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Introduction. This paper is a continuation of Part I [13]. In the
first half of the present paper, we study the homogeneous isoparametric
hyper surf aces in spheres. Every homogeneous hyper surf ace in a sphere
is represented as an orbit of a linear isotropy group of a Riemannian
symmetric space of rank 2, due to Hsiang-Lawson [8]. In §1, we study
the linear isotropy representations of Riemannian symmetric spaces and
their orbits in general. §2 and §3 are devoted to a study of the homo-
geneous isoparametric hyper surf aces, their classification and invariant
polynomials. In § 4 and § 5, we construct explicitly the defining polynomial
F for each homogeneous isoparametric hypersurface in a sphere, which
was done by Cartan [3] in case g — 3.

In the second half, we prove that every closed isoparametric hyper-
surface in a sphere in case g = 4 and m^ or w2 = 2 is homogeneous.
Cartan [4] indicated, without proof, that in case g = 4, every closed
isoparametric hypersurface in a sphere with the same multiplicities is
homogeneous. In case m^ = m2 = 2, we give a brief outline of its proof
in §9.

In §6, we exhibit explicit forms of {pa, qa] for some of the homogeneous
examples. We see that, for a homogeneous isoparametric hypersurface
with g = 4, m^ — 4 and m2 = 3, its defining polynomial — F does not satisfy
the condition (B) given in § 6 of Part I. Thus one can conclude that our
example constructed in Theorem 2 of Part I for F = H and r = 1 is not
homogeneous. Consequently, there are at least two types of isoparametric
hypersurfaces in S15 with the same multiplicities; one is homogeneous, and
the other is not. It seems to be an interesting problem to seek a local
geometric quantity in order to distinguish them.

1. ^-representations. In this section we shall consider the linear
isotropy representations of Riemannian symmetric spaces and investigate
the structures of orbits of such representations.

Let F be a Euclidean space, i.e., a finite dimensional real vector space
equipped with an inner product (,). The unit sphere in V centered at
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the origin 0 will be denoted by S(V). 0(V) and SO(V) denote the ortho-
gonal group and the special orthogonal group of V respectively. That is,

0( V) - (σ e GL( V) \ (σx, σy) = (x, y) for each x, y e V) ,

SO(V) = {σeO(V)\άetσ = 1} .

If V = RN equipped with the standard inner product (,), then S(V), 0(V)
and SO(V) are the usual unit sphere SN~\ the usual linear groups 0(N)
and SO(N) respectively. Consider an orthogonal representation p: K— >
SO(V) of a compact connected Lie group K on V. In this note a repre-
sentation of a topological group will be always assumed to be continuous.
Through the representation p, the group K acts on V and S(V) as linear
automorphisms and isometries respectively. These actions are effective
if and only if p is faithful, p is said to be of cohomogeneity v if the
maximum of dimensions of jRΓ-orbits in V is equal to dimF— v, or equi-
valently if the maximum of dimensions of X-orbits in S(V) is equal to
dim S(V) — v + 1. Orthogonal representations ρ:K-+ SO(V) and ρ'\ K'-+
SO(V') of compact connected Lie groups K and K' respectively, are said
to be ^-equivalent and denoted by p ** p', if there exist an isomorphism
φ:K—»K' and an isometry σ\V-+V such that σp(k) — p'(φ(k))σ for each
keK.

An s-representation associated to a Lie algebra of rank v, which will
be defined in the following, is an example of a faithful orthogonal repre-
sentation of cohomogeneity v.

Let g be a non-commutative real reductive algebraic Lie algebra
without compact factors. Let θ be a Cartan involution of g. The Cartan
decomposition associated to θ is given by

where

f = {x e g I θx = x}

Let Ad g c GL(g) denote the adjoint group of g. Then the Lie algebra
of Ad g is identified with the commutator subalgebra [g, g] of g and f is
a maximal compact subalgebra of [g, g]. Let K denote the connected
subgroup of Ad g generated by f . Maximal abelian subalgebras in J> are
mutually conjugate under the action of K on Jx The dimension v of such
subalgebras is the so-called Λ-rank of g. In this note we call it simply
the rank of g. Denoting by c the center of g, we have a direct sum
decomposition:
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9 = c Θ ([9, βl n to .
The Killing form B of g is positive definite on [g, g] n t>. We choose an
inner product (,) on β such that (1) it coincides with a positive multiple
of B on [g, g] Π t>, i.e., there exists c > 0 such that (x, y) = cJ5(x, #) for
each a, # e [g, g] Π f>, and (2) (c, [g, g] n i>) = {0}. The vector space f> will
be considered as a Euclidian space with this inner product. We define
an orthogonal representation ρ:K—>SO($) by

ρ(k) = k\$ for keK.

It is known (cf. Helgason [7]) that p is of cohomogeneity v and that for
x e t>, the equality dim jfiΓ(a;) = dim J> — i; holds if and only if α; is a regular
element of f). Note that <o is faithful in virtue of [£, p] = f. The repre-
sentation p is called the s-representation associated to the triple (g, Θ, (,)),
or simply an s-representation associated to g.

The ^-equivalence class of p depends only on the isomorphism class
of g. In fact, let g and g' are isomorphic, and let p:K-+SO(!p) and
p': Kr —»S0(t>') be ^-representations associated to (g, Θ, (,)) and (g', Θ', (,)')
respectively. Choose an isomorphism a: g —> g' such that θ'a = aθ. We
define an isomorphism φ: K —> K' and a linear isomorphism r: J> —> £' by

9>(fc) = afcar1 for keK ,

τx — α# for # e £ .

Then we have τp(k) = p'(φ(k))τ for each fceίΓ. Furthermore re = c',
τ([g, fl] Π t>) = [9', 9Ί Π t>' and B(x, y) = B'(τx, τy) for each x, τ/e [g, g] n t>,
where c, c' and #, J5' denote the centers and the Killing forms of g, g'
respectively. It follows that we can find an isometry σ:φ-+]p' satisfying
σp(k) = ρ'(φ(k))σ for each k 6 K, and hence p & p'.

PROPOSITION 1. The s-representatίon defines an ίnjective map of
the set of isomorphism classes of non-commutative real reductive algebraic
Lie algebras of rank v without compact factors into the set of ^-equivalence
classes of faithful orthogonal representations of cohomogeneity v.

PROOF. Let p: K-+SO(p) and p': K'-+SO(tf) be s-representations
associated to (g, Θ, (,)) and (g', #', (,)') respectively. Assume p ** p', i.e.,
there exist an isomorphism φ: K-* Kr and an isometry σ: £—+$' such that

(1) σρ(k) = p'(φ(k))σ for each k e K.

We have to prove that g and g' are isomorphic. From the above argument,
we may assume that (,) and (,)' coincide with the Killing forms on
[Q, 9] Π t> and [g', g'] Π tf respectively. Denoting by φ*: f —> V the differential
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of the isomorphism φ, we define a linear isomorphism a: Q — > g' by

a(x + y) — φ*x + σ?/ for α; G ϊ, y e ί> .

In virtue of (1) we have

( 2 ) α(ad #)# = ad (ax)ay for a? e ϊ, j/ G p .

It follows that α sends the center c of g onto the center c' of g'. It
suffices to show that a is a Lie algebra homomorphism. We extend the
inner products ( , ) and ( , )' to adjoint invariant symmetric non-degenerate
bilinear forms (,) and (,)' on g and g' respectively, in such a way that
they coincide with the Killing forms on [g, g] and [g', g'] respectively.

(a) Let x, y e I . We have

a[x, y] = φ*[x, y] = [φ*x, φ*y] = [ax, ay] .

(b) Let x e f and yep. By (2) we have

a[x, y] = α(ad x)y = ad (ax)ay = [ax, ay] .

(a) and (b) show that ad (ax) = α(ad x)a~1 for each x e f , and hence

( 3 ) (x, y) = (ax, ay)' for x, y e f .

(c) We show that a[x, y] = [ax, ay] for each x, yep. As we can
see easily, we may assume x, ye [g, g] Π t>. For each zel, we have by (3)

([ax, ay], az)' = -(ax, [az, ay])' = -(ax, a[z, y])'

= -(σx, σ[z, y])' = -(x, [z, y]) = ([x, y], z)

This shows [ax, ay] — a[x, y]. q.e.d.

Now we consider the structure of jΓ-orbits of s-representations. In
general, for a group G acting on a space X, we denote by G\X the space
of G-orbits in X. Let p: K~ > S0(p) be the s-representation of cohomo-
geneity v associated to (g, θ, ( , ) ) . We may assume without loss of gen-
erality that the inner product ( , ) coincides with the Killing form on
[9> 9] Π £. We extend ( , ) to an adjoint invariant symmetric non-degenerate
bilinear form ( , ) on g in such a way that it coincides with the Killing
form on [g, g]. The C-linear extensions of θ and ( , ) to the complexification
gc of g, are also denoted by θ and ( , ) respectively. Choose a maximal
abelian subalgebra α in p and extend it to a Cartan subalgebra ϊj of g.
Then we have a direct sum decomposition:

§ = b 0 α where b = Ij Π ϊ .

We put §0 = α/^b + α. Then the form ( , ) is positive definite on §0>
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and hence it defines a Euclidean space structure on §0. The set Σ of
roots of QC relative to Ijc, the complexification of §, is identified with a
subset of §o by means of the duality defined by the inner product ( , ).
Choose a lexicographic order > on §0 in such a way that if a e Σ — T/^ϊb,
a > 0, then θa < 0. Denoting by ft the fundamental root system for
Σ with respect to the order > , we define a positive Weyl chamber <& in
α by

^ = [hea\(a, h) > 0 for each ae Π - i/^Tb} .

And then we set

<ϊfί = <g>nS($) = &n S(a) .

Making use of the group of particular rotations:

p = {σeO(ΐ)Q)\σa = α, σΣ = Σ, σfϊ = Π} ,

we define a subgroup C of 0(α) by

C={σ\.\σeP}.

Note that the group C leaves ί̂ 1 invariant. The Weyl group W =
Nκ(a)/Zκ(ά), where NK(Q) and Zκ(a) denote the normalizer and the centralizer
of α in K, is identified with a finite subgroup of 0(α). It is known (cf . Helgason

[7]) that the inclusions <%? c α c t> induce the natural identifications

and ^1 - W\S(a) =

where — means the closure in α. Let /(£) and /(α) denote the algebra
of ίC-invariant polynomial functions on £ and the one of ΐ^-invariant poly-
nomial functions on α respectively. Then it is known by Chevalley [5],
Harish-Chandra (cf. Helgason [7]) that the restriction map of /(£) into
/(α) is an isomorphism and that /(£) has v algebraically independent
homogeneous generators, say Ilf ••,/„. The iΓ-orbits in p are described
by means of Iί9 •••,/„ as follows (cf. Helgason [7], Kostant-Rallis [11]):

(A) The correspondence

: I for

of :p into R" induces an injective map K\p -+ Rv in such a way that

K(xQ) = {a?€t)|/4(α?) = It(xJ for i = 1, ••-,!;}

for each x0 6 t>. The ideal in the algebra of polynomial functions on £,
consisting of all f such that f \ K(XQ) = 0, is a prime ideal generated by
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/! — Î o), •••,/„ — I»(XQ), and hence for each x0e$ K(xQ) is an irreducible
algebraic variety in )p.

We can choose generators {IJ of /(f>) such that jfi — r\ where r is
the usual radius function on J>. In fact, let xl9 •• ,^1 where ^ is the
dimension of the center c of g, be an orthonormal coordinate system for
c and /ί, , i'2, where U2 = dim ([g, g] Π α), be a system of homogeneous
generators of the algebra of X-invariant polynomial functions on [g, g] Π ί>.
Then {Xi (1 ̂  ί <; JΛ), I] (1 <; j ^ v2)} form a system of generators of /(£),
considering them as polynomial functions on £. Since we can choose {!]}
in such a way that a generator of the lowest degree, say I[, coincides
with the Killing form on [g, g] Π £, we can find generators {/J of /(£)
such that /! = Σ* β? + ί̂ " r2 Hence, after the above choice of generators
of /(£), we have

(B) The correspondence

o/ S($) into R^1 induces an injective map K\S(fi) —> R*~l in such a way
that

K(xQ) = {xe S(ϊ) \ It(x) = I<(x,) for i = 2, - , v]

for each x0e S($).

In particular we have

PROPOSITION 2. Let v = 2. Take a homogeneous generator F of /(£)
other than r2. Then the map x0 H-» F(x0) of S(p) into R induces an injec-
tive map K\S($) — > R in such a way that

for each xQ£ S(fi). Each K(x0) is an irreducible algebraic variety in p.
Denoting by \W\ the order of the Weyl group W, and by g the degree of
F, we have

and the possibilities of g are 1, 2, 3, 4 and 6.

PROOF. The first and the second assertions follow from (B) and (A).
The possibilities of Weyl groups W are

(a-1) dimc-1. W is of type A, x {1} (W acts on c trivially).



ISOPARAMETRIC HYPBRSURFACES IN SPHERES 13

(a-2) g is semi-simple, not simple. W is of type Al x Aγ. W\ = 4.
(b) g is simple. W is of type A*, B2 or G2. \W\ is 6,8 or 12

respectively.
(In this note a Lie algebra is said to be simple if it is not commutative
and has no non-trivial ideal.) On the other hand, it is known (cf . Bourbaki
[2]) that in each case 2g coincides with W\. This can be also derived
from a theorem of Kostant [10] on exponents of Weyl groups, without
use of the classification of Weyl groups. q.e.d

In general, for a Riemannian manifold M and a submanifold M of
M, we denote by I(M, M) the group of all isometries of M leaving M
invariant, endowed with the topology induced from the one of the group
of isometries of M. I0(M, M) denotes the identity component of I(M, M).

For an automorphism a of g, the C-linear extension of a to gc will
be also denoted by a. We denote by Aut (g, ϊ, ( , )) the group of all
automorphisms a of g such that at — I and (ax, ay) = (x, y) for each
x, y e g. Similarly, Aut (g, ϊ, $, 77, ( , )) denotes the group of all a e Aut (g, ϊ,
( , )) such that a% = $ and aΠ = Π. It is known (Takeuchi [16]) that K
is a normal subgroup of Aut (g, ϊ, ( , )),

Aut (g, ϊ, ( , )) = Aut (g, f, §, ff, ( , ))K (semi-direct), and the restriction
map Aut (g, f, ϊj, ff, ( , )) — > P is a sur jective homomorphism. Hence a sur-
jective homomorphism 7: Aut (g, ϊ, ( , ) ) — > C is defined by the composite of

Aut (β, !,(,))-" Aut (β, !,(,

Then we have

PROPOSITION 3. For an element x0 e ^^ put

Aut (g, f , ( , )).β = {a e Aut (g, ϊ, ( , )) 1 7(ίφ0 - x,} .

Then the restriction a M> a „ defines an injective homomorphism:

If furthermore p(K) — I0(S($), K(xQ)), then the above homomorphism is
an isomorphism.

PROOF. Let a e Aut (g, ϊ, ( , ))XQ. By definition, a \ „ 6 0(£), aKa~l = K
and there exist β e Aut (g, ϊ, 6, ff, ( , )) and k G K such that a — kβ and

have

= Kkβ(xύ) = K(xQ) ,

and hence a\9eI(S($), K(x0)). The injectivity follows from [£, £] = f.
Assume ^(JSΓ) = I0(S(ί>), -K"(a;0)). Let σeJ(S(t)), ^(^o)) Then we have
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σp (K)σ~^ = p(K) by the assumption. We define an automorphism φ of K by

p(φ(k)) = σp(k)σ~l for k e K

and denote by φ* the differential of φ. Then, as we have seen in the

proof of Prop. 1, the linear automorphism a of g defined by

a(x + y) = 9*% + σy ίor x e ϊ, y e $

is an element of Aut (g, ϊ, (, )) satisfying a\9 = σ. Let a(xQ) = krl(x0) with
&! e K. Then kta fixes a regular element XQ of α, and hence k^aa — α.
Since both b and k^άb are Cartan subalgebras of the centralizer gt(α) of
α in ϊ, we can choose k2e Zκ(a) such that kjctάb = b. Choose kBeKsuch
that k$ = § and kj^k^aft = Π. Since &3 leaves the positive Weyl chamber
^ invariant, we have fc3e Zκ(a). By the construction, /? = k^k^a is in
Aut (g, f, §, Π, ( , )) and £(&„) = #0 It follows that 7(a)x0 = x0, and hence
<*e Aut(g, f, ( , ))XQ. This shows the surjectivity of the map a\-*a „.

q.e.d.

jff-orbits M and M' in £>(£) are said to be equivalent if an element
of 0(t>) transforms M onto M'. A Jϊ-orbit Λf in S($) is said to be principal
if dim Λf = dim $ — v. Then we have

PROPOSITION 4. Tfte correspondence XQ H* -K(α?0) /or α;0 e ί̂
1 induces a

surjective map of C\^1 onto the set of equivalence classes of principal
K-orbits in S(t>). If furthermore p(K) = I0(S(t>), (̂̂ o)) for each x0 € ̂

x,
then this map is bijective.

PROOF. Let XQ, x[ e ̂ ^ Assume that there exists σ e C such that
(7#0 = XQ. From the surjectivity of the homomorphism Aut (g, ϊ, §, /7,
(,))—»P, it follows that σ can be extended to an automorphism a e
Aut (g, ϊ, (,)). Then aKa~l = K and hence K(ύ) = aKcr\v$ = aK(xϋ) with
ah e 0(t>). This shows the equivalence of K(xQ) and JϋΓ(xί). Hence our map
is well defined. The surjectivity of the map follows from the natural identi-

fication: <gf1 = K\S($). Suppose further that ρ(K) = /0(S(ί>), K(x0)) for
each XQ 6 <g*1. Let xΰ9 x'Q e ̂

1. Assume that there exists σ e 0($) such
that σK(x0) = K(x'0). Since σI(S(p), K(x,))σ~l = I(S(t>), ίΓ(^)), we have
σp(K)σ~1 = p(K). In the same way as in the proof of Prop. 3, we can
choose a 6 Aut (g,!,(,)) satisfying a \ „ — σ. Let α(#0) — fcrX^') with k^ e K.
Since ^(^(XQ) — x^ is an element of α, we can choose k2 e K such that
k2x'0 = XQ and k2kλaa = α. In the same way as in the proof of Prop. 3,
we can choose &3 6 Zκ(a) such that β = k^k^a is in Aut (g, ϊ, ί>, ft, ( , ))
and /3(#0) = &;. It follows that XQ and xj are in the same C-orbit in ί̂ 71.
This shows the injectivity of our map. q.e.d.
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2. Homogeneous hypersurfaces in spheres. In this section we shall
reduce the classification of homogeneous hypersurfaces in spheres to the
one of certain representations of compact connected Lie groups, and
then state a theorem of Hsiang-Lawson giving the classification of such
hypersurfaces.

Let SN~l (N ̂  3) be the unit sphere in an ΛΓ-dimensional Euclidean
space centered at the origin and M a connected locally closed (N — 1)-
dimensional submanif old in S "̂1. As in Introduction of Part I, M is said
to be homogeneous if the group I(SN~1, M) acts transitively on M. In
the sequel, a homogeneous connected locally closed (N — 2)-dimensional
submanif old in SN~L will be called a homogeneous hypersurface in S "̂1. As in
Introduction of Part I, hypersurfaces M in S*'1 and M' in SN'~1 are said
to be equivalent, if N= N' and an element of 0(N) transforms M onto M'.

Let M be a homogeneous hypersurface in SN~\ and I(M) the Lie
group of isometries of M with respect to the Riemannian metric of
M induced from the one of S"-1. Then the restriction λ: I(SN~\ M) -*
I(M) is a continuous homomorphism. Let K(M) denote the λ-image
\IQ(SN~\ M) of I0(SN~\ M), endowed with the topology induced from the
one of I(M).

LEMMA 1. Let M be a homogeneous hypersurface in SN~1.
( i ) The restriction λ0:10(SN~\ M) —»K(M) is an isomorphism, and

hence the inverse isomorphism of λ0 defines a faithful orthogonal repre-
sentation pM: K(M) —> SO(N) of the group K(M).

(i i) M is compact, and hence K(M) is a compact connected Lie
group.

PROOF, (i) The surjectivity of λ0 follows from definition. Let
σe/oOS*-1, M) such that λ0(σ) = 1. Take a point x0eM. Without loss
of generality we may assume that

/ o
.

0

u/

/
ξ
0

\ o

ζeR>N-2

The differential of σ at x0 is the identity by the assumption: λ0(σ) = 1.
It follows that σ e SO(N) is of the form

σ =
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and hence σ = 1̂ . This shows the injectivity of λ0.
( i i) Let d be the Riemannian distance of SN~1 and d the one of M

with respect to the induced Riemannian metric. Note that the distance
d is complete since I(M) acts transitively on M. Take a point XQ e Af, and
choose ε > 0 such that each point x e SN~1 with d(x0, x) < ε can be joined
to x0 by a unique geodesic in SN~\ Put U = {xeM\d(xQ, x) < ε}. Then
there exists a positive constant c such that d(xQ, x) <^ cd(x0, x) for each
x e U. Since I(SN~\ M) acts transitively on M, we have

d(x, y) ^ cd(x, y) for each x, y e M with c£(#, y) < ε .

Now let {αjw}Λ=1,2,... be a sequence in M, converging in S "̂1 to a point
s0 ̂  SN~1. It follows from the above inequality that {xn} is a Cauchy
sequence in M with respect to the complete distance d. Thus {xn} con-
verges to a point #0 e M and hence s0 = XQ e Λf. This shows that M is
closed in SN~1. q.e.d.

For a homogeneous hypersurface M in S^"1, the above faithful
orthogonal representation pM of the compact connected Lie group K(M)
is said to be associated to M. A faithful orthogonal representation
p: K-+SO(V) of cohomogeneity v is said to be maximal if there is no
faithful orthogonal representation p':K'—+SO(V) of cohomogeneity v
such that K is a proper subgroup of K' and ρ'(k) = ρ(k) for each k e K.

LEMMA 2. Let p:K~*SO(N) be a maximal faithful orthogonal re-
presentation of cohomogeneity 2, and M an (N — 2)-dimensional K-orbit
in SN~l. Then p(K) = I0(SN~\ M).

PROOF. We identify K with a compact subgroup of SO(N) through
the faithful representation p. Let M = K(x0) with XQ e S*"1. Put K' =
I0(SN~\ M). Then the inclusion homomorphism K'—+SO(N) is of coho-
mogeneity 2. In fact, if there would exist y^eS*'1 such that dimK'(y<>) =
N-l, then K'(y,) = S^ and I^S"-*, M)(xQ) = SN~\ which is a contradic-
tion. It follows from the maximality of p that K' = K. This proves
the lemma. q.e.d.

THEOREM 1. For a homogeneous hypersurface M in SN~\ the repre-
sentation pM: K(M) —* SO(N) associated to M is a maximal faithful
orthogonal representation of cohomogeneity 2, and M is an (N — 2)-
dimensional K(M)-orbit in SN~l. If M and M' are equivalent, then pM

and £>M> are ^-equivalent. Conversely, any maximal faithful orthogonal
representation of cohomogeneity 2 is obtained as the representation pM

associated to a homogeneous hypersurface M in a sphere.
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PROOF. Let ρM: K(M) — > SO(N) be the representation associated to
a homogeneous hypersurface M in SN~l. The same argument as in the
proof of Lemma 2 shows that pM is of cohomogeneity 2. Let Kr be a
compact connected subgroup of SO(N) containing IQ(SN~\ M) such that
the maximum of dimensions of ^'-orbits is equal to N — 2. Then for
each point xe M, K\x)^IQ(SN~\ M)(x) = M, and hence K'(x) = M. This
means Kr c I0(SN~\ M). Thus we have proved the maximality of pM .

Assume that homogeneous hypersurf aces M and M' in S "̂1 are equi-
valent, i.e., there exists σeO(N) such that σM = M'. Then the isomor-
phism φ:I0(SN-\ M)-+I0(SN-\ M') defined by

φ(k) = σkσ~l for k e /oO '̂1, M)

satisfies σk = φ(k)σ for each k e I0(SN~\ M). This shows the ^-equivalence
of pM and pM,.

Let ρ:K—*SO(N) be a maximal faithful orthogonal representation
of cohomogeneity 2. Take an (N — 2)-dimensional iί-orbit M in S"'1.
Then by Lemma 2 we have loOS*"1, M) = K, and hence iΓ = K(M) and
p = ρM. This proves the last assertion. q.e.d.

In virtue of Theorem 1, the classification of equivalence classes of
homogeneous hypersurfaces in spheres is reduced to the following two
problems:

( I ) Classify (^-equivalence classes of maximal faithful orthogonal
representations of cohomogeneity 2 of compact connected Lie groups.

(II) Let p:K-+SO(N) be a maxim-al faithful orthogonal represen-
tation of cohomogeneity 2. Classify equivalence classes of K-orbits in
S "̂1 of dimension N — 2.

We denote by 0(1, r) the Lie algebra of the Lorentz group for a
quadratic form of signature (1, r), i.e.,

0(1, r) - {ze gl(r + 1, R)\x'S + Sx - 0} ,

where

α
o

Then an answer to the problem (I) is given by the following theorem,
which is due to Hsiang-Lawson.

THEOREM 2. (i) The following two families of Lie algebras exhaust
the all non-commutative real reductive algebraic Lie algebras without
compact factors such that the associated s-representations are maximal
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faithful orthogonal representations of cohomogeneity 2;
(a) Lie algebras ίsomorphic to

(a-1) tf®o(l, s) (β^2), or

(a-2) o(l, r) 0 o(l, β) (s ̂  r ^ 2) .

(b) Non-compact simple Lie algebras of rank 2.
(i i) The s-representation defines a bijective map from the set of iso-

morphism classes of Lie algebras in families (a) and (b) onto the set of
^-equivalence classes of maximal faithful orthogonal representations of
cohomogeneity 2.

PROOF, (i) and the surjectivity of the map in (ii) were proved in
Hsiang-Lawson [8]. The injectivity of this map follows from Prop. 1.

q.e.d.

REMARK. An associated s-representation is reducible or irreducible,
according to case (a) or case (b).

An answer to the problem (II) is given by (i) of the following
theorem.

THEOREM 3. Let Q be a non-commutative real reductive algebraic
Lie algebra without compact factors such that an associated s-represen-
tation is a maximal faithful orthogonal representation of cohomogeneity
2. Let p:K—+SO(fi) be an s-representation associated to Q such that the
inner product ( , ) on t> coincides with the Killing form on [g, g] Π t>
Let ^\ C and Aut (g, ϊ, ( , ))βo be as in §1.

( i ) The correspondence XQ H* K (x0) for x0 e <&l induces a bijective
map of C\(^1 onto the set of equivalence classes of principal K-orbits
in S(J>).

(ii ) For each x0e ^\ Aut (g, f, ( , ))βo is isomorphic to /(S(t>), K(x0))
by the correspondence a\-^a\p.

PROOF. These are immediate consequences of Prop. 4, Prop. 3 and
Lemma 2. q.e.d.

g = (1/2) |TΓ I and the group C are given as follows:

(a-1) g - R ©o(l, s) (s ̂  2) . g = 1 , C = Zz .

(a-2) g - o(l, r) φo(l, s) (s ̂  r ^ 2) . g = 2 ,

.} r < s .

(b) g a non-compact simple Lie algebra of rank 2. g = 3, 4 or 6,
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(Z2 if W is of type Az ,
C —

~ ({1} if W is of type B2 or G2

Each non-trivial element of C acts on the open arc ̂  in the circle S(α)
by the "symmetry" with respect to the middle point of <g*1.

3. Homogeneous isoparametric hypersurf aces in spheres. A maximal
family ̂  = {Mt \ 16 /} of isoparametric hypersurf aces in a sphere is said
to be a maximal family of homogeneous isoparametric hypersurfaces if
each Mt is a homogeneous hypersurface. In this section, such families
of hypersurfaces will be classified.

For a maximal faithful orthogonal representation p:K—+SO(N) of
cohomogeneity 2, the family of all (N — 2)-dimensional iΓ-orbits in S "̂1

will be denoted by ̂ . We shall investigate the structure of such family
<^ό. For this purpose, we consider a non-commutative real reductive
algebraic Lie algebra g without compact factors such that an associated
s-representation is a maximal faithful orthogonal representation of coho-
mogeneity 2. Let p: K—*SO($) be an s-representation associated to g.
Choosing a maximal abelian subalgebra α in t>, a Cartan subalgebra ϊ) =
b + α of g containing α, and a lexicographic order > on §0 — I/—1& + α>
we define a positive Weyl chamber ̂  in α as in §1. Let h0 denote the
middle point of ̂  = <& Π S(α). Choose an hπ/2 e S(a) with (ft0, hπ/2) = 0
and fix it once and for all. We define a real parameter Θ of S(α) by

&0 — cos θhQ + sin θhπ/2 for θ€ R .

Then we have

where 2g is the order | W\ of the Weyl group W. Recall that the family
is given by

Denoting by {λ^ λj the dual basis of the basis {h0, hπ/2} for α, we define
a homogeneous polynomial function FQ on α of degree g by

[ ( f i f - D / 2 j / σ \
(3.1) FO- Σ L.^- (-l)<λΓ(14+1)λf+l.

i=0 \2ΐ + I/

Then FQ(hθ) = sin ̂  for each 0 6 Λ. It is easy to see that the Weyl
group W is generated by elements w^ and w2, which act on S(a) by
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Wγ\ hθ H> hπ/g_θ ,

w2: hθ H+ hθ+2π/g .

It follows that FQ is a TF-invariant polynomial function on α. By the
theorem of Harish-Chandra cited in § 1, F0 is extended uniquely to a K-
invariant polynomial function F on £. By Prop. 2, each #-orbit K(hθ)
is an irreducible algebraic variety in $ satisfying

K(hθ) — {x 6 S(ί>) I F(x) = sin gθ} .

Let 1̂  and Σ+ be the set of roots and the one of positive roots respec-
tively, and ώ:^0->α the orthogonal projection. We define Σ, Σ+, Σ* and
Jί by

Σ = ω(Σ - i/^TJb) , Σ+ = ώ(Σ+ - V^ϊb) ,

Σ*= \7e Σ±7£

The cardinality of the set Σ$ coincides with g. For T e a , we denote by
μ(7) the number of roots a of Σ — i/^ϊb such that ω(ά) = Ύ. We put
m(7) = μ(7) + μ(2Ύ) for 7eΣ*. For each TeJί, there exists uniquely
0(7) with -τr/2 < θ(7) < π/2 satisfying (hθ(r}+π/z, 7) = 0. We number the
roots in Σ% in such a way that 0(7t) < < 0(7fl). Then we have

= i^(2ί~υ~f for < = 1^ ^
We put mt = m(7<) and 0, = 0(74) for i = 1, - , flr. Seeing that m(7) =
m( —7), m(w7) = m(7) for 76^^, we W, we have

mi = m2 for odd # ̂  3 ,

mί = ra3 = ,

ra2 — m4 — .

Let —π/(2g) < θ < π/(2g). We define a unit normal vector field Xθ on
K(he) in S(t>) by

Xθ(khθ} = k(-sin 0 fe0 + cos θ hπ/2) for fc e K ,

identifying a tangent space of S(\>) with a subspace of $ X0 is well
defined since the stabilizer in K of the point hθ is the centralizer Zκ(a)
of α in K. It is known (Takagi-Takahashi [15]) that K(hθ) has g distinct
principal curvatures with respect to Xθ, which are given by

(3.2) ^(0) = tan (θ - θ,) for ί - 1, , g ,
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and that the multiplicity of k^θ) is equal to mi for each ί. Note that
&ι(0) > kz(θ) > > kg(θ). Denoting by Exp the exponential map of the
normal bundle of K(h0) into S(p), we define a C°°-map pθ: K(h0) —> S(p) by

pθ(x) = Exp (ΘX,(x)) for x e K(h0) .

For » — kh0 with & 6 if, we have

pe(x) = Exp (θk hπ/2) = k (cos θ h0 + sin # ή,π/2) = fc/ι^ ,

and hence pθ is a diffeomorphism of K(hQ) onto £(λ0). Thus the family
^~p consists of parallel hypersurf aces K(hθ) of constant principal curvatures
given by (3.2). It follows from Satz 2 in Munzner [12] that the restriction
to S(f>) of the polynomial F is an isoparametric function on S(fi) and that
F satisfies the differential equations of Munzner:

UdF, dF) = 0V-
( } I ΛF=cr*~2,

where

[—(w2 — m^tf2 9 even ,
c = 2

I 0 g odd .

Hence the family ^"p is a maximal family of homogeneous isoparametric
hypersurfaces in S(p). Furthermore if p and pf are ^-equivalent maximal
faithful orthogonal representations of cohomogeneity 2, then ̂  and ̂ /
are equivalent families of isoparametric hypersurfaces. Thus, together
with the theorems in §2, we have the following theorem.

THEOREM 4. (i) Let ̂  = [Mt\t e 1} be a maximal family of isopara
metric hypersurfaces in a sphere. If one of Mt is homogeneous, then
each Mt is homogeneous, i.e., ̂  is a maximal family of homogeneous
isoparametric hypersurfaces. In a maximal family ^ — {Mt\tel} of
homogeneous isoparametric hypersurfaces in SN~\ each Mt is an irre-
ducible algebraic variety in RN.

(i i) The correspondence <0ι—>^ induces a bijective map of the set
of ^-equivalence classes of maximal faithful orthogonal representations
of cohomogeneity 2 onto the set of equivalence classes of maximal families
of homogeneous isoparametric hypersurfaces in spheres.

4. Defining polynomials for homogeneous hypersurfaces in spheres—
I. In this and the next sections, we shall compute a polynomial function
F on RN satisfying the differential equations (M) for each maximal family
of homogeneous isoparametric hypersurfaces in SN~l.
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As we have seen in §3, one of such polynomials is obtained by the
following procedures: Take a non-commutative real reductive algebraic
Lie algebra g without compact factors such that an associated s-represen-
tation is a maximal faithful orthogonal representation of cohomogeneity 2.
Take an associated s-representation p:K—+SO(fi) and a maximal abelian
subalgebra α in £. Choose an orthonormal coordinate system {λ^ λj for
α such that the middle point hQ of &1 satisfies \(h0) = 1 and λ2(/z,0) = 0.
Define a polynomial F0 on α of degree g = (1/2)|TΓ| by the formula (3.1),
and then extend it to a J£-in variant polynomial F on J). Then F is a
required polynomial. For g = 1 or 2, the construction of F is immediate;
so we shall state only the results in these cases.

Case 0 = 1: F is constructed from g = R 0 o(l, s) (s ^2). m1 = s — 1.
With respect to the standard orthonormal coordinate system {#,} for
JB'+1, F is given by

F = x8+ί .

Case g — 2: F is constructed from g = o(l, r) 0 0(1, s) (2 <^ r ^ s).
mi — r — 1 and w2 = s — 1. With respect to the standard orthonormal
coordinate system {#J for Rr+°, F is given by

F = xl + - + xl - (xz

r+ί + + a?;+.) .

Case 0 — 3: Let F be a division algebra over R, i.e., F — R,C, the
real quaternion algebra /? or the real Cayley algebra K. A linear form
t(x) and a quadratic form %(#) on F are defined by

£(#) = x + ά? , ?&(#) — a%c for xe F ,

where x h-» a? denotes the canonical involution of F. Let

and define

w o v = — (%v + W6) for 16,

Then H3(F) becomes a compact simple Jordan algebra with respect to
the product u°v. An element

of fl,(F) will be denoted by

3 & x ζ.eR.x
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U = ξfa + £2e2 + £303 + #1̂ 1 + #2^2 + ίWs

We define a cubic form AT on H^F), called the worm of the Jordan
algebra HΛ(F)9 by

N(u) = fAf, - Σ fXa;,) + ίfoαvc.)
ί=l

for the above u. The norm N is invariant by the group Aut (HB(F)) of
automorphisms of the algebra HB(F). We define an Aut (H3(F))-m variant
inner product ( , ) on H5(F) by

(u, v) = — Tr (u o v) for %, v e £Γ3(F) ,
£Λ

and Aut (JEΓ8(F))-invariant subspace £ of iί̂ ) by

t> = {ueHs(F)\(u, Λ18) - 0} - {w e fl,(F) I Tr w = 0} .

The inner product ( , ) defines a Euclidean space structure on p of dimension
N = 3 dim F + 2. For w e M3(F) we define Γ(%) e F by

(t(Trw) F = J J ,

(Tr u otherwise ,

and put

SH>(F) = (ueM3(F); ΰ'= -u, T(u) = 0} .

Injective linear maps R: H,(F) — Ql(H9(F)) and D: SH,(F) -+ βϊ(HΛ(F)) are
defined by

(4.2)

B(u)v — u o v = — (t6V + tw) for u, v e HZ(F) ,

)v = λ.(uv - tnt) for u e SH3(F), v e H,(F) .
Δ

Let ϊ denote the subalgebra of Ql(H,(F)) generated by D(SH9(F)). Then
ϊ is a compact simple Lie algebra of type B19 A2, C3 or F4 according to
F = Λ, C, H or /L (See also the next section.) We have relations:

[D, B(u)] - B(D(u)) for Z? e ϊ, u e

We identify $ with B($) through the injective map R. Then

is a subalgebra of gI(jEΓ3(F)) and these Lie algebras exhaust non-compact
simple Lie algebras of rank 2 with g = 3. Furthermore the above decom-
position of g is a Cartan decomposition, and the inner product ( , ) on p
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is a positive multiple of the Killing form of g. The image p(K) of the
associated s-representation p:K—+SO($) coincides with the restriction to
J> of the identity component of the group A.ut(H3(F)). Thus N\$ is a
homogeneous iΓ-invariant polynomial on £ of degree 3. As for these
properties of the Jordan algebra H3(F), we refer to Schafer [14].

Now we choose

as a maximal abelian subalgebra in £. A linear form X fte* H> ξ i on α
will be denoted by ft. Such notations will be often used in the sequel.
Then Σ is given by

Σ = j-|-(ft - ξ s ) \ i , j = 1, 2, 3, <

We introduce an order > satisfying ξ ̂  < ft < ft. Then J?J consists of 3
roots 7, - (l/2)(ft - ft), 72 - (l/2)(fβ - ft) and 73 - (l/2)(ft - ft). We have
mi = m2 = m3 = dim F. Linear forms

give a required orthonormal coordinate system for α, and hence

777 Q"\ 2Λ Λ 3
J* o — OΛj^Aι2 ~~~ A»2 —

Thus

F(u) = ™-*-N(u) for ue$
2

is a required polynomial for g. These polynomials were given in Car tan
[3].

Case g = 4:
( i ) Let F be an associative division algebra over R, i.e., F = R, C

or H, and r an integer such that r ^ 3 for F = R or C and r ^ 2 for
F = H. We consider a non-compact simple Lie algebra

g - {Ae gl(r + 2, F)| Γ(A) - 0, A'Φ + ΦA = 0} ,

where T(A) is defined in the same way as in case g = 3 and
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The linear map A ι-» —A' of g is a Cartan involution of g. We denote
by Mτ,z(F) the space of r x 2 matrices with coefficients in F, and define
XeMr+2(F) for XeMr,2(F) by

o .

Then (— l)-eigenspace p of the above Cartan involution is given by

We define an inner product ( , ) on t> by

(X, Ϋ) = -ίste Tr XΫ = 3ίe Tr XΎ for X, Ye Mr,,(F) .
A

It is a positive multiple of the Killing form of g. The associated s-repre-
sentation p:K—*SO(!p) is lifted to a covering group K of K as follows:
Let

S0(2) x S0(r) F - Λ ,

£ = S([7(2) x t7(r)) F= C ,

Sp(2) x Sp(r) F = H .

Define a homomorphism p : K — > S0(p) by

x k2)X = icjar1 for ^x k2eK,Xe Mr,2(F) .

Then there exists a covering homomorphism π: K — > K such that p(π(k)) =
p(k) for each k e K. Denoting by {Ei3} the standard basis of Mn(F) over
F, we put

£Γ(£ι, ί2) - f iί^βi + ^is) + f 2(^42 + #24) for f lf f 2 e Λ .

Then

is a maximal abelian subalgebra in f> and {fx, £>} is an orthonormal coor-
dinate system for α. We have

Σ = {±(ζ1 ± f2), ±&, ±f2, ±2ft, ±2f2} .

We introduce an order > satisfying & > £2 > 0. Then Σ$ consists of
4-roots

(4.3) 7, - ft - f2, 72 - f l f 7, = ft + ft, 74 = ft ,

and
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(mί9 w2) =

f ( l , r-2) F=R,

(2, 2r - 3) F = C ,

1(4, 4r - 5) F = H.

Linear forms

2 s 1 ' 2 ^ 2 2 " ' 2

constitute a required orthonormal coordinate system for α, and hence

(4.4) F0 = 4λ?λ2 - 4λΛ3

2 - 3(ί2 + ζlY - 4(f2 + ft) .

We define a polynomial F on £ by

F(Z) = — (Tr Z2)2 - 2 Tr (Z4) for Z e p .
4

Then F is invariant by K and coincides with F0 on α. Thus F is a re-
quired polynomial. The polynomial F for F = R is equivalent to the
polynomial F for mx = 1 given in Theorem 2, (ii) of Part I.

(ii) Let 1, i, j, k be the standard units of H. We identify C with
a subalgebra of H by the natural map x + i/^ϊy H» #1 + #i. This
identification induces an identification gl(n, C) c gl(w, #). We consider a
non-compact simple Lie algebra

9 - {Ae gϊ(5, H)| AT + ?FA = 0} where

The linear map A H* — A' of g is a Cartan involution of g and the as-
sociated Cartan decomposition g = ϊ + t> is given by

ί - u(5) ,

), Z' = -Z] .

We identify $ with the space of complex skew-symmetric matrices of
degree 5 by the map jZ H* Z.

Next let g = o(5, C), considered as a real Lie algebra. The linear
map A H* A of g is a Gartan involution of g and the associated Cartan
decomposition g — ϊ + :p is given by

_ _
£ = τ/-lo(5) - {V-lZ\Ze MΛ(R), Z' - -Z} .

We identify also \> with the space of real skew-symmetric matrices of
degree 5 by the map V~^Λ.Z h-» Z.

In the following, we shall consider the above two Lie algebras g
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simultaneously. We define an inner product on

t> - {Ze MS(F)\Z' = -Z) F = R or C ,

by

(Z, W) = — i$Re Tr (ZW) for Z, We *> .
£

It is a positive multiple of the Killing form of g. Let

~ tSO(S) F=R,

\U(5) F = C .

Then the associated s-representation p: K-+SO($) is covered by the homo-
morphism p: K — > S0(p) defined by

β(k)Z = fcZAr1
 for ft e K, Ze p .

We put

H(ξl9 ft) - ft (#« - #12) + £ ,(#„ - E34) for ft, ς 2 e Λ .

Then

is a maximal abelian subalgebra in |) and {ft, ft} is an orthonormal coor-
dinate system for α. We introduce an order > satisfying ft > ξ2 > 0.
Then J?ί consists of 4 roots of the same form as (4.3), and

((2,2) F=R,

Hence 2 0̂ has the same form as (4.4). We define a polynomial F on $ by

2 Tr (ZZ)2 for

Then F is invariant by K and coincides with jP0 on α, and hence F is a
required polynomial.

(iii) It remains a non-compact simple Lie algebra of type EIΠ among
non-compact simple Lie algebras of rank 2 with g = 4. The polynomial
F for this Lie algebra will be computed in the next section.

Case g = 6:
Let clf , c7 be the standard pure imaginary units of the real Cayley

algebra K. They satisfy the relations:

CiCί+ί == 0*+lA — ^ϊ+3 t Gi+ίGi+3 — ^i+3^i+l ~ Cί 9

Ci+tfi = —CiCi+s = ci+l , c\ = — 1 for ίe Z7 .
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A linear map of K will be represented by a matrix with respect to the
basis {1, cίt , cγ} of K. Then the group Aut (K ) of automorphisms of
the algebra K is a compact simply connected subgroup of 0(8) and the
Lie algebra ® of Aut(ΛΓ) is described as follows (cf. Borel-Hirzebruch
[1]). Put

Gif = Etj - EH for i, j = 1, , 7, i Φ j

and

Σ % = 0}
for i =

Then © has a direct sum decomposition:

with commutation relations:

[©„ ©J - {0} , [©;, ©ί+1] - ©ί + 3 ,

[®ί+1, ®ί + 3] = ®i , [©ί+3, ®J = ®ϊ + i

© is a compact simple Lie algebra of type G2. We put

f = ®3 + ®4 + @6 ,

It follows from the above relations that [f, f] c f, [f, $u] c pu and [$u, $u] c f .
The connected subgroup of Aut (If) generated by f is isomorphic to
S0(4). We define a real subalgebra g of the complexification ®c of ® by

β = ί + t> where J> = T/^f u .

Then g is a non-compact simple Lie algebra of type GI and the above
decomposition is a Cartan decomposition of g. We identify $ with £tt

by the map V^ΛX^X.
Next we consider g = ®c as a real Lie algebra. As for g — 0(5, C)

in case g — 4, (ii), we have a Cartan decomposition g = f + ^ b y ϊ = ®
and {> = ι/=Ί®. We also identify J> with ® by the map 1/^ΪJC H> JSΓ.

The above two Lie algebras exhaust non-compact simple Lie algebras
of rank 2 with g = 6. In the following, we shall consider these Lie
algebras simultaneously. We define an inner product ( , ) on $ c 0(8),
which is a positive multiple of the Killing form of g, by

(X, Y) = --1 Tr (XY) for
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We put

H(ζl9 £„ fa) - ξLGu + £2G37 + ?3G56 for £, e Λ, Σ £< = 0 .

Then (#(&, f l f £,), #(&, &, £,)) = fί + f 1 + ίs2 and

is a maximal abelian subalgebra in p. We introduce an order satisfying
0 > £2 > ίβ Then JJ consists of 6 roots 7X - -£2, 72 = & - £2, 73 = &,
74 = ίi — <f3, 75 = — f8 and 7β = ξ 2 — £8. We have m^ = m2 = 1 or 2, ac-
cording to g — GI or ®c. Linear forms

Λ 1/8 + lg , T/8 - lfi Λ 1/8 -lg ,
λ, - — ~ fi + — — f . , λ2 = — — &

define a required orthonormal coordinate system for α. A computation
shows

.F o — 6XιX2 — 20XιX'2 4~ 6X1X2

- 10(£ϊ + f5 + fa2)2 - 36(fί + ξl + £J) .

We define a polynomial jP on $ by

1Γ(JSΓ) = - A(Tr XJ + 18 Tr (X6) for JPe p .
4

Then F is invariant by the connected subgroup K of Ad g generated by
ϊ. Furthermore it coincides with F0 on α. Thus F is a required poly-
nomial.

5. Defining polynomials for homogeneous hypersurfaces in spheres—
II. Let K be the real Cayley algebra and CQ = 1, cl9 , CΊ the standard
units of K as in the previous section. Let x i—»x be the canonical involution
of K, (, ) the canonical inner product on K. We extend them C-linearly
to the complexified algebra Kc of K and denote them by the same nota-
tions x h-> x and ( , ) respectively. Denoting by x \-^ x the complex con-
jugation of Kc with respect to K, we define a hermitian inner product

((, }) on Kc by

fe y}} = (α, #) for ^ yeKc.

This satisfies

<{»,»» = «ά, »» for x,yeKc.

In general, a complex vector space V, considered as a real vector space,
will be denoted by VR. We define an inner product ((,)) on (KC)R by

((»,»)) = Ste«», y» for x,yeKc
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and denote the associated norm by || ||.
Let Hs(K) be the compact simple Jordan algebra defined in §4 and

( , ) the inner product on HB(K) defined there. We extend the form ( , )
C-linearly to the complexified Jordan algebra H,(K)C and denote it by
the same notation ( , ). It satisfies

(5.1) (u ov,w) = (v, u o w) for u, v, w e H3(K)C .

is canonically identified with

In the same way, the complexification SH3(K)C of the space SHZ(K) defined
in §4, is identified with

SH,(KC) = {u e M,(KC) I ΰ' = -u, Tr u = 0} .

We also define a hermitian inner product {( , )) on HZ(K)C by

((u, v}) = (u, v) for u, v e H,(K)C ,

denoting by u H+ u the complex conjugation of HZ(K)C with respect to
H3(K). An element ueH3(K)c of the form (4.1), with ξ t e C, x, e Kc, is
denoted by

and an element ueSH3(K)c of the form

>r-» Λ

x2ΰ2 + ίc3ΰ3 .

We identify the Lie algebra Ql(HΛ(K)) of Λ-linear maps of HB(K) with
a real subalgebra of the Lie algebra Ql(H3(K )c) of C-linear maps of
ίf3(^)c R(u) 6 9l(ff3(^)c) for 7^ € H,(K)C and Λ(w) e Qί(H,(K)c) for it 6 SH3(ϋ:)c

are defined by the same formula as (4.2). Let ®0 denote the subalgebra
of βI(jHs(JΓ)) generated by the set {D(Σziet)\zteK9zi= -zi9 Σ«i = 0},
and let

) I x e ΛL} f or i = 1, 2, 3 ,

f Λ ) | f i € Λ f Σ f < = 0},

9ϊ£ = {ΛίajM,) I x e # } f or i = 1, 2, 3 .

We put
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3) = £>0 + ®x + ®2 + ®3 ,

Sft - 9Ϊ0 + 3^ + 9Ϊ2 + 3Ϊ3

Then ® is a subalgebra of gI(#3(.K')) and a compact simple Lie algebra
of type F4. Denoting by S)c and 3ΐc the complexifications of 3) and 9Ϊ
respectively, we put

gc - ®c + 3ΪC .

Then gc is a subalgebra of Ql(H3(K)c) and a complex simple Lie algebra
of type EQ. The inclusion φ: gc c gϊ(ίZ"3(ίL)c) is a 27-dimensional irreducible
representation of gc. We define a real form g of gc by

8 = ϊ + f r ,

where

I = 3>o + ®ι + i/^ΪSRo + T/^ΊSt ,

t> = T/^S), 4- T/^Φa + ΣR2 + 9Ϊ3 .

Then g is a non-compact simple Lie algebra of type EIΠ and the above
decomposition is a Cartan decomposition of g. Note that the hermitian
inner product {( , }} on HB(K)C is invariant by the compact dual gtt =
ϊ +V~^ϊp of g in virtue of (5.1). f is isomorphic to 0(2)0 0(8) and

[ί, f] - ®0 + 3>ι + V~^RR(ez - e3) + V^ϊ^

is isomorphic to 0(8). We put

Z = -5-̂ (26! ~ β2 - eβ) .o

Then the center of I is spanned by V~^Ϊ.Z. The eigenvalues of ad Z on
gc are 0, 1 and —1 and the complexification £c of £ is decomposed into
the direct sum:

of the eigenspaces $* for ±1 of ad^. We define subspaces Vί9 V2 and
F3 of H3(K)C by

V2 = [x2u2 + xBu3 x2, XB e Kc] , dim V2 = 16 ,

V. = {ί2e2 + ί3β3 + a?!̂  ?2, is e C, ̂  e JS:c} , dim F3 = 10 .

Then we have an orthogonal (with respect to {{ , }}) direct sum decomposi-
tion:

- V, + V2 + F3
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of Hs(K)c. Each VV is a ϊ-invariant ϊ-irreducible subspace of HZ(K)C.
We have

Since φ(Z)φ(X)u = φ([Z, X])u + φ(X)φ(Z)u = 9>(J5Γ)tt + 9>(JΓ)9>C£)tt for
each Xe$+ and ueH3(K)c, we have ^(JfJVΊ - {0}, φ(X)V2d V, and
0>(-X")78c72 for each Xe$+. Hence each Xe$+ has a unique decomposi-
tion:

(5.2) φ(X) = X12 + X2, with X12 e Horn ( F2, FJ, X23 e Horn ( F3, F2) ,

where Hom(Fi, F, ) denotes the space of linear maps of 7< into V3 . As
for these properties of the representation φ, we refer to Schafer [14],
Ise [9].

Now let Gc denote the simply connected complex Lie group with the
Lie algebra gc, K the connected subgroup of Gc generated by ϊ. The
extension of φ to Gc will be also denoted by φ: G -* GL(HZ(K)C). The
connected subgroup of Adg generated by ϊ is denoted by K. Making
use of the decomposition (5.2), we define a polynomial function jp\ on
(p+)R of degree 2 by

^Tτ(ΣίΛXί) for Xep+ ,
£l

where X& e Horn ( Vί9 V2) is the adjoint operator of X12 e Horn ( F2, V{) with
respect to the hermitian inner product {(,}}. It follows from the f-
invariance of {( , }) that for ke K, Xe £+ we have

= ± Tr
z

= 4- Tr
Δ

where k is an element of K such that Ad k — k. Thus Fγ is a £"-invariant
polynomial on ($+)R of degree 2. In the similar way we define

F2(X) = Tr (( 1̂2JΓ23)( 1̂2^23)*) for Xe p+ .

Then it is verified in the same way that F2 is also a .K-invariant poly-
nomial on (p+)Λ of degree 4. It will be shown later that the linear map
X^ X12 of £+ into Hom(F2, FJ is injective. Let (( , )) be a ίΓ-in variant
inner product on (p+)R such that ((X, X)) = F,(X) for each Xe$+. We
define a ίC-equivariant linear isomorphism α/r: ($+)R — > |) by
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+ X) for

where Xt-*X denotes the complex conjugation of Qc with respect to g.
Making use of the map -ψ , we define an inner product ( , ) on p by

(X, Y) = ((^X, iτ-lY)) for X , Y e H > .

It is X-invariant and hence a positive multiple of the Killing form of g.
Now we shall compute explicitly the polynomials Ft and Fz. First

we give below a list of necessary commutation rules for gc. In the
following list, x,yeKc and ξlf ζt, ζ 3 e C with Σ f < = 0. In formulae (1) ~
(6), (ί, 3, k) is a cyclic permutation of (1, 2, 3). In formulae (7) and (8),
i = l,2, or 3.

( 1 ) [R(χUi\ R(yui)] = -(1/2)Z)(5» S») , _
( 2 ) [R(χUi\ D(yΰj)} = [D&ΰtl R(yuj)] = (lf2)B(xyut) ,
( 3 ) [D(xΰi\ D(yΰj)} = -(1/2)0(5? U4) ,
(4)
( 5 )
( 6 )
( 7 ) [R(χUi\ [R(xuJ, R(yui)]] = R(((x, x)y - (x, y)x)u{) ,
( 8 ) [D(xΰt\ [^(xttO, D(yΰi)]] - D(((x, y)x - (x, x)y)ΰί) ,
(9) [3ϊ?( SRf + ®0

C] = {0}.
We put

JΓ(a;, i/) - D(xΰ2) - ί2( 2̂)

for x x ye Kc x Kc .

Then from (5), (6) and (9) it follows that

ϊ+ = { X ( x , y ) \ x x yeKcx Kc} .

The inner product (( , )) and the norm || || on (KC)R are extended to
(KC)R x (KC)R in the natural way, which will be also denoted by (( , ))
and || || respectively. Identifying C8 with Kc by the standard basis
K, 61, , £7} of Kc, we denote for x e Kc by B9 the matrix of the linear
map y ι-> xy of Jίc. Then the linear map y ι-> r̂S of ΛΓC is represented
by the matrix #£. In fact,

(y, B'xz) = (Bxy, z) = (yx, z) = (y, zx) = (y, zx)

for each x,y,ze Kc. We put /< = τ/2" β, for i = 1, 2, 3. Then {/J, {c0u2,
c 2̂, , c7^2, c0^3, CM, , c7^3} and {/2, /3, CQ ,̂ c ,̂ , c7̂ } are orthonor-
mal basis with respect to {( , }} for Vί9 V2 and F3 respectively. We shall
represent a linear map in Horn ( V2, FJ etc. by a matrix with respect to
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these basis and identify it with its matricial representation. Note that
then X* = X[t and X£ = X^ Now for

u = f i/i + f 2/2 + ίs/s + *ι%ι + avw2 + xsu3 e HS(K)C

and X = X(x, y) e p+, we have

φ(X)u = {-(V~2x, x,) + (VTy, a;3)}/L + (-V~2ζ3x

and hence

Xa = (-T/~2V,

_ / 0 -VTa; B,\

**- \V-2y 0 -«j,

;f -l/~2(x'By + y'B'x)) .

In particular, the linear map _XΊ-> Xί2 of £+ into Hom(F2, VΊ) is injective.
It follows that

(5.3) FAX) = -|-Mί2 = \\x\\* + \\y\\* = \\x x y\\>

for X - X(x, y) ,

and

>,)]* +4\(x,x)\* + 2\\B'yx + Bxy\\*

x)|2 + \(y, ι/)|2) + 2\\xy + Έy\\* ,

and hence

(5.4) FAX) = 4(| (x, x)\* + \ (y, y) |2) + 8 1 1 xy \ |2 for X = X(x, y) .

(5.3) shows that the linear isomorphism x x y t-» X(x, y) of (KC)R x (A'̂ j,
onto (f>+)R is an isometry with respect to the inner products (( , )).

Next we shall find a maximal abelian subalgebra α in p and then
compute the root system Σ on α. For x x y 6 Kc x Kc, we have

- R(xu2) -

and hence

(x, y)) =

We define Xlf X2e!p+ with ((JΓ,, JΓ,)) = δti by
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-XΊ = ̂ X(^ + T/^ϊe,, 0) , X2 = ̂  ~

and then define Hlt H2e!p with (H(, Hj) = δtj by

ΰs) + R(czu3) .

Then we have by (1), (2) and (4)

-0.

Hence, if we put

H(ξl9 f t) - ξ^H, + ί2ίί2 for ξl9 ζ2 e Λ ,

and

then α is a maximal abelian subalgebra in J)1* and {f^ f2} is an orthonormal
coordinate system for α. We define Yί9 Y2e$ by

Y2 = V^ΛD(cfiύ + R(c2u2) .

We shall show equalities:

llH(ξί9 f2), [H(ξί9 ί2), ΓJ] = ξlY,

' lίfΓίft, α [TO, eΛ rj] - (a&yr, .
Then it will follow that

Σ = {±(f1 ± £2), ±&, ±f2, ±2flf ±2ί2} ,

since it is known (Harish-Chandra [6]) that for a non-compact simple Lie
algebra g of hermitian type of rank v9 the root system Σ is written as
{±(f]i ± ft) (1 ̂  i < j ^ v), ± ,̂ ±2^ (1 <; i ̂  y)} by mutually orthogonal
linear forms ηίf •••,?}>, of the same length. For the proof of (5.5), it
suffices to show the following equalities:

( i )

o/ (i). Let x,yeK. We have

The construction of this maximal abelian subalgebra α is due to M. Ise.
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[fli, V=ΪD(xΰ2) + R(yu2)]

2) + R(yu2)]

= {-[D(c2ΰ2), D(xΰ2)] - [R(c,u2\ R(yu2)]}

R(yu2)] - [R(c,u2\ D(xΰ2)]} ,

and hence

[Si, [Si, V=ΪD(xΰ2) + R(yu2)]]

= {-[D(c2ΰ2\ [D(c2ΰ2), R(yu2)]] + [D(c2ΰ2), [R(c,u2\ D(xΰ2)]]

+ [R(cιU2), [D(c2ΰ2), D(xΰ2)]] + [R(c,u2, [R(c,u2\ R(yu2)]]}

+ V~=l{-[D(c2ΰ2\ [D(c2ΰ2), D(xΰ2)]] - [D(c2ΰ2), [R^uJ, R(yu2)]]

- [R(W2\ [D(c2ΰ2), R(yu2)]] + [R(c,uz\ [R(c,u2\ D(xΰ2)]]} .

We compute each term of the right hand side using (4)~(8):

-[D(c2ΰ2\ [D(c2ΰ2\ R(yu2)]] = -(c2j y)[D(c2ΰ2), R(e5 - ej]

[D(c2ΰ2), [R(cLu2), D(xΰ2)] - -(», c^D^ΰ,), R(e3 - ej]

= (x, cL)R(ctu2) .

c,uz\ [D(c2ΰ2), D(xΰ2)]] = [[R(c,u2\ D(c2ΰ2)], D(xΰ2)]

+ [D(c2ΰ2), [R(c,uύ, D(xΰ2)]]

= -(&, cύ[D(Wι), R(ez - e,)] = (x, cJRfaut) .

u,), [Rfau,), R(yu2)]] = R((y - (c,, y^u,) .

-[D(c2ΰ2), [D(c2ΰ2), D(xΰ2)]] = D((x - (c2, x)c2)ΰ2) .

-[D(c2ΰ2), [R(c,uz\ R(yu2)]\ = ~[[D(c2ΰ2), R(c&3\, R(yu2)]

-[R(c,u2\ [D(c2ΰ2\ R(yu2)]]

= ~fe, y)[R(c,u2\ R(e3 - ej] = (c2, y)D(cίΰ2) .

- [-B(cΛ), [D(c2ΰ2), R(yu2)]] = -(c2, y}[R(c,u2\ R(e, - ej\

= (c2, y)D(c1ΰ2) .

[R(c,u2), [R^u*), D(xΰ2)]] = -(x, cύ[R(e&ά, R(e3 - e,)}

= (x, cύD(c&ι) .

Thus we have

[fli, [fli, V^ΪD(xΰ2) + R(yu2)]] = V^ΪD(aΰ2) + R(bu2) ,

where

a = x - (c2, x)c2 + (2(c2, y) + (x, c^c, ,

b = y - (clf y)c, + ((c2, y) + 2(x, c,))c2 .
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Now we have α = c3, 6 = eβ for x = c3, y = cs and a = 4clt b = 4c2 for x —
<Ί, y = c2. This shows the equalities (i).

Proof of (ii). Let x,yeK. We have by (1), (2) and (3)

= -—D(yc2 - xc.u,) -- —R(yCl + a CjttO .
Z /£

Now we have yc2 — xc± = j/d + #c2 = 0 for each of the pairs (x, y) — (c3, cβ)
and (x, ]/) = (clf c2). This proves the equalities (ii).

Now in the same way as in §4, case g = 4, (i), the polynomial F0 is
given by the formula (4.4). Note that (4.4) is also written as

Ή - 8£ϊf! - (fϊ + 53* .

The required polynomial F is a iΓ-invariant polynomial on £ such that
F\ α = F0. Passing to (f>+)Λ through the J5Γ-equi variant isometry ψ : (£+)Λ — ̂ ί),
the required ^ is a ίΓ-invariant polynomial on (p+)R such that

(5.6) F&Xt + ξΆ) = S&ξl - (ξl + ξW for ft, ft, e R .

We define a .K-invariant polynomial F on (ί)+)Λ by F = (l/2)F2 — Ft. Then
F satisfies (5.6). In fact, we have ft.Xi + |2X2 = X(x, y) where

We have (x, x) = (y, y) = 0 and

= ftf,(c4

and hence \\xy\\2 = 2f^. Now (5.6) follows from (5.3) and (5.4).
Under the identification of (KC)R x (KC)R with (t>+)Λ through the iso-

metry x x y h-> JΓ(α?, ?/), the polynomial .F is given by

for xx yeKc x Kc .

6. Examples of {pα, qa}. In this section, we compute explicit forms
of {pa, qa} for some of the homogeneous examples in order to determine
all isoparametric hypersurf aces in spheres in the case where g — 4 and
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Wi or m2 = 2. We consider the examples given in §4 in case g — 4.
( i ) F = /Z, C or H, RN = Mr,2(F). The polynomial F is given by

F(X) = A{Tr (I2)}2 - 2 Tr (P)
4

where
zιol .

First we compute {pα, qa] in case F = H. Set

M 6ι\

= Λ =
\αr brl

Then we have

(6.1) F(X) =

'̂ F, + δ^FAJα,} .

Let e be the point in RN given by

a, = —?— , αέ = 0 for i Φ 1 ,

62 — , &i = 0 for i Φ 2 .

satisfies F(e) = 1 and \\e\\ — 1. Taking e as a reference point, we
•nand ~F as in QS of Part T. Set

— .
expand F as in §3 of Part I. Set

63\

«-m. *-
W \bj

and

where R, I, J and ίΓ are real numbers. For al9 az, ̂  and 62, we give the
following orthonormal transformation. Set

0,1 =
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f or I = 1 and 2, and also set

39

V~2wQ = XL — y2 ,

= #2 - 2/1,

= x2>1 + 2/1,1 ,

= #2>2 + 2/1,2 ,

= #2,3 + 2/1,3 ,

= a?2fl - 2/1,1 ,

= #2,2 - 2/1,2 ,

1/2W 4 = #2,3 — 2/1,3

One can verify that z and wa's satisfy the required conditions in §3 of
Part I. To give {pa, qa} we put

Then we have

(6.2)

= & l f l + 2/2,1 >

= »1>2 + 2/2,2 ,

= B l f 8 + 2/2,3 ,

o - I I / 5 H 2 - ||α:||2 - 2(βA

= a? l f l - 2/2,ι

= ^1,2 - 2/2,2

= ^1,3 - 2/2,3

= 2{ J

Pt = 2{K

and

(6.3)

4o = 2{ZiR - z2I - zj - z,K} ,

?1 - 2{tJ + t2J + t,K] + (H/31| 2 - 11*11% ,

q2 = 2&R - sBJ + s2K} + ( H / 5 I I 2 - \\a\\*)z2 ,

q, = 2{t2R + sj-sf] + (\\β\\2 - HO:||% ,

q< = 2{t3R - s2I + SlJ} + ( H / 3 I I 2 - ||α||% .

The case F — C can be easily obtained from the above. We have

(6.4)

and

(6.5)

p = 2(1 + z s)

(q0 = 2(ZiR — z2I) ,
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( i )' F = H, RN = M2,2(H) (r = 2). For -F instead of F, we examine
the conditions (A) and (B) of Part I. — F gives a homogeneous example
with multiplicities m± = 3 and m2 = 4 (unique up to OCZNO-equivalence).

Let e be the point in S*"1 given by

a, = 1, α2 = &! = 62 = 0 .

By (6.1), we have

-F(e) = 1 .

Taking e as a reference point we expand — F. Put

»! = Z + J^ΐ + Zj + 23& >

&2 = Wo + Wii + wj + wsk .

One can verify that z and wa's satisfy the required conditions. Put

a2 = x0 + Xii + a?J + xjt ,

&ι = 2/0 + Vii + i/J + yjc
We have

'p0 = 2(x0y0 - x,y, - x2y2 - ^l/β) ,

(6 6) ϊ>2 = 2(xayί

A direct computation shows that our {pa} satisfies the condition (A).
Also we have

(6.7) — qϋ = z^x.y, + x,yQ
LΛ

From (6.6) and (6.7), we see also that the condition (B) is not satisfied
in this case. Note that the condition (B) is independent on the choice
of coordinates {zk} and {wa} if the condition (A) holds.

Our example constructed in Theorem 2 of Part I for F = H and
r = 1 gives a family of isoparametric hypersurf aces with multiplicities
m^ = 3 and m2 = 4, and its defining polynomial satisfies the conditions (A)
and (B). In view of Remarks 2 and 3 in §3 of Part I, we can conclude
that the above example is not homogeneous.

(ii) F = R or C, RN = {Ze M5(F)\Z = -Z'}. The polynomial F is
defined by
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F(Z) = A{Tr (ZZ)Y - 2 Tr ((ZZ)2) .
4

We compute {pa, qa} for — F in case F= R. Set

AM

Z = (α<y) , Zt = l

\aiδι

for ZeRN. We have

(6.8)
4 < 2 *<j *<j

Let β be the point in Λ^ given by

fα12 = — α21 = 1 ,

(α^ = 0 otherwise .

We take β as a reference point. — F has the following expansion with

respect to z = α12:

(6.9) -^=(4

+ α1

2

2{2(α?3 + α?4 + a

- 6(α3

2

4 + al + a

+ G,

where G does not contain α12.
From (6.9), we see that {α34, α35, α45} and {α18, α14, α15, α23, α24, α25} are required
orthonormal coordinate systems for W and Y respectively. Put

Wo = α34, wl — α35, w2 = a45 .

We have

'Po = 2(α24α13 — α23α14) ,

(6.10) Pi = 2(α25α13 - α23αlδ) ,

p2 = 2(α25α14 — α24αlδ) .

Computing G, we conclude

(6.11) ϊo = 9l = 9l = 0 .

7. Case WL = 2. The rest of our paper is mainly devoted to prove
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the following.

THEOREM 5. Let M be a closed isoparametric hypersurface in a
sphere with 4 distinct principal curvatures. If mx = 2 or m2 = 2, then
M is homogeneous.

We shall establish the theorem by classifying all the homogeneous
polynomials of degree 4 satisfying the differential equations (M) with
mL = 2 or w2 = 2. We may assume m{ = 2. Let F be a homogeneous
polynomial of degree 4 on RN satisfying (M). As in Part I, decomposing
RN, we associate {pa} and {qa} to jF. From the results of Part I, it
suffices to show that our {pa, qa} coincide with the ones associated to some
of homogeneous examples.

We prepare a few lemmas -and matricial notations in this section,
and then deal with the case where mt = 2 and m2 ^ 3 in § 8 and the
case where m± = w2 = 2 in §9. Following the notations in §5 of Part I,
we prove

LEMMA 3. Let a and β be two non zero distinct indices. If Lpa>Q =
L'pβ,Q for some non zero constants L and L', then m{ = m2.

PROOF. Suppose m2 > mlf We have aaa'a + 2bab'a = 1 from (4-l)α.
This shows

\\xaa\\ ^ | |g | |

for any vector x = (xί9 •• ,xmJ9 where || || indicates the length of a
vector. Since rank (δα) ̂  m^ < ma, there exists a non zero vector x such
that xba = 0. Then we have

\\xaa\\ = I M I ^ O .

Our assumption implies Laa = L'ap, and hence

Since (4-1)^ implies | |xα^| | ^ \\x\\, we have

Similarly we have \L\ ^ \L'\, and hence

\L\ = \L'\.

Thus we have pβ>0 = ±pa,09 or equivalently, aβ = ±aa. Substituting in
aaa'a + 2bab'a = 1 and aβa'β + 26^6^ = 1, we get

±aβa'a + 2bab'a - 1 ,

±aaa'β + 26^6^ = 1 .
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Consider (4-3)0α/s. We have

a>βθ>a + aaa>'β + 2(bβb'a + bab'β) = 0 .

Using the above two equations, we obtain

bβb'β + bab'a ± (bβb'a + bjb'β) = 1 ,

that is,

or

This is a contradiction, since rank (6^ ± 6α) is at most mlβ q.e.d.

LEMMA 4. Assume m^ = 2. If pltί = p2tl = 0, then m2 <; 2.

PROOF. Suppose pια = p2ίl = 0. Then the condition (A) in §6 of
Part I is satisfied. We see that qa = gβfl, that is, each qa is linear with
respect to zl9 zz We put

Qcc = faZi + 9ccZ2

for a = 0, 1, 2. Consider the following matrix

/Po Pi P2\

Λ Λ l
Λ ffJ

We claim SS' = Gl, where 1 denotes the identity matrix of degree 3 and
G = Σ P« Recall the equations (3-7) and (5-8) of Part I. From Σ paqa =
0, we have

ΣΛrΛ = O f ΣP.ff« = 0.

From Σ Ql = G(Σ «ϊ)» we have

They proves S>S' = Gl. Taking their determinants, we have

(det S)2 - G3 .

Thus G can be expressed as

G = H2

by a suitable quadratic form H. For each a, we have

<pα, G> = 2H(pa, H) .
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Since (paj pβy = 0 for distinct a, β by Lemma 17 of Part I, we see

<2>α, G) = 2pβ<pβ, pα> .

Again using Lemma 17, we obtain

Pa(Pθ, Pθ> = #<P«, #>

for any a. The quadratic form <p0, p0> = 4(Σ ^< + Σ ^0 is irreducible.
Assume m2 ̂  2. Then each pa is also irreducible. Thus, we see that
H is a constant multiple of pa or <p0> p0>. In view of Lemma 3, we can
conclude that H = c<p0, Po> for some constant c. One can see easily
c = ±1/4. Finally we obtain

G = Σpi = (Σw? + Σtί) i,
or equivalently,

In this equation, we set %2 — = umz = 0. Since pt and 3?2 are linear
combinations of [UiVj], we can write

where fei is a linear function in vl9 , vm2. We have

Λϊ + hi = 4(Σ vϊ)

The left hand side of this equation is of rank at most 2 as a quadratic
form. This proves ra2 <^ 2. q.e.d.

From now on we assume m{ = 2. We use the following matricial
notations. For pL, we omit the index a = 1, so that

( 0 α

a' 0 c

6' c' O/

where ' indicates the transpose of a matrix. For p2> we use the capital
letters, so that

O A Bv

o c)
C' 0' .

For each submatrix, say α, the (i, j)-element of a is denoted by atg
unless otherwise stated.

We summarize here the conditions (4-1) ~ (4-3) of Part I. (4-1)!
and (4-2)1)0 are equivalent to
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laa' + 2W = 1, a'a + 2cc' = 1, Vb = c'c ,

(bc'a' + acV = 0, cVa + a'bc' = 0, c'α'δ + Vac = 0 .

Similarly we have (I'), replacing a, b and c in (I) by A, B and C. The
condition (4-3)0,ι,2 is expressed as

f(Aa' + αA') + 2(BV + δ£') - 0 ,

(III) \(A'a + a9A) + 2(Cc' + cC') - 0 ,

(B'b + VB = C'c + c'C.

The condition (4-2)2>1 decomposes into the following 6 conditions.

lid,!) AcV + Bc'a' + aCV is skew-symmetric ,

Π(2)2) cb'A + a'Be' + CVa is skew-symmetric ,

II(3)3) VAc + c'a'B + VaC is skew-symmetric ,

Π ( l f2) (aa' + bb')A + A(a'a + cc') + aA'a

+ bB'a + BVa + aCc' + αcC' = A ,

II(1,3) (αα' + bb')B + jB(6'δ + c'c) + &jB'6

+ Aα'δ + aA'b + δc'C + bC'c = B ,

Π(2>3) (a'a + cc')C + C(Vb + c'c) + cC'c

+ a'Ac + A'αc + cδ'£ + cB'b = C .

In the above equations, interchanging the small letters with the
capital letters, we obtain the conditions equivalent to (4-2)1)2, which will
be denoted by !!'«,/, respectively.

In the case where ml = 2 and m2 ^ 3, we see plι0 Φ 0 and p2f0 ^ 0.
In fact, we have

6 ^ 2m2 = rank PJ_ ^ rank pίtQ + rank pιa

^ rank plι0 + 4 ,

and hence rank pί>0 ^ 2. Similarly we have rank p2>Q ^ 2.

LEMMA 5. Assume ml = 2 and m2 ^ 3. Then pί>0 and p2tϋ have no
common linear factor.

PROOF. Suppose plι0 and p2>0 have a common linear factor. If a
quadratic form is not irreducible, then its rank <^ 2. Thus, from the
above remark, we have

rank pί>Q = rank 3>2|0 = 2 ,

and m2 = 3.
First we shall show that by a suitable choice of coordinates px has
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the following representation:

/I 0 0\ /O 0\

α = (θ 0 0 6 = β = -4Jl 0
\ I * £ \ I
\0 0 O/ , \0 I/ .

Since plι0 is of rank 2, i.e., α is of rank 1, we can choose {ut} and [vt]
so that

with λ > 0. Then the condition αα' + 266' = 1 implies that we have λ = 1
and 6n = 612 = 0 and the matrix

^{b: ϋ22)\6βι 632/

is an orthogonal matrix. We transform {u2, u^} into {u'2, u'3] by

Similarly the condition α'α + 2cc' = 1 implies that we have cu = c12 = 0
and the matrix

W31

is orthogonal. Transforming {v2, vs} into {̂ 2, ^3} similarly, we obtain

Pι,ι = ~%{(̂  + ̂ )̂ ι + K + ̂ K) ,

which proves our first claim.
We decompose the matrices A, E and C as follows;

where α22, /92 and T2 are 2 x 2 matrices. p2>0 must be divisible by ut or
vlβ First assume that p2>0 is divisible by u{. Then we have azι — 0 and
α22 = 0. From the first two equations of III, we have

tfii = 0, β1 = 0, /92 + /92 - 0, 72 + 72 = 0 and α12 + l/!̂  = 0 .

From the condition Γ, we obtain

#1X2 = 1, 2/92/52 = 1, 7/r; = 1, Tjί = 0, #X2 + 272τ; = 1 and

β^a(z = 0 .
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Now 2β2/32 = 1 implies that j32 is non-singular, and hence we have

= 0 ,

or equivalently, α1272 = 0. 72 + 72 — 0 implies that 72 = 0 or 72 is non-
singular. Suppose 72 = 0. Then we have <x[2a12 = 1. This is a contradiction
since rank α12 <; 1. Suppose 72 is non-singular. Then we have a12 = 0,
and hence A — 0. This is again a contradiction since p2>0 Φ 0.

The case where p2>Q is divisible by vt leads also a contradiction simi-
larly. q.e.d.

REMARK. In the case m^ = 2 and m2 ^ 3, we see that p l f0 and p2,0

have no common factors. This follows from Lemmas 3 and 5.

8. Case m^ = 2 and ra2 ^ 3. In this section, we consider the case
where m^ = 2 and w2 ̂  3. We shall show first that, after a suitable choice
of coordinates, p0, plt p2, qί>0 and #2j0 coincide with the ones given in §6
for the example (i) in case g = 4, and then that they determine uniquely
the rest of terms.

First note that pίtQ Φ 0 and p2}0 Φ 0 and they have no common factors.
In the equation (3-7): Σ paqa = 0, setting zλ = zz = 0, we obtain

Pl,θ9l,0 + ΐ>2, 0^2,0 = 0 .

Therefore there exists a linear function h on Ϊ70F such that

( 1 ) ?ι,o = Λp2 f 0 , ^2,0 = — Λj>ι,o

We decompose fe as

( 2 ) h = \- μ

where λ and μ are linear functions on U and V respectively. Set zl =
z2 - 0 in the equation (3-8): 16 Σ ?ϊ = 16 (Σ y')G - <G, G>. Since we have

Σ
<Po, Pι> |,fc=o = <Po, P2> |^=o ^ 0

we get

= 4(Σ wϊ + Σ v?)(p?.o
- {Pl2,0<2>l, ^>1> 1^=0 +

or equivalently,

#,0{4(Σ wϊ + Σ vϊ) - <plf Pl> | f f t

l + Σ ^t

2) -
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Since p l f0 and p2>Q have no common factors, we can find constants L and
U such that

(3) 4 (Σ ul + Σ vϊ) ~ <Pι, Pι> U=o - W = Lp2>0,

( 4 ) 4 (Σ *! + Σ tf) - <P2, 2>2> k=o - 4fe2 - L'p lf.,

(5) <plf p,> |,ft=0 = Lpι,o + i'Pt,o

Note that we have

<Pι, Pι> U=o =
aa' + W bc'

;

cb a a + cc

um

In (3), we set v{ = = vm = 0, and we obtain

f u ,
V ?7,2 == (uίf , um2)(aa' + 66') | + λ2 .

Similarly we obtain

On the other hand, aa' + 266' = 1 and a'a + 2cc' = 1 in (I) give us

(6) K ,<)δ

(7) (vl9 •••, vmz)c

The similar argument for the equation (4) gives us

(8)
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(9)

Now suppose λ = 0. By (6) and (8), we have 6 = 0 and B = 0. Since
δ'δ = c'c and B'B = C'C, we see c = 0 and C = 0. Thus we have pltl = 0
and p2fl = 0. This contradicts m2 ̂  3 in view of Lemma 4. Therefore
we have λ =£ 0, and similarly μ ^ 0. And consequently the matrices
δ, c, S and C are all of rank 1 from (6) ~ (9).

In (5), set vλ = = vmz = 0, and next Uj_= = umz = 0. Thereby
we obtain

aA' + bB' + Aa,' + BV = 0

and

a'A + cC' + A'a + Cc' = 0 .

On the other hand, by (III), we know

aA' + Aa' + 2(BV + bB') = 0 ,

a'A + A'α + 2(Cc' + cC') = 0 .

Combining these together, we obtain

(BV + bB' = 0 , Cc' + cC" - 0 ,

U*' + *A' = 0 , A'α + a'A = 0.

Hereafter in this section, ra2 is denoted simply by m. We choose
coordinates {ut} and {vt} so that

(11) λ = ε^m and ^ — δvm

with ε > 0. Now (6) — (9) imply that δ, c, 5 and C are of the following
type:

0

(10)

0 0

x x/ .

We choose {zl9 z2} so that

δ -

/ O 0

0 0

\λ0 0
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with λ0 < 0.
From b'b — c'c, we can write

c =

10 0

0 0

with μ\ = λj. Suppose μ0 > 0. Then we take — vm instead of vm so that
μ0 is transformed to —μ0. Thus we can assume

10 0

• '•

0 0

\o \

c =

,

10 0

'• '•

0 0

\ 0 μ1

From (10), (8) and (9), it follows that we can write B and C as

~D

with λ? = μl = λ0

2.
Consider the matrix a. bc'af + acb' = 0 and cb'a + a'bc' = 0 in (I)

show that aim = amj = 0 for all i, j. In view of aa' + 266' = 1, one sees
that a suitable orthogonal transformation on {ulf •••, um_^ gives us

II

— a =

0

and that we have λ0 = — 1/1/ΊΓ. Consider the matrix A. AA + 2BB' = 1
in (Γ), Aa' + aA = 0 and Aa + a!A = 0 in (10) show that A is of the
form

A =

with a + a' = 0 and aa' = 1, where 1 denotes the identity matrix of
degree m — 1. Therefore, m — 1 must be even. Let 21 = m — 1. One
can transform, keeping the matrix α fixed, tf to the matrix

o ix
i-l 0 ,
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where 1 denotes the identity matrix of degree I.
From B'b + VB = C'c + c'C in (III), we have \ = μ,. Thus \ = μ, =

±1/1/2 . Now suppose \ = μ1 = —1/1/2 . Then we take — 22 instead of
zz, so that \ = μ± changes the signature. Thus, we can assume

'vι ~ ̂  ~ vτ'
By the above choice of coordinates, we get finally

0 \
•

/I \

6 = c =

(12)

— α =
0 0

n

1/2 /

A =

i 1 i 0 \

! i !

-1

-i ! I o
o ! o

B — C =

10 0 \

/
Substituting these in (3), we see that L — 0 and

(13) h = -^=(um - vm) ,

because of our choice (11). Set

Finally we get

(14)

= Σ (M?

ί= -2 Σ (̂ ^ +

P* = 2
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We compare (14) with (6.4) and (6.5). Interchange z^ and z2 and put

a2+j = vI+y + . v3

for j = 1, , Z. One can verify our first assertion on pQ, pl9 p2, q1>0 and
g2,0 for r = I + 2.

We come to the second step. We claim that p0> plf pz, glt0 and #2,0

determine uniquely the rest of terms. First note that we have

(15) ft,, - #2,2 = 0 .

In fact, from (6.5), we have (15) for the homogeneous example (i). Consider
the equation (3-8):

For the homogeneous example (i), the left hand side of (3-8) has no terms
of degree 4 with respect to zί9 zz. Since our pQ9 pί9 p2 coincide with the
ones corresponding to the homogeneous example (i), we can conclude

#1,2 = #2,2 = 0.

We put

QQ == f( 0, A ~t~ /0,2^2 9

9l,l = A A + /1, 2^2 ,

We claim

(16)

In fact, from <p1? g^) = 0 in (3-4), we have

<Pl,0, ?1,0> + «Plfl, g i f 0> + <Plf0, ?!,!»

+ <Pl,l, ?!,!> = 0 .

This is equivalent to

(17) <Pι,o, ?ι,o> + <Pι,ι, ?ι,ι>ί.Λί = ° »

(18) <plfl, ?1|0> + <Pι,o, ?ι,ι> = 0 ,

(19) <p l f l> g^u^} = 0 .

Substitute pltl = -2z2slf qltl = / l fA + /If2«2 in (19). We obtain

//n /i \ — Q d/i,!^ _ 0^/1,2^2 _ Λ
\Pι,ι, ^i.i/twi,^} — ~^"^ - ZA ^— z - ̂ 2 — U >

* * dsί ds1
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and hence

Since p l f0 = — 2.B, qί>0 = 2^7, we have

<Pι,o, ?ι,o> = -4tχΛ, /> .

A direct computation shows <J2, /> = 0, and hence

<Pl,0, ?1,0> = 0 .

From (17), we have <plfl, g l f l> { f j f c } = 0. Since p l f l = -2328lf

<Pι,ι, ίι,ι><.4> - -28^ = -2βιΛ» = 0 ,
(/^2

which shows /1>2 = 0. The similar argument for p2 and g2 completes our
claim (16).

Consider (3-8): Σ PA a = 0. We have

Mo + (Pl,0?l,l + 2>l,l?l,θ) + (P2.0Ϊ2.1 + J>2,l?2,θ) = 0 ,

and hence

Pθ/0,1 + Pl.0/1,1 + 28^2,0 = 0 ,

ί>0/0,2 + (-28^1,0 + ί>2,0/2,2 = 0 .

Equivalently, we have

o,2 - /(48A - 2/2)2) .

Since p0 is irreducible, we can write

2/lfl - 48 !̂ = c^o ,

4βιtι - 2/2(2 =

Apply 3/38! to the above two equations. In view of (16), we obtain c± = 2,
c2 = —2. Thus we have

Λi HI/2112 HI* I I 2 ,
/ 2 , 2 = l l £ l l 2 - H α | | 2 ,
/o,ι - 2R ,
/o,.= -2J.

Our second assertion is now proved.

9. Case ml — mz — 2. As mentioned in the introduction, this case
is already indicated by Cartan without proof. We give here an outline
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of our proof. We use the notations given in §7. Note that α, 6, c, A, B
and C are all 2 x 2 matrices in this case. We write / for the identity

matrix of degree 2, / f o r ( and θ for l/τ/~2~.

LEMMA 6. Let a, b and c be matrices satisfying (I) in §7. Then
by a suitable choice of coordinates {α, δ, c} can be represented as:

( i ) case rank a = 0, a = 0, b = I, c = ΘJ\

(i i) case rank a = 1, α = YQ Q\ b = c = (Q A

(iii) case rank a — 2 αwcZ p l t l = 0, a — I, 6 = c = 0;
(iv) case rank α = 2 and pια ^ 0, α = ξ I, b = ^/, c = ^J" wiίfe £8 +

LEMMA 7. Iτ& ίfeβ case (ii) of Lemma 6, £/z,ere e#is£s no p2 satisfying
(III), (II) and (Γ).

Lemmas 6 and 7 can be verified by elementary but long calculations.
From Lemmas 6 and 7, one can see that [pl9 p2} can be classified, inter-
changing w1 and w2 if necessary, into the following 5 cases;

(A) plι0 =£ 0, p2(0^0, p l f l ^ 0,
(BJ p1>0 = 0, p2,0 - 0,
(B2) p l f 0 = 0, p8ll = 0,
(B,) p l f 0 = 0, p2,0 ^ 0, p ί f l Φ 0,
(C) p l f l = 0, p l f l = 0.

LEMMA 8. By a suitable choice of coordinates [wl9 w2}, the case (A)
can be reduced to the case (BJ or (B2).

LEMMA 9. In the case (BJ, by a suitable choice of coordinates, our
[Pa, Qcc} coincide with those of —F, where F is the polynomial of the
example (ii) in case g — 4 and F = R in § 4.

One can prove this lemma, using the explicit forms (6.10) and (6.11)
of {pa, Qa} associated to the above — F.

LEMMA 10. In the cases (B2) and (B3), there exist no {qa} satisfying
(3-4) - (3-10) of Part I.

LEMMA 11. The case (C) can be reduced to the case (BJ.

More precisely, {paj qa} in the case (C) correspond to those of the
polynomial F of the homogeneous example (ii). One can compute [pa, qa}
of F from those of — F.

The preceding lemmas complete our classification in case mt = mz = 2,
and hence every closed isoparametric hypersurface in a sphere in this
case is homogeneous.
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