SURJECTIVITY OF THE BERS MAP

Masami Nakada

(Received February 18, 1975)

Preliminaries. Let G be a non-elementary finitely generated Kleinian group with the region of discontinuity Ω and let $B_{q}(\Omega, G)$ be the space of bounded holomorphic automorphic forms of weight $-2 q$ for G operating on Ω, where $q(\geqq 2)$ is an integer. We denote by $\Pi_{2 q-2}$ the vector space of complex polynomials in one variable of degree at most $2 q-2$. Clearly $\Pi_{2 q-2}$ is a G-module with $(v \cdot \gamma)(z)=v(\gamma(z)) \gamma^{\prime}(z)^{1-q}$ for $v \in \Pi_{2 q-2}$ and $\gamma \in G$.

A mapping $p: G \rightarrow \Pi_{2 q-2}$ is a cocycle if

$$
p\left(\gamma_{1} \circ \gamma_{2}\right)=p\left(\gamma_{1}\right) \cdot \gamma_{2}+p\left(\gamma_{2}\right)
$$

for any $\gamma_{1}, \gamma_{2} \in G$. This mapping is a coboundary if

$$
p(\gamma)=v \cdot \gamma-v
$$

for some polynomial $v \in \Pi_{2 q-2}$.
We denote by $H^{1}\left(G, \Pi_{2 q-2}\right)$ the first cohomology space of G with coefficients in $\Pi_{2 q-2}$, that is, $H^{1}\left(G, \Pi_{2 q-2}\right)$ is the cocycles factored by the coboundaries. An element of $H^{1}\left(G, \Pi_{2 q-2}\right)$ with a representative p will be denoted by $\{p\}$.

Let Δ be any G-invariant union of components of Ω. We denote by $B_{q}(\Delta, G)$ the space of all elements in $B_{q}(\Omega, G)$ which vanish in $\Omega-\Delta$. Clearly we see that $B_{q}(\Delta, G)$ is the space of bounded holomorphic automorphic forms of weight $-2 q$ for G operating on Δ.

The Δ-parabolic cohomology space $P H_{\Delta}^{1}\left(G, \Pi_{2 q-2}\right)$ is the subspace of $H^{1}\left(G, \Pi_{2 q-2}\right)$ such that each element $\{p\} \in P H_{\Delta}^{1}\left(G, \Pi_{2 q-2}\right)$ satisfies the condition that at every parabolic cusp in Δ, there exists a polynomial $v \in \Pi_{2 q-2}$ with the property

$$
p(\gamma)=v \cdot \gamma-v
$$

for some (and hence for every) cocycle $p \in\{p\}$ and for any γ in the parabolic cyclic subgroup G_{0} of G corresponding to the cusp. In particular, if the above condition is satisfied for every parabolic cyclic subgroup G_{0} of G, then we say that $\{p\}$ belongs to $P H^{1}\left(G, \Pi_{2 q-2}\right)$, the space of parabolic cohomology.

As is well known, Bers [1] introduced the anti-linear map $\beta^{*}: B_{q}(\Omega, G)$
$\rightarrow H^{1}\left(G, \Pi_{2 q-2}\right)$ and proved that this mapping is injective. The map β^{*} is called the Bers map and the image $\beta^{*}(\psi)$ of $\psi \in B_{q}(\Omega, G)$ under β^{*} is called a Bers cohomology class of ψ. In [2], Kra proved the inclusion relation $\beta^{*}\left(B_{q}(\Omega, G)\right) \subset P H^{1}\left(G, \Pi_{2 q-2}\right)$.

A holomorphic function F on Δ is called an Eichler integral (of order $1-q$) on Δ, if

$$
F \cdot \gamma-F \in \Pi_{2 q-2}
$$

for any $\gamma \in G$, where $F \cdot \gamma=F(\gamma(z)) \gamma^{\prime}(z)^{1-q}$. We denote by $E_{1-q}(\Delta, G)$ the space of Eichler integrals (of order $1-q$) on Δ modulo $\Pi_{2 q-2}$.

For a holomorphic function F on Δ, we define an operator $D^{2 q-1}$ by the equality

$$
\left(D^{2 q-1} F\right)(z)=\frac{d^{2 q-1}}{d z^{2 q-1}} F(z)
$$

Bol's identity shows that, for an Eichler integral F on $\Delta, D^{2 q-1} F$ is a holomorphic automorphic form of weight $-2 q$ for G operating on Δ.

We denote by $E_{1-q}^{b}(\Delta, G)$ the subspace of $E_{1-q}(\Delta, G)$ whose element f satisfies $D^{2 q-1} f \in B_{q}(\Delta, G)$. We note that if G has no parabolic elements, then $P H^{1}\left(G, \Pi_{2 q-2}\right)=P H_{\Delta}^{1}\left(G, \Pi_{2 q-2}\right)=H^{1}\left(G, \Pi_{2 q-2}\right)$ and $E_{1-q}^{b}(\Delta, G)=E_{1-q}(\Delta$, G). An Eichler integral F on Δ is called trivial if $D^{2 q-1} F=0$. The space of all images of trivial Eichler integrals on Δ in $E_{1-q}(\Delta, G)$ is denoted by $E_{1-q}^{0}(\Delta, G)$.

In his paper [2], Kra proved that the mapping

$$
\alpha: E_{1-q}^{b}(\Delta, G) \rightarrow P H_{\Delta}^{1}\left(G, \Pi_{2 q-2}\right)
$$

defined by $\alpha(f)=\{p\}$, where $p(\gamma)=F \cdot \gamma-F$ for a representative p of $\{p\}$ and a representative F of f, is injective. The image $\alpha(f)$ of $f \in E_{1-q}^{b}(\Delta, G)$ is called an Eichler cohomology class of f. Kra also proved the following

Theorem (Kra [2]). Let G be a non-elementary finitely generated Kleinian group with an invariant component Δ_{0} such that $\Omega-\Delta_{0} \neq \varnothing$. Then every cohomology class $\{p\} \in P H_{\Omega-a_{0}}^{1}\left(G, \Pi_{2 q-2}\right)$ can be written as a sum of a Bers cohomology class of some $\psi \in B_{q}(\Omega, G)$ and an Eichler cohomology class of some $f \in E_{1-q}^{0}\left(\Omega-\Delta_{0}, G\right)$.

From this Theorem, we can easily obtain the following Proposition.
Proposition. If $\Omega-\Delta_{0} \neq \varnothing$ and if $E_{1-q}^{0}\left(\Omega-\Delta_{0}, G\right)=0$, then $\beta^{*}\left(B_{q}(\Omega, G)\right)=P H_{\Omega-\Lambda_{0}}^{1}\left(G, \Pi_{2 q-2}\right)$, so $\quad \beta^{*}: B_{q}(\Omega, G) \rightarrow P H^{1}\left(G, \Pi_{2 q-2}\right)$ is surjective.

This can be considered as a proposition which gives a sufficient condition for surjectivity of the Bers map. In this article we shall give another sufficient condition. We shall also treat a converse problem "Does surjectivity of the Bers map imply $E_{1-q}^{0}\left(\Omega-\Delta_{0}, G\right)=0$?" and give a negative answer.

1. First we shall prove two lemmas.

Lemma 1. Let G be a non-elementary Kleinian group with N generators $\gamma_{1}, \cdots, \gamma_{N}$. If one of generators, γ_{i}, is elliptic of order ν_{i}, then

$$
\operatorname{dim} H^{1}\left(G, \Pi_{2 q-2}\right) \leqq(2 q-1)(N-1)-\left\{2\left[\frac{q-1}{\nu_{i}}\right]+1\right\}
$$

where $[x]$ is the integral part of x.
Proof. We denote by $Z^{1}\left(G, \Pi_{2 q-2}\right)$ the space of cocycles. Since a cocycle is uniquely determined by its values on generators of G, we have $\operatorname{dim} Z^{1}\left(G, \Pi_{2 q-2}\right) \leqq(2 q-1) N$ (see Bers [1]).

From the fact that the dimension of $Z^{1}\left(G, \Pi_{2 q-2}\right)$ is invariant under conjugation by a linear transformation, we may assume that $\gamma_{i}(z)=\lambda z$, $\lambda^{\nu_{i}}=1, \lambda \neq 1$. For simplicity we set $\gamma_{i}(z)=\gamma(z)$ and $\nu_{i}=\nu$.

Let p be a cocycle and set $p(\gamma)=\sum_{k=0}^{2 q-2} a_{k} z^{k}$. Since $\gamma^{\nu}=i d$, we have

$$
0=p\left(\gamma^{\nu}\right)=\sum_{k=0}^{2 q-2} a_{k}\left(1+\lambda^{k+1-q}+\cdots+\lambda^{(\nu-1)(k+1-q)}\right) z^{k} .
$$

If $\lambda^{k+1-q} \neq 1$, then $1+\lambda^{k+1-q}+\cdots+\lambda^{(\nu-1)(k+1-q)}=0$. Hence, for k satisfying $\lambda^{k+1-q}=1$, we have $a_{k}=0$. Therefore, it is clear that

$$
\operatorname{dim} Z^{1}\left(G, \Pi_{2 q-2}\right) \leqq(2 q-1) N-t,
$$

where t is the number of integers k for which $\lambda^{k+1-q}=1$.
Since $\lambda^{\nu}=1$, we see that, t equals the number of integers j such that $k+1-q=\nu j$ for $k, 0 \leqq k \leqq 2 q-2$. Such an integer j satisfies $0 \leqq \nu j+q-1 \leqq 2 q-2$, so

$$
-\frac{q-1}{\nu} \leqq j \leqq \frac{q-1}{\nu}
$$

from which we have $t=2[(q-1) / \nu]+1$.
On the other hand, it is well known that the dimension of the space of coboundaries is $2 q-1$. Therefore we have our lemma.

Remark. Under the assumption of Lemma 1, if generators $\gamma_{i}(i=1$, $\cdots, m \leqq N$) are elliptic of order ν_{i}, then

$$
\operatorname{dim} H^{1}\left(G, \Pi_{2 q-2}\right) \leqq(2 q-1)(N-1)-\left\{2 \sum_{i=1}^{m}\left[\frac{q-1}{\nu_{i}}\right]+m\right\} .
$$

Lemma 2. Under the same assumption as in Lemma 1, if one of generators, γ_{i}, is parabolic, then

$$
\operatorname{dim} P H^{1}\left(G, \Pi_{2 q-2}\right) \leqq(2 q-1)(N-1)-1
$$

Proof. Let p be an element of $P Z^{1}\left(G, \Pi_{2 q-2}\right)$, the space of parabolic cocycles for G. By conjugation by a linear transformation, we may assume that $\gamma_{i}(z)=z+1$. For simplicity we set $\gamma_{i}(z)=\gamma(z)$. By definition, $p(\gamma)=v \cdot \gamma-v$ for some polynomial $v \in \Pi_{2 q-2}$. If $p(\gamma)=\sum_{k=0}^{2 q-2} a_{k} z^{k}$, then $\sum_{k=0}^{2 q-2} a_{k} z^{k}=v \cdot \gamma-v=v(z+1)-v(z)$. Since $v(z+1)-v(z) \in \Pi_{2 q-3}$, we have $a_{2 q-2}=0$, that is

$$
\operatorname{dim} P Z^{1}\left(G, \Pi_{2 q-2}\right) \leqq(2 q-1) N-1
$$

By the same reasoning as in the proof of Lemma 1, we have our lemma.

REMARK. Under the assumption of Lemma 2, if generators $\gamma_{i}(i=1$, $\cdots, n \leqq N$) are parabolic, then

$$
\operatorname{dim} P H^{1}\left(G, \Pi_{2 q-2}\right) \leqq(2 q-1)(N-1)-n
$$

Now we can prove following for a quasi-Fuchsian group which is a quasi-conformal deformation of a Fuchsian group.

Theorem 1. For any non-elementary finitely generated quasiFuchsian group G, the Bers map $\beta^{*}: B_{q}(\Omega, G) \rightarrow P H^{1}\left(G, \Pi_{2 q-2}\right)$ is surjective.

Proof. For a quasi-Fuchsian group G with two invariant components Kra [2] proved surjectivity of the Bers map β^{*}. (See also Remark of Theorem 2 stated later.) So it is sufficient to prove Theorem for a quasi-Fuchsian group G with the connected region of discontinuity, that is, for a quasi-Fuchsian group G of the second kind.

There exist a Fuchsian group Γ of the second kind and a quasiconformal mapping $w: \hat{\boldsymbol{C}} \rightarrow \hat{\boldsymbol{C}}$ such that $G=w \circ \Gamma \circ w^{-1}$. Let $\alpha_{1}, \beta_{1}, \cdots$, $\alpha_{g}, \beta_{g}, \gamma_{1}, \cdots, \gamma_{m}, \delta_{1}, \cdots, \delta_{n}, \eta_{1}, \cdots, \eta_{k}$ be standard generators of Γ with the defining relations

$$
\left[\alpha_{1}, \beta_{1}\right] \circ \cdots \circ\left[\alpha_{g}, \beta_{g}\right] \circ \gamma_{1} \circ \cdots \circ \gamma_{m} \circ \delta_{1} \circ \cdots \circ \delta_{n} \circ \eta_{1} \circ \cdots \circ \eta_{k}=i d
$$

and

$$
\gamma_{i}^{\nu}=i d \quad(i=1, \cdots, m),
$$

where $\alpha_{i}, \beta_{i}, \eta_{i}$ are hyperbolic, γ_{i} are elliptic of order ν_{i}, δ_{i} are parabolic
and $\left[\alpha_{i}, \beta_{i}\right]$ means a commutator $\alpha_{i} \circ \beta_{i} \circ \alpha_{i}^{-1} \circ \beta_{i}^{-1}$.
Since Γ is generated by $(2 g+m+n+k-1)$ elements $\alpha_{1}, \cdots, \eta_{k-1}$ with relations $\gamma_{i}^{\nu_{i}}=i d$, the quasi-Fuchsian group G is generated by $(2 g+m+n+k-1)$ elements $w \circ \alpha_{i} \circ w^{-1}, w \circ \beta_{i} \circ w^{-1}(1 \leqq i \leqq g), w \circ \gamma_{i} \circ w^{-1}$ $(1 \leqq i \leqq m), w \circ \delta_{i} \circ w^{-1}(1 \leqq i \leqq n), w \circ \eta_{i} \circ w^{-1}(1 \leqq i \leqq k-1)$ with relations $\left(w \circ \gamma_{i} \circ w^{-1}\right)^{\nu_{i}}=i d$, where $w \circ \delta_{i} \circ w^{-1}$ are parabolic. Hence, from Remarks of Lemma 1 and Lemma 2, we have

$$
\begin{aligned}
\operatorname{dim} P H^{1}\left(G, \Pi_{2 q-2}\right) \leqq & (2 q-1)(2 g+m+n+k-1-1) \\
& -\left\{2 \sum_{i=1}^{m}\left[\frac{q-1}{\nu_{i}}\right]+m\right\}-n
\end{aligned}
$$

We denote by $\Omega(G)$ and $\Omega(\Gamma)$ the regions of discontinuity of G and Γ, respectively. Since $G=w \circ \Gamma \circ w^{-1}$, we have

$$
\operatorname{dim} B_{q}(\Omega(G), G)=\operatorname{dim} B_{q}(\Omega(\Gamma), \Gamma),
$$

whence

$$
\begin{aligned}
\operatorname{dim} B_{q}(\Omega(G), G)= & (2 q-1)(2 g+k-1-1) \\
& +2 \sum_{i=1}^{m}\left[q-\frac{q}{\nu_{i}}\right]+2 n(q-1)
\end{aligned}
$$

Consequently

$$
\begin{aligned}
& \operatorname{dim} B_{q}(\Omega(G), G)-\operatorname{dim} P H^{1}\left(G, \Pi_{2 q-2}\right) \\
& \quad \geqq 2 \sum_{i=1}^{m}\left\{\left[q-\frac{q}{\nu_{i}}\right]+\left[\frac{q-1}{\nu_{i}}\right]-(q-1)\right\}
\end{aligned}
$$

It is easily seen that $\left[q-q / \nu_{i}\right]+\left[(q-1) / \nu_{i}\right]=q-1$. Therefore we obtain

$$
\begin{equation*}
\operatorname{dim} B_{q}(\Omega(G), G) \geqq \operatorname{dim} P H^{1}\left(G, \Pi_{2 q-2}\right) \tag{1}
\end{equation*}
$$

Since $\beta^{*}\left(B_{q}(\Omega(G), G)\right) \subset P H^{1}\left(G, \Pi_{2 q-2}\right)$ and since β^{*} is injective, we have the converse inequality for (1). Hence

$$
\operatorname{dim} B_{q}(\Omega(G), G)=\operatorname{dim} P H^{1}\left(G, \Pi_{2 q-2}\right)
$$

which shows

$$
\beta^{*}\left(B_{q}(\Omega(G), G)\right)=P H^{1}\left(G, \Pi_{2 q-2}\right)
$$

This completes the proof of Theorem 1.
Corollary. For any non-elementary finitely generated quasiFuchsian group G, it holds that $E_{1-q}^{b}(\Omega, G)=0$.

Proof. This is an immediate consequence of Kra's unique decom-
position (Corollary 1 to Theorem 4 in [2]) and Theorem 1.
2. Now we consider the problem whether surjectivity of the Bers map imply $E_{1-q}^{0}\left(\Omega-\Delta_{0}, G\right)=0$ or not.

For the purpose we shall first treat a non-elementary finitely generated Kleinian group G with an invariant component Δ_{0} such that $\Omega-\Delta_{0} \neq \varnothing$ and such that $E_{1-q}^{0}\left(\Omega-\Delta_{0}, G\right)=0$.

We can prove the following lemma.
Lemma 3. Let G be a non-elementary finitely generated Kleinian group with an invariant component Δ_{0} such that $\Omega-\Delta_{0} \neq \varnothing$ and let $q(\geqq 2)$ be an integer. If $E_{1-q}^{0}\left(\Omega-\Delta_{0}, G\right)=0$, then

$$
\operatorname{dim} B_{q}\left(\Delta_{0}, G\right)=\operatorname{dim} B_{q}\left(\Omega-\Delta_{0}, G\right)
$$

Proof. Since $E_{1-q}^{0}\left(\Omega-\Delta_{0}, G\right)=0$, Kra's theorem stated in the above preliminaries and the injectivity of the Bers map $\beta^{*}: B_{q}(\Omega, G) \rightarrow H^{1}\left(G, \Pi_{2 q-2}\right)$ imply

$$
\begin{equation*}
\operatorname{dim} P H_{\Omega-A_{0}}^{1}\left(G, \Pi_{2 q-2}\right)=\operatorname{dim} B_{q}(\Omega, G) \tag{2}
\end{equation*}
$$

On the other hand, Kra's unique decomposition (Corollary 1 to Theorem 4 in [2]) implies

$$
P H_{\Omega-\Delta_{0}}^{1}\left(G, \Pi_{2 q-2}\right)=\beta^{*}\left(B_{q}\left(\Omega-\Delta_{0}, G\right)\right) \oplus \alpha\left(E_{1-q}^{b}\left(\Omega-\Delta_{0}, G\right)\right),
$$

where α and β^{*} are injective and the notation \oplus means the direct sum. Therefore
(3) $\operatorname{dim} P H_{\Omega-\Lambda_{0}}^{1}\left(G, \Pi_{2 q-2}\right)=\operatorname{dim} B_{q}\left(\Omega-\Delta_{0}, G\right)+\operatorname{dim} E_{1-q}^{b}\left(\Omega-\Delta_{0}, G\right)$.

Since $E_{1-q}^{0}\left(\Omega-\Delta_{0}, G\right)$ is the kernel of the operator $D^{2 q-1}$, we have

$$
D^{2 q-1}: E_{1-q}^{b}\left(\Omega-\Delta_{0}, G\right) \rightarrow B_{q}\left(\Omega-\Delta_{0}, G\right)
$$

is injective and hence we see

$$
\begin{equation*}
\operatorname{dim} E_{1-q}^{b}\left(\Omega-\Delta_{0}, G\right) \leqq \operatorname{dim} B_{q}\left(\Omega-\Delta_{0}, G\right) \tag{4}
\end{equation*}
$$

From (2), (3) and (4) we have

$$
\operatorname{dim} B_{q}(\Omega, G) \leqq 2 \operatorname{dim} B_{q}\left(\Omega-\Delta_{0}, G\right)
$$

which yields

$$
\operatorname{dim} B_{q}\left(\Delta_{0}, G\right) \leqq \operatorname{dim} B_{q}\left(\Omega-\Delta_{0}, G\right)
$$

Further, from the assumption we have $\operatorname{dim} B_{q}\left(\Delta_{0}, G\right) \geqq \operatorname{dim} B_{q}\left(\Omega-\Delta_{0}, G\right)$ (see [1]). Therefore

$$
\operatorname{dim} B_{q}\left(\Delta_{0}, G\right)=\operatorname{dim} B_{q}\left(\Omega-\Delta_{0}, G\right)
$$

which proves our lemma.

As an application of Lemma 3, we have the following characterization of a quasi-Fuchsian group.

Theorem 2. Let G be a non-elementary finitely generated Kleinian group with an invariant component Δ_{0} such that $\Omega-\Delta_{0} \neq \varnothing$. Then $E_{1-q}^{0}\left(\Omega-\Delta_{0}, G\right)=0$ for an even integer q if and only if G is a quasiFuchsian group.

Proof. The proof of the if part of our Theorem is easily obtained by noting that $\Omega-\Delta_{0}$ is connected. On the other hand, under the same assumption on G in our Theorem, Maskit [3] proved that $\operatorname{dim} B_{q}\left(\Delta_{0}, G\right)=$ $\operatorname{dim} B_{q}\left(\Omega-\Delta_{0}, G\right)$ for some even integer q if and only if G is a quasiFuchsian. Thus Lemma 3 gives a proof of the only if part of our Theorem.

Remark. Proposition stated in preliminaries and Theorem 2 imply surjectivity of the Bers map for a quasi-Fuchsian group G under the assumption $\Omega-\Delta_{0} \neq \varnothing$.

Next we prove the following lemma.
Lemma 4. Let G_{1} and G_{2} be non-elementary finitely generated Kleinian groups and let $G=\left\langle G_{1}, G_{2}\right\rangle$ be the Kleinian group generated by G_{1} and G_{2}. Then

$$
\begin{aligned}
\operatorname{dim} P H^{1}\left(G, \Pi_{2 q-2}\right) \leqq & \operatorname{dim} P H^{1}\left(G_{1}, \Pi_{2 q-2}\right) \\
& +\operatorname{dim} P H^{1}\left(G_{2}, \Pi_{2 q-2}\right)+(2 q-1)
\end{aligned}
$$

where equality holds whenever $\left\langle G_{1}, G_{2}\right\rangle$ is the free product of G_{1} and G_{2}.
Proof. We denote by $P Z^{1}\left(\Gamma, \Pi_{2 q-2}\right)$ the space of parabolic cocycles for a Kleinian group Γ and by $B^{1}\left(\Gamma, \Pi_{2 q-2}\right)$ the space of coboundaries for Γ.

Consider the linear map Φ

$$
\Phi: P Z^{1}\left(G, \Pi_{2 q-2}\right) \rightarrow P Z^{1}\left(G_{1}, \Pi_{2 q-2}\right) \times P Z^{1}\left(G_{2}, \Pi_{2 q-2}\right)
$$

defined by $\Phi(p)=\left(p_{1}, p_{2}\right)$, where p_{i} is the restriction of p to G_{i} for $i=1$, 2 .

Since G is generated by G_{1} and G_{2}, we see that the map Φ is injective. Therefore we have

$$
\begin{equation*}
\operatorname{dim} P Z^{1}\left(G, \Pi_{2 q-2}\right) \leqq \operatorname{dim} P Z^{1}\left(G_{1}, \Pi_{2 q-2}\right)+\operatorname{dim} P Z^{1}\left(G_{2}, \Pi_{2 q-2}\right) \tag{5}
\end{equation*}
$$

From the assumption that G_{1} and G_{2} are non-elementary, we see that G is non-elementary. Hence, by Bers [1],
(6) $\operatorname{dim} B^{1}\left(G, \Pi_{2 q-2}\right)=\operatorname{dim} B^{1}\left(G_{1}, \Pi_{2 q-2}\right)=\operatorname{dim} B^{1}\left(G_{2}, \Pi_{2 q-2}\right)=2 q-1$.

Combining (5) and (6) we have

$$
\begin{aligned}
\operatorname{dim} P H^{1}\left(G, \Pi_{2 q-2}\right) \leqq & \operatorname{dim} P H^{1}\left(G_{1}, \Pi_{2 q-2}\right) \\
& +\operatorname{dim} P H^{1}\left(G_{2}, \Pi_{2 q-2}\right)+2 q-1 .
\end{aligned}
$$

In particular, if $\left\langle G_{1}, G_{2}\right\rangle$ is the free product of G_{1} and G_{2}, then Φ is surjective. Therefore, in this case, we have the equality in (5) and hence the equality holds in our lemma. This completes the proof of Lemma 4.

We shall prove the following
ThEOREM 3. There exists a non-elementary finitely generated Kleinian group G with an invariant component Δ_{0} such that $\Omega-\Delta_{0} \neq \varnothing$ and $E_{1-q}^{0}\left(\Omega-\Delta_{0}, G\right) \neq 0$ and such that $\beta^{*}\left(B_{q}(\Omega, G)\right)=P H_{\Omega-\Lambda_{0}}^{1}\left(G, \Pi_{2 q-2}\right)$ for any integer q.

Proof. Let S_{0} be a Riemann surface of type $\left(g_{0}, m+n\right)$, where g_{0} is the genus of S_{0} and $m+n$ is the number of punctures of S_{0}. We assume that $3 g_{0}-3+(m+n)>0$. Now, associate with an integer $\nu_{i}\left(\nu_{i} \geqq 2, i=1, \cdots, m\right) m$ punctures and associate with ∞ the remainder n punctures. Let C be a simple loop on S_{0} which bounds neither a disk nor a punctured disk on S_{0} and which separates S_{0} into two pieces, which we denote by S_{1}^{\prime} and S_{2}^{\prime}. We attach a disk along C to S_{i}^{\prime} for $i=1,2$ and we denote the resulting surfaces by S_{1} and S_{2}. We give a conformal structure to S_{i} so as to be a finite Riemann surface and we denote by S_{i}^{+}this Riemann surface for $i=1$, 2. Let $\left(g_{i}, t_{i}\right)$ be type of $S_{i}^{+}(i=1,2)$. If g_{0} is sufficiently large, we may choose C such that $g_{1} \geqq 2$ and $g_{2} \geqq 2$. Here we note that $g_{0}=g_{1}+g_{2}$ and $m+n=t_{1}+t_{2}$.

As Maskit [3] has stated, we can construct a Kleinian group G with an invariant component Δ_{0} such that $\Delta_{0}^{\prime} / G=S_{0}$ and $\left(\Omega-\Delta_{0}\right)^{\prime} / G=S_{1}^{+}+S_{2}^{+}$, where Ω is the region of discontinuity of G and $\Delta_{0}^{\prime}=\Delta_{0}$ - \{all elliptic fixed points of $G\},\left(\Omega-\Delta_{0}\right)^{\prime}=\left(\Omega-\Delta_{0}\right)-\{$ all elliptic fixed points of $G\}$. For a component Δ_{i} of $\Omega-\Delta_{0}$, we have $S_{i}^{+}=\Delta_{i}^{\prime} / G_{i}$, where $G_{i}=$ $\left\{\gamma \in G ; \gamma\left(\Delta_{i}\right)=\Delta_{i}\right\}, \Delta_{i}^{\prime}=\Delta_{i}-\{$ all elliptic fixed points of $G\}$ for $i=1,2$ and G is generated by G_{1} and G_{2}.

From Lemma 4 we have

$$
\operatorname{dim} P H^{1}\left(G, \Pi_{2 q-2}\right) \leqq \operatorname{dim} P H^{1}\left(G_{1}, \Pi_{2 q-2}\right)+\operatorname{dim} P H^{1}\left(G_{2}, \Pi_{2 q-2}\right)+(2 q-1) .
$$

Since G is a finitely generated Kleinian group with an invariant component Δ_{0}, we see that G_{1} and G_{2} are finitely generated quasi-Fuchsian groups with an invariant component Δ_{1} and Δ_{2}, respectively. Therefore

$$
\operatorname{dim} P H^{1}\left(G_{i}, \Pi_{2 q-2}\right)=2 \operatorname{dim} B_{q}\left(\Delta_{i}, G_{i}\right)
$$

for $i=1$, 2. Since $\Delta_{i}^{\prime} / G_{i}=S_{i}^{+}$, we have

$$
\operatorname{dim} B_{q}\left(\Delta_{i}, G_{i}\right)=(2 q-1)\left(g_{i}-1\right)+\sum_{x \in \bar{S}_{i}^{+}-s_{i}^{+}}\left[q-\frac{q}{\nu(x)}\right]
$$

where $\nu(x)$ equals ν_{i} or ∞ and $[q-q / \nu(x)]=q-1$ when $\nu(x)=\infty$. Hence we see that

$$
\begin{aligned}
\operatorname{dim} P H^{1}\left(G, \Pi_{2 q-2}\right) \leqq & 2\left\{\operatorname{dim} B_{q}\left(\Delta_{1}, G_{1}\right)+\operatorname{dim} B_{q}\left(\Delta_{2}, G_{2}\right)\right\}+(2 q-1) \\
= & 2\left\{(2 q-1)\left(g_{1}+g_{2}-2\right)+\sum_{x \in \bar{S}_{0}-S_{0}}\left[q-\frac{q}{\nu(x)}\right]\right\} \\
& +(2 q-1) \\
= & (2 q-1)\left(2 g_{0}-3\right)+2 \sum_{i=1}^{m}\left[q-\frac{q}{\nu_{i}}\right]+2 n(q-1) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\operatorname{dim} B_{q}(\Omega, G) & =\operatorname{dim} B_{q}\left(\Delta_{0}, G\right)+\operatorname{dim} B_{q}\left(\Delta_{1}, G_{1}\right)+\operatorname{dim} B_{q}\left(\Delta_{2}, G_{2}\right) \\
& =(2 q-1)\left(2 g_{0}-3\right)+2 \sum_{i=1}^{m}\left[q-\frac{q}{\nu_{i}}\right]+2 n(q-1)
\end{aligned}
$$

Consequently, we have

$$
\operatorname{dim} P H^{1}\left(G, \Pi_{2 q-2}\right) \leqq \operatorname{dim} B_{q}(\Omega, G)
$$

Since $\beta^{*}\left(B_{q}(\Omega, G)\right) \subset P H^{1}\left(G, \Pi_{2 q-2}\right)$ and since β^{*} is injective, we have the converse inequality. Hence
$\operatorname{dim} P H^{1}\left(G, \Pi_{2 q-2}\right)=\operatorname{dim} B_{q}(\Omega, G)$, or, $\beta^{*}\left(B_{q}(\Omega, G)\right)=P H^{1}\left(G, \Pi_{2 q-2}\right)$.
Since $\Omega^{\prime} / G=S_{0}+S_{1}^{+}+S_{2}^{+}$, we see that G is not a quasi-Fuchsian group, where $\Omega^{\prime}=\Omega-$ \{all elliptic fixed points of $\left.G\right\}$.

Let $\{p\}$ be an element of $P H_{\Omega-\Delta_{0}}^{1}\left(G, \Pi_{2 q-2}\right)$. Then, for any parabolic element γ_{0} belonging to G_{1} or $G_{2}, p\left(\gamma_{0}\right)=v \cdot \gamma_{0}-v$ for some $v \in \Pi_{2 q-2}$. Take an arbitrary parabolic $\gamma \in G$. Then $\gamma=\alpha \circ \gamma_{0} \circ \alpha^{-1}$ for some γ_{0} and some $\alpha \in G$. (See Maskit [3].) Hence we have $p(\gamma)=p\left(\alpha \circ \gamma_{0} \circ \alpha^{-1}\right)=$ $V \cdot \gamma-V$ for $V=v \cdot \alpha^{-1}-p\left(\alpha^{-1}\right) \in \Pi_{2 q-2}$. Hence $\{p\} \in P H^{1}\left(G, \Pi_{2 q-2}\right)$, that is, $P H_{\Omega-\Lambda_{0}}^{1}\left(G, \Pi_{2 q-2}\right) \subset P H^{1}\left(G, \Pi_{2 q-2}\right)$. On the other hand, obviously $P H^{1}\left(G, \Pi_{2 q-2}\right) \subset P H_{\Omega-4_{0}}^{1}\left(G, \Pi_{2 q-2}\right)$. Therefore we have $P H^{1}\left(G, \Pi_{2 q-2}\right)=$ $P H_{\Omega-\Lambda_{0}}^{1}\left(G, \Pi_{2 q-2}\right)$, which shows $\beta^{*}\left(B_{q}(\Omega, G)\right)=P H_{\Omega-\Lambda_{0}}^{1}\left(G, \Pi_{2 q-2}\right)$.

Now we have only to show $E_{1-q}^{0}\left(\Omega-\Delta_{0}, G\right) \neq 0$. For our group G, we see that

$$
\operatorname{dim} B_{q}\left(\Delta_{0}, G\right)>\operatorname{dim} B_{q}\left(\Delta_{1}, G_{1}\right)+\operatorname{dim} B_{q}\left(\Delta_{2}, G_{2}\right)=\operatorname{dim} B_{q}\left(\Omega-\Delta_{0}, G\right) .
$$

Hence, by Lemma 3 we have $E_{1-q}^{0}\left(\Omega-\Delta_{0}, G\right) \neq 0$. Thus the proof of our Theorem is complete.

References

[1] L. Bers, Inequalities for finitely generated Kleinian groups, J. d'Anal. Math., 18 (1967), 23-41.
[2] I. Kra, On cohomology of Kleinian groups: II, Ann. of Math., 90 (1969), 575-589.
[3] B. Maskit, Decomposition of certain Kleinian groups, Acta Math., 130 (1973), 243-263.
Department of Mathematics
Yamagata University
Yamagata, Japan

