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1. Introduction. Whenever the equation f(z) — a has no simple roots,
a value a is called a totally ramified value of f(z). In the Nevanlinna
theory, it is well-known that every transcendental meromorphic function
can have no more than four totally ramified values. Let E be a totally
disconnected compact set in the 2-plane and let R be its complementary
domain. How many totally ramified values can functions f(z) meromorphic
in R with at least one essential singularity in E have? In this paper we
shall give a result (Theorem) about this question and see as a corollary
that there are perfect E's for which any f(z) can have no more than
four totally ramified values.

2. Lemmas. Here we shall give some lemmas. For a simply con-
nected hyperbolic domain D we call f(z) to be normal in D, if the family
{f(s(z})}, where ζ = s(z) denotes an arbitrary one to one conformal map-
ping of D onto itself, is normal in the sense of Montel. For a multiply
connected domain D with the universal covering surface D being con-
formally equivalent to the unit disc we call f(z) to be normal in D, if
f(z) is normal on D. As a sufficient condition for f(z) to be normal, the
following is well-known.

LEMMA 1. Let w = f(z) be meromorphic in \ z | < 1. Let Δu Δ2j ,
Aq (q ^ 3 ) be q mutually disjoint closed Jordan domains on the Riemann
wsphere. Denote by m$ (j = 1, 2, , q) the minimum of the numbers
of sheets of islands of F above Ah where F denotes the covering surface
generated by w — f(z). Suppose that

" — ) >2.

Then, f(z) is normal in \ z \ < 1. (Cf. Noshiro [4] pp. 88-89)

The following lemma is a generalization of Picard's classical theorem.

LEMMA 2. (Lehto-Virtanen [1], Th. 9) A meromorphic function
cannot be normal in any neighbourhood of an isolated essential singu-
larity.
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For a normal meromorphic function f(z) in a domain D, we shall
estimate the lengths or areas of the images of some curves or sets in
D under w = f(z). Let G be a doubly connected subdomain of D and let
μ(G) denote the harmonic modulus of G. Then G is conformally equiva-
lent to the annulus G' = {ζ 11 < | ζ | < exp μ(G)}. For δ0, 0 < δ0 < 1/2,
we consider G'δΰ = {ζ | exp δoμ(G) < | ζ | < exp (1 - δQ)μ(G)\ and L', = {ζ | | ζ | =
exp<5μ(G)}, δ0 <̂  δ <: 1 — δOf and denote their images in G by GδQ and Lδ,
respectively. Let f(S) denote the Riemannian image of a set S in D
under w = f(z). The notations A[f(GδQ)] and L[f(Lδ)] will be used for
the spherical area of f(G§0), G§0 being the closure of GδQ, and the spherical
length of f(Lδ), respectively.

LEMMA 3. Let f{z) be normal meromorphic in a domain D, and
0 < δ0 < 1/2. Then, for any doubly connected subdomain G of D with
finite μ(G),

(1) Δ\ f(Q )] < %

/<(G)

(2) £[/(£.)] ΞS

where K is a constant depending only on D, f(z) and δQ.

Denoting by χ(wu w2) the spherical distance of wt and w2 in the ex-
tended w-plane, we put C(wQf d) = {w \ χ(w09 w) < d) (d > 0).

LEMMA 4. (Carleson-Matsumoto). Let g(z) be meromorphic in an
annulus G: 1 ^ | z \ ̂  exp μ (μ > 0). // the image of G under w = g(z)
is contained in C(w0, d), 0 < d < ττ/2, then the spherical diameter of the
image of | z | = expμ/2 under w = g(z) is dominated by Aexτp( — μ/2)
whenever μ is sufficiently large (μ ^ μQ), where A is a positive constant
depending only on d.

Moreover, if d is sufficiently small (d < d0), then A < Bd, where B
is a positive constant. (Cf. Sarίo-Noshiro [6], pp. 128-129.)

3. Theorem. Before stating our Theorem, we shall prepare some
notations. Let E be a totally disconnected compact set in the 2-plane
and let R be its complementary domain. Let {Rn} be a normal exhaus-
tion of R with an additional condition that each component Rntm(m =
1, 2, , N(n)) of Rn — Rn_γ is doubly connected. If every Rn>m branches
off into at most p regions Bn+1,kf we say that the exhaustion {Rn}
branches off at most p times everywhere. Now let L be the length of
Noshiro's graph associated with {Rn}, and let u(z) + iv{z) be the con-
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formal mapping of R — Ro with at most a countable number of suitable
slits onto the strip 0 < u < L, 0 < v < 2π on the w = u + iv-plane with
at most a countable number of suitable slits. Let βr be a level curve
{2 I u(z) = r} (0 < r < L) and let /2r,m(l ^ m ^ w(r)) be the components
of /Sr. We consider the components of Rn — Rk with n > k ^ 0, which we
call ϋ?-chains, being divided by βr,m, or having it as a boundary component,
and denote by μ(βr,m) the harmonic modulus of the longest doubly con-
nected i2-chain among them, where we say an i2-chain is longer than
another if the former contains the latter. Put

μ{r) = min μ(βr,m)

THEOREM. Suppose that there exists a normal exhaustion {Rn} of R
which branches off at most p (p ^ 2) times everywhere and that

( 3 ) lim μ(r) = 00 .
r-*L

Then,
( i ) in the case p = 2, every normal meromorphic function in R

with at least one essential singularity in E can have no more than 3
totally ramified values, and

(ii) in the case p > 2, every meromorphic function in R with at
least one essential singularity in E can have no more than p + 1 totally
ramified values.

Any meromorphic function f(z) with more than four totally ramified
values is normal. (This is the reason why the condition "normal" is not
necessary in the case p > 2.) In fact, if f(z) has totally ramified values

Wj (j = lf 2, •••, q > 4) with m, , the minimum of the multiplicities of
wrpoints, then

Σ (1 - — ) > 2 ,
J=I V m3- /

since m3- ̂ 2 (j = 1, 2, , q). Thus we see from Lemma 1 that f(z) is
normal. Therefore, we have the following interesting

COROLLARY 1. // there exists a normal exhaustion {Rn} of R which
branches off at most p (p ^ 1) times everywhere and if

lim μ(r) = oo ,

then every function f(z) meromorphic in R with at least one essential
singularity in E can have no more than max (4, p + 1) totally ramified
values.
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COROLLARY 2. Let E be a Cantor set with successive ratios ζn

satisfying

Jim f. = 0 .

Then every function f(z) meromorphic in R with at least one essential
singularity in E can have no more than four totally ramified values.

4. Proof of Lemma 3. Since all lemmas except for Lemma 3 were
quoted from somewhere, we need only to prove Lemma 3. We put
μ = μ{G) for simplicity in this section. Let p(f(z)) denote the spherical
derivative of f(z), and let dσD denote the hyperbolic metric with respect
to D. Then, since f(z) is normal in D, we have

(4) P(f(z))\dz\<CdσD(z),

where C is a constant depending on D and f(z) (Lehto-Virtanen [1], Th. 3).
By the principle of hyperbolic measure, it holds

( 5 ) dσD(z) ^ dσG(z) .

Since dσG(z) and p(f(z)) | dz | are conformally invariant, we have

(6) p(g(Q)\dζ\<CdσG,(Q,

where g{ζ) is the composite function f(z(ζ)) of f(z) with z = z(ζ), the
mapping function of G' conformally onto G. We shall estimate dσG,(Q.
Let w = φ{ζ) be the function composed

w = tan
2μ\ 2/ i(e{{π/μ)u-*'2

with

u = log ζ .

Then we have

By a simple computation, we have

Prom (6), (7), (8) and the inequality

sin (iL log I ζ |) ^ sin πd0 for ζ e G'δQ ,



TOTALLY RAMIFIED VALUES 2 4 9

we have

P(9(O) < o ,r

Cπ. s for ζ e G i β ,
2μ\ζ\ s indπ2μ\ζ\ sindoπ

A[f(GSo)] = A[g(G'i0)\

S 2π Γe^1~δθ)fi

{p(g(Q)Y\ζ\d\ζ\dθ
0 J β M

S 2π ί βd-̂ O)/̂  / Γ1-.

\ , ( o . r ι *o J.Ό/1 \2μ \ζ\ sinδ o7Γ

_ C27Γ3(1 - 2d0)
2/<(sin δ 0 ^ ) 2

a n d

L[f(L})] =

μ sin δoπ

Thus it is enough for us to put

< f 0* dθ
Jo 2 ^ s i n o 0 τ r

C 7 r 2 (δ0 ̂  δ ^ 1 - δ0) .

2(sin δoπf J &mδoπ)

Obviously if is a positive constant depending on D, f(z) and δ0. The
proof is complete.

5. Proof of Theorem. Now we shall prove our Theorem. Let E
be a totally disconnected compact set in the z-plane whose complementary
domain R satisfies all the assumptions of Theorem. Suppose that there
exists a normal meromorphic function f(z) in R with at least one essen-
tial singularity z0 in E and with more than p + 1 totally ramified values
wlf w2, , wg, q ^ p + 2.

Put

dγ = min χ(wi9

and

= max ( 4 ( p + 1 ) g , 3 ( P + 1 ) J Γ , μ» 2 log 3(p
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where dQ, μ0, B and K are those given in § 2. By our assumption (3),
there exists r19 0 < r1 < L, such that

μ(r) > μι for any r > rι .

The level line βr = {z \ u(z) = r) consists of a finite number of Jordan
curves βr>m (m = 1, 2, •••, n{r)) and one of them, say βr>1, encloses z0.
Let DlΛ be the longest doubly connected jβ-chain containing this βrΛ.
Then the harmonic modulus μ(Dhί) of DU1 is equal to μ(βr,ι) ( ^ M r )) a n ( i
hence is larger than μλ. We see μ(DίΛ) is finite. In fact, if μ{DlΛ) = °°,
one of the component of dDhl must be the point z0, so that the normal
function f(z) has an isolated essential singularity. This is contradictory to
Lemma 2. Therefore DίΛ must branch off. Suppose DlΛ is a component
of i?n — Rn, with w > n', and branches off into at most py say Q(2), regions
Rn+i,q (q — 1, 2, •••, Q(2)). For each <?, we consider the longest doubly
connected iϋ-chain D2q containing Rn+Uq. They all have moduli greater
than μx and one of them, say D2Λf separates z0 from Dltl. Its harmonic
modulus μ{D2Λ) is finite by the same reason as above. Hence D2Λ is a
component of the open set ifo — Rn for some n and branches off into at
most p, say Q3ιl, regions JB»+1,^ (g' = 1, 2, , Q3 a). For g = 2, 3, , Q(2),
if μ(D2>q) = oo, one of the boundary components of A,? is a point z ^ in
E and /(z) is meromorphic at z2>q by Lemma 2. If μ{D2>q) < °°, we
obtain at most p, say Q3tq, i2-chains DZtq> (Qf = ^9

PZlQ3,p + r with r —
1, 2, •••, Q8ιff, where Q3>p = 0 when μ(D2>p) = oo) in the same manner as
above. Thus we have at most |02 iϋ-chains D3q such that their harmonic
moduli are greater than μlf and one of them encloses z0. Moreover, each
of them branches off into at most p regions if the modulus is finite, or
has a point in E as one of its boundary components at which f(z) is
meromorphic, if the modulus is infinite.

Continuing inductively we obtain a set of ϋJ-chains Dp>q with p =
1, 2 , . . . and q = 1, 2, - , Q(p) = Σ?ipΓ1} QP,r ^ Pp~\ which has the following
properties:

oo Q(P) _

(10) U U Dp>qZ)Ω, where Ω denotes the intersection of R
p=l Q=l

with the set bounded by the Jordan curve βrΛ ,

(11) μ{Dp,q) > μx (p = 1, 2, q = 1, 2, , Q(p)) ,

and

(12) Dpq branches off into Qp+1>q(^ p) i2-chains Dp+uqf ,

if its harmonic modulus μ(DPfq) is finite ,

or
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(12/ Dpq has a point zp,qeE as one of its boundary components

and f(z) is meromorphic at zPiQ9 if μ(Dpq) is infinite .

Now each DPyq is conformally equivalent to the annulus 1 < | ζ | <
expμ{Dp,q). For Όpq with μ(DPjq) < oo, we denote by βPtq the closed
Jordan curve corresponding to | ζ = exp(l/2)μ(Dp,q). Such D ^ branches
off into Qp+hq(^p) i?-chains Dp+uq, {q' = Σ?=l QP+ur + β with s = 1, 2, ,
Qp+i>ff). We shall denote by Δp>q the (Qp+hq + l)-ply connected domain
bounded by βp>q and /2p+1,/s, where βp+uq> = zp+uq> when μ(Dp+hq) = oo,
Taking a point ζPf<r in /(ySPfff) and a point ζp+lf f f, in f(βp+uq>) for each #',
we consider spherical discs C(ζp,q, K/μ^ and C(ζp+uqΊ K/μJ'a, which contain
f(βp,o) a n d Λβp+hq'ΪS' respectively, because of (11) and by Lemma 3.
We set H = K/μ,.

6. We shall study the image of Δp>q under w = f(z). Let Δ be one
of ΔPfQ. Then Δ is an at most (|O + l)-ply connected domain, whose boundary
components are denoted by βl9 β2, , βQ, Q ^ p + 1. As mentioned at
the end of the preceding section, images f(βq) of these βq (q = 1, 2, , Q)
are contained in some discs Cq (q = 1, 2, , Q) with radius if. Therefore
we can cover the set U?=i Cq with at most Q closed discs Ĝ  (ί =
1, 2, , m ^ Q) which are disjoint by pair and whose radii are less than
dJ4, since QH ^ (p + l)i/ < di/4, so that each Gt contains at most one
totally ramified value of f(z). Now v(w, f, Δ) denotes the number of
w-points of f(z) in Δ, multiplicities being taken into account. Then,
obviously, v(w, f, Δ) is constant outside \JT=ι Gi. We shall show that
v(w, f,Δ) = 0 outside \J?=i Gif that is, we can cover \J^=1Cq with only one
closed disc G with radius less than dJA and the image f(Δ) of Δ is con-
tained in G. Supposing contrary that v(w, /, Δ) > 0 outside \}7=γ Gίf we
shall first prove two propositions.

PROPOSITION 1. Let F denote a closed set which consists of a finite
number of components and whose complement Ω is a domain. Suppose
that F contains \J%ιf(βq) and that there are two totally ramified values
of f(z), say Wj. and w2, in Ω. Then there is a simple closed regular
curve β in Δ whose image f(β) lies on some simple arc joining wι and
w2 in Ω.

PROOF. We call a value w a ramified value of f(z) in Δ if f(z) has
a w-point with multiplicity > 1. We take a simple regular arc Γ joining
w1 to w2 in Ω on which there are no ramified values of f(z) in Δ except
for the end points wx and w2. The inverse image f~\Γ) in Δ consists of
a finite number of simple regular arcs {7} joining a Wrpoint to a w2-point
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in A. We note that, for any w rpoint or any w2-point in Δ, there are at
least two 7's having it as a common end point, because wΓpoints and
w2-points are multiple points. Let aι be any one of the w rpoints in Δ and
let 7(1) 6 {7} be an arc joining aι to one of the w2-points, being denoted by
&!. As mentioned just above, there is another 7(2) Φ 7(1) in {7} ending at
&lβ We denote by a2 the other end point of 7(2) which is a Wj-point. If
a2 = alf we may take 7(1) — 7(2) as β. If a2 Φ aίf we consider the curve

7α> _ 7(2) + Ύw9 7(8) ]3 e j n g a n a r c i n {T} w h i c h differs from 7(2) and starts
from a2. Let b2 denote the other end point of 7(3). If δ2 = b19 the part
— 7(2) + 7(3) of our curve can be taken as β. If b2 Φ blf there is an arc

7(4) φ 7(3) i n | 7} e n d i n g a t &2 and we consider the curve 7(1) — 7(2) + 7(3) — 7(4).
In general, assume that we had a curve Ύn = Σ?=i ( — l) ί - 1 7 ( ί ) such that
7 ( ί ) and 7 ( ί + 1 ) have a Wi-point au+2)/2 if i is even or a w2-point bu+1)/2 if i is
odd as a common end point and these {ak} and {6J are distinct from each
other. Then we extend Ύn by connecting an arc (-l) w 7 ί Λ + 1 ) , 7(w+1)e{7},
which has a wΓpoint or a w2-point as a common end point with 7 (w). If
the other end point of γ( ίλ+1) is a ^^point or a w2-point being already
passed by 7W, then the last part of 7TO+1 = Σ ? i 1 ( - l ) ί " 1 ^ ( ί ) starting from
it can be taken as β. Otherwise we continue our construction. Since
the number of ^-points and ^-points in Δ is finite, we always obtain
a wanted curve β by the above construction.

PROPOSITION 2. Let G be a closed disc disjoint from F. Suppose that
G and F contain /(&) and U?=2/(/Sg), respectively and that there are
two totally ramified values of f(z), say w1 and w2J such that wteΩ — G
and w2 e G. Then either there is a simple closed regular curve β in Δ
whose image f{β) lies on some simple arc joining w1 and w2 in Ω, or
there are two simple arcs β' and β" in Δ joining a wx-point in Δ to
the boundary component β19 whose images f(β') and f{β") lie on some
simple arc joining wx and w2 in Ω.

PROOF. In the present case, the inverse image f~\Γ) in Δ consists
of a finite number of simple regular arcs joining a ^-point to a w2-point,
ones joining a Wrpoint or a w2-point to βt and ones joining a point on β1

to another point on βλ. We pick up only the arcs of the former two
kinds and denote them by {7}. Using this {7}, we construct a curve in
the similar manner as above. Then either we obtain a wanted closed
curve βy or, for some n, the arc 7(w) connected to Ίn_x is of the second
kind, so that Ύn joins the w^point aί to βt. In the latter case, we con-
struct another curve begining with 7(1) Φ 7(1) in {7} which starts from
alf and obtain a β or a curve 7; for some n joining aL to βlf while
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β' — yn and β" = 7; give a wanted pair.

7. Since each Gt (i = 1, 2, , m) contains at most one totally rami-
fied values of f(z), the following two cases are possible.

Case ( i ). The complement Ω(ί) of F{1) = (JΓ=I G* contains not less
than two totally ramified values,
or

Case (ii). The number m of {GJ is equal to p + 1 and there is
just one totally ramified value in i2(1). In this case, each G* (i =
1, 2, , m = p + 1) coincides with some Cq (q = 1, 2, , Q = p + 1) and
they contain images f{βq) (q = 1, 2, , Q = p + 1) one by one.

Case ( i ). We take any two, say w1 and w2, among the totally
ramified values contained in Ωa). By Proposition 1, there is a closed
curve β, which we denote by βa\ in Δ, whose image f(β{1)) lies on a
curve Γ{1} joining wι and w2 in Ω(1). The curve β{1) divides A into two
domains. We denote by Δx one with connectivity not greater than
that of the other. Then Δλ is bounded by /S(1) and some of {βq}9 say
βi, &>•••> /3QU), where Q(1) ^ [(p + l)/2]. Hence the image of dΔγ is covered
with some of {GJ, say Gl9 G2, •••, Gmω(m{1) ^ Q(1)), and Γ (1). We denote
by Ωi2) the complementary domain of F{2) = (\JT=I Gt) U Γ ( 1 ). Since

for p ^ 4 ,

we see that Ωl2) contains at least two totally ramified values, say w3 and
w4, distinct from w1 and wif excepting the following two cases.

Case (i)-(a). The case that p = 2 (which implies m(1) = Qa) ^ 1),
m(1) = 1 and C?i( =)/(&)) contains w3 or w4, say w4.

Case (i)-(b). The case that p = 3 (which implies m(1) = Q(1) ^ 2)
m(1) = 2 and G^fiβ^) and G2(z)f(β2)) contain two values among w3, w4

and w6, say w4 and w8, one by one.
By Proposition 1, there is a closed curve β{2) in Aι whose image

f(β{2)) lies on a curve Γ (2) joining w3 and ^ 4 in Ω{2}. The curve /3(2) divid-
es Δ1 into two domains. We denote by Δ2 one not having /3(1) in its
boundary. The image of dΔ2 is covered with some of {GJjώ0 and Γ{2) so
that β(3), the complementary domain of the sum Fm of these G/s and
,Γ(2), contains ^ and w2 and there is a closed curve /3(3) in Δ2, again by
Proposition 1, whose image /(/3(3)) lies on Γ{1). Thus, repeating the above
argument again and again, we obtain a set of closed curves {β{n)}n=i in
Δ such that they are disjoint by pair and that the image f(β{n)) covers
JΓ(1) if n is odd or Γ{2) if n is even. This is impossible.

In the excepted cases, we use Proposition 2 under the setting that
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Then we see that there is a closed curve β{2) or a pair of arcs β'{2) and
/3"(2) joining a w3-point to the boundary component β1 of 4 whose images
lie on a curve Γ{2) joining wz and w4 in ί2(2), the complement of F{2). The
curve /9(2) or — βn2) + /3"(2) divides Δ1 into two domains. We denote by
Δ2 one not having β{1} in its boundary. The image of dA2 is covered
with F{3) = Γ{2) U Gλ in the case (a), or with Fm = Γ(2) U Gx or the sum
of Γ{2) (J Gι and G2 in the case (b), so that the complementary domain
J2(3) of Fi3) contains wγ and w2 and there is a closed curve β{3) in A2 whose
image f(βm) lie on Γ (1). Repeating the same argument again and again,
we obtain a set of curves {β{2n~ι\ β{2n) or -βr{2n) + β"i2n)}n=ί in J such
that they are disjoint by pair, and that f(β{2n~l)) cover Γ(1) and f(β{2n))
or f(-β'{2n) + /2"(2n)) cover Γ(2) or its part joining w3 to dGlf respectively.
This is impossible.

Case ( i i) . We may assume Gt = Ct contains wt (i = 1, 2, , ^ + 1)
and wP+2 is contained in the complement of (JίΛ1 ί?i Setting F{1) = U?=i ̂ *
and G = G>+1 we see from Proposition 2 that there is a closed curve /3{1)

or a pair of arcs β'{1) and /3"(1) joining a ^^+2-point to βp+ι in J whose
images lie on a curve Γ(1) joining ^ ( 0 + 1 and wp+2 in β (1), the complement
of F{1). The curve /3(1) or -βt{1) + /S//(1) divides A into two domains. We
denote by Ax one with connectivity not greater than that of the other.
Then /(34) is covered with some of {GJ, say Gί9 •••, Gmω(m{ί) <; |0 — 1)
and Γ(1) U G^+1. If m(1) < ^ — 1, then wp_x and ^ are contained in Ω{2\
the complement of F{2) = (Uι

m=ί) Gt) U (Γ(1) U G^,+1), and we use Proposition
1. If m(1) = p — 1, then w ^ and w^ are contained in Ω{2\ the comple-
ment of F{2) = ( U S G,) U (Γ(1) U GP+1), and we use Proposition 2 under
the setting G = G>_lβ Then we see that there is a closed curve β{2) or a
pair of arcs β'{2) and /9"(2) joining a ^^,-point to /9̂ ,_! in A whose images
lie on a curve Γi2) joining wp_ί and wp in β ( 2 ). The curve β{2) or — β'{2) +
/S"(2) divides Λ into two domains, one of which has not β{l) or —βni) + /3"(1)

in its boundary. We denote it by A2. Then f(dA2) is covered with some
of {Gly G2, •••, Gmd), G ,̂+1} and Γ(2) when m(1) < ^ — 1 or with some of
{Glf G2, , G^_2, Gp+1} and Γ(2) U GP^ when m(1) = ^ — 1. If the covering
of f(dA2) does not contain G>+1, the complementary domain β ( 3 ) of their
sum F{3) contains wp+1 and ŵ +g and we use Proposition 1. If it contains
Gp+19 we take their sum deleting Gp+1 and denote it by F{3). The com-
plement β { 3 ) of Fm contains wp+1 and wp+2 and we use Proposition 2 set-
ting G = G ,̂+1. Thus there is a closed curve /3(3) or a pair of arcs /3'(3)

and /3"(3) in A2 whose images lie on Γ ( 1 ). Repeating the above argument,
we obtain a set of curves {β{n) or — βnn) + β"{n)) in zf such that they are
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disjoint by pair and that f(β{n)) or f(-β'{n) + β"{n)) cover Γ(1) or its part
joining wp+2 to dGp+1 for any odd n. This is absurd.

8. We conclude now:

(13) For every Δp,q (p = 1, 2, - •; g = 1, 2, • • , Q(p))

there is a spherical closed disc with the spherical radius (p + 1)H
containing its image f(Δp>q).

Next consider βp>q for p ^ 2. The domain Δp<q and some 4,_1)(7, have
βp>q as the common boundary and

In view of (13) the images of Δp>q U βp,q U 4>-i,?' a n d consequently of Dp,q

are contained in a spherical closed disc with spherical radius 2(p + l ) i ϊ .
By applying Lemma 4 to Dp>q for d = 3(̂ 0 + 1)H < dQ, we see that the
diameter of f(βp,q) is less than 3(ρ + 1)HB exp (-(1/2)^) < H. For p ^ 2,
each boundary component of JPtff thus has an image with diameter less
than H. By the same reasoning as above we infer

(14) For p ^ 2 the image of every Jp>q is contained in a spherical

closed disc with spherical radius ((p + l)H)/2 .

By induction we deduce for every n:

(15) For p^ n the image of every ΔPtq is contained in a spherical

closed disc with spherical radius ((p + l)H)/2n~1 .

Let Ω' be the intersection of R and the domain bounded by the
Jordan curve βlfl and let z* be a point of βhί. Then it follows from the
property (10) of {Dp,q} that

oo Q(p) _

S'cU U4,

and consequently for any z'e Ω' there is a Δp,tq, whose closure contain zf.
From (15) we have for a chain {ΔPtQp}lf

=i of Ap>q joining ΔlΛ and Δp>,q>,

χ(f(z'),f(z*)) ^

where the diameter is in terms of spherical metric. By means of a
linear transformation we conclude that f(z) is bounded in 42'. On the
other hand, on applying the criterion of Pfluger [5]-Mori [3] to the an-
nular domains {Dp>q}f we see easily that the part E' of E contained in
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the region bounded by βlΛ has a complement of class OAB. Hence each
point of E' must be a removable singularity of a bounded function f(z).
This contradicts our assumption that z0 e Ef is an essential singularity of
f(z). Thus we conclude that f(z) cannot have more than p + 1 totally
ramified values. This completes the proof of Theorem.

9. Any meromorphic function cannot be normal in any neighbourhood
of an isolated essential singularity, so that it cannot have more than
four totally ramified values there. On the other hand, there are sets E
with the conditions of Theorem for p = 2, 3, whose complementary domain
permits normal meromorphic functions with E as the set of singularities
notwithstanding that they cannot have more than four totally ramified
values (see [2]).

Problem. Is there any E whose complementary domain permits no
normal or no exceptionally ramified meromorphic functions with E as
the set of singularities? Here a meromorphic function f(z) is called ex-
ceptionally ramified, if f(z) has totally ramified values w3- with mjf the
minimum of the multiplicities of w^-points, such that

--L)>2.
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