K, z, = —z,, >, 2, = 0},
and let

D, = {D(xu;)|x € K} for 7=1,23,
R, = (B &)l eR, X & =0},
R, = {R(xu,)|x e K} for 7=1,2,3.

We put



ISOPARAMETRIC HYPERSURFACES IN SPHERES 31

D=P+9D+9D,+9,,
SR=§R0+§R1+§H2+§R3~

Then 9 is a subalgebra of gl(H,(K)) and a compact simple Lie algebra

of type F,. Denoting by ©° and R® the complexifications of ® and R
respectively, we put

gC — @C + ERC .
Then g¢ is a subalgebra of gl(Hy(K)°) and a complex simple Lie algebra
of type E,. The inclusion @: g C gl(H,(K)°) is a 27-dimensional irreducible
representation of g¢.¢ We define a real form g of g¢ by
g=t+»p,
where

=D+ D, +V—-1IR, + V—-1IR,,
p=1—19, + vV —-1D, + R, + R, .

Then g is a non-compact simple Lie algebra of type EIIl and the above
decomposition is a Cartan decomposition of g. Note that the hermitian
inner _p{'oduct {,) on Hy(K)® is invariant by the compact dual g, =
t+1/ —1p of g in virtue of (5.1). f is isomorphic to o(2) @ o(8) and

[t =D + D + 1V —1RR(e, — €) + V' —1R,
is isomorphic to o(8). We put

Z= %R(% —e —€).

Then the center of f is spanned by vV —1Z. The eigenvalues of ad Z on
g¢ are 0,1 and —1 and the complexification p°¢ of p is decomposed into
the direct sum:
pe=pt+p”

of the eigenspaces p* for +1 of ad Z. We define subspaces V,, V, and
V; of H(K)¢ by

V.= {5161151661} , dimV, =1,

V. = {xu, + x5us|x,, x,€ K¢, dimV, =16,

Vs = {&6, + &5 + 2U,] &, &€ C, v, € K, dimV,=10.
Then we have an orthogonal (with respect to {, ))) direct sum decomposi-
tion:

H(K)YX=V,+V,+V,
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of HyK)°. Each V, is a f-invariant f-irreducible subspace of H,(K)°.
We have

ADV. = Tlv, 2DV, = 11, 9(2) Vi = —21,..
Since P(Z)P(X)u = ¢([Z, X]w + P(X)P(Z)u = P(X)u + P(X)P(Z)u for
each Xept and uec H,(K)°, we have @o(X)V, = {0}, (X)V,cV, and
P(X)V,CV, for each Xep". Hence each Xep*™ has a unique decomposi-
tion:

(5.2) o(X)=X,, + X,; with X,e Hom (V,, V), X;sc Hom (V,, V),

where Hom (V,, V;) denotes the space of linear maps of V, into V;. As
for these properties of the representation @, we refer to Schafer [14],
Ise [9].

Now let G¢ denote the simply connected complex Lie group with the
Lie algebra g¢, K the connected subgroup of G¢ generated by f. The
extension of ® to G° will be also denoted by @:G — GL(H,(K)?). The
connected subgroup of Adg generated by f is denoted by K. Making
use of the decomposition (5.2), we define a polynomial function F, on
(p™)r of degree 2 by

F(X) = ; Tr (X,.X%) for Xeyp*,

where X e Hom (V,, V,) is the adjoint operator of X,,€ Hom (V,, V,) with
respect to the hermitian inner product ¢, ). It follows from the f-
invariance of {, ) that for ke K, Xep* we have

F(kX) = = Tx (2B Xp(By (2 (D) Xu2(B) ")
= % Tr (P(R) X X1 () = Fy(X),

where k is an element of K such that Ad % = k. Thus F, is a K-invariant
polynomial on (p*); of degree 2. In the similar way we define

Fy(X) = Tr (X2 X5)( X2 X25)*) for Xept.

Then it is verified in the same way that F), is also a K-invariant poly-
nomial on (p*)r of degree 4. It will be shown later that the linear map
X+— X,, of p* into Hom (V,, V,) is injective. Let ((,)) be a K-invariant
inner product on (p*)r such that ((X, X)) = F(X) for each Xept. We
define a K-equivariant linear isomorphism +r: (p™)r — p by
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1 ~
X)=——(X+ X for Xept,
¥(X) 1/2( ) p
where X +— X denotes the complex conjugation of g° with respect to g.
Making use of the map ++, we define an inner product (,) on p by

(X, Y) =((v7'X, v7'Y)) for X, Yep.

It is K-invariant and hence a positive multiple of the Killing form of g.

Now we shall compute explicitly the polynomials F, and F, First
we give below a list of necessary commutation rules for g¢. In the
following list, «, y € K¢ and &, &, &€ C with >, & = 0. In formulae (1) ~
(6), (4, 4, k) is a cyclic permutation of (1, 2, 3). In formulae (7) and (8),
1=1,2, or 3.

(1) [R(xw,), R(yu;)] = —(1/2)D(xy @) , .

(2) [R(zu;), D(yu;)] = [D(xw.), B(yw;)] = (1/2)R(xy us) ,

(3) [D(xu,), D(yu;)] = —(1/2)D(zy @) ,

(4) [D(zw,), B(yw,)] = (x, y)R(e; — ) ,

(5) [R(Xée), R(xu,)] = (1/2)(&; — £)D(2w,) ,

(6) [R(Z &e), D(xuy)] = (1/2)(&; — &)B(au,) ,

(7) [RBzu,), [B(zu,), B(yu)]] = R(((x, x)y — (2, y)x)u,) ,

(8) [D(xu,), [D(2u,), D(yu,)]]l = D(((z, v)x — (2, 2)y)&,) ,

(9) [RE, R + 2f] = {0}.
We put

X(z, y) = D(xu,) — R(zu,) + D(yu,) + R(yus)
for X ye K¢ x K°.

Then from (5), (6) and (9) it follows that
p* = {X(z, y)|xz X ye K x KY}.

The inner product ((,)) and the norm || || on (K¢, are extended to
(Kg X (K°g in the natural way, which will be also denoted by ((,))
and || | respectively. Identifying C*®* with K¢ by the standard basis
{¢s, ¢, +++, ¢} of K€, we denote for x€ K¢ by B, the matrix of the linear
map y+— xy of K°. Then the linear map y— yx of K¢ is represented
by the matrix B.. In fact,

(¥, Biz) = (B,y, 2) = (yw, 2) = (¥, 22) = (y, 2x)

for each x,y, zc K°. We put f, =1 2¢, for i =1, 2, 8. Then {f.}, {cus,
CiUly, ***, Colhy, Colhs, Clhg, *++, Cs} ANd {f, fi, CoUy, CUy, -+, CU,} are orthonor-
mal basis with respect to (, ) for V,, V, and V; respectively. We shall
represent a linear map in Hom (V,, V,) ete. by a matrix with respect to
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these basis :_a._nd identify it _with its matricial representation. Note that
then X} = X/, and X = XJ;. Now for

u =& fi+ &fe + &fs + 2Uy, + XU, + Tus € Hy(K)*
and X = X(z, y) < p*, we have
P(X)u = {—(V 2, @) + (V' 2y, w)fs + (—V 26 + VB U,
+ (—7x + V' 2 &)U,
and hence
X12 = (—_L 2x,, V 2’!/,) ’
0 -V 2z B,
Xza = —
XXy = (2y'y, 22'x, =2 (¥'B, + ¥'B.)) .
In particular, the linear map X — X, of p* into Hom (V,, V,) is injective.
It follows that
(5.3) F(X) = %me'ﬂ = | + [yl = [z x ¥

for X = X(x, %),
and
FyX) = (X Xee)( X1 Xe0) = 4](y, 9)|* + 4](z, )|* + 2|| Byx + Byy||*
= 4| (z, x)|* + |(y, V)) + 2||zy + 2y},
and hence
(5.4) FyX) = 4l(z, ) + (g, ¥) ") + 8l|wy|* for X = X(x, ¥) .
(5.3) shows that the linear isomorphism z X y +— X(x, y) of (K€r X (Kg
onto (p*)r is an isometry with respect to the inner products ((,)).
Next we shall find a maximal abelian subalgebra a in p and then
compute the root system X on a. For x X ye K¢ x K¢ we have
S~
X(z, y) = —D@u,) — R(Tu,) — D(Jus) + R(Gus) ,
and hence
¥(X(x, 9)) = V' 2 {1V —1D((Jm x),) — R((Re a)u,)
+ V' =1D((Sm y):) + R(Re y)us)} -
We define X, X;ep* with (X, X;)) = d,; by
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X, = 1-/——X(cl +V—-1¢, 0, X,= 1—/=X(0 &+ V-—le),
and then define H,, H,cp with (H;, H;) = d,; by
H, = "/’(Xl) = V:_iD(cJoz) - R(clu2) ’
H, = "/’(Xz) = 1/’__1D(0177'3) + R(cus,) .
Then we have by (1), (2) and (4)
[H, H,] = {—[D(c;%z), D(c,;)] — [R(e,us), B(csus)l}
+ V' —1{[D(c,u,), B(cyus)] —[E(c,u,), D(c,%s)]}
= {_D (60, 7)) + —D(clcz ul)} Y e 1{_3(5 ) — ——R(E ul)}

=0.

Hence, if we put
H(Eu 52) = ELHI + Esz for Sn 5 € R ’
and
a= {H(Eu Ez)]&u &€ R} ’
then a is a maximal abelian subalgebra in p“ and {&,, &} is an orthonormal
coordinate system for a. We define Y,, Y,ep by
Y, = -l/'__l-D(cz'uz) + R(Ceuz) y Y, = 1/:10(0177'2) + R(czuz) .
We shall show equalities:
[H(Eu 52): [H(Su Sz); Yl]] = SfK
[H(Eu ‘Sz)y [H(Eu Ez); Yz]] = (251)2Y2 .
Then it will follow that
= {j—_—(51 *+ Sz)y +¢&, £§, —'—*'—251, i252} ’

since it is known (Harish-Chandra [6]) that for a non-compact simple Lie
algebra g of hermitian type of rank v, the root system 3 is written as
(£ £7) A=S1<j=V), £7,, £27, 1 = 1 =< v)} by mutually orthogonal
linear forms %, ---, 7, of the same length. For the proof of (5.5), it
suffices to show the following equalities:

(i) [HI[H, Y=Y, [H, [H, Y.]] =4Y,,

(ii) [Hz; Yl] =0, [Hz, Yz] = 0.

Proof of (i). Let z, ye K. We have

1 The construction of this maximal abelian subalgebra a is due to M. Ise.

(5.5)
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[H,, V' —1D(zu,) + R(yu,)]
= [V =1D(c,#,) — R(cu,), V' —1D(xi;) + R(yu,)]
= {=[D(c;%;), D(x,)] — [R(c,us), Ryuy)l} + 1/—_1{[.0(02’172) ’
R(yu,)] — [B(cu,), D(xu,)]} ,
and hence

[H, [H,, V' —1D(x%,) + R(yu,)]]
= {—[D(cx%s), [D(c;®,), B(yw,)]] + [D(c.,), [B(e,u,), D(x,)]]
+ [R(ciw,), [D(;,), D(zi,)]] + [R(e,us, [R(cius), R(yu,)ll}
+ V=1~ [D(e:%,), [D(csths), D(x,)]] — [D(e.ts), [R(cius), R(yus)l]
— [R(ciun), [D(eits), B(yu,)ll + [Rleiu,), [R(eius), D(xi,)]l} -

We compute each term of the right hand side using (4)~(8):

—[D(e..), [D(c,%.), B(yus)l] = —(c,, y)[D(c.u,), R(es — e,)]
= (¢, Y)ER(csu,) -
[D(e,&,), [R(c,u,), D(x#,)] = —(x, ¢,)[D(c,%,), R(e; — e,)]
= (x, ¢,)R(c.u,) .
[B(cius), [D(c..), D(xu,)]] = [[B(c.us), D(c%,)], D(xu,)]
+ [D(c.%,), [R(eu,), D(x,)]]
= —(x, ¢,)[D(¢c,&,), R(es — e)] = (x, ¢,)B(cu,) .
[R(cws), [R(cws), R(ywa)ll = R((y — (e, ¥)eu,) -
—[D(e.,), [D(c,4,), D(x#,)]] = D((x — (¢z) X)Co)%y) -
—[D(c;it), [R(cius), R(yu,)l] = —[[D(c.%,), Rleu,)], B(yu,)]
—[R(cu,), [D(c,,), R(yu,)]]
= —(cy Y)[R(cws), B(es — e)] = (c,, y)D(e1ihs) -
— [R(eww,), [D(esh,), R(yun)ll = —(c., ¥)[R(ciu,), Bles — e.)]
= (¢, ¥)D(c1hs) .
[B(ew.), [B(e,us), D(zt)]l = —(x, ¢)[R(c,u.), Rles — e)]
= (2, ¢,)D(c,,) .
Thus we have
[H, [H, V' —1D(z%,) + R(yu,)]] = V' —1D(au,) + R(bu,) ,
where

a =z — (¢, 2)c; + (2(cs, ) + (, )y,
b=y — (c, Ye. + (e, ¥) + 2(x, c.))cs -
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Now we have a = ¢, b = ¢, for x = ¢;, ¥y = ¢; and a = 4¢,, b = 4¢, for 2 =
¢, ¥ = ¢,. This shows the equalities (i).
Proof of (ii). Let xz,ye K. We have by (1), (2) and (3)
[H,, V' —=1D(z,) + R(yu,)] = [V —1D(c,%:) + R(csus), V' —1D(xit,) + R(yus)]
= {—[D(e,%;), D(xi&;)]+ [R(c;us), R(yu,)l} + V' —1{[D(e,it;), R(yu,)]
+ [R(cus), D(xw,)]}

I _1paea)+ Lpaca T _Lraew) - LRGe

- { L@, w) + LDGs, ul)} + 1{ LR w) — —R(, ul)}
= "';—D(ycz — XC, 7'_”1) - 1/—2_-——11‘3(2/01 + e, u1) .

Now we have y¢, — xc, = ye¢, + xc, = 0 for each of the pairs (x, ¥) = (¢, ¢)
and (z, ¥) = (¢, ¢,). This proves the equalities (ii).

Now in the same way as in §4, case g = 4, (i), the polynomial F, is
given by the formula (4.4). Note that (4.4) is also written as

F, =88 — (& + &) .
The required polynomial F' is a K-invariant polynomial on p such that
F|,=F, Passing to (p*)s through the K-equivariant isometry +: (p*)z— b,
the required F is a K-invariant polynomial on (p*)z such that
(56) F(ELXI + EZXZ) = 851255 - (Ef + 53)2 for El; &€ R.

We define a K-invariant polynomial F on (p*)r by F = (1/2)F, — F?. Then
F satisfies (5.6). In fact, we have £ X, + &X, = X(x, y) where

We have (2, ) = (y, y) = 0 and
2y = %slsz«clcz —ae) + V=L(e + &) = Ede, — 1V "1ay),

and hence ||xy|* = 28%. Now (5.6) follows from (5.3) and (5.4).
Under the identification of (K€)g X (K¢ with (p*); through the iso-
metry x X y— X(z, y¥), the polynomial F' is given by

Fx x y) = 2((z, 2)|* + [(y, 9)I°) + 4llzy |’ — (l=|]* + |¥]]*)
for = X ye K¢ x K°.
6. Examples of {p., q¢.}. In this section, we compute explicit forms

of {p., q.} for some of the homogeneous examples in order to determine
all isoparametric hypersurfaces in spheres in the case where g =4 and
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m, or m, = 2. We consider the examples given in §4 in case g = 4.
(i) F=R,Cor H R” = M, (F). The polynomial F is given by

F(X) = %{Tr (XY — 2 Tr (XY

£ (2 %)
S \x o).

First we compute {p,, q,} in case F = H. Set

a, b a, b,
<L 0
a, b, a, b,/ .
Then we have

(6.1) F(X) = 6|l A[*]| BI* — || All* = || B]*
— 2{(A'B)(B'A) + (B'A)(A'B)}

+ z {a(A'B)b, + b(B'A)a.} .

where

Let e be the point in R* given by

I

a, , =0 for 2£1,

Il

= -

b, , b,=0 for 7+2.

e satisfies F¢) =1 and ||e|| = 1. Taking e as a reference point, we
expand F as in §3 of Part I. Set

RS

ap =R+ Ii+ Jj + Kk

where R, I, J and K are real numbers. For a, a, b, and b,, we give the
following orthonormal transformation. Set

and

a =X + 2,0 + X0 + 25k,
b =Y + Yt + Yud + Yisk
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for I =1 and 2, and also set

V2z=x+Y, Vew, = —Y,,
V2 =2,—19, Vew =+ Y,
V22 =@, + Yus» V2W, = %y — Yt »
V22 = Ty + Yus V2w, = 45 — Yz »
V22, =5+ Yus V2w, = s — Yus -

One can verify that z and w,’s satisfy the required conditions in §3 of
Part I. To give {p., 9.} we put

V' 28, =2, + Y1 » V2t =2, — Yo »
V' 28, = X3 + Yoz » V 2t = 2,5 — Y22 »
V' 28 = Xy,3 + Yzs » -l/?ta = ¥,3 — Yz3

Then we have

Do = [|BIF — llal]® — 2(s,t, + 8uta + 85ts) »
D= —2{R + 2,8, + 238, + 2,84} ,
(6.2) P, = 2{I + 2,8, + 25ts — 285}
Ds = 2{J + 2,8, — 2:ts + 2.},
D, = 2{K + 2,85 + %:ts — 24t} ,
and
q, = 2{z,R — 2,] — z,J — 2,K},
¢, = 2{t.I + t.J + t:.K} + (18I — |||z, ,
(6.3) ¢ = 2{t,R — sJ + 8K} + (||BI* — |[«[[)z. ,
¢ = 2{t.R + sl — s, K} + (I8 — [|«[[)z ,
¢, = 2{t,R — 8.l + s J} + (I1BI — lle|[)z. .
The case F = C can be easily obtained from the above. We have

D = ||BIF — lla|l* — 28, ,
(6.4) D, = —2R + 2.8, ,
P, = 2(I + z.8,) ,
and
a0 = 2z, R — z.I),
(6.5) q, = 26,1 + (| BII" — ll«[[)z, ,
\q, = 2t,R + (| BIF — ll«[[)z, .
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(iy F=H R"=M,,(H)(r=2). For —F instead of F', we examine
the conditions (A) and (B) of Part I. —F gives a homogeneous example
with multiplicities m, = 3 and m, = 4 (unique up to O(INN)-equivalence).

Let ¢ be the point in S"* given by

a,=1a=50=56=0.
By (6.1), we have
—Fl)=1.
Taking ¢ as a reference point we expand —F. Put
a =2+ 21+ 29 + 2k,
b, = w, + Wt + wy + wik .
One can verify that z and w,’s satisfy the required conditions. Put
Ay = Ty + 2,0 + X7 + x5k,
by =Y+ Yt + Yo + Ysk .
We have

Do = 2(XYo — Y, — LYz — TsYs) »
D, = 2(xY, + T Yo — TYs — TYs)
D, = 2(x,Y. + Yo — Y, + TYs) »
Ds = 2(2,Ys + XY, — XY, + TY,) -

A direct computation shows that our {p,} satisfies the condition (A).
Also we have

(6.6)

(6.7) lqo = 2(%Y, + Yo T TYs — TsYs)
2

+ zz(xoyz — 0,Ys + Y, + xayl)
+ 2y(XYs + XY — TY, + L) -

From (6.6) and (6.7), we see also that the condition (B) is not satisfied
in this case. Note that the condition (B) is independent on the choice
of coordinates {z,} and {w,} if the condition (A) holds.

Our example constructed in Theorem 2 of Part I for F = H and
r =1 gives a family of isoparametric hypersurfaces with multiplicities
m, = 8 and m, = 4, and its defining polynomial satisfies the conditions (A)
and (B). In view of Remarks 2 and 3 in §3 of Part I, we can conclude
that the above example is not homogeneous.

(ii) F=R or C,R"={Ze M(F)|Z = —Z'}. The polynomial F' is
defined by



ISOPARAMETRIC HYPERSURFACES IN SPHERES 41

F(Z) = %{Tr (ZZ)) — 2 Tr (ZZ)) .

We compute {p,, q.} for —F in case F = R. Set

V2%
Z = (a;5) , Z; =
@5
for Ze R”. We have
(6.8) —F(Z) = —5-2. I1Z:|* — iZ_IIZ;,H’IIZjll2 + 43 (Z:Z;) .
4 < 2 k<j k<j
Let ¢ be the point in R¥ given by
Ay = —0y =1,
a,; =0 otherwise .
We take e as a reference point. —F' has the following expansion with
respect to z = a,,:
(6.9) —F =aj,

+ ah{2(al + al + af + a + ok + ak)
— 6(a3 + af + ak)}
+ 16a,,{@s( @013 — a50,,)
+ Ao Aoy — Agalys)
+ (A — BpyQy5)}
+ G,
where G does not contain a,,.
From (6.9), we see that {as, as, 0} and {a., @y, a5 G, @y, @) are required
orthonormal coordinate systems for W and Y respectively. Put
Wy = gy W, = gz, Wy = Gys «
We have

Do = 2(Apis — Cy0ys) 5
(6.10) D1 = 2015 — Guslys)
D = 2(“260'14 - a24a16) .
Computing G, we conclude
(6'11) %=q¢=q¢=0.

7. Case m, = 2. The rest of our paper is mainly devoted to prove
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the following.

THEOREM 5. Let M be a closed isoparametric hypersurface in a
sphere with 4 distinct principal curvatures. If m, =2 or m, = 2, then
M is homogeneous.

We shall establish the theorem by classifying all the homogeneous
polynomials of degree 4 satisfying the differential equations (M) with
m, =2 or m,=2. We may assume m, = 2. Let F be a homogeneous
polynomial of degree 4 on RY satisfying (M). As in Part I, decomposing
RY, we associate {p,} and {q,} to F. From the results of Part I, it
suffices to show that our {p,, q.} coincide with the ones associated to some
of homogeneous examples.

We prepare a few lemmas and matricial notations in this section,
and then deal with the case where m, =2 and m, =38 in §8 and the
case where m, = m, = 2 in §9. Following the notations in §5 of Part I,
we prove

LEMMA 3. Let @ and B be two mon zero distinct indices. If Lp,,=
L'ps,, for some mon zero constants L and L', then m, = m,.

Proor. Suppose m, > m,. We have a,a, + 2b,b, =1 from (4-1),.
This shows

l|za.ll = (|l

for any vector x = (x,, -+, «,,), Where || || indicates the length of a
vector. Since rank (b,) < m, < m,, there exists a non zero vector x such
that «b, = 0. Then we have

llvaq|l = [lx]| 0.

Our assumption implies La, = L'as, and hence
|L'|

lz]] = llea.]l = l—L—lllxapll .
Since (4-1), implies ||xa;|| < ||«||, we have
|[L'| =z |L].
Similarly we have |L| = |L'|, and hence
|L| =|L'|.

Thus we have ps, = *+p,, or equivalently, a; = *+a, Substituting in
a0, + 20,0, =1 and aza} + 2bsd; = 1, we get

+aa, + 20,0, =1,

+a,a; + 2bdy =1.
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Consider (4-8),s. We have
asa;, + a.a; + 2(bsb, + b.0;) = 0.
Using the above two equations, we obtain
bsby + byb, £ (bsb, + b0%) =1,

that is,
(bs — b)(b; — b2) =1
or
(bs + b )0 + b)) =1.
This is a contradiction, since rank (b, * b,) is at most m,. q.e.d.

LEMMA 4. Assume m, = 2. If p,, = p,, =0, then m, < 2.

PrOOF. Suppose p,, = p,, = 0. Then the condition (A) in §6 of
Part I is satisfied. We see that ¢, = q.., that is, each ¢, is linear with
respect to 2z, z,, We put

qzx = fazl + gazz

for ¢ = 0,1, 2. Consider the following matrix

Do P D
S = o fi e
do 9. 9. .

We claim SS’ = G1, where 1 denotes the identity matrix of degree 3 and
G = 3. pi. Recall the equations (3-7) and (5-8) of Part I. From 3 9.9, =
0, we have

2 0.fa=0, XD9.=0.
From 3 ¢% = G, #%), we have
D fa=20:=G, Xf9.=0.
They proves SS’ = G1. Taking their determinants, we have
(det S)* = G*.
Thus G can be expressed as
G = H*
by a suitable quadratic form H. For each a, we have
(Pay G) = 2H{po, H) .



44 H. OZEKI AND M. TAKEUCHI

Since {p,, ;> = 0 for distinct «, 8 by Lemma 17 of Part I, we see

{Dey G = 2DefDey Der) -
Again using Lemma 17, we obtain

pa<poy p0> = H<pm H>

for any «. The quadratic form {p, p,> = 43, u? + 3, v?) is irreducible.
Assume m, = 2. Then each p, is also irreducible. Thus, we see that
H is a constant multiple of p, or {p, p,y. In view of Lemma 3, we can
conclude that H = ¢{p,, p,y for some constant ¢. One can see easily
¢ = +1/4. Finally we obtain

G =29 = ul + X,
or equivalently,
P+ P = 4 (X ud)(X i) .

In this equation, we set u, = --- = u,, = 0. Since p, and p, are linear
combinations of {w,;}, we can write

yor |u2=--~=um2=0 = u,h,
where h; is a linear function in v, -+, v,,. We have
hi+ hi=4v) .

The left hand side of this equation is of rank at most 2 as a quadratic
form. This proves m, < 2. q.e.d.

From now on we assume m, = 2. We use the following matricial
notations. For p,, we omit the index a = 1, so that

0 a b
p1~a,’00)

¥ ¢ 0

where ' indicates the transpose of a matrix. For p,, we use the capital
letters, so that
0 A B
p,~|A" O C)
B C 0

For each submatrix, say a, the (i, j)-element of o is denoted by a,;
unless otherwise stated.

We summarize here the conditions (4-1) ~ (4-83) of Part I. (4-1),
and (4-2),, are equivalent to
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(1) aa’ + 200’ =1, a'a + 2¢c' =1, 0'b = c'c,
bc'a’ + ach’ =0, cb’'a + a’bc’ =0, ¢'a’d + b'ac =0 .

Similarly we have (I'), replacing @, b and ¢ in (I) by A4, B and C. The
condition (4-3),,. is expressed as

(Ao’ + aA') + 2(BY' + bB") =0,
(I1I) (A'a + a’A) + 2(Cc’ + c¢C’) =0,

Bb+ ¥B=Cc+cC.

The condition (4-2),, decomposes into the following 6 conditions.

II, ., Acd’ + Bc'a’ + aCb’ is skew-symmetric ,
1L, ¢b’A + o’Bc’ + Cb'a  is skew-symmetric ,
ILs,s b'Ac + ¢'a’'B + b'aC  is skew-symmetric ,
1L, (aa’ + Bb')A + A(d'a + cc') + aA’a

+ bB'a + Bb'a + aCc’ + acC’' = A,
IL,,s (aa’ + bb")B + B(b'b + ¢'¢) + bB'd

+ Aa’b + aA'd + bc'C + bC'c = B,
11,4 (a'a + cc’)C + C(b'b + c'c) + cC'ec

+ a'Ac + A'ac + ¢b'B + ¢B'b = C..

In the above equations, interchanging the small letters with the
capital letters, we obtain the conditions equivalent to (4-2),,, which will
be denoted by II'; ; respectively.

In the case where m, =2 and m, =3, we see p,,# 0 and p,, #= 0.
In fact, we have

6 < 2m, = rank p, < rank p,, + rank p, ,
<rankp,6+4,

and hence rank p,,= 2. Similarly we have rank p,, = 2.

LEMMA 5. Assume m, = 2 and m, = 3. Then p,, and ,, have no
common linear factor.

ProoOF. Suppose p,, and p,, have a common linear factor. If a
quadratic form is not irreducible, then its rank < 2. Thus, from the
above remark, we have

rank p,, = rank p,, = 2,

and m, = 3.
First we shall show that by a suitable choice of coordinates p, has
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the following representation:

1 0 0 L 0 0
a=(0 0 0 b=c=l/—7—1 0
o 0 0/, 01

Since p,, is of rank 2, i.e., @ is of rank 1, we can choose {u,} and {v}
so that

D10 = 27\'/”/1'01 ’

with A > 0. Then the condition aa’ + 2bb’ = 1 implies that we have A =1
and b, = b, = 0 and the matrix

b2l 622
vz
b31 b32
is an orthogonal matrix. We transform {u,, .} into {uj, ui} by

(uh, uh) = (U, )V 2 (b” b”)

b31 b32

Similarly the condition a'a + 2¢¢’ =1 implies that we have ¢, = ¢, =0
and the matrix

VT (621 czz)
631 c32
is orthogonal. Transforming {v, v} into {v;, v;} similarly, we obtain

2 ’ ’ 14 ’
Dy = 1/_—2—{(7/'2 + V)2, + (uz + 5z},

which proves our first claim.
We decompose the matrices A, B and C as follows;

4= (au am) B (&) c— (’71)
&y Oy , B/ » 7,

where a,, B, and 7, are 2 X 2 matrices. p,, must be divisible by w, or
v,. First assume that p,, is divisible by #,. Then we have a, = 0 and
0, = 0. From the first two equations of III, we have

a’u=0“81=0,:82+6;20,72+7;=0 and a, + v 271=0-
From the condition I', we obtain

ae, =1,28,8, =177 =177=0, a,a, + 27,7, =1 and
leﬂaiz =0.
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Now 28,8; = 1 implies that g, is non-singular, and hence we have
T, =0,

or equivalently, a7, =0. 7,4+ 7; =0 implies that 7, =0 or 7, is non-
singular. Suppose 7,=0. Then we have a,&,,=1. This is a contradiction
since rank «,, < 1. Suppose 7, is non-singular. Then we have «,, =0,
and hence 4 = 0. This is again a contradiction since p,, #= 0.

The case where p,, is divisible by », leads also a contradiction simi-
larly. q.e.d.

REMARK. In the case m, =2 and m, = 3, we see that »,, and »,,
have no common factors. This follows from Lemmas 3 and 5.

8. Case m, = 2 and m;, = 3. In this section, we consider the case
where m, = 2 and m, = 3. We shall show first that, after a suitable choice
of coordinates, P, P, D, ¢., and ¢,, coincide with the ones given in §6
for the example (i) in case g = 4, and then that they determine uniquely
the rest of terms.

First note that p,, # 0 and p,, # 0 and they have no common factors.
In the equation (8-7): 3, ».9. = 0, setting 2z, = 2, = 0, we obtain

D1,041,0 + Ds,092,0 = 0.
Therefore there exists a linear function 2 on U@V such that

(1) 1,0 = hpz,o y Gz0 = “hpho .
We decompose h as
(2) h=x—p

where ) and g are linear functions on U and V respectively. Set z, =
2, = 0 in the equation (3-8): 16 >.q2 = 16 3] ¥3)G — (G, G). Since we have

(Do Doy = A3 ui + 207,
{Doy D) |ay=0 = (P Do) =0 = 0,
we get
4h*(pi, + Dio)
= 43 ui + 35 v)(pio + 05
- {pf,o<pu p1> |zk=o + p§,0<pzy p2> Izk=o + 2p1,0p2,o<p1, p2> lzk=o} ’
or equivalently,
DL wi + 3000 — Dy, DD im0 — 47}
+ D3o{4(30 ui + 20 v) — Dy D) om0 — 407}
= 201,005,0{Ps P2 lsy=0 -
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Since p,, and p,, have no common factors, we can find constants L and
L’ such that

(3) 4 ui + v — (o, p1>|zk=o — 4h* = Lp,, ,
(4) 4 (X ui + 200 — Dy, P om0 — 40* = L'p,,
(5) <pu p2> Izk=o = pr,o + L'pz,o .

Note that we have

.ul
aa’ + bb’ be'\| w
N z=:4u’...’um,v’...,'vm ™2
(Do DSy = At .0, )(cb, e cc,) .
Vimy
In (8), we set v, = --+- =v,, =0, and we obtain
Uy
Sul=(u, -, upaa + ) ¢ |+ A
(2

2!

Similarly we obtain

v,
S0t = (v, -+, va)(a'a + cc) ) + pr.

Vg

On the other hand, aa’ + 2bb’ =1 and a'a + 2¢¢’ = 1 in (I) give us

u,

(6) (U, ==+, U )D'| : ):V,
Uy
v,

(7) (W =+ -, vaec| 2 | =2
(2

2

The similar argument for the equation (4) gives us

Uy
(8) (y, *++, Uny)BB[ - )=V,

WUm,g
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(%
(9) (vu °t % ng)CC' E )=#2'
Vp,

Now suppose A = 0. By (6) and (8), we have b = 0 and B = 0. Since
b'b = ¢'c and B'B= C'C, we see ¢ =0 and C =0. Thus we havep,, =0
and p,, = 0. This contradicts m, =3 in view of Lemma 4. Therefore
we have A0, and similarly ¢ 0. And consequently the matrices
b, e, B and C are all of rank 1 from (6) ~ (9).

In (5), set v, = +-+ =v,, =0, and next %, = +-+ = u,, = 0. Thereby
we obtain

aA' +bB + Ao’ + BY' =0,
and
adA+c¢C'+Aa+Cd=0.
On the other hand, by (III), we know
aA' + Aa’ + 2(Bb’ + bB') =0,
a’A + A'a + 2(Cc’ +¢C)=0.
Combining these together, we obtain
BY +bB'=0, Cc +¢C' =0,
Ad' +ad’' =0, Aa+dA=0.

Hereafter in this section, m, is denoted simply by m. We choose
coordinates {u;} and {v;,} so that

(10)

(11) \ = €U, and g = ov,
with ¢ > 0. Now (6) ~ (9) imply that b, ¢, B and C are of the following

type:
0 0

We choose {z, z,} so that
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with A, < 0.
From b'b = ¢'c, we can write
0 0
e |
0 0
ta 0

with g = ;. Suppose g, > 0. Then we take —w,, instead of v, so that
Y, is transformed to —y,. Thus we can assume

N = Mo -
From (10), (8) and (9), it follows that we can write B and C as
0 0 0-0
p_|: c-|:
0 0 0 o0
0 N/, 0

with A} = ¢ = Al ‘

Consider the matrix a. bc'a’ + acd’ =0 and cb'a + a’dbc’ =0 in (I)
show that a,, = a,; = 0 for all 7, 5. In view of aa’ + 200’ = 1, one sees
that a suitable orthogonal transformation on {u, «--, %,_,} gives us

1

0

and that we have A, = —1/1" 2. Consider the matrix A. AA’' + 2BB' =1
in (I'), Aa’ + aA’ =0 and A’'a + a’A =0 in (10) show that A is of the
form
0
A= a:
0---0
with @ + @ =0 and aa’ =1, where 1 denotes the identity matrix of

degree m — 1. Therefore, m — 1 must be even. Let 2l =m —1. One
can transform, keeping the matrix o fixed, @ to the matrix

(= o),
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where 1 denotes the identity matrix of degree .
From B'b + b'B = C’c + ¢'C in (III), we have A, = ..

51

Thus », = g, =
Then we take —z,instead of

+1/v2. Now suppose \, = ¢, = —1/1/ 2.
25, S0 that A, = p, changes the signature. Thus, we can assume
1
A’l =K==
# V'2
By the above choice of coordinates, we get finally
0 0
1 .
. 0 0
_ . - . b = C =
@ = 1
1 - ||
v'2 ’
o/,
1 0
(12) / : \
. . 0
1 .
A=|-1 B=C=|y
. : 0
-1 0
\ 0 e 0: 0 /
Substituting these in (3), we see that L = 0 and
(13) h= =l = v,

because of our choice (11). Set

1 1
t, = —(Up — Vp), 81 = ———(Un + V,,) .
' 1/?( ) 1/2—( )
Finally we get
l
D, = Zt (W} + ui; — v; — viy,) — 2s.t,,
o

1
(14) {pl = -2 21 (W05 + UpsV145) — 22,8,
£

1
D, =2 E} (UiVi s — Ure V) — 22,8, ,
=

Q1,0 = EDs0p Qoo = — D10 «
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We compare (14) with (6.4) and (6.5). Interchange z, and 2, and put
by = s +V =1 u;,
Qotj = Vg + V' —1v;

for =1, ---,1. One can verify our first assertion on 9, , s, ¢;, and
qz,o fOl‘ r = l + 2.

We come to the second step. We claim that p, », D: ¢, and g,,
determine uniquely the rest of terms. First note that we have

(15) Q1,2 = Q5,2 = 0.

In fact, from (6.5), we have (15) for the homogeneous example (i). Consider
the equation (3-8):

16 (X q2) = 16 (X ¥9)G — <G, G) .

For the homogeneous example (i), the left hand side of (3-8) has no terms
of degree 4 with respect to z, z,. Since our p, », p, coincide with the
ones corresponding to the homogeneous example (i), we can conclude
di2 = Q5 = 0.

We put
9 = fO,lzl + fo,zzz ’
g, = f1.1z1 + f1,222 ’
Q2 = fz,1zl + fz,zzz .
We claim
(16) fre=/ =0, ——afl'l = —af2'2 =0.

0s, ds,
In fact, from {(p, ¢,> = 0 in (3-4), we have
{Droy Qo) + Doy €00 + Pro €1,1))

+ <p1,1; Q1,1> =0.
This is equivalent to

(17) <p1,0; QL,0> + <p1,11 Q1,1>{zk) =0,
(18) (Do Qo) + {Pro €00 =0,
(19) (D1 Q1,1>(ui,vi} =0.

Substitute p,,, = —22;5, q,,, = fi,.2. + fi.:2. in (19). We obtain

<p1,h q1,1>(ui,vi} = —zaim‘zxzz - 291‘1;23% =0,
0s, 0

S1
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and hence

of, of,
L=, L2 — (.,
0s, 0s,

Since p,, = —2R, q,, = 2t,I, we have
<p1,oy Q1,o> = ”‘4tl<R, I).

A direct computation shows (R, I) = 0, and hence

<p1,0; Q1,0> =0.
From (17), we have {(p,,, ¢,,)i;) = 0. Since p,, = —2zs,,

0
<p1,1y Q1,1>{zk) = _231 g;l = _231f1,2 =0,

2
which shows f,, = 0. The similar argument for », and ¢, completes our
claim (16).
Consider (3-8): > p.g. =0. We have
Do + (D191 + P1,1010) + (P,0e1 + P2180) = 0,
and hence
pofo,l + p1,of1,1 + 231Q2,o =0 ’
pofo,z + (_231)(11,0 + pz,ofz,z =0.
Equivalently, we have
Dofor = R(2f1,1 - 431t1) ’
pofo,z = I(481t1 - 2f2,2) .
Since p, is irreducible, we can write
2f1,1 - 481t1 = €6,Do »
481t1 - zfz,z =GPy

Apply 0/ds, to the above two equations. In view of (16), we obtain ¢, = 2,
¢, = —2. Thus we have

fuo=IBIF =[]},
for = IBIF = llalf*,
Jor = 2R,

fo: = —2I.

Our second assertion is now proved.

9. Case m, = m; = 2. As mentioned in the introduction, this case
is already indicated by Cartan without proof. We give here an outline
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of our proof. We use the notations given in §7. Note thata, b, ¢, 4, B
and C are all 2 x 2 matrices in this case. We write I for the identity

matrix of degree 2, J for <_~(1) (1)> and 6 for 1/v/ 2.

LEMMA 6. Let a, b and ¢ be matrices satisfying (I) in §7. Then
by a suitable choice of coordinates {a, b, ¢} can be represented as:
(i) case ranka =0, a=0,b=1 ¢ =0J;

(ii) case ranka =1, a:@ 8),b=c=<8 2>,

(iii) case ranka =2 and p,, =0, a=Ib=c=0;
(iv) case ranka =2 and p,, %0, a=¢&Lb=7nl, ¢ =nJ with & +
29F = 1.

LeEMMA 7. In the case (ii) of Lemma 6, there exists no p, satisfying
(I1I), A1) and (I').

Lemmas 6 and 7 can be verified by elementary but long calculations.
From Lemmas 6 and 7, one can see that {p, p,} can be classified, inter-
changing w, and w, if necessary, into the following 5 cases;

(A) D0 # 0, p,,,#0, p,, # 0,

(B1) D10 = 0, D20 = O’

B) 2,,=0,p, =0,

(Ba) D10 = Oy Ds0 #F 0; Do F 0:

(C) Dy, = Oy D2y = 0.

LEMMA 8. By a suitable choice of coordinates {w,, w,}, the case (A)
can be reduced to the case (B,)) or (B,).

LEMMA 9. In the case (B,), by a switable choice of coordinates, our
{Ds 9.} coincide with those of —F, where F s the polynomial of the
example (i) in case g =4 and F = R in §4.

One can prove this lemma, using the explicit forms (6.10) and (6.11)
of {p., q.} associated to the above —F.

LEMMA 10. In the cases (B;) and (B;), there exist no {q,} satisfying
(8-4) ~ (3-10) of Part I.

LEMMA 11. The case (C) can be reduced to the case (B,).

More precisely, {p,, q¢.} in the case (C) correspond to those of the
polynomial F' of the homogeneous example (ii). One can compute {p,, 9.}
of F' from those of —F.

The preceding lemmas complete our classification in case m, = m, = 2,
and hence every closed isoparametric hypersurface in a sphere in this
case is homogeneous.
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