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1. Introduction. It was shown by M. Berger [1] that an arbitrary
Einstein Kaehler metric on a complex projective space is equivalent to
the Fubini-Study metric. Moreover, Y. Matsushima proved in [3] that
on a Kaehler C-space (i.e., a simply connected compact homogeneous
complex manifold which admits a Kaehler metric), Einstein Kaehler met-
rics are mutually equivalent. Here the equivalency of Kaehler metrics gγ

and #2 on a Kaehler manifold denotes that there exist a holomorphic
transformation φ of the manifold and a positive constant c such that

C f f l = 0*#2

On a compact Kaehler manifold, the scalar multiple of the Ricci form
by l/(2ττ) represents the first Chern class of this manifold and the constancy
of the scalar curvature means that the Ricci form is harmonic. On a
Kaehler C-space M, we have a Go-invariant Einstein Kaehler metric g which
is called the canonical Einstein metric, where G0 is a compact group of
holomorphic transformations of M ([3]). Then, Matsushima's theorem
"any Einstein Kaehler metric g on a Kaehler C-space M is equivalent to
the canonical metric g" is interpreted as the following "if any Kaehler
metric on M satisfies that its Kaehler form is cohomologous to that of
g and its scalar curvature is equal to that of g, then it is equivalent to
the canonical metric g".

The purpose of this paper is a generalization of Matsushima's theorem.
In fact, we shall prove in Theorem B and Corollary C in §2 that any
Kaehler metric on a Kaehler C-space satisfying a certain condition on
curvature is equivalent to the canonical Einstein metric g.

The author is deeply indebted to Prof. T. Takahashi, Prof. H. Naka-
gawa and Dr. R. Takagi for generous help and valuable advice.

2. Results. Let g be a Kaehler metric on a Kaehler manifold of
complex dimension n. Let S be the Ricci tensor of the metric g. The
metric g is called an Einstein Kaehler metric if S is given by the scalar
multiple of g. With respect to a local coordinate system z1, , zn, g and
S can be expressed as
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(2.1) g = 2Σ9ajdz
a,β

(2.2) S = 2ΣS«jdz
a,β

We define 2-f orms ω and σ, called the Kaehler form and the Ricci form
by

(2.3) ω = i Σ gajdz« A dz7 ,
a,β

(2.4) σ = ί Σ Sα/rdzα Λ
α,|9

The scalar curvature p of g is given by

(2.5) P = 2Σlg*TSa7,
a,β

where the matrix (g**) is the inverse of (gaj).

LEMMA. Let g be a Kaehler metric on a Kaehler manifold of complex
dimension n. Then we have

(2.6) σ Λ ωn~l = —ρ-ωn .
2n

PROOF. We may check (2.6) pointwise. For an arbitrary point p,
we can choose a suitable local coordinate system around p such that
g*j(p) = δaβ, SaJ(p) = Sa δaβ a,β = l, ••-,%, that is, at p

ω = i^dz" /\dz" , σ = i Σ Sadz° Λ ώz" .
α a

Then we have

(2.7) ω* = i* -n! ώzl Λ dzτ Λ Λ dzn Λ ώ* ,

(2.8) ω"-1 = i*-1-^ - 1)! Σ ώz1 Λ efeτΛ
α=ι

Λ dz"7\dz" Λ Λ dznf\dz«

which, together with p = 2 Σ«,£ f/β*S«j = 2 Σ« SΛ, imply

α Λ ω71-1 = in(n - 1)!̂ Σ S "̂ Λ

Λ f Σ dzl Λ ώzτ Λ Λ dz*/\dz*/\ Λ dzn Λ

= ΐΛ(^ - 1)! (Σ Sα^1 Λ cfeτ Λ Λ ώzΛ Λ dz"

Λ * q e.d.
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Making use of Lemma, we have the following.

THEOREM A. Let g and g be two Kaehler metrics on a compact
Kaehler manifold M such that their Kaehler forms are mutually coho-
mologous. If the scalar curvature p of g is constant and the scalar
curvature p of g satisfies p rgj p (or p ^ p) everywhere on M, then p
must be constant and equal to p.

PROOF. Let ω and ώ be the Kaehler forms of g and g. We shall
write φ ~ ψ symbolically if φ is cohomologous to .̂ Then we have ω ~ ώ
from the condition. If we denote by σ and a the Ricci forms of g and
g respectively, then we obtain σ Λ ωn~l ~ σ Λ ώ71"1 where n = dimc M, since
both (l/2π)σ and (l/2π)σ represent the first Chern class of M([2]). On
the other hand p ωn ~ p ώn since p is constant. By the aid of (2.6) in
Lemma, p ωn — p ωn ~ p ωn — p ωn = 2n(σ A ωn~l — σ Λ ώ*"1) ~ 0.

Then we have \ (p — p)ωn = 0. By the condition on p, we can conclude
JM

that p is constant and equal to p. q.e.d.

Now we are in a position to prove the following theorem.

THEOREM B. Let M be a Kaehler C-space with the canonical Einstein
Kaehler metric g. Let g be another Kaehler metric on M whose Kaehler
form is cohomologous to that of g. If the scalar curvatures p and p of
g and g satisfy p <^ p or else p ^ p everywhere on M, then there exists
a holomorphic transformation φ of M such that g = φ*g, that is, g is
equivalent to g.

PROOF. Let ω and ω be the Kaehler forms, σ and σ the Ricci forms
of g and g. Since ω ~ ω, σ ~ σ and σ — cω for a positive constant c,
we have σ ~ cω. The constancy of p means that p is constant from
Theorem A, hence σ is harmonic (see [2]). We can conclude that σ = cω,
i.e., g is an Einstein Kaehler metric. Then from Matsushima's theorem
([3]), there exist φ e G and a positive constant a such that g = aφ*g
where G is the identity component of the group of all holomorphic trans-
formations of M. Since ω ~ ώ and φ is a transformation homotopic to
the identity transformation, we have a = 1, that is, g = φ*g. q.e.d.

Let p, S and K be the scalar curvature, the Ricci tensor and the
sectional curvature of a Kaehler metric g on a manifold of complex
dimension n. By the definition of p, S and K9 we obtain the following
formulas (see [1]):

(2.9) P =
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(2.10) p = 2\± K({Vit JFJ) + 2 Σ (K((Vt, F,}) + K({Vt, /F,}))1 ,
Lί=l i<3 J

where {Vi9 JFJί=1>...,% is an orthonormal frame at a point p and {X, Y)
is the plane spanned by tangent vectors X and Y at p and

<2 u) "=
where Up, which denotes the set of all unit tangent vectors at p, is
identified with S2n~\ the volume element dX and the volume of S2""1 are
canonical. From Theorem B, the following is easily obtained.

COROLLARY C. Let M, g and p be as in Theorem B. Let g be another
Kaehler metric on M whose Kaehler form is cohomologous to that of g.
If the metric g satisfies one of the following conditions, then the metric
g is equivalent to the canonical metric g.

I ) The Ricci tensor S of g satisfies either S( V, V) ^ (ί/2n)p or
S(V, V) ̂  (l/2n)p for any unit vector V.

II) The sectional curvature of any plane with respect to g is not
greater (or not smaller) than (L/2n2)p.

III) The sectional curvature of any holomorphίc plane with respect
to g is not greater (or not smaller) than (ί/n(n + I))/?.

An Tt-dimensional complex projective space Pn(C) admits the Fubini-
Study metric of positive constant holomorphic sectional curvature c. It
is well known that Pn(C) is a Kaehler C-space and the scalar curvature
of the metric is equal to n(n + l)c. Therefore we have:

COROLLARY D. Let g be Fubinί-Study metric on Pn(C) of constant
holomorphic curvature c and g be a Kaehler metric on Pn(C) whose
Kaehler form is cohomologous to that of g. If g satisfies one of the
following, then g is equivalent to g.

I ) The scalar curvature of g is not greater (or not smaller) than
n(n + l)c everywhere on Pn(C).

II) The Ricci tensor S of g satisfies either S(V, V) ^ ((n + l)/2)c
or else S(V, V) ^ ((n + l)/2)c for any unit vector V.

III) The sectional curvature of any plane with respect to g is not
greater (or not smaller) than (1/2 + ~L/2n)c.

IV) The sectional curvature of any holomorphic plane with respect
to g is not greater (or not smaller) than c.

REMARK. If the second Betti number of a Kaehler C-space M is
equal to one (for example, an irreducible Hermitian symmetric space of
compact type), there can not exist any Kaehler metric on M such that
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the volumes of M take the same value with respect to it and the canonical
metric, and its scalar curvature is not equal to the scalar curvature of
the canonical metric anywhere on M.
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