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1. Introduction. Whenever the equation f(z)=a has no simple roots,
a value «a is called a totally ramified value of f(z). In the Nevanlinna
theory, it is well-known that every transcendental meromorphic function
can have no more than four totally ramified values. Let E be a totally
disconnected compact set in the z-plane and let R be its complementary
domain. How many totally ramified values can functions f(z) meromorphic
in R with at least one essential singularity in £ have? In this paper we
shall give a result (Theorem) about this question and see as a corollary
that there are perfect E’s for which any f(z) can have no more than
four totally ramified values.

2. Lemmas. Here we shall give some lemmas. For a simply con-
nected hyperbolic domain D we call f(z) to be normal in D, if the family
{f(s(z))}, where { = s(z) denotes an arbitrary one to one conformal map-
ping of D onto itself, is normal in the sense of Montel. For a multiply
connected domain D with the universal covering surface D being con-
formally equivalent to the unit disc we call f(z) to be normal in D, if
f(2) is normal on D. As a sufficient condition for f(z) to be normal, the
following is well-known.

LEMMA 1. Let w = f(2) be meromorphic in |z| < 1. Let 4, 4, ---,
4, (@ = 3) be ¢ mutually disjoint closed Jordan domains on the Riemann
w-sphere. Denote by m; (j =1, 2, -+, q) the mintmum of the numbers
of sheets of islands of F' above 4;, where F' denotes the covering surface
generated by w = f(z). Suppose that

20

m;
Then, f(2) is normal in |z| < 1. (Cf. Noshiro [4] pp. 88-89)

)>2.

The following lemma is a generalization of Picard’s classical theorem.

LEMMA 2. (Lehto-Virtanen [1], Th. 9) A meromorphic function
cannot be normal in any meighbourhood of an tsolated essential singu-

larity.
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For a normal meromorphic function f(z) in a domain D, we shall
estimate the lengths or areas of the images of some curves or sets in
D under w = f(z). Let G be a doubly connected subdomain of D and let
(@) denote the harmonic modulus of G. Then G is conformally equiva-
lent to the annulus G' = {{|1 < |{| < exp #(G)}. For 4, 0< 9, < 1/2,
we consider G;, = {{|exp o, (G) < |{|<exp(l —0)(G)} and L'; = {{| [{| =
expou(G)}, 0, <0 =1 — d,, and denote their images in G by G,, and L;,
respectively. Let f(S) denote the Riemannian image of a set S in D
under w = f(z). The notations A] f((?,,o)] and L[f(L,;)] will be used for
the spherical area of f(G,), G;, being the closure of G,,, and the spherical
length of f(L,), respectively.

LEMMA 3. Let f(z) be normal meromorphic in a domain D, and
0<d,<1/2. Then, for any doubly connected subdomain G of D with

finite m(G),

~ K
A[f(G)] = ——»
(1) [f( o)]<#(G)
K
(2) L[f(Ls)]ém (3o§5§1—30),

where K is a constant depending only on D, f(z) and J,.

Denoting by x(w,, w,) the spherical distance of w, and w, in the ex-
tended w-plane, we put C(w,, d) = {w | x(w,, w) < d} (d > 0).

LeEmMMA 4. (Carleson-Matsumoto). Let 9(z) be meromorphic in an
annulus G:1 = |z| =exppu (> 0). If the tmage of G under w = g(z)
1s contained in C(w, d), 0 < d < /2, then the spherical diameter of the
image of |z| = exp p/2 under w = g(z) is dominated by A exp (—u/2)
whenever p is suffictently large (¢ = ), where A is a positive constant
depending only on d.

Moreover, if d is sufficiently small (d < d,), then A < Bd, where B
1s a positive constant. (Cf. Sario-Noshiro [6], pp. 128-129.)

3. Theorem. Before stating our Theorem, we shall prepare some
notations. Let E be a totally disconnected compact set in the z-plane
and let R be its complementary domain. Let {R,} be a normal exhaus-
tion of R with an additional condition that each component R, .(m =
1,2, ---, N(n)) of R, — R,_, is doubly connected. If every R, , branches
off into at most p regions R,.,,, we say that the exhaustion {R,}
branches off at most o times everywhere. Now let L be the length of

Noshiro’s graph associated with {R,}, and let wu(z) + iv(z) be the con-
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formal mapping of R — R, with at most a countable number of suitable
slits onto the strip 0 < u < L, 0 < v < 27w on the w = w + iv-plane with
at most a countable number of suitable slits. Let B, be a level curve
{zlu@)=7r} 0<r <L) and let B, .(1 <m < n(r)) be the components
of B,. We consider the components of R, — B, with n > k> 0, which we
call R-chains, being divided by B,,., or having it as a boundary component,
and denote by #(8,,.) the harmonic modulus of the longest doubly con-
nected R-chain among them, where we say an R-chain is longer than
another if the former contains the latter. Put

pr) = min ((S,,)

THEOREM. Suppose that there exists a normal exhaustion {R,} of R
which branches off at most p (0 = 2) times everywhere and that

(3) liglﬂ(r)zoo.

Then,
(i) 1in the case p = 2, every mormal meromorphic function in R
with at least one essential singularity in E can have no more than 3

totally ramified values, and
(ii) in the case p > 2, every meromorphic function in R with at

least one essential singularity in E can have no more than o + 1 totally
ramified values.

Any meromorphic function f(z) with more than four totally ramified
values is normal. (This is the reason why the condition “normal” is not
necessary in the case o > 2.) In fact, if f(z) has totally ramified values
w; (=12, --+,¢g >4) with m;, the minimum of the multiplicities of
w,-points, then
1
m;

S(1--)>2,

J=1

since m; =2 (=1,2, --+,q). Thus we see from Lemma 1 that f(z) is
normal. Therefore, we have the following interesting

COROLLARY 1. If there exists a normal exhaustion {R,} of R which
branches off at most o (0 = 1) times everywhere and if

lim p(r) = o,

r—L

then every fumnction f(z) meromorphic in R with at least one essential
stingularity in E can have no more than max (4, o + 1) totally ramified

values.
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COROLLARY 2. Let E be a Cantor set with successive ratios &,
satisfying

limé, =0.

n—rco

Then every function f(z) meromorphic in R with at least one essential
singularity in E can have no more than four totally ramified values.

4. Proof of Lemma 3. Since all lemmas except for Lemma 3 were
quoted from somewhere, we need only to prove Lemma 3. We put
¢ = Q) for simplicity in this section. Let o(f(z)) denote the spherical
derivative of f(z), and let do, denote the hyperbolic metric with respect
to D. Then, since f(z) is normal in D, we have

(4) o(f(2)) |dz| < Cday(2),

where C is a constant depending on D and f(z) (Lehto-Virtanen [1], Th. 3).
By the principle of hyperbolic measure, it holds

(5) dop(z) = dog(z) .
Since do4(z) and o(f(z))|dz| are conformally invariant, we have
(6) o(9(Q) 1L | < Cdoy(Q),

where g¢({) is the composite function f(2({)) of f(z) with z = 2({), the
mapping function of G’ conformally onto G. We shall estimate dos({).
Let w = ®@({) be the function composed

(x/p)u—n/2)% __
w:tan—n—<u——fi>: i 1

2[" 2 ,i(e((n//l)u—IL‘/Z)i + 1)
with
w=1logl.
Then we have
(7) dog(f) = 2L - PO 40

L—|wl 1-[20)P

By a simple computation, we have

PO g - n
(8) ldl| = ldg]| .
1— |9 in(T
zl‘lClSln(-ﬂ‘lOgICI)

From (6), (7), (8) and the inequality

sin (-% log | ¢ |> = sin 7o, for {eG;, ,
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we have
Cr )
p(g(c» < m for C € G"o ,
A[F(G:)] = A[g(G"s,)]
= [ totocnr 1 1a1¢ o
2r rell—do)p Cr 2
<So Se"o# <m> [C]d|L]|de
= O — 20,)
2u(sin 0,t)*
and

LIA(L)) = L{g(L)
— |7 oto@) 121 a0

2 Cﬂ'
——df
< So 24t sin 0,7
Cr®
= 0L, =0=1-—9,).
L sin 0,7 G=0= )

Thus it is enough for us to put

_ Cr(1 — 20,) Cr?
K = 0 .
max ( 2(sin 0,)* ' sind, 7r>

Obviously K is a positive constant depending on D, f(z) and 6,. The
proof is complete.

5. Proof of Theorem. Now we shall prove our Theorem. Let K
be a totally disconnected compact set in the z-plane whose complementary
domain R satisfies all the assumptions of Theorem. Suppose that there
exists a normal meromorphic function f(z) in B with at least one essen-
tial singularity 2, in £ and with more than o + 1 totally ramified values
Wy, Wy, *+*, Wy, ¢ = P + 2.

Put

dl = mi.n X(wi’ wi)
i#j

and

(9) = max(HLEDE VK 4 5108300 + 1B, 40 + DK ,

1 0
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where d,, 1, B and K are those given in § 2. By our assumption (3),
there exists 7, 0 < r, < L, such that

w(r) > p for any » > 7r, .

The level line B, = {z|u(z) = r} consists of a finite number of Jordan
curves B,, (m=1,2, ---, n(r)) and one of them, say g, encloses z,.
Let D,, be the longest doubly connected R-chain containing this 23, ..
Then the harmonic modulus (D, ,) of D,, is equal to ¢(B,.,) (= w(r)) and
hence is larger than g,. We see t(D,)) is finite. In fact, if p(D,,) = oo,
one of the component of 0D,, must be the point 2,, so that the normal
function f(z) has an isolated essential singularity. This is contradictory to
Lemma 2. Therefore D,, must branch off. Suppose D,, is a component
of R, — R, with n>n’, and branches off into at most o, say Q(2), regions
R, (@=12 --- Q2). For each q, we consider the longest doubly
connected R-chain D,, containing R,,,,. They all have moduli greater
than g, and one of them, say D,,, separates z, from D,,. Its harmonic
modulus (D,,) is finite by the same reason as above. Hence D,, is a
component of the open set B; — R, for some # and branches off into at
most p, say @,,, regions R;,, ., (¢'=1,2, --+,Q,,). Forq=238, ---, Q(2),
if p(D,,) = <, one of the boundary components of D,, is a point z,, in
E and f(z) is meromorphic at z,, by Lemma 2. If p(D,,) < o, we
obtain at most p, say @,, R-chains D,, (¢’ = 21 @Q,, + r with r =
1,2 .-, @, where Q,, =0 when #(D,,) = ) in the same manner as
above. Thus we have at most p* R-chains D,, such that their harmonic
moduli are greater than f,, and one of them encloses z,, Moreover, each
of them branches off into at most p regions if the modulus is finite, or
has a point in E as one of its boundary components at which f(z) is
meromorphie, if the modulus is infinite.

Continuing inductively we obtain a set of R-chains D,, with p =
1,2,---and ¢g=1,2,---, Qp) = 2% Q,,, < p*', which has the following

properties:

(10) CJ QL(_j) D, ,> 2, where Q denotes the intersection of R
with the set bounded by the Jordan curve 3,,,

(11) t(Dp) >t (=12 --5¢=12 ---,Q(p),

and

(12) D, , branches off into Q,,, (< o) R-chains D,,,  ,

if its harmonic modulus (D, ) is finite ,

or
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(12y D, has a point z,,€ E as one of its boundary components
and f(z) is meromorphic at z,, if @D, ,) is infinite .

Now each D,, is conformally equivalent to the annulus 1 < [{]| <
exp (D,,;). For D,, with p(D,,) < =, we denote by B,, the closed
Jordan curve corresponding to |{| = exp (1/2)x(D, ,). Such D,, branches
off into Qp+1,q(§p) R-chains D, o (¢ = >z Qp+1,r +s withs=1,2, ...,
Q,:..). We shall denote by 4,, the (@,,,, + 1)-ply connected domain
bounded by B,,, and B,.,.’s, where B,,.o = 2,11, When p(D,,, ) = co.
Taking a point {,, in f(B,,) and a point (,,,, in f(B,..,) for each ¢’,
we consider spherical discs C(¢,,,, K/tt,) and C(&,,,,., K/tt,)’s, which contain
B, and f(B,:1,s)’s, respectively, because of (11) and by Lemma 3.
We set H = K/p..

6. We shall study the image of 4,, under w = f(2). Let 4 be one
of 4,,. Then 4is an at most (0+1)-ply connected domain, whose boundary
components are denoted by B, B, -+, Bey @ < 0 + 1. As mentioned at
the end of the preceding section, images f(3,) of these 8,(¢ = 1,2, ---, Q)
are contained in some disecs C, (¢ = 1, 2, ---, Q) with radius H. Therefore
we can cover the set J%,C, with at most @ closed dises G, (¢t =
1,2, ---, m < Q) which are disjoint by pair and whose radii are less than
d./4, since QH < (0 + 1)H < d,/4, so that each G, contains at most one
totally ramified value of f(z). Now v(w, f, 4) denotes the number of
w-points of f(z) in 4, multiplicities being taken into account. Then,
obviously, v(w, f, 4) is constant outside U7Z,G;,. We shall show that
v(w, f, 4) = 0 outside U, G,;, that is, we can cover U, C, with only one
closed disc G with radius less than d,/4 and the image f(4) of 4 is con-
tained in G. Supposing contrary that v(w, f, 4) > 0 outside U, G;, we
shall first prove two propositions. .

PROPOSITION 1. Let F denote a closed set which consists of a finite
number of components and whose complement 2 is a domain. Suppose
that F contains U=, f(B,) and that there are two totally ramified values
of f(z), say w, and w, in 2. Then there is a simple closed regular
curve B in 4 whose image f(B) lies on some simple arc joining w, and
w, tn Q.

ProOOF. We call a value w a ramified value of f(z) in 4 if f(z) has
a w-point with multiplicity > 1. We take a simple regular arc I" joining
w, to w, in 2 on which there are no ramified values of f(z) in 4 except
for the end points w, and w,. The inverse image f~I") in 4 consists of
a finite number of simple regular arcs {7} joining a w,-point to a w,-point



252 T. KUROKAWA AND K. MATSUMOTO

in 4. We note that, for any w,-point or any w,-point in 4, there are at
least two 7’s having it as a common end point, because w,-points and
w,-points are multiple points. Let a, be any one of the w,-points in 4 and
let ¥ € {7} be an arc joining @, to one of the w,-points, being denoted by
b,. As mentioned just above, there is another Y® == Y® in {7} ending at
b,. We denote by a, the other end point of ¥ which is a w,-point. If
a, = a,, we may take v® — v® as B. If a, # a,, we consider the curve
YO — @ 4 y® v® being an are in {Y} which differs from v® and starts
from a,. Let b, denote the other end point of v®. If b, = b, the part
—7®4+v® of our curve can be taken as Q. If b, # b, there is an arc
Y %= v*® in {7} ending at b, and we consider the curve Y — Y@ 4 ¥v® — y¥,
In general, assume that we had a curve v, = 3, (—1)""v* such that
Y% and Y%t have a w-point a4, if 7 is even or a w,-point by, if 7 is
odd as a common end point and these {a,} and {b;} are distinct from each
other. Then we extend 7, by connecting an arc (—1)*y"*", v®+v e {7},
which has a w,-point or a w,-point as a common end point with v, If
the other end point of v™*" is a w,-point or a w,-point being already
passed by 7,, then the last part of v,., = >\ (—1)""v* starting from
it can be taken as B. Otherwise we continue our construction. Since
the number of w,-points and w,-points in 4 is finite, we always obtain
a wanted curve B8 by the above construction.

PROPOSITION 2. Let G be a closed disc disjoint from F. Suppose that
G and F contain f(B,) aend U.f(B.), respectively and that there are
two totally ramified values of f(z), say w, and w, such that w,eQ — G
and w,€G. Then either there is a simple closed regular curve B im 4
whose 1mage f(B) lies on some simple arc joining w, and w, in 2, or
there are two simple arcs B’ and B in 4 joining a w,-point in 4 to
the boundary component B,, whose tmages f(B') and f(B"”) lie on some
simple arc joining w, and w, in £2.

ProoF. In the present case, the inverse image f~%I") in 4 consists
of a finite number of simple regular arcs joining a w,-point to a w,-point,
ones joining a w-point or a w,point to B, and ones joining a point on B,
to another point on B,. We pick up only the arcs of the former two
kinds and denote them by {7}. Using this {¥}, we construet a curve in
the similar manner as above. Then either we obtain a wanted closed
curve B, or, for some 7, the arc v connected to 7v,_, is of the second
kind, so that 7, joins the w-point @, to B,. In the latter case, we con-
struct another curve begining with ¥® %= v® in {v} which starts from

~

a,, and obtain a B or a curve ¥; for some # joining @, to B,, while
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B =7, and B = ¥; give a wanted pair.

7. Since each G; (1 =1,2, ---, m) contains at most one totally rami-
fied values of f(z), the following two cases are possible.

Case (i). The complement Q® of F“ = U™, G, contains not less
than two totally ramified values,
or

Case (ii). The number m of {G,} is equal to p + 1 and there is
just one totally ramified value in 2%, In this case, each G, (1 =
1,2, ---,m = o + 1) coincides with some C,(¢ =1,2, ---,Q@ = 0 + 1) and
they contain images f(8,) (9 =1,2, ---, @ = p + 1) one by one.

Case (i). We take any two, say w, and w, among the totally
ramified values contained in 2%. By Proposition 1, there is a closed
curve B, which we denote by B%, in 4, whose image f(B") lies on a
curve I’V joining w, and w, in 2., The curve B“ divides 4 into two
domains. We denote by 4, one with connectivity not greater than
that of the other. Then 4, is bounded by B*“ and some of {B,), say
By, B+ +, Bow, where QW = [(0+ 1)/2]. Hence the image of 94, is covered
with some of {Gy}, say G, G,, -+, G,o(m® < Q"), and I'. We denote
by 2® the complementary domain of F® = (Ur! G,)U I'®. Since

[‘OTH}gp—Z for p =14,
we see that 2® contains at least two totally ramified values, say w, and
w,, distinet from w, and w,, excepting the following two cases.

Case (i)-(a). The case that p =2 (which implies m® = Q" £ 1),
m® =1 and G2 f(B,)) contains w, or w,, say w,.

Case (i)-(b). The case that p =3 (which implies m" = Q™ £ 2)
m® = 2 and G2 f(B)) and GYD f(B,)) contain two values among w, w,
and w,, say w, and w;, one by one.

By Proposition 1, there is a closed curve B*® in 4, whose image
f(B®) lies on a curve I'® joining w; and w, in 2®. The curve B8*® divid-
es 4, into two domains. We denote by 4, one not having B in its
boundary. The image of 44, is covered with some of {G.,™! and I'® so
that 2%, the complementary domain of the sum F® of these G,’s and
I'®, contains w, and w, and there is a closed curve 8® in 4,, again by
Proposition 1, whose image f(8®) lies on I"'?. Thus, repeating the above
argument again and again, we obtain a set of closed curves {8"™};., in
4 such that they are disjoint by pair and that the image f(8™) covers
'Y if n is odd or I'® if m is even. This is impossible.

In the excepted cases, we use Proposition 2 under the setting that
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F® =T in the case (a) or F'*® = 'Y J G, in the case (b) and G = G,.
Then we see that there is a closed curve 8® or a pair of arcs B'® and
B"?® joining a w,-point to the boundary component B, of 4, whose images
lie on a curve I'® joining w, and w, in 2%, the complement of F'®. The
curve 8% or —pg'® 4+ B"® divides 4, into two domains. We denote by
4, one not having B in its boundary. The image of 04, is covered
with F® = I'® U @, in the case (a), or with F® = I'® U G, or the sum
of I'® UG, and G, in the case (b), so that the complementary domain
Q¥ of F'® contains w, and w, and there is a closed curve 8 in 4, whose
image f(B®) lie on I''", Repeating the same argument again and again,
we obtain a set of curves {B8* " g% or —p'® 4+ B} in 4 such
that they are disjoint by pair, and that f(8% ") cover '™ and f(B8®")
or f(—pB'®™ + B") cover I'® or its part joining w, to 0G,, respectively.
This is impossible.

Case (ii). We may assume G; = C, contains w, (t = 1,2, ---, 0 + 1)
and w,,, is contained in the complement of |J%'! G,. Setting F* = U, G,
and G = G,,, we see from Proposition 2 that there is a closed curve B
or a pair of arecs B8 and B"" joining a w,,,-point to B,,, in 4 whose
images lie on a curve /""" joining w,., and w,,, in 2%, the complement
of F'. The curve 8" or —pB'™ + B"® divides 4 into two domains. We
denote by 4, one with connectivity not greater than that of the other.
Then f(04,) is covered with some of {G;}, say G, ---, G,o(m® < p — 1)
and 'Y U G,y,. If m™ < p —1, then w,_, and w, are contained in 2@®,
the complement of F® = (U~ G,)U (" U G,,,), and we use Proposition
1. If m“ =p —1, then w,_, and w, are contained in 2%, the comple-
ment of F® = (U/=*G,) U ('™ U G,,,), and we use Proposition 2 under
the setting G = G,_,. Then we see that there is a closed curve B® or a
pair of ares B8'® and B"”*® joining a w,-point to B,_, in 4 whose images
lie on a curve I'® joining w,_, and w, in 2®. The curve 8® or —p'® +
B"® divides 4, into two domains, one of which has not g% or —g'® 4 g"®
in its boundary. We denote it by 4,. Then f(d4,) is covered with some
of (G, G, -+, G0, Goy,} and I'® when m™ < p —1 or with some of
{Gy, Gy +++, Goy, Goy)} and ' U G,_, when m® = p — 1. If the covering
of f(04,) does not contain G,,,, the complementary domain 2% of their
sum F® contains w,,, and w,,, and we use Proposition 1. If it contains
G,y we take their sum deleting G,,, and denote it by F®. The com-
plement 2% of F'® contains w,,, and w,,, and we use Proposition 2 set-
ting G = G,,,. Thus there is a closed curve B8® or a pair of ares /'®
and B”® in 4, whose images lie on I'?. Repeating the above argument,
we obtain a set of curves {8™ or —gB'™ + B"™} in 4 such that they are
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disjoint by pair and that f(8"™) or f(—8'™ + B"™) cover I'V or its part
joining w,., to dG,,, for any odd n. This is absurd.

8. We conclude now:
(13) For every 4,,(p=1,2,---;9¢=1,2, .-+, Q»))
there is a spherical closed disc with the spherical radius (o + 1)H
containing its image f(4, ,).
Next consider B,, for p = 2. The domain 4,, and some 4,_,, have
By« as the common boundary and

-DIMI < Aﬂ,q U :81174 U Apﬂ,q’ .

In view of (13) the images of 4,,U B,,U 4,_, and consequently of D, ,
are contained in a spherical closed disc with spherical radius 2(o + 1)H.
By applying Lemma 4 to D,, for d =3(p + 1)H < d,, we see that the
diameter of f(5,,,) is less than 3(0 + 1)HBexp (—(1/2)p,) < H. For p = 2,
each boundary component of 4,, thus has an image with diameter less
than H. By the same reasoning as above we infer

(14) For p = 2 the image of every 4,, is contained in a spherical
closed disc with spherical radius ((0 + 1)H)/2 .

By induction we deduce for every mu:

(15) For p = n the image of every 4,, is contained in a spherical
closed disc with spherical radius ((¢ + 1)H)/2"".

Let 2’ be the intersection of R and the domain bounded by the
Jordan curve B,, and let z* be a point of 8,,. Then it follows from the
property (10) of {D, ,} that

8

, QP _
2cU U4,
L g=1

D

I

and consequently for any z' €2’ there is a 4, , whose closure contain z'.
From (15) we have for a chain {4,,};_, of 4,, joining 4,, and 4, ,,
o
A @), £z) < 3, diam £(4,.,,)

2ol tly_sp+nH< L),
p=1 277! 2

I\

where the diameter is in terms of spherical metric. By means of a
linear transformation we conclude that f(z) is bounded in £'. On the
other hand, on applying the criterion of Pfluger [5]-Mori[3] to the an-
nular domains {D, ,}, we see easily that the part E’ of E contained in
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the region bounded by B,, has a complement of class O,;. Hence each
point of E’ must be a removable singularity of a bounded function f(z).
This contradicts our assumption that z,€ E’ is an essential singularity of
f(2). Thus we conclude that f(z) cannot have more than o + 1 totally
ramified values. This completes the proof of Theorem.

9. Any meromorphic function cannot be normal in any neighbourhood
of an isolated essential singularity, so that it cannot have more than
four totally ramified values there. On the other hand, there are sets E
with the conditions of Theorem for p = 2, 3, whose complementary domain
permits normal meromorphic functions with E as the set of singularities
notwithstanding that they cannot have more than four totally ramified
values (see [2]).

Problem. Is there any E whose complementary domain permits no
normal or no exceptionally ramified meromorphic functions with E as
the set of singularities? Here a meromorphic function f(z) is called ex-
ceptionally ramified, if f(z) has totally ramified values w; with m;, the
minimum of the multiplicities of w;-points, such that

s(1-2)>z2.
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